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Abstract

Despite existing work on ensuring generalization of neural networks in terms of scale sensitive complexity measures,
such as norms, margin and sharpness, these complexity measures do not offer an explanation of why neural networks
generalize better with over-parametrization. In this work we suggest a novel complexity measure based on unit-wise
capacities resulting in a tighter generalization bound for two layer ReLU networks. Our capacity bound correlates with
the behavior of test error with increasing network sizes, and could potentially explain the improvement in generalization
with over-parametrization. We further present a matching lower bound for the Rademacher complexity that improves
over previous capacity lower bounds for neural networks.

1 Introduction

Deep neural networks have enjoyed great success in learning across a wide variety of tasks. They played a crucial role
in the seminal work of Krizhevsky et al. [ 1 2], starting an arms race of training larger networks with more hidden units,
in pursuit of better test performance [10]. In fact the networks used in practice are over-parametrized to the extent that
they can easily fit random labels to the data [27]. Even though they have such a high capacity, when trained with real
labels they achieve smaller generalization error.

Traditional wisdom in learning suggests that using models with increasing capacity will result in overfitting to the
training data. Hence capacity of the models is generally controlled either by limiting the size of the model (number of
parameters) or by adding an explicit regularization, to prevent from overfitting to the training data. Surprisingly, in
the case of neural networks we notice that increasing the model size only helps in improving the generalization error,
even when the networks are trained without any explicit regularization - weight decay or early stopping [13, 26, 21].
In particular, Neyshabur et al. [21] observed that training on models with increasing number of hidden units lead to
decrease in the test error for image classification on MNIST and CIFAR-10. Similar empirical observations have been
made over a wide range of architectural and hyper-parameter choices [ 15, 24, 14]. What explains this improvement in
generalization with over-parametrization? What is the right measure of complexity of neural networks that captures this
generalization phenomenon?

Complexity measures that depend on the total number of parameters of the network, such as VC bounds, do not
capture this behavior as they increase with the size of the network. Neyshabur et al. [20], Keskar et al. [1 1], Neyshabur
et al. [22], Bartlett et al. [4], Neyshabur et al. [23], Golowich et al. [7] and Arora et al. [1] suggested different norm,
margin and sharpness based measures, to measure the capacity of neural networks, in an attempt to explain the
generalization behavior observed in practice. In particular Bartlett et al. [4] showed a margin based generalization bound
that depends on the spectral norm and ¢; 5 norm of the layers of a network. However, as shown in Neyshabur et al. [22]
and in Figure 5, these complexity measures fail to explain why over-parametrization helps, and in fact increase with the
size of the network. Dziugaite and Roy [0] numerically evaluated a generalization bound based on PAC-Bayes. Their
reported numerical generalization bounds also increase with the increasing network size. These existing complexity
measures increase with the size of the network as they depend on the number of hidden units either explicitly, or the
norms in their measures implicitly depend on the number of hidden units for the networks used in practice [22] (see
Figures 3 and 5).
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Figure 1: Over-parametrization phenomenon. Left panel: Training pre-activation ResNet18 architecture of different sizes on
CIFAR-10 dataset. We observe that even when after network is large enough to completely fit the training data(reference line), the
test error continues to decrease for larger networks. Middle panel: Training fully connected feedforward network with single hidden
layer on CIFAR-10. We observe the same phenomena as the one observed in ResNet18 architecture. Right panel: Unit capacity
captures the complexity of a hidden unit and unit impact captures the impact of a hidden unit on the output of the network, and are
important factors in our capacity bound (Theorem 1). We observe empirically that both unit capacity and unit impact shrink with a
rate faster than 1/ v/h where h is the number of hidden units. Please see Supplementary Section A for experiments settings.

To study and analyze this phenomenon more carefully, we need to simplify the architecture making sure that the
property of interest is preserved after the simplification. We therefore chose two layer ReLU networks since as shown
in the left and middle panel of Figure 1, it exhibits the same behavior with over-parametrization as the more complex
pre-activation ResNet18 architecture. In this paper we prove a tighter generalization bound (Theorem 2) for two layer
ReLU networks. Our capacity bound, unlike existing bounds, correlates with the test error and decreases with the
increasing number of hidden units. Our key insight is to characterize complexity at a unit level, and as we see in the
right panel in Figure 1 these unit level measures shrink at a rate faster than 1/ V/h for each hidden unit, decreasing
the overall measure as the network size increases. When measured in terms of layer norms, our generalization bound
depends on the Frobenius norm of the top layer and the Frobenius norm of the difference of the hidden layer weights
with the initialization, which decreases with increasing network size (see Figure 2).

The closeness of learned weights to initialization in the over-parametrized setting can be understood by considering
the limiting case as the number of hidden units go to infinity, as considered in Bengio et al. [5] and Bach [2]. In
this extreme setting, just training the top layer of the network, which is a convex optimization problem for convex
losses, will result in minimizing the training error, as the randomly initialized hidden layer has all possible features.
Intuitively, the large number of hidden units here represent all possible features and hence the optimization problem
involves just picking the right features that will minimize the training loss. This suggests that as we over-parametrize
the networks, the optimization algorithms need to do less work in tuning the weights of the hidden units to find the right
solution. Dziugaite and Roy [6] indeed have numerically evaluated a PAC-Bayes measure from the initialization used
by the algorithms and state that the Euclidean distance to the initialization is smaller than the Frobenius norm of the
parameters. Nagarajan and Kolter [ 18] also make a similar empirical observation on the significant role of initialization,
and in fact prove an initialization dependent generalization bound for linear networks. However they do not prove a
similar generalization bound for neural networks. Alternatively, Liang et al. [ 15] suggested a Fisher-Rao metric based
complexity measure that correlates with generalization behavior in larger networks but they also prove the capacity
bound only for linear networks.

Contributions: Our contributions in this paper are as follows.

¢ We empirically investigate the role of over-parametrization in generalization of neural networks on 3 different
datasets (MNIST, CIFAR10 and SVHN), and show that the existing complexity measures increase with the
number of hidden units - hence do not explain the generalization behavior with over-parametrization.

* We prove tighter generalization bounds (Theorems 2 and 5) for two layer ReL.U networks. Our proposed
complexity measure actually decreases with the increasing number of hidden units, and can potentially explain
the effect of over-parametrization on generalization of neural networks.

* We provide a matching lower bound for the Rademacher complexity of two layer ReLLU networks. Our lower
bound considerably improves over the best known bound given in Bartlett et al. [4], and to our knowledge is the
first such lower bound that is bigger than the Lipschitz of the network class.
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Figure 2: Properties of two layer ReLU networks trained on CIFAR-10. We report different measures on the trained network. From
left to right: measures on the second (output) layer, measures on the first (hidden) layer, distribution of angles of the trained weights
to the initial weights in the first layer, and the distribution of unit capacities of the first layer. "Distance" in the first two plots is the
distance from initialization in Frobenius norm.

1.1 Preliminaries

We consider two layer fully connected ReLU networks with input dimension d, output dimension ¢, and the number of
hidden units /. Output of a network is fv u(x) = V[Ux], ! where x € R%, U € R"*4 and V € R*". We denote
the incoming weights to the hidden unit ¢ by u; and the outgoing weights from hidden unit ¢ by v;. Therefore u;
corresponds to row ¢ of matrix U and v; corresponds to the column ¢ of matrix V.

We consider the c-class classification task where the label with maximum output score will be selected as the
prediction. Following Bartlett et al. [4], we define the margin operator p : R® X [¢] — R as a function that given the
scores f(x) € R for each label and the correct label y € [c], it returns the difference between the score of the correct
label and the maximum score among other labels, i.e. u(f(x),y) = f(x)[y] — max;-, f(x)[i]. We now define the
ramp loss as follows:

0 p(f(x),y) >
C(f(x),y) = qu(f(x),y)/v w(f(x),y) €0,7] (1)
1 p(f(x),y) <O0.

For any distribution D and margin v > 0, we define the expected margin loss of a predictor f(.) as L.(f) =
Px, gy~ [€4(f(x),y)]. The loss L,(.) defined this way is bounded between 0 and 1. We use L (f) to denote the
empirical estimate of the above expected margin loss. As setting v = 0 reduces the above to classification loss, we will
use Lo(f) and Lo(f) to refer to the expected risk and the training error respectively.

2 Generalization of Two Layer ReLLU Networks

Let £., o ‘H denotes the function class corresponding to the composition of the loss function and functions from class .
With probability 1 — & over the choice of the training set of size m, the following generalization bound holds for any
function f € H [17, Theorem 3.1]:

A In(2/4
Lo(f) < Ly(f) +2Rs(lyoH)+3 % 2)
where Rg(H) is the Rademacher complexity of a class H of functions with respect to the training set S which is
defined as:
1
Rs(H)=— E su f(xi)] - 3
s(H) M em{x1)m [ Y X_:&f( z)] 3)
Rademacher complexity is a capacity measure that captures the ability of functions in a function class to fit random
labels which increases with the complexity of the class.

I'Since the number of bias parameters is negligible compare to the size of the network, we drop the bias parameters to simplify the analysis.
Moreover, one can model the bias parameters in the first layer by adding an extra dimension with value 1.



2.1 An Empirical Investigation

We will bound the Rademacher complexity of neural networks to get a bound on the generalization error . Since the
Rademacher complexity depends on the function class considered, we need to choose the right function class that only
captures the real trained networks, which is potentially much smaller than networks with all possible weights, to get a
complexity measure that explains the decrease in generalization error with increasing width. Choosing a bigger function
class can result in weaker bounds that does not capture this phenomenon. Towards that we first investigate the behavior
of different measures of network layers with increasing number of hidden units. The experiments discussed below are
done on the CIFAR-10 dataset. Please see Section A for similar observations on SVHN and MNIST datasets.

First layer: As we see in the second panel in Figure 2 even though the spectral and Frobenius norms of the learned
layer decrease initially, they eventually increase with h, with Frobenius norm increasing at a faster rate. However
the distance Frobenius norm measured w.r.t. initialization (||U — Uy|| ) decreases. This suggests that the increase
in the Frobenius norm of the weights in larger networks is due to the increase in the Frobenius norm of the random
initialization. To understand this behavior in more detail we also plot the distance to initialization per unit and the
distribution of angles between learned weights and initial weights in the last two panels of Figure 2. We indeed observe
that per unit distance to initialization decreases with increasing h, and a significant shift in the distribution of angles
to initial points, from being almost orthogonal in small networks to almost aligned in large networks. This per unit
distance to initialization is a key quantity that appears in our capacity bounds and we refer to it as unit capacity in the
remainder of the paper.

Unit capacity. We define 3; = Hui —u! H2 as the unit capacity of the hidden unit 7.

Second layer: Similar to first layer, we look at the behavior of different measures of the second layer of the trained
networks with increasing h in the first panel of Figure 2. Here, unlike the first layer, we notice that Frobenius norm
and distance to initialization both decrease and are quite close suggesting a limited role of initialization for this layer.
Moreover, as the size grows, since the Frobenius norm || V||  of the second layer slightly decreases, we can argue that
the norm of outgoing weights v; from a hidden unit i decreases with a rate faster than 1/v/h. If we think of each hidden
unit as a linear separator and the top layer as an ensemble over classifiers, this means the impact of each classifier on
the final decision is shrinking with a rate faster than 1/ V/h. This per unit measure again plays an important role and we
define it as unit impact for the remainder of this paper.

Unit impact. We define a; = ||v;]|,, as the unit impact, which is the magnitude of the outgoing weights from the unit i.

Motivated by our empirical observations we consider the following class of two layer neural networks that depend
on the capacity and impact of the hidden units of a network. Let WV be the following restricted set of parameters:

W={(V,U)|VeR*" UeR" |lvi| <o, |u; — ||, <8}, 4)
We now consider the hypothesis class of neural networks represented using parameters in the set WV:
Fw ={f(x) =V [Ux], | (V,U) e W}. )

Our empirical observations indicate that networks we learn from real data have bounded unit capacity and unit impact
and therefore studying the generalization behavior of the above function class can potentially provide us with a better
understanding of these networks. Given the above function class, we will now study its generalization properties.

2.2 Generalization Bound

In this section we prove a generalization bound for two layer ReLU networks. We first bound the Rademacher
complexity of the class Fyy in terms of the sum over hidden units of the product of unit capacity and unit impact.
Combining this with the equation (2) will give a generalization bound.

Theorem 1. Given a training set S = {x;}.; and vy > 0, Rademacher complexity of the composition of loss function
L., over the class Fyy defined in equations (4) and (5) is bounded as follows:

h

2v/2c + 2
Rs(by o Fw) < o > oy (81Xl + [[uiX][,) (6)
j=1
2v/2¢ + 2 1 & 5 1 — 5
<—/——— || B — Xil|5 + .| — U%x; . @
o el {181 | Sl + | 32 10l



# | Reference Measure

(1) | Harvey et al. [9] O(dh)

(2) | Bartlett and Mendelson [3] °) (HUHOO’1 HVHOC,1)

(3) | Neyshabur et al. [20], Golowich et al. [7] O (U]l IVIlr)

(4) | Bartlett et al. [4], Golowich et al. [7] 6 (HUH2 IV = Voll, 5 + U~ Uoll, , ||V|\2)
(5) | Neyshabur et al. [2] 6 (Ul 'V = Voll + VA U = Uoll [V]],)
(6) | Theorem 2 6 (IUsll, I VIl + U = U°[| . IV + V)

Table 1: Comparison with the existing generalization measures presented for the case of two layer ReLU networks with constant
number of outputs and constant margin.

1= Wi v-volp,.. ¥ VEllUllz IV - VOl =¥ IMIF1IV°112
104-\'\14—'/'/ 10000 ||U—U°||]vz|vnz/ 10000+ ~F|\U—U°||F||vuz/ 1000 Ve 1L = U011

(]

2 - (6)

2 = @ [Vl M2 - Wsm 5 sum =

8 @ [l 1Vle 5000-'\‘.‘/{/ sooo-u 500

S 103 4
. : . . 0L FF¥F¥VyrVvvy 0L FF¥F¥VrVvvy Oy vevvvrvvy
26 29 212 215 26 29 212 215 26 29 212 215 26 29 212 215

#hidden units #hidden units #hidden units #hidden units

Figure 3: Behavior of terms presented in Table 1 with respect to the size of the network trained on CIFAR-10.

The proof is given in the supplementary Section B. The main idea behind the proof is a new technique to decompose
the complexity of the network into complexity of the hidden units. To our knowledge, all previous works decompose
the complexity to that of layers and use Lipschitz property of the network to bound the generalization error. However,
Lipschitzness of the layer is a rather weak property that ignores the linear structure of each individual layer. Instead, by
decomposing the complexity across the hidden units, we get the above tighter bound on the Rademacher complexity of
the networks.

The generalization bound in Theorem 1 is for any function in the function class defined by a specific choice of o
and 3 fixed before the training procedure. To get a generalization bound that holds for all networks, we need to cover
the space of possible values for v and 3 and take a union bound over it. The following theorem states the generalization
bound for any two layer ReLU network 2.

Theorem 2. Forany h > 2,y > 0,6 € (0,1) and U° € R"*4, with probability 1 — § over the choice of the training
set S = {x;}, C RY for any function f(x) = V[Ux] such that V. € R and U € R"*4, the generalization
error is bounded as follows:

VeVl (U =0, 11X + [U°X ] ) \F)
+ -

ym

Ldﬂsiwﬁ+0<

. A VElVIE (U =00+ [[U°],) /o 20 Il h
<L+ )y AE).

m
Figure 5, in the regimes of interest this new additive term is small and does not dominate the first term. While we show
that the dependence on the first term cannot be avoided using an explicit lower bound (Theorem 3), the additive term
with dependence on v/ might be just an artifact of our proof. In Section 4 we present a tighter bound based on lo,2
norm of the weights which removes the extra additive term for large h at a price of weaker first term.

The extra additive factor O(\ /1) is the result of taking the union bound over the cover of & and 3. As we see in

2.3 Comparison with Existing Results

In table 1 we compare our result with the existing generalization bounds, presented for the simpler setting of two
layer networks. In comparison with the bound © (||U||2 [V = Vo, +[U-Uo|,, HV||2) [4, 7]: The first term

2For the statement with exact constants see Lemma 13 in Supplementary Section B.
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Figure 4: First panel: Training and test errors of fully connected networks trained on SVHN. Second panel: unit-wise properties
measured on a two layer network trained on SVHN dataset. Third panel: number of epochs required to get 0.01 cross-entropy loss.
Fourth panel: comparing the distribution of margin of data points normalized on networks trained on true labels vs a network trained
on random labels.
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Figure 5: Left panel: Comparing capacity bounds on CIFAR10 (unnormalized). Middle panel: Comparing capacity bounds on
CIFAR10 (normalized). Right panel: Comparing capacity bounds on SVHN (normalized).

in their bound || U], ||V — Vy||; , is of smaller magnitude and behaves roughly similar to the first term in our bound
[Uoll, [V = (see Figure 3 last two panels). The key complexity term in their bound is [|[U — Ug||, , [| V|5, and in

our bound is ||[U — U°|| . |

constant, and hence behave similarly. However, ||U — Uy Hl-,2 can be as big as VA - HU - Uu° H 7 When most hidden
units have similar capacity, and are only similar for really sparse networks. Infact their bound increases with A mainly
because of this term |[U — Ug||, , . As we see in the first and second panels of Figure 3, £; norm terms appearing
in Bartlett and Mendelson [3], Bartlett et al. [4], Golowich et al. [7] over hidden units increase with the number of
units as the hidden layers learned in practice are usually dense. Neyshabur et al. [20], Golowich et al. [7] showed a
bound depending on the product of Frobenius norms of layers, which increases with h, showing the important role of
initialization in our bounds. In fact the proof technique of Neyshabur et al. [20] does not allow for getting a bound with
norms measured from initialization, and our new decomposition approach is the key for the tighter bound.

Experimental comparison. We train two layer ReLU networks of size h on CIFAR-10 and SVHN datasets with
values of h ranging from 26 to 215, The training and test error for CIFAR-10 are shown in the first panel of Figure 1, and
for SVHN in the left panel of Figure 4. We observe for both datasets that even though a network of size 128 is enough
to get to zero training error, networks with sizes well beyond 128 can still get better generalization, even when trained
without any regularization. We further measure the unit-wise properties introduce in the paper, namely unit capacity
and unit impact. These quantities decrease with increasing h, and are reported in the right panel of Figure 1 and second
panel of Figure 4. Also notice that the number of epochs required for each network size to get 0.01 cross-entropy loss
decreases for larger networks as shown in the third panel of Figure 4.

For the same experimental setup, Figure 5 compares the behavior of different capacity bounds over networks of
increasing sizes. Generalization bounds typically scale as y/C/m where C is the effective capacity of the function
class. The left panel reports the effective capacity C' based on different measures calculated with all the terms and
constants. We can see that our bound is the only that decreases with h and is consistently lower that other norm-based
data-independent bounds. Our bound even improves over VC-dimension for networks with size larger than 1024. While
the actual numerical values are very loose, we believe they are useful tools to understand the relative generalization
behavior with respect to different complexity measures, and in many cases applying a set of data-dependent techniques,
one can improve the numerical values of these bounds significantly [0, |]. In the middle and right panel we presented

| V| -, for the range of & considered. || V|, and || V| differ by number of classes, a small



each capacity bound normalized by its maximum in the range of the study for networks trained on CIFAR-10 and SVHN
respectively. For both datasets, our capacity bound is the only one that decreases with the size even for networks with
about 100 million parameters. All other existing norm-based bounds initially decrease for smaller networks but then
increase significantly for larger networks. Our capacity bound therefore could potentially point to the right properties
that allow the over-parametrized networks to generalize.

Finally we check the behavior of our complexity measure under a different setting where we compare this measure
between networks trained on real and random labels [22, 4]. We plot the distribution of margin normalized by our
measure, computed on networks trained with true and random labels in the last panel of Figure 4 - and as expected they
correlate well with the generalization behavior.

3 Lower Bound

In this section we will prove a Rademacher complexity lower bound for neural networks matching the dominant term in
the upper bound of Theorem 1. We will show our lower bound on a smaller function class than Fy, with an additional
constraint on spectral norm of the hidden layer, as it allows for comparison with the existing results, and extends also to
the bigger class Fyy.

Theorem 3. Define the parameter set
W= {(v,w |V eRVMU R |vyl| < . [y = w], < 65, U= U < magﬂj}a
JjeE

and let Fyy be the function class defined on W' by equation (5). Then, for any d = h < m, {«;, [3]} _, CR" and
Ug = 0, there exists S = {x;}™, C RY, such that

h . .
Rs(Fw) > Rs(Fwr) = Q <Zj—1 aJBJ”X”F) '

m

The proof is given in the supplementary Section B.3. Clearly, W’ C W since it has an extra constraint. The above

Seey ciBillXlr
my

lower bound matches the first term, , in the upper bound of Theorem 1, upto % which comes from the

%-Lipschitz constant of the ramp loss [,. Also whenc = 1and 3 = 0,

h 0 h 0
a; [[u X2 D j—1 0 [[uG Xl
RS(JT_.W) = 72,[[J005]Jr fv Z < J = Q L ,

i=1 "
where Fy, = {f(x) = Vx | V. € R™" ||v;|| < «;}. In other words, when B = 0, the function class Fyy on
S = {x;}", is equivalent to the linear function class 7y on [Ug o S|+ = {[Uox;]+ }™,, and therefore we have the
above lower bound. This shows that the upper bound provided in Theorem 1 is tight. It also indicates that even if we
have more information, such as bounded spectral norm with respect to the reference matrix is small (which effectively
bounds the Lipschitz of the network), we still cannot improve our upper bound.

To our knowledge all previous capacity lower bounds for spectral norm bounded classes of neural networks
correspond to the Lipschitz constant of the network. Our lower bound strictly improves over this, and shows gap
between Lipschitz constant of the network (which can be achieved by even linear models) and capacity of neural
networks. This lower bound is non-trivial in the sense that the smaller function class excludes the neural networks with
all rank-1 matrices as weights, and thus shows ©(v/h)-gap between the neural networks with and without ReLU. The
lower bound therefore does not hold for linear networks. Finally, one can extend the construction in this bound to more
layers by setting all weight matrices in intermediate layers to be the Identity matrix.

Comparison with existing results. In particular, Bartlett et al. [4] has proved a lower bound of 2 (%) , for

the function class defined by the parameter set,

Wapee = {(V,U) | V € RV U € R ||V, < 51, | U], < 82} (8)



Note that 5152 is a Lipschitz bound of the function class Fyy, ...
Given Wiy with bounds s; and sy, choosing o and 3 such that |||, = s; and max;cp) 8; = so results in
W' C Wepe.. Hence we get the following result from Theorem 3.

Corollary 4. Vh = d < m, 51,55 > 0, 3S € R¥*™ such that Rs(Fy,,..) = (%)

Hence our result improves the lower bound in Bartlett et al. [4] by a factor of Vh. Theorem 7 in Golowich et al. [7]
also gives a (s152+/c) lower bound, c is the number of outputs of the network, for the composition of 1-Lipschitz loss
function and neural networks with bounded spectral norm, or co-Schatten norm. Our above result even improves on
this lower bound.

4 Generalization for Extremely Large Values of /

In this section we present a tighter bound that reduces the influence of this additive term and decreases even for larger
values of h. The main new ingredient in the proof is the Lemma 10, in which we construct a cover for the ¢,, ball with
entrywise dominance.

Theorem 5. Forany h,p > 2,v> 0,9 € (0,1) and U° € R"*4, with probability 1 — § over the choice of the training
set S = {x;}™, C RY, for any function f(x) = V[Ux] such that V € R®*" and U € R"*4, the generalization
error is bounded as follows:

Lo(f) < L,(f)+ O (

ym m

Veh® v VT, (77 |JU = U°|, o X + [ U] ) . ePh>

where ||.||, , is the £, norm of the row {3 norms.

In contrast to Theorem 2 the additive /A term is replaced by 2% For p of order In h, 2% A constant improves

on the v/% additive term in Theorem 2. However the norms in the first term ||V and |[U — Uy|| ;- are replaced by
Wew |[VT|| and b2 75 U = Ug|l, . Forp~Inh, h2 s |[VT|| ,~ hi-wr |
bound for || V|| and is of the same order if all rows of V have the same norm - hence giving a tighter bound that
decreases with h for larger values. In particular for p = In h we get the following bound.

b2 vT Hln ho which is a tight upper

Corollary 6. Under the settings of Theorem 5, with probability 1 — § over the choice of the training set S = {x;}",,
for any function f(x) = V[Ux|,, the generalization error is bounded as follows:

: (ﬁh%ﬁh V7l (25 0 =0, 1K + onXnF)>

Lo(f) < Ly(f)+ O

ym
11 11 ™
) VehETmm [V (hz lnh|U*U0Hlnh’2+”U0”2)Q/%Zi:l [Ix:|2
< L(f) T

5 Discussion

In this paper we present a new capacity bound for neural networks that decreases with the increasing number of hidden
units, and could potentially explain the better generalization performance of larger networks. However our results are
currently limited to two layer networks and it is of interest to understand and extend these results to deeper networks.
Also while these bounds are useful for relative comparison between networks of different size, their absolute values are
still much larger than the number of training samples, and it is of interest to get smaller bounds. Finally we provided a
matching lower bound for the capacity improving on the current lower bounds for neural networks.

In this paper we do not address the question of whether optimization algorithms converge to low complexity
networks in the function class considered in this paper, or in general how does different hyper parameter choices
affect the complexity of the recovered solutions. It is interesting to understand the implicit regularization effects of the
optimization algorithms [19, 8, 25] for neural networks, which we leave for future work.
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A Experiments

A.1 Experiments Settings

Below we describe the setting for each reported experiment.

ResNet18 In this experiment, we trained a pre-activation ResNet18 architecture on CIFAR-10 dataset. The architecture
consists of a convolution layer followed by 8 residual blocks (each of which consist of two convolution) and a linear
layer on the top. Let & be the number of channels in the first convolution layer. The number of output channels and
strides in residual blocks is then [k, k, 2k, 2k, 4k, 4k, 8k, 8k] and [1,1,1,2,1, 2,1, 2] respectively. Finally, we use the
kernel sizes 3 in all convolutional layers. We train 11 architectures where for architecture i we set k = [22+%/2]. In
each experiment we train using SGD with mini-batch size 64, momentum 0.9 and initial learning rate 0.1 where we
reduce the learning rate to 0.01 when the cross-entropy loss reaches 0.01 and stop when the loss reaches 0.001 or if the
number of epochs reaches 1000. We use the reference line in the plots to differentiate the architectures that achieved
0.001 loss. We do not use weight decay or dropout but perform data augmentation by random horizontal flip of the
image and random crop of size 28 x 28 followed by zero padding.

Two Layer ReLU Networks We trained fully connected feedforward networks on CIFAR-10, SVHN and MNIST
datasets. For each data set, we trained 13 architectures with sizes from 23 to 21° each time increasing the number of
hidden units by factor 2. For each experiment, we trained the network using SGD with mini-batch size 64, momentum
0.9 and fixed step size 0.01 for MNIST and 0.001 for CIFAR-10 and SVHN. We did not use weight decay, dropout or
batch normalization. For experiment, we stopped the training when the cross-entropy reached 0.01 or when the number
of epochs reached 1000. We use the reference line in the plots to differentiate the architectures that achieved 0.01 loss.

Evaluations For each generalization bound, we have calculated the exact bound including the log-terms and constants.
We set the margin to 5th percentile of the margin of data points. Since bounds in [3] and [21] are given for binary
classification, we multiplied [3] by factor ¢ and [21] by factor y/c to make sure that the bound increases linearly with
the number of classes (assuming that all output units have the same norm). Furthermore, since the reference matrices
can be used in the bounds given in [4] and [23], we used random initialization as the reference matrix. When plotting
distributions, we estimate the distribution using standard Gaussian kernel density estimation.

A.2 Supplementary Figures

Figures 6 and 7 show the behavior of several measures on networks with different sizes trained on SVHN and MNIST
datasets respectively. The left panel of Figure 8 shows the over-parametrization phenomenon in MNSIT dataset and the
middle and right panels compare our generalization bound to others.

second layer first layer
80 ? ' 128
—¥— Spectral 801 2 1.0 | 256
o 40 Frobenius 401 3 1K
2 —&— Di > 5 | 4K
2508 Distance 20 1 2 5 o508 — 16K
g 10 .% ! 32K
101 ‘\k'*-'—v——v—v—v_v \k‘—‘—-v_v_v_v E \\\ X/
5 51 5 01 . . R D e ————
25 29 213 27 211 215 0 1 z 0 5 10
#hidden units #hidden units angle to initial weight singular value

Figure 6: Different measures on fully connected networks with a single hidden layer trained on SVHN. From left to right: measure
on the output layer, measures in the first layer, distribution of angle to initial weight in the first layer, and singular values of the first
layer.
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#hidden units #hidden units angle to initial weight singular value

Figure 7: Different measures on fully connected networks with a single hidden layer trained on MNIST. From left to right: measure
on the output layer, measures in the first layer, distribution of angle to initial weight in the first layer, and singular values of the first
layer.

>
X = 1.0 i
0.075 \ —+ training error g 10 —— (1) VCdim
\ 1016 - 3 —— ()1
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Figure 8: Left panel: Training and test errors of fully connected networks trained on MNIST. Middle panel: Comparing capacity
bounds on MNIST (normalized). Left panel: Comparing capacity bounds on MNIST (unnormalized).

B Proofs

B.1 Proof of Theorem 1

We start by stating a simple lemma which is a vector-contraction inequality for Rademacher complexities and relates
the norm of a vector to the expected magnitude of its inner product with a vector of Rademacher random variables. We
use the following technical result from Maurer [16] in our proof.

Lemma 7 (Propostion 6 of Maurer [16]). Let &; be the Rademacher random variables. For any vector v € RY, the
following holds:
IVl <v2 B [l
girv{E1},i€ld]
The above lemma can be useful to get Rademacher complexities in multi-class settings. The below lemma bounds
the Rademacher-like complexity term for linear operators with multiple output centered around a reference matrix. The
proof is very simple and similar to that of linear separators. See [3] for similar arguments.

Lemma 8. For any positive integer c, positive scaler r > 0, reference matrix VO € R°*¢ and set {x;}, C RY, the
following inequality holds:

sup Z(Si,VXi> <rvel|X|lp.

E
gic{£1}eigm] | |V-VO .<r ]

12



Proof.

E sup Sz,VXz
ge{E1)eiclm] | V-V <r S

= E sup
gie{il}caie[m] ”V VO”F<T

o)

i=1

V- V0+V0,Z§Z >]

=1

= E sup (V- Vo,Zszx + E sup Vo, > &x;
gie{*1}ei€[m] HV Vol p<r | &e{El}eieim] | [ Vol p<r P

= E sup
gic{E1}e,i€(m] HV Vollp<r

= E sup
g, e{x1}e,i€[m] ”V Vol <7

V- VO,Za >+le{ﬂ}”e Kvo,Zfl >]
V- Vo,Za >

= E sup
gic{=1}eic[m] | |[V-Vo| p<r

<r iX
- 516{:|:1}Cve[m] [ Zf ]
57 1/2
(@) o
<r E &x)
giel£1)° ic(m] |; e
. N SN 1/2
(3 e
= getE S F
=ryec X -
(7) follows from the Jensen’s inequality. O

We next show that the Rademacher complexity of the class of networks defined in (5) and (4) can be decomposed to
that of hidden units.

Lemma 9 (Rademacher Decomposition). Given a training set S = {x;}"; and v > 0, Rademacher complexity of the
class Fyy defined in equations (5) and (4) is bounded as follows:

h

Rs(loFw) < =3  E sip S (o + 8 [l (€6 v)

’Ym 1€1€{i1}c i€[m] Ivill,<e i=1

— Z sup Z Gy (uyj, x;)

=1 5E{il}m [|u;—u]|,<8; i=1
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Proof. Let p;; = |<u?, xi> | We prove the lemma by showing the following statement by induction on ¢:

ng(éfyOfw)
t—1 h

< E ((pij + B Ixilly) (i vj) + &y (U, %))
g,e{£1}eic[m] (VU)eWVZ 15=1 ! ! ’ T

+Z§11€ sz +7yz)]

E sup &by (VIUx] 1 pe) + dviu |
gic{xl}eiclm] | (V,U)ew

where for simplicity of the notation, we let v y = % S Z;—;l ((pij + B IIxilly) (€, vj) + Enayj (uj,x5)) +
Zzit-s-l i1l (VIUx;] 1, vi).

The above statement holds trivially for the base case of ¢ = 1 by the definition of the Rademacher complexity (3).
We now assume that it is true for any ¢’ < ¢ and prove it is true for ¢ = ¢ + 1.

mRs(y o Fyy) < sup &l (VU] 4, ye) + ¢V,U‘|

E
g&ie{£1}eiem] [ (V,U)ew

N =

E sup L (V[Uxy) 4, 9¢) — E’y(V/[U/Xt]+7 ) + dv,u + ovr o
gie{x1}e,ic[m] [ (V,U),(V/,U)eWw
V2 1

<

— |[VIUx]4 — V'[U'x] 4 ||y + dv,u + dviu 9)

E sup
gie{1}eig(m] | (v,U),(V,uNew ¥

[N

The last inequality follows from the ? Lipschitzness of the ramp loss. The ramp loss is 1/~ Lipschitz with respect to
each dimension but since the loss at each point only depends on score of the correct labels and the maximum score

among other labels, it is g—Lipschitz.
Using the triangle inequality we can bound the first term in the above bound as follows.
IV[Ux:]+ = V[U'xi] 4[|, < [V[Uxe]4 = VI[Ux] 1 + V[Ux]y = V[U'x] ||,
< [[V[Ux]4 = V' [Uxe) ||, + [V [Uxe]y = VI[U'xe] 1],

-

[1¢aj, %) vy = [Qug xe) ] vy, + || [y, xe)]4 v = [(uf xe)] V5

~
Il
-

M=

[y, )| || v = Vi |, + |, %))y — [0, %)) | ||V, - (10)

<.
Il

We will now add and subtract the initialization U° terms.

[V[Ux]; — V'[U'x] 4 |l

h
<> Ny uf —ufxol vy = Vi, + [[ag,x0)s = [(ug %0l | [ V5],
=
}
Z(ﬁ] %elly + pig) v = Vil + o (g, xe) = (uf,xe)]. 1D
j=1

From equations (9), (10), (11) and Lemma 7 we get,

mRS (ﬁy o fw)

h
2
- ; { =D Billxylly + pe5) (e, vi) + Sy (uj %) + dviu|. (12)
gic{E1}eie[m] [ (V,U), (V’ u’ 6W7; J Iz J j ;i (u;
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This completes the induction proof.
Hence the induction step at ¢ = m gives us:

m h
2
mRs(ly o Fyy) < E sup =YY (pig 4 By lIxilly) (€ Vi) + Gy (%)
GE(EEM] | lup-up|, <o T iZT j21
Ivilly<ar keln
:*Z swp >0+ 5 ) (€ vs)

J 1$b€{i1}F i€[m] ”VJH2<O‘JZ 1

h
Z sup Z &ioj (uy,%;)

2
’y E{:l:l}m ||u —uY || <ﬂJ i=1
O

Proof of Theorem 1. Using Lemma 8, we can bound the the right hand side of the upper bound on the Rademacher
complexity given in Lemma 9:

h
2
mRs(ly o Fy) < = E sup pij + B 1xilly) (&is vy
oty E ][W Syl 6
+2 sup iﬁ-a-(u- X;)
’Y i=1 §€{:t1}m ||Uj*u_?||2§5j P LN
h
Z (85115 + X, ) + Z%ﬂy X5
2¢Tc+2
< TS o (51X + )
j=1

B.2 Proof of Theorems 2 and 5

We start by the following covering lemma which allows us to prove the generalization bound in Theorem 5 without
assuming the knowledge of the norms of the network parameters. The following lemma shows how to cover an £, ball
with a set that dominates the elements entry-wise, and bounds the size of a one such cover.

Lemma 10 (¢, covering lemma). Given any ¢, D, > 0, p > 2, consider the set SP5 = {x € RP | |x|, < B}.
Then there exist N sets {T;}}\_| of the form T; = [D]} such that Sﬁﬁ - Uf\il T; and
|e||, < DYP=1/2B(1 +€),Vi € [N] where N = ("1 P1) and

K=L1+§p_1]

Proof. We prove the lemma by construction. Consider the set Q = { ERP | Vol € {jBP/K}] o llally =82+ D/K)}

1/p
. , |k .
For any x € S, 3, consider o’ such that for any i € [D], o} = (P””él w l;;) . Itis clear that |z;| < «f. Moreover,
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we have:

=1
D » »
< il K +1 s
=1 ﬁp K
DpP
p
= |Ix[, + v
D

Therefore, we have o’ € Q. Furthermore for any o € (Q, we have:
leell, < DVEEVP ],

< BDY*UP (14 (14 )P — 1)/P = BDY271/P(1 4 ¢)

Therefore, to complete the proof, we only need to bound the size of the set (). The size of the set @) is equal to
the number of unique solutions for the problem Zi’;l z; = K + D — 1 for non-zero integer variables z;, which is

(“5207)- O

Lemma 11. Forany h,p > 2, d,c,v, it > 0,6 € (0,1) and U° € R"*4, with probability 1 — § over the choice of the
training set S = {x;}™, C RY, for any function f(x) = V[Ux|4, such that V.€ R>" U € R4 ||V T, < (4,
U — U2,z < Cy, the generalization error is bounded as follows:

) 2V2e+1)(u+1)2h2 5 Cy (R2 75 Co X + UK. )
Lo(f) < Ly(f) + y/m

2In N, + 1n(2/90)
+3\/ 2m

)

where N, j, = ((h/‘;jflhd) and ||., , is the £, norm of the column £ norms.

Proof. The proof of this lemma follows from using the result of Theorem 1 and taking a union bound to cover all the
possible values of {V | V], < C1}and U= {U | U - U°||p , < Ca}.

Note that Vx € R" and p > 2, we have x|, < hi v [[x[|,- Recall the result of Theorem 1, given any fixed e, 3,
we have

2v/2¢ + 2
Rs(ty o Fw) < ———— |lel, (I8l IX[1z + [ UX][ )
23 12 a3
c+2 1_1 1_1
< RS0 all, (h2 18I, 1XLe + [[U°X] )
~ym

By Lemma 10, picking ¢ = ((1 + 42)'/? — 1), we can find a set of vectors, {a'} ;" , where K = [ﬂ Ny =
(KZ_h;Q) such that Vx, [|x||, < C1, 31 <i < Npp, x5 < f, Vj € [h]. Similarly, picking e = ((1 + )P —1), we
can find a set of vectors, {Bi}fv:"ih, where K = [ﬂ ,Npp = (K}ﬁl;?) such that Vx, [|x[|, < C2, 31 <4 < Npp,
z; < B, Vj € [h]. 0
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Lemma 12. For any h,p > 2, ¢,d,~, 1t > 0, § € (0,1) and U° € R"*9, with probability 1 — § over the choice of
the training set S = {x;}", C RY, for any function f(x) = V[Ux]y such that V. € R*" and U € R"*4, the
generalization error is bounded as follows:

2, 1_1 1_1
42+ 1) (p+ 12 (h27 7|V 2+ 1)(h2 77U = Uollp2 IX[| » + [[U°X]|| . + 1)
’Y\/E (14)

Lo(f) < Ly (f) +

3 \/mNp,h + In(y+/m/6)

m

’
where N, , = (M/‘ﬂflh_z) and ||., 5 is the £, norm of the column {5 norms.

Proof. This lemma can be proved by directly applying union bound on Lemma 11 with for every C € { hl/;i,l/p |ie [ {@—‘ } }

and every Cs € {m | i€ HW\/E—H } For ||VTHp72 < }11/27{1“0, we can use the bound where C; = 1, and

1
the additional constant 1 in Eq. 14 will cover that. The same is true for the case of || U]|, 2 < . When

any of h'/27Y/P|[ VT, 2 and RY/27Y/P || X|| » |U],.2 is larger than PT\M—‘ , the second term in Eq. 14 is larger than 1
thus holds trivially. For the rest of the case, there exists (Cy, C) such that h1/2=1/PCy < p1/2-1/p| VT lp,2 + 1 and
h2mUPCy < WETVP X p |IX ] (|
larger than 1. Therefore, {ﬁ—‘ < @ +1< @ O

p,2 + 1. Finally, we have @ > 1 otherwise the second term in Eq. 14 is

We next use the general results in Lemma 12 to give specific results for the case p = 2.

Lemma 13. For any h > 2, ¢,d,y > 0, § € (0,1) and U° € R"*9, with probability 1 — & over the choice of
the training set S = {x;}"; C RY, for any function f(x) = V[Ux]y such that V. € R*" and U € R"*9, the
generalization error is bounded as follows:

N 3v2(V2e + 1)(IIV T |lr + 1)(JU = Uollr [IX]» + [UX], + 1)

Lo(f) < Ly(f)

43 5h + ln(y\/ﬁ/é)7
m
Proof. To prove the lemma, we directly upper bound the generalization bound given in Lemma 12 for p = 2 and

w= 34& — 1. For this choice of x4 and p, we have 4(u + 1)2/p < 3v2andIn N1, is bounded as follows:

N, = In ((h/u; irf - 2) <In ({BW} h_1> —(h—1)In (e + e%)

< (h—1)In (e+ehh/“1) < hln(e + 2¢/u) < 5h

O

Proof of Theorem 2. The proof directly follows from Lemma 13 and using O notation to hide the constants and
logarithmic factors. O

Next lemma states a generalization bound for any p > 2, which is looser than 13 for p = 2 due to extra constants
and logarithmic factors.

Lemma 14. For any h,p > 2, ¢,d,y > 0, 6 € (0,1) and U° € R"*9, with probability 1 — § over the choice of
the training set S = {x;}"; C RY, for any function f(x) = V[Ux]y such that V. € R*" and U € R"*9, the
generalization error is bounded as follows:

L) < () 163 (V2e + 1)(R3F VT [l + 1) (B33 ][U = Ugllpz X1 + [[UX ]| . + 1)
< +
’ " ym (16)

s \/ [el=Ph — 1]1n (eh) + In(yy/m/d)

m

)

. is the £, norm of the column {5 norms.
-1, p
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Proof. To prove the lemma, we directly upper bound the generalization bound given in Lemma 12 for ;1 = e? — 1. For
this choice of 1 and p, we have (u + 1)2/p = ¢2. Furthermore, if 4 > h, Ny, = 0, otherwise In N, ;, is bounded as
follows:

N, = In (Wu}] j IL - 2> 1 C%:)JZ 2) < ([e%] WMl)

h—1
= ([h/(e? =1)] = 1)1 ) < ([e!"Ph] — 1)In(eh
(116 =11 = )1 (e ) < (1 720] = ) e
Since the right hand side of the above inequality is greater than zero for i > h, it is true for every p > 0. O

Proof of Theorem 5. The proof directly follows from Lemma 14 and using O notation to hide the constants and
logarithmic factors. O

B.3 Proof of the Lower Bound

Proof of Theorem 3. We will start with the case h = d = 2*, m = n2* for some k,n € N.
We will pick V = a' = [a; ... au] forevery €, and S = {x;}7,, where x; := eri- That is, the whole dataset

n

are divides into 2* groups, while each group has n copies of a different element in standard orthonormal basis.

Jn :
We further define ¢;(&) = S0 &.Vj € [2¥] and F = (f1, fo, ..., for) € {—27F/2,27k/2)2"%2" e the
(7—D)n+1
Hadamard matrix which satisfies (f;, f;) = 6;;. Note that for s € R, s; = «; 8;, Vj € [d], it holds that

vield, maxls£), (561} > 5 (6 8010) + (s 61 = =2 kg

N | =

Thus without loss of generality, we can assume Vi € [2¥], (s, ;) > 22T 3 by flipping the signs of f;.
For any € € {—1,1}", let Diag(3) be the square diagonal matrix with its diagonal equal to 3 and F(£) be the
following:

F(&) := [f1,f, ..., ] such thatif ;(€) > 0,f; = f;, and if ¢;(€) < 0,f;, = 0,

and we will choose U(£) as Diag(3) x F(&).
Since F is orthogonal, by the definition of F(£), we have ||F(&)||2 < 1 and the 2-norm of each row of F is
upper bounded by 1. Therefore, we have ||[U(£)||2 < ||Diag(3)]2]|F(&)|]2 < max; 3;, and ||u; — uf|lz = [|u’lz <

Bille] F(&)]l2 < B;. In other words, f(x) = V[U(£)x]4 € Fyyr. We will omit the index € when it’s clear.
Now we have

n 2" jn 2k
dGVIUx]L =Y Y &V[Ux] =) ¢(§V[Uels.
i=1 i=1i=(j—Dyn+1 =1

Note that

e;V[Ue;j]; =, <Diag(ﬁ)a, [fj}+> = ¢ (8, [;)4) 1,50 > 272 LT Blej 14

The last inequality uses the previous assumption, that Vi € [2¥], (s, f;) > 25~ 1a 8.
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Thus,

mRs(Fw,) > &V X;]
s(Fwz) 5N{i1}m lz 1

21«

T 2—%—1 )
zalp2 i B ;[q(@h
=a'p2:™ B (@]

e~ {£1)n

=aTB2:2 B [la()
E~{£1}n

>a,622*

_aTpVH \f

(1

where the last inequality is by Lemma 7.
For arbitrary d = h < m, d,h,m € Zy, letk = |logyd|, d = h' = 2%, m/ = [ 2| * 2*. Then we have

h' > %, m’ > . Thus there exists S C [h], such that ), _¢ a;f; > Z?:l «;3;. Therefore we can pick A’ hidden

units out of h hldden units, d’ input dimensions out of d dimensions, m’ input samples out of m to construct a lower
. .o V2m/ T

bound of ZZGS“”S‘% T >a fﬁﬁ. O
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