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Abstract

We study the implicit bias of generic optimization methods, such as mirror descent, natural gradient descent,
and steepest descent with respect to different potentials and norms, when optimizing underdetermined linear
regression or separable linear classification problems. We explore the question of whether the specific global
minimum (among the many possible global minima) reached by an algorithm can be characterized in terms
of the potential or norm of the optimization geometry, and independently of hyperparameter choices such as
step-size and momentum.

1. Introduction

Implicit bias from the optimization algorithm plays a crucial role in learning deep neural networks as it
introduces effective capacity control not directly specified in the objective (Neyshabur et al., 2015b,a; Zhang
et al., 2017; Keskar et al., 2016; Wilson et al., 2017; Neyshabur et al., 2017). In overparameterized models
where the training objective has many global minima, optimizing using a specific algorithm, such as gradient
descent, implicitly biases the solutions to some special global minima. The properties of the learned model,
including its generalization performance, are thus crucially influenced by the choice of optimization algorithm
used. In neural networks especially, characterizing these special global minima for common algorithms such as
stochastic gradient descent (SGD) is essential for understanding what the inductive bias of the learned model
is and why such large capacity networks often show remarkably good generalization even in the absence of
explicit regularization (Zhang et al., 2017) or early stopping (Hoffer et al., 2017).

Implicit bias from optimization depends on the choice of algorithm, and changing the algorithm, or even
changing associated hyperparameter can change the implicit bias. For example, Wilson et al. (2017) showed
that for some standard deep learning architectures, variants of SGD algorithm with different choices of
momentum and adaptive gradient updates (AdaGrad and Adam) exhibit different biases and thus have different
generalization performance; Keskar et al. (2016), Hoffer et al. (2017) and Smith (2018) study how the size of
the mini-batches used in SGD influences generalization; and Neyshabur et al. (2015a) compare the bias of
path-SGD (steepest descent with respect to a scale invariant path-norm) to standard SGD.

It is therefore important to explicitly relate different optimization algorithms to their implicit biases. Can we
precisely characterize which global minima different algorithms converge to? How does this depend on the
loss function? What other choices including initialization, step-size, momentum, stochasticity, and adaptivity,
does the implicit bias depend on? In this paper, we provide answers to some of these questions for simple linear
regression and classification models. While neural networks are certainly more complicated than these simple
linear models, the results here provide a segue into understanding such biases for more complex models.

For linear models, we already have an understanding of the implicit bias of gradient descent. For under-
determined least squares objective, gradient descent can be shown to converge to the minimum Euclidean
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norm solution. Recently, Soudry et al. (2017) studied gradient descent for linear logistic regression. The
logistic loss is fundamentally different from the squared loss in that the loss function has no attainable global
minima. Gradient descent iterates therefore diverge (the norm goes to infinity), but Soudry et al. showed that
they diverge in the direction of the hard margin support vector machine solution, and therefore the decision
boundary converges to this maximum margin separator.

Can we extend such characterization to other optimization methods that work under different (non-Euclidean)
geometries such as mirror descent with respect to some potential, natural gradient descent with respect to a
Riemannian metric, and steepest descent with respect to a generic norm? Can we relate the implicit bias to
these geometries?

As we shall see, the answer depends on whether the loss function is similar to a squared loss or to a logistic loss.
This difference is captured by two family of losses: (a) loss functions that have a unique finite root, like the
squared loss and (b) strictly monotone loss functions where the infimum is unattainable, like the logistic loss.
For losses with a unique finite root, we study the limit point of the optimization iterates, w∞ = limt→∞ w(t).
For monotone losses, we study the limit direction w̄∞ = limt→∞

w(t)

‖w(t)‖
.

In Section 2 we study linear models with loss functions that have unique finite roots. We obtain a robust
characterization of the limit point for mirror descent, and discuss how it is independent of step-size and
momentum. For natural gradient descent, we show that the step-size does play a role, but get a characterization
for infinitesimal step-size. For steepest descent, we show that not only does step-size affects the limit
point, but even with infinitesimal step-size, the expected characterization does not hold. The situation is
fundamentally different for strictly monotone losses such as the logistic loss (Section 3) where we do get a
precise characterization of the limit direction for generic steepest descent. We also study the adaptive gradient
descent method (AdaGrad) Duchi et al. (2011) (Section 3.3) and optimization over matrix factorization
(Section 4). Recent studies considered the bias of such methods for least squares problems (Wilson et al.,
2017; Gunasekar et al., 2017), and here we study these algorithms for monotone loss functions, obtaining
a more robust characterization for matrix factorization problems, while concluding that the implicit bias of
AdaGrad depends on initial conditions including step-size even for strict monotone losses.

2. Losses with a Unique Finite Root

We first consider learning linear models using losses with a unique finite root, such as the squared loss, where
the loss `(ŷ, y) between a prediction ŷ and label y is minimized at a unique and finite value of ŷ. We assume
without loss of generality, that minŷ `(ŷ, y) = 0 and the unique minimizer is ŷ = y.

Property 1 (Losses with a unique finite root). For any y, a sequence {ŷt}∞t=1 minimizes `(., y), i.e.,
`(ŷt, y)

t→∞−→ inf ŷ `(ŷ, y) = 0 if and only if ŷt
t→∞−→ y.

Denote the training dataset {(xn, yn) : n = 1, 2, . . . , N} with features xn ∈ Rd and labels yn ∈ R. The
empirical loss (or risk) minimizer of a linear model f(x) = 〈w, x〉 with parameters w ∈ Rd is given by,

min
w
L(w) :=

N∑
n=1

`(〈w, xn〉 , yn). (1)

We are particularly interested in the case whereN < d and the observations are realizable, i.e., minw L(w) = 0.
Under these conditions, the optimization problem in eq. (1) is underdetermined and has multiple global minima
denoted by G = {w : L(w) = 0} = {w : ∀n, 〈w, xn〉 = yn}. Note that the set of global minima G is the
same for any loss ` with unique finite root (Property 1), including, e.g., the Huber loss, the truncated squared
loss. Which specific global minima w ∈ G do different optimization algorithms reach when minimizing the
empirical loss objective L(w)?
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2.1 Gradient descent

Consider gradient descent updates for minimizing L(w) with step-size sequence {ηt}t and initialization w(0),

w(t+1) = w(t) − ηt∇L(w(t)).

If w(t) minimizes the empirical loss in eq. (1), then the iterates converge to the unique global minimum that
is closest to initialization w(0) in `2 distance, i.e., w(t) → argminw∈G ‖w − w(0)‖2. This can be easily seen
as for any w, the gradients ∇L(w) =

∑
n `
′(〈w, xn〉 , yn)xn are always constrained to the fixed subspace

spanned by the data {xn}n, and thus the iterates w(t) are confined to the low dimensional affine manifold
w(0) + span({xn}n). Within this low dimensional manifold, there is a unique global minimizer w that satisfies
the linear constraints in G = {w : 〈w, xn〉 = yn,∀n ∈ [N ]}.

The same argument also extends for updates with instance-wise stochastic gradients, where we use a stochastic
estimate ∇̃L(w(t)) of the full gradient∇L(w(t)) computed from a random subset of instances St ⊆ [N ],

∇̃L(w(t)) =
∑

n∈St⊂[n]
∇w`(

〈
w(t), xnt

〉
, ynt). (2)

Moreover, when initialized with w(0) = 0, the implicit bias characterization also extends to the following
generic momentum and acceleration based updates,

w(t+1) =w(t)+βt∆w(t−1)−ηt∇L
(
w(t)+γt∆w(t−1)

)
, (3)

where ∆w(t−1) = w(t) − w(t−1). This includes Nesterov’s acceleration (βt = γt) (Nesterov, 1983) and
Polyak’s heavy ball momentum (γt = 0) (Polyak, 1964).

For losses with a unique finite root, the implicit bias of gradient descent therefore depends only on the initial-
ization and not on the step-size or momentum or mini-batch size. Can we get such succinct characterization
for other optimization algorithms? That is, characterize the bias in terms of the optimization geometry and
initialization, but independent of choices of step-sizes, momentum, and stochasticity.

2.2 Mirror descent

Mirror descent (MD) (Beck & Teboulle, 2003; Nemirovskii & Yudin, 1983) was introduced as a generalization
of gradient descent for optimization over geometries beyond the Euclidean geometry of gradient descent. In
particular, mirror descent updates are defined for any strongly convex and differentiable potential ψ as

w(t+1) = argmin
w∈W

ηt
〈
w,∇L(w(t))

〉
+Dψ(w,w(t)), (4)

where Dψ(w,w′)=ψ(w)−ψ(w′)− 〈∇ψ(w′), w − w′〉 is the Bregman divergence (Bregman, 1967) w.r.t. ψ,
andW is some constraint set for parameters w.

We first look at unconstrained optimization whereW = Rd and the update in eq. (4) is equivalent to

∇ψ(w(t+1)) = ∇ψ(w(t))− ηt∇L(w(t)). (5)

For a strongly convex potential ψ, ∇ψ is called the link function and is invertible. Hence, the above updates
are uniquely defined. Also, w and∇ψ(w) are referred as primal and dual variables, respectively.

Examples of potentials ψ for mirror descent include the squared `2 norm ψ(w) = 1/2‖w‖22, which leads
to gradient descent; the entropy potential ψ(w) =

∑
i w[i] logw[i] − w[i]; the spectral entropy for matrix

valued w, where ψ(w) is the entropy potential on the singular values of w; general quadratic potentials
ψ(w) = 1/2‖w‖2D = 1/2w>Dw for any positive definite matrix D; and the squared `p norms for p ∈ (1, 2].

From eq. (5), we see that rather than the primal iteratesw(t), it is the dual iterates∇ψ(w(t)) that are constrained
to the low dimensional data manifold∇ψ(w(0)) + span({xn}n∈[N ]). The arguments for gradient descent can
now be generalized to get the following result.
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Theorem 1. For any loss ` with a unique finite root (Property 1), any realizable dataset {xn, yn}Nn=1, and any
strongly convex potential ψ, consider the mirror descent iterates w(t) from eq. (5) for minimizing the empirical
loss L(w) in eq. (1). For all initializations w(0), if the step-size sequence {ηt}t is chosen such that the limit
point of the iterates w∞ = limt→∞ w(t) is a global minimizer of L, i.e., L(w∞) = 0, then w∞ is given by

w∞ = argmin
w:∀n,〈w,xn〉=yn

Dψ(w,w(0)). (6)

In particular, if we start at w(0) = argminw ψ(w) (so that ∇ψ(w(0)) = 0), then we get to w∞ =
argminw∈G ψ(w), where recall that G = {w : ∀n, 〈w, xn〉 = yn} is the set of global minima for L(w).

The analysis of Theorem 1 can also be extended for special cases of constrained mirror descent (eq. (4)) when
L(w) is minimized over realizable affine equality constraints.

Theorem 1a. Under the conditions of Theorem 1, consider constrained mirror descent updates w(t) from
eq. (4) with realizable affine equality constraints, that is W = {w : Gw = h} for some G ∈ Rd′×d and
h ∈ Rd′ and additionally, ∃w ∈ W with L(w) = 0. For all initializations w(0), if the step-size sequence {ηt}t
is chosen to asymptotically minimize L, i.e., L(w∞) = 0, then w∞ = argminw∈G∩W Dψ(w,w(0)).

For example, in exponentiated gradient descent (Kivinen & Warmuth, 1997), which is mirror descent w.r.t
ψ(w) =

∑
i w[i] logw[i]− w[i], under the explicit simplex constraintW = {w :

∑
i w[i] = 1}, Theorem 1a

shows that using uniform initialization w(0) = 1
d1, mirror descent will return the the maximum entropy

solution w∞ = argminw∈G∩W
∑
i w[i] logw[i].

Let us now consider momentum for mirror descent. There are two possible generalizations of the gradient
descent momentum in eq. (3): adding momentum either to primal variables w(t), or to dual variables∇ψ(w(t)),

Dual momentum: ∇ψ(w(t+1)) = ∇ψ(w(t)) + βt∆z(t−1) − ηt∇L
(
w(t) + γt∆w(t−1)

)
(7)

Primal momentum: ∇ψ(w(t+1)) = ∇ψ
(
w(t) + βt∆w(t−1)

)
− ηt∇L

(
w(t) + γt∆w(t−1)

)
(8)

where ∆z(−1) = ∆w(−1) = 0, and for t ≥ 1, ∆z(t−1) = ∇ψ(w(t)) − ∇ψ(w(t−1)) and ∆w(t−1) =
w(t) − w(t−1) are the momentum terms in the primal and dual space, respectively; and {βt ≥ 0, γt ≥ 0}t are
the momentum parameters.

If we initialize at w(0) = argminw ψ(w), then even with dual momentum ∇ψ(w(t)) continues to remain in
the data manifold. This leads to the following extension of Theorem 1.

Theorem 1b. Under the conditions in Theorem 1, if initialized at w(0) = argminw ψ(w), then the mirror
descent updates with dual momentum also converge to (6), i.e., for all {ηt}t, {βt}t, {γt}t, if w(t) from eq. (7)
converges to w∞ ∈ G, then w∞ = argminw∈G ψ(w).

Remark 1. Following the same arguments, we can show that Theorem 1–1b also hold when instancewise
stochastic gradients defined in eq. (2) are used in place of∇L(w(t)).

Let us now look at primal momentum. For general potentials ψ, the dual iterates∇ψ(w(t)) from the primal
momentum can fall off the data manifold and the additional components influence the final solution. Thus, the
specific global minimum that the iterates w(t) converge to will depend on the values of momentum parameters
{βt, γt}t and step-sizes {ηt}t as demonstrated in the following example.

Example 2. Consider optimizing L(w) with dataset {(x1 = [1, 2], y1 = 1)} and squared loss `(u, y) =
(u − y)2 using primal momentum updates from eq. (8) for MD w.r.t. the entropy potential ψ(w) =∑

i w[i] logw[i]− w[i]. For initialization w(0) = argminw ψ(w), Figure 1a shows how different choices of
momentum {βt, γt} change the limit point w∞. Additionally, we show the following:

Proposition 2a. In Example 2, consider the case where primal momentum is used only in the first step, but
γt = 0 and βt = 0 for all t ≥ 2. For any β1 > 0, there exists {ηt}t, such that w(t) from (8) converges to a
global minimum, but not to argminw∈G ψ(w).
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Figure 1: Dependence of implicit bias on step-size and momentum: In (a)–(c), the blue line denotes the set G of global
minima for the respective examples. In (a) and (b), ψ is the entropy potential and all algorithms are initialized with
w(0) = [1, 1] so that ψ(w(0)) = argminw ψ(w). w

∗
ψ = argminψ∈G ψ(w) denotes the minimum potential global minima

we expect to converge to. (a) Mirror descent with primal momentum (Example 2): the global minimum that eq. (8)
converges to depends on the momentum parameters—the sub-plots contain the trajectories of eq. (8) for different choices
of βt = β and γt = γ. (b) Natural gradient descent (Example 3): for different step-sizes ηt = η, eq. (9) converges
to different global minima. Here, η was chosen to be small enough to ensure w(t) ∈ dom(ψ). (c) Steepest descent
w.r.t ‖.‖4/3 (Example 4): the global minimum to which eq. (11) converges to depends on η. Here w(0) = [0, 0, 0],
w∗‖.‖ = argminψ∈G ‖w‖4/3 denotes the minimum norm global minimum, and w∞η→0 denotes the solution of infinitesimal
SD with η → 0. Note that even as η → 0, the expected characterization does not hold, i.e., w∞η→0 6= w∗‖.‖.

2.3 Natural gradient descent

Natural gradient descent (NGD) was introduced by Amari (1998) as a modification of gradient descent,
wherein the updates are chosen to be the steepest descent direction w.r.t a Riemannian metric tensor H that
maps w to a positive definite local metric H(w). The updates are given by,

w(t+1) = w(t) − ηtH
(
w(t)

)−1∇L(w(t)). (9)

In many instances, the metric tensor H is specified by the Hessian ∇2ψ of a strongly convex potential ψ.
For example, when the metric over the Riemannian manifold is the KL divergence between distributions Pw
and Pw′ parameterized by w, the metric tensor is given by H(w) = ∇2ψ(Pw), where the potential ψ is the
entropy potential over Pw.

Connection to mirror descent When H(w) = ∇ψ2(w) for a strongly convex potential ψ, as the step-size
η goes to zero, the iterates w(t) from natural gradient descent in eq. (9) and mirror descent w.r.t ψ in eq. (4)
converge to each other, and the common dynamics in the limit is given by,

d∇ψ(w(t))

dt
= −∇L(w(t)) =⇒

dw(t)

dt
= −∇2ψ(w(t))

−1∇L(w(t)). (10)

Thus, as the step-sizes are made infinitesimal, the limit point of natural gradient descent w∞ = limt→∞ w(t)

is also the limit point of mirror descent and hence will be biased towards solutions with minimum divergence
to the initialization, i.e., as η → 0, w∞ = argminw∈G Dψ(w,w(0)).

For general step-sizes {ηt}, if the potential ψ is quadratic, ψ(w) = 1/2‖w‖2D for some positive definite D, we
get linear link functions∇ψ(w) = Dw and constant metric tensors∇2ψ(w) = H(w) = D, and the natural
gradient descent updates (9) are the same as the mirror descent (5). Otherwise the updates in eq. (9) is only an
approximation of the mirror descent update∇ψ−1(∇ψ(w(t))− ηt∇L(w(t))).
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For natural gradient descent with finite step-size and non-quadratic potentials ψ, the characterization in eq.
(6) generally does not hold. We can see this as for any initialization w(0), a finite η1 > 0 will lead to w(1) for
which the dual variable ∇ψ(w(1)) is no longer in the data manifold span({xn}) +∇ψ(w(0)), and hence will
converge to a different global minimum dependent on the step-sizes {ηt}t.

Example 3. Consider optimizing L(w) with squared loss over dataset {(x1 = [1, 2], y1 = 1)} using the
natural gradient descent w.r.t. the metric tensor given byH(w) = ∇2ψ(w), where ψ(w) =

∑
i w[i] logw[i]−

w[i], and initialization w(0) = [1, 1]. Figure 1b shows that NGD with different step-sizes η converges to
different global minima. For a simple analytical example: take one finite step η1 > 0 and then follow the
continuous time path in eq. (10).

Proposition 3a. For almost all η1 > 0, limt→∞ w(t) = argminw∈G Dψ(w,w(1)) 6= argminw∈G Dψ(w,w(0)).

2.4 Steepest Descent

Gradient descent is also a special case of steepest descent (SD) w.r.t a generic norm ‖.‖ (Boyd & Vandenberghe,
2004) with updates given by,

w(t+1) = w(t) + ηt∆w(t), where ∆w(t) = argmin
v

〈
∇L(w(t)), v

〉
+

1

2
‖v‖2. (11)

The optimality of ∆w(t) in eq. (11) requires −∇L(w(t)) ∈ ∂‖∆w(t)‖2, which is equivalent to,

〈∆w(t),−∇L(w(t))〉=‖∆w(t)‖2 =‖∇L(w(t))‖2?. (12)

Examples of steepest descent include gradient descent, which is steepest descent w.r.t `2 norm and coordinate
descent, which is steepest descent w.r.t `1 norm. In general, the update ∆w(t) in eq. (11) is not uniquely
defined and there could be multiple direction ∆w(t) that minimize eq. (11). In such cases, any minimizer of
eq. (11) is a valid steepest descent update and satisfies eq. (12).

Generalizing gradient descent, we might expect the limit point w∞ of steepest descent w.r.t an arbitrary
norm ‖.‖ to be the solution closest to initialization in corresponding norm, argminw∈G ‖w − w(0)‖. This
is indeed the case for quadratic norms ‖v‖D =

√
v>Dv when eq. 11 is equivalent to mirror descent with

ψ(w) = 1/2‖w‖2D. Unfortunately, this does not hold for general norms.

Example 4. Consider minimizing L(w) with dataset {(x1 = [1, 1, 1], y1 = 1), (x1 = [1, 2, 0], y1 = 10)} and
loss `(u, y) = (u − y)2 using steepest descent updates w.r.t. the `4/3 norm. The empirical results for this
problem in Figure 1c clearly show that even for `p norms where the ‖.‖2p is smooth and strongly convex, the
corresponding steepest descent converges to a global minimum that depends on the step-size. Further, even in
the continuous step-size limit of η → 0, w(t) does not converge to argminw∈G ‖w − w(0)‖.

Coordinate descent Steepest descent w.r.t. the `1 norm is called the coordinate descent, with updates:

∆w(t+1) ∈ conv
{
−ηt

∂L(w)

∂w[jt]
ejt : jt = argmax

j

∣∣∣∣∂L(w)

∂w[j]

∣∣∣∣} ,
where conv(S) denotes the convex hull of the set S, and {ej} are the standard basis, i.e., when multiple partial
derivatives are maximal, we can choose any convex combination of the maximizing coordinates, leading to
many possible coordinate descent optimization paths.

The connection between optimization paths of coordinate descent and the `1 regularization path given by,
ŵ(λ) = argminw L(w) + λ‖w‖1, has been studied by Efron et al. (2004). The specific coordinate descent
path where updates are along the average of all optimal coordinates and the step-sizes are infinitesimal is
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equivalent to forward stage-wise selection, a.k.a. ε-boosting (Friedman, 2001). When the `1 regularization
path ŵ(λ) is monotone in each of the coordinates, it is identical to this stage-wise selection path, i.e., to a
coordinate descent optimization path (and also to the related LARS path) (Efron et al., 2004). In this case, at
the limit of λ→ 0 and t→∞, the optimization and regularization paths, both converge to the minimum `1
norm solution. However, when the regularization path ŵ(λ) is not monotone, which can and does happen, the
optimization and regularization paths diverge, and forward stage-wise selection can converge to solutions with
sub-optimal `1 norm. This matches our understanding that steepest descent w.r.t. a norm ‖.‖, in this case the
`1 norm might converge to a solution that is not always the minimum ‖.‖ norm solution.

2.5 Summary for losses with a unique finite root

For losses with a unique finite root, we characterized the implicit bias of generic mirror descent algorithm
in terms of the potential function and initialization. This characterization extends for momentum in the
dual space as well as to natural gradient descent in the limit of infinitesimal step-size. We also saw that the
characterization breaks for mirror descent with primal momentum and natural gradient descent with finite
step-sizes. Moreover, for steepest descent with general norms, we were unable to get a useful characterization
even in the infinitesimal step size limit. In the following section, we will see that for strictly monotone losses,
we can get a characterization also for steepest descent.

3. Strictly Monotone Losses

We now turn to strictly monotone loss functions ` where the behavior of the implicit bias is fundamentally
different, and as are the situations when the implicit bias can be characterized. Such losses are common in
classification problems where y = {−1, 1} and `(f(x), y) is typically a continuous surrogate of the 0-1 loss.
Examples of such losses include logistic loss, exponential loss, and probit loss.

Property 2 (Strict monotone losses). `(ŷ, y) is bounded from below, and ∀y, `(ŷ, y) is strictly monotonically

decreasing in ŷ. Without loss of generality, ∀y, inf ŷ `(ŷ, y) = 0 and `(ŷ, y)
ŷy→∞−→ 0.

We look at classification models that fit the training data {xn, yn}n with linear decision boundaries f(x) =
〈w, x〉 with decision rule given by ŷ(x) = sign(f(x)). In many instances of the proofs, we also assume
without loss of generality that yn = 1 for all n, since for linear models, the sign of yn can equivalently be
absorbed into xn.

We again look at unregularized empirical risk minimization objective of the form in eq. (1), but now with strictly
monotone losses. When the training data {xn, yn}n is not linearly separable, the empirical objective L(w) can
have a finite global minimum. However, if the dataset is linearly separable, i.e., ∃w : ∀n, yn 〈w, xn〉 > 0, the
empirical loss L(w) is again ill-posed, and moreover L(w) does not have any finite minimizer, i.e, L(w)→ 0
only as ‖w‖ → ∞. Thus, for any sequence {w(t)}∞t=0, if L(w(t)) → 0, then w(t) necessarily diverges to
infinity rather than converge, and hence we cannot talk about limt→∞ w(t). Instead, we look at the limit
direction w̄∞ = lim

t→∞
w(t)

‖w(t)‖
whenever the limit exists. We refer to existence of this limit as convergence in

direction. Note that, the limit direction fully specifies the decision rule of the classifier that we care about.

We focus on the exponential loss `(u, y) = exp(−uy). However, our results can be extended to loss functions
with tight exponential tails, including logistic and sigmoid losses, along the lines of Soudry et al. (2017) and
Telgarsky (2013).
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3.1 Gradient descent

Soudry et al. (2017) showed that for almost all linearly separable datasets, gradient descent with any initializa-
tion and any bounded step-size converges in direction to maximum margin separator with unit `2 norm, i.e.,
the hard margin support vector machine classifier,

w̄∞ = lim
t→∞

w(t)

‖w(t)‖2
= w∗‖.‖2 := argmax

‖w(t)‖2≤1

min
n
yn 〈w, xn〉 .

This characterization of the implicit bias is independent of both the step-size as well as the initialization. We
already see a fundamentally difference from the implicit bias of gradient descent for losses with a unique finite
root (Section 2.1) where the characterization depended on the initialization.

Can we similarly characterize the implicit bias of different algorithms establishing w(t) converges in direction
and calculating w̄∞? Can we do this even when we could not characterize the limit point w∞ = limt→∞ w(t)

for losses with unique finite roots? As we will see in the following section, we can indeed answer these
questions for steepest descent w.r.t arbitrary norms.

3.2 Steepest Descent

Recall that for squared loss, the limit point of steepest descent depends on the step-size, and we were
unable obtain a useful characterization even for infinitesimal step-size and zero initialization. In contrast, for
exponential loss, the following theorem provides a crisp characterization of the limit direction of steepest
descent as a maximum margin solution, independent of step-size (as long as it is small enough) and initialization.
Let ‖.‖? denote the dual norm of ‖.‖.

Theorem 5. For any separable dataset {xn, yn}Nn=1 and any norm ‖·‖, consider the steepest descent updates
from eq. (12) for minimizing L(w) in eq. (1) with the exponential loss `(u, y) = exp(−uy). For all
initializationsw(0), and all bounded step-sizes satisfying ηt ≤ max{η+,

1
B2L(w(t))

}, whereB := maxn ‖xn‖?
and η+ <∞ is any finite upper bound, the iterates w(t) satisfy the following,

lim
t→∞

min
n

yn
〈
w(t), xn

〉
‖w(t)‖

= max
w:‖w‖≤1

min
n
yn 〈w, xn〉.

In particular, if there is a unique maximum-‖.‖ margin solution w?‖.‖ = argmaxw:‖w‖≤1 minn yn 〈w, xn〉,
then the limit direction is given by w̄∞ = lim

t→∞
w(t)

‖w(t)‖
= w?‖.‖.

A special case of Theorem 5 is for steepest descent w.r.t. the `1 norm, which as we already saw corresponds
to coordinate descent. More specifically, coordinate descent on the exponential loss can be thought of as an
alternative presentation of AdaBoost (Schapire & Freund, 2012), where each coordinate represents the output
of one “weak learner”. Indeed, initially mysterious generalization properties of boosting have been understood
in terms of implicit `1 regularization (Schapire & Freund, 2012), and later on AdaBoost with small enough
step-size was shown to converge in direction precisely to the maximum `1 margin solution (Zhang et al., 2005;
Shalev-Shwartz & Singer, 2010; Telgarsky, 2013), just as guaranteed by Theorem 5. In fact, Telgarsky (2013)
generalized the result to a richer variety of exponential tailed loss functions including logistic loss, and a broad
class of non-constant step-size rules. Interestingly, coordinate descent with exact line search can result in
infinite step-sizes, leading the iterates to converge in a different direction that is not a max-`1-margin direction
(Rudin et al., 2004), hence the maximum step-size bound in Theorem 5.

Theorem 5 is a generalization of the result of Telgarsky to steepest descent with respect to other norms,
and our proof follows the same strategy as Telgarsky. We first prove a generalization of the duality result
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of Shalev-Shwartz & Singer (2010): if there is a unit norm linear separator that achieves margin γ, then
‖∇L(w)‖? ≥ γL(w) for all w. By using this lower bound on the dual norm of the gradient, we are able to
show that the loss decreases faster than the increase in the norm of the iterates, establishing convergence in a
margin maximizing direction.

In relating the optimization path to the regularization path, it is also relevant to relate Theorem 5 to the result
by Rosset et al. (2004) that for monotone loss functions and `p norms, the `p regularization path ŵ(c) =
argminw:‖w‖p≤c L(w(t)) also converges in direction to the maximum margin separator, i.e., limc→∞ ŵ(c) =
w?‖.‖p . Although the optimization path and regularization path are not the same, they both converge to the
same max-margin separator in the limits of c → ∞ and t → ∞, for the regularization path and steepest
descent optimization path, respectively.

3.3 Adaptive Gradient Descent (AdaGrad)

Adaptive gradient methods, such as AdaGrad (Duchi et al., 2011) or Adam (Kingma & Adam, 2015) are very
popular for neural network training. We now look at the implicit bias of the basic (diagonal) AdaGrad.

w(t+1) = w(t) − ηG
−1/2
(t) ∇L

(
w(t)

)
, (13)

where G(t) ∈ Rd×d is a diagonal matrix such that,

∀i : G(t)[i, i] =
t∑

u=0

(
∇L

(
w(u)

)
[i]
)2
. (14)

AdaGrad updates described above correspond to a pre-conditioned gradient descent, where the pre-conditioning
matrix G(t) adapts across iterations. It was observed by Wilson et al. (2017) that for neural networks with
squared loss, adaptive methods tend to degrade generalization performance in comparison to non-adaptive
methods (e.g., SGD with momentum), even when both methods are used to train the network until convergence
to a global minimum of training loss. This suggests that adaptivity does indeed affect the implicit bias. For
squared loss, by inspection the updates in eq. (13), we do not expect to get a characterization of the limit point
w∞ that is independent of the step-sizes.

However, we might hope that, like for steepest descent, the situation might be different for strictly monotone
losses, where the asymptotic behavior could potentially nullify the initial conditions. Examining the updates
in eq. (13), we can see that the robustness to initialization and initial updates depend on whether the matrices
G(t) diverge or converge: if G(t) diverges, then we expect the asymptotic effects to dominate, but if it is
bounded, then the limit direction will depend on the initial conditions.

Unfortunately, the following theorem shows that, the components of G(t) matrix are bounded, and hence
even for strict monotone losses, the initial conditions w(0),G(0) and step-size η will have a non-vanishing
contribution to the asymptotic behavior of G(t) and hence to the limit direction w̄∞ = lim

t→∞
w(t)

‖w(t)‖
, whenever

it exists. In other words, the implicit bias of AdaGrad does indeed depend on initialization and step-size.

Theorem 6. For any linearly separable training data {xn, yn}Nn=1, consider the AdaGrad iterates w(t)

from eq. (13) for minimizing L (w) with exponential loss `(u, y) = exp(−uy). For any fixed and bounded

step-size η <∞, and any initialization of w(0) and G(0), such that η2L
(
w(0)

)
< 1, and

∥∥∥G−1/4
(0) xn

∥∥∥
2
≤ 1,

∀i,∀t : G(t)[i, i] <∞.

9



4. Gradient descent on the factorized parameterization

Consider the empirical risk minimization in eq. (1) for matrix valued Xn ∈ Rd×d, W ∈ Rd×d

min
W
L(W ) = `(〈W,Xn〉 , yn). (15)

This is the exact same setting as eq. (1) obtained by arranging w and xn as matrices. We can now study
another class of algorithms for learning linear models based on matrix factorization, where we reparameterize
W as W = UV > with unconstrained U ∈ Rd×d and V ∈ Rd×d to get the following equivalent objective,

min
U,V
L(UV >) =

N∑
n=1

`(
〈
UV >, Xn

〉
, yn). (16)

Note that although non-convex, eq. (16) is equivalent to eq. (15) with the exact same set of global minima over
W = UV >. Gunasekar et al. (2017) studied this problem for squared loss `(u, y) = (u− y)2 and noted that
gradient descent on the factorization yields radically different implicit bias compared to gradient descent on
W . In particular, gradient descent on U, V is often observed to be biased towards low nuclear norm solutions,
which in turns ensures generalization (Srebro et al., 2005) and low rank matrix recovery (Recht et al., 2010;
Candes & Recht, 2009). Since the matrix factorization objective in eq. (16) can be viewed as a two-layer
neural network with linear activation, understanding the implicit bias here could provide direct insights into
characterizing the implicit bias in more complex neural networks with non-linear activations.

Gunasekar et al. (2017) noted that, the optimization problem in eq. (16) over factorization W =UV > can
be cast as a special case of optimization over p.s.d. matrices with unconstrained symmetric factorization
W =UU>:

min
U∈Rd×d

L̄(U) = L(UU>) =

N∑
n=1

`
(〈
UU>, Xn

〉
, yn
)
. (17)

Specifically, in terms of both the objective as well as gradient descent updates, a problem instance of eq. (16)
is equivalent to a problem instance of eq. (17) with larger data matrices X̃n =

[
0 Xn
X>n 0

]
and loss optimized

over larger p.s.d. matrix of the form Ũ Ũ> =
[
A1 W

W> A2

]
, where W = UV > corresponds to the optimization

variables in the original problem instance of eq. (16) and A1 and A2 some p.s.d matrices that are irrelevant
for the objective.

Henceforth, we will also consider the symmetric matrix factorization in (17). Let U(0) ∈ Rd×d be any full
rank initialization, gradient descent updates in U are given by,

U(t+1) = U(t) − ηt∇L̄(U(t)), (18)

with corresponding updates in W(t) = U(t)U(t)
> given by,

W(t+1) = W(t)− ηt
[
∇L(W(t))W(t) +W(t)∇L(W(t))

]
+ η2

t∇L(W(t))W(t)∇L(W(t)) (19)

Losses with a unique finite root For squared loss, Gunasekar et al. (2017) showed that the implicit bias
of iterates in eq. (19) crucially depended on both the initialization U(0) as well as the step-size η. Gunasekar
et al. conjectured, and provided theoretical and empirical evidence that gradient descent on the factorization
converges to the minimum nuclear norm global minimum, but only if the initialization is infinitesimally close
to zero and the step-sizes are infinitesimally small. Li et al. (2017), later proved the conjecture under additional
assumption that the measurements Xn satisfy certain restricted isometry property (RIP).

In the case of squared loss, it is evident that for finite step-sizes and finite initialization, the implicit bias
towards the minimum nuclear norm global minima is not exact. In practice, not only do we need η > 0, but we
also cannot initialize very close to zero since zero is a saddle point for eq. (17). The natural question motivated
by the results in Section 3 is: for strictly monotone losses, can we get a characterization of the implicit bias of
gradient descent for the factorized objective in eq. (17) that is more robust to initialization and step-size?

10



Strict monotone losses In the following theorem, we again see that the characterization of the implicit bias
of gradient descent for factorized objective is more robust in the case of strict monotone losses.

Theorem 7. For almost all datasets {Xn, yn}Nn=1 separable by a p.s.d. linear classifier, consider the gradient
descent iterates U(t) in eq. (18) for minimizing L̄(U) with the exponential loss `(u, y) = exp(−uy) and the
corresponding sequence of linear predictors W(t) in eq. (19). For any full rank initialization U(0) and any
finite step-size sequence {ηt}t, if W(t) asymptotically minimizes L, i.e., L(W(t))→ 0, and additionally the

updates U(t) and the gradients∇L(W(t)) converge in direction, then the limit direction Ū∞ = lim
t→∞

U(t)

‖U(t)‖∗
is

a scaling of a first order stationary point (f.o.s.p) of the following non-convex optimization problem

Ū∞ ∝ f.o.s.p. min
U∈Rd×d

‖U‖22 s.t., ∀n, yn
〈
UU>, Xn

〉
≥ 1. (20)

Remark 2. Any global minimum U∗ of eq. (20) corresponds to predictor W ∗ that minimizes the nuclear norm
‖.‖∗ of linear p.s.d. classifier with margin constraints,

W ∗ = argmin
W<0

‖W‖∗ s.t., ∀n, yn 〈W,Xn〉 ≥ 1. (21)

Additionally, in the absence of rank constraints on U , all second order stationary points of eq. (20) are global
minima for the problem. More general, we expect a stronger result that W̄∞ = Ū∞Ū

>
∞, which is also the limit

direction of W(t), is a minimizer of eq. (21). Showing a stronger result that W(t) indeed converges in direction
to W ∗ is of interest for future work.

Here we note that convergence of U(t) in direction is necessary for the characterization of implicit bias to
be relevant, but in Theorem 7, we require stronger conditions that the gradients∇L(W(t)) also converge in
direction. Relaxing this condition is of interest for future work.

Key property Let us look at exponential loss when W(t) converges in direction to, say W̄∞. Then W̄∞
can be expressed as W(t) = W̄∞g(t) + ρ(t) for some scalar g(t) → ∞ and ρ(t)

g(t) → 0. Consequently, the

gradients∇L(W(t)) =
∑
n e−g(t)yn〈W∞,Xn〉e−yn〈ρ(t),Xn〉 ynXn will asymptotically be dominated by linear

combinations of examples Xn that have the smallest distance to the decision boundary, i.e., the support vectors
of W̄∞. This behavior can be used to show optimality of Ū∞ such that W̄∞ = Ū∞Ū

>
∞ to the first order

stationary points of the maximum margin problem in eq. 20.

This idea formalized in the following lemma, which is of interest beyond the results in this paper.

Lemma 8. For almost all linearly separable datasets {xn, yn}Nn=1, consider any sequence w(t) that minimizes
L(w) in eq. (1) with exponential loss, i.e., L(w(t)) → 0. If w(t)

‖w(t)‖
converges, then for every accumulation

point z∞ of
{
−∇L(w(t))

‖∇L(w(t))‖
}
t
, ∃{αn ≥ 0}n∈S s.t., z∞ =

∑
n∈S

αnynxn, where w̄∞ = lim
t→∞

w(t)

‖w(t)‖
and S = {n :

yn 〈w̄∞, xn〉 = minn yn 〈w̄∞, xn〉} are the indices of the data points with smallest margin to w̄∞.

5. Summary

We studied the implicit bias of different optimization algorithms for two families of losses, losses with a unique
finite root and strict monotone losses, where the biases are fundamentally different. In the case of losses with a
unique finite root, we have a simple characterization of the limit point w∞ = limt→∞ w(t) for mirror descent.
But for this family of losses, such a succinct characterization does not extend to steepest descent with respect
to general norms. On the other hand, for strict monotone losses, we noticed that the initial updates of the
algorithm, including initialization and initial step-sizes are nullified when we analyze the asymptotic limit
direction w̄∞ = lim

t→∞
w(t)

‖w(t)‖
. We show that for steepest descent, the limit direction is a maximum margin
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separator within the unit ball of the corresponding norm. We also looked at other optimization algorithms for
strictly monotone losses. For matrix factorization, we again get a more robust characterization that relates the
limit direction to the maximum margin separator with unit nuclear norm. This again, in contrast to squared
loss Gunasekar et al. (2017), is independent of the initialization and step-size. However, for AdaGrad, we
show that even for strict monotone losses, the limit direction w̄∞ could depend on the initial conditions.

In our results, we characterize the implicit bias for linear models as minimum norm (potential) or maximum
margin solutions. These are indeed very special among all the solutions that fit the training data, and in
particular, their generalization performance can in turn be understood from standard analyses Bartlett &
Mendelson (2003).

Going forward, for more complicated non-linear models, especially neural networks, further work is required in
order to get a more complete understanding of the implicit bias. The preliminary result for matrix factorization
provides us tools to attempt extensions to multi-layer linear models, and eventually to non-linear networks.
Even for linear models, the question of what is the implicit bias is when L(w) is optimized with explicitly
constraints w ∈ W is an open problem. We believe similar characterizations can be obtained when there are
multiple feasible solutions with L(w) = 0. We also believe, the results for single outputs considered in this
paper can also be extended for multi-output loss functions.

Finally, we would like a more fine grained analysis connecting the iterates w(t) along the optimization path of
various algorithms to the regularization path, ŵ(c) = argminR(w)≤c L(w), where an explicit regularization is
added to the optimization objective. In particular, our positive characterizations show that the optimization
and regularization paths meet at the limit of t → ∞ and c → ∞, respectively. It would be desirable to
further understand the relations between the entire optimization and regularization paths, which will help us
understand the non-asymptotic effects from early stopping.
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Appendix A. Losses with a unique finite root

Let PX = span({xn : n ∈ [N ]}) = {
∑
n νnxn : νn ∈ R}. Let `′(u, y) be the derivative of ` w.r.t first

operand u, then we can see that, for any `,

∀w ∈ Rd,∇L(w) =
N∑
n=1

`′(〈w, xn〉 , yn))xn ∈ PX . (22)

A.1 Proof of Theorem 1-1b

For a strongly convex potential ψ, denote the global optimum with minimum Bregman divergence Dψ(., w(0))
to the initialization w(0) as

w∗ψ = argmin
w

Dψ(w,w(0)) s.t., ∀n, 〈w, xn〉 = yn, (23)

where recall that Dψ(w,w(0)) = ψ(w)− ψ(w(0))−
〈
∇ψ(w(0)), w − w(0)

〉
.

The KKT optimality conditions for (23) are as follows,

Stationarity: ∇ψ(w∗ψ)−∇ψ(w(0)) ∈ PX , or ∃{νn}Nn=1 s.t.,∇ψ(w∗ψ)−∇ψ(w(0)) =
N∑
n=1

νnxn

Primal feasibility: ∀n,
〈
w∗ψ, xn

〉
= yn, or w∗ψ ∈ G (24)

Recall Theorem 1–1b from Section 2.2.

Theorem 1. For any loss ` with a unique finite root (Property 1), any realizable dataset {xn, yn}Nn=1, and any
strongly convex potential ψ, consider the mirror descent iterates w(t) from eq. (5) for minimizing the empirical
loss L(w) in eq. (1). For all initializations w(0), if the step-size sequence {ηt}t is chosen such that the limit
point of the iterates w∞ = limt→∞ w(t) is a global minimizer of L, i.e., L(w∞) = 0, then w∞ is given by

w∞ = argmin
w:∀n,〈w,xn〉=yn

Dψ(w,w(0)). (6)

Theorem 1a. Under the conditions of Theorem 1, consider constrained mirror descent updates w(t) from
eq. (4) with realizable affine equality constraints, that is W = {w : Gw = h} for some G ∈ Rd′×d and
h ∈ Rd′ and additionally, ∃w ∈ W with L(w) = 0. For all initializations w(0), if the step-size sequence {ηt}t
is chosen to asymptotically minimize L, i.e., L(w∞) = 0, then w∞ = argminw∈G∩W Dψ(w,w(0)).

Theorem 1b. Under the conditions in Theorem 1, if initialized at w(0) = argminw ψ(w), then the mirror
descent updates with dual momentum also converge to (6), i.e., for all {ηt}t, {βt}t, {γt}t, if w(t) from eq. (7)
converges to w∞ ∈ G, then w∞ = argminw∈G ψ(w).

Remark 1. Following the same arguments, we can show that Theorem 1–1b also hold when instancewise
stochastic gradients defined in eq. (2) are used in place of∇L(w(t)).

Proof. (a) Generic mirror descent: Theorem 1 Recall the updates of mirror descent: ∇ψ(w(t+1)) −
∇ψ(w(t)) = −ηt∇L(w(t)) Using telescoping sum, we have,

∀t, ∇ψ(w(t))−∇ψ(w(0)) =
∑
t′<t

∇ψ(w(t′+1))−∇ψ(w(t′)) =
∑
t′<t

−ηt′∇L(w(t′)) ∈ PX , (25)

where the last inclusion follows as ∀t′,−ηt′∇L(w(t′)) ∈ PX from (22).
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Thus, for all t, w(t) from mirror descent updates in eq. (5) always satisfy the stationarity condition of eq. (24).
Additionally, ifw(t) converges to a global minimum, thenw∞ = limt→∞ w(t) ∈ G = {w : ∀n, 〈w, xn〉 = yn}
also satisfies the primal feasibility condition in eq. (24). Combining the above arguments, we have that if
L(w∞) = 0, then w∞ = argminw∈G Dψ(w,w(0)).

(b) Realizable affine equality constraints: Theorem 1a For W = {w : Gw = h} for some G ∈ Rd′×d
and h ∈ Rd′ with a realizable feasible solution w ∈ W satisfying ∀n, 〈xn, w〉 = yn, the claim is that w(t)

from eq. (4) converges to

w∗ψ,W = argmin
w

Dψ(w,w(0)) s.t., ∀n, 〈w, xn〉 = yn and w ∈ W = {w : Gw = h}. (26)

The KKT optimality conditions for (26) are as follows,

Stationarity: ∃{νn}Nn=1, {µj}d
′

j=1 s.t.,∇ψ(w∗ψ,W)−∇ψ(w(0)) =
N∑
n=1

νnxn +
d′∑
j=1

µjgj

Primal feasibility: ∀n,
〈
w∗ψ,W , xn

〉
= yn, and Gw∗ψ,W = h (27)

To show that the limit point of mirror descent updates in eq. (4) satisfy the above KKT conditions, we first
note that the updates are equivalently computed as follows,

w(t+1) = argmin
w:Gw=h

ηt
〈
w,∇L(w(t))

〉
+Dψ(w,w(t))

= argmin
w:Gw=h

Dψ(w,∇ψ−1
(
∇ψ(w(t))− ηt∇L(w(t))

)
).

(28)

Let gj for j = 1, 2, . . . , d′ denote the rows of G. From the optimality conditions of eq. (28), we get that

∃{µj}d
′

j=1, s.t. ∇ψ(w(t+1)) = ∇ψ(w(t))− ηtL(w(t)) +
d′∑
j=1

µjgj and Gw(t+1) = h. (29)

Again, primal feasibility is satisfied whenever w(t) → G since mirror descent iterates are always feasible points
w(t) ∈ W . The stationarity condition follows from using eq. (29) with same arguments of the unconstrained
case.

(c) Dual momentum: For any β̃t′ , γ̃t′ ∈ R and w̃(t′) ∈ Rd, consider a general update of the form

∇ψ(w(t+1)) =
∑
t′≤t

β̃t′∇ψ(w(t′)) + γ̃t′∇L(w̃(t′)). (30)

Claim: If ∇ψ(w(0)) = 0, then for all updates of the form (30) satisfies∇ψ(w(t)) ∈ PX
—this can be easily proved by induction:(a) for t = 0, ∇ψ(w(0)) = 0 ∈ PX ; (b) let ∀t′ ≤ t, ∇ψ(w(t′)) ∈
PX , (c) then using the inductive assumption and eq. (22), we have ∇ψ(w(t+1)) =

∑
t′≤t β̃t′∇ψ(w(t′)) +

γ̃t′∇L(w̃(t′)) ∈ PX .

Dual momentum in eq. (7) is a special case of eq. (30) with appropriate choice of β̃t′ , γ̃t′ ∈ R , and w̃t′ ∈ Rd.

(d) Instancewise stochastic gradient descent (Remark 1): In the above arguments, the only prop-
erty of gradient ∇L that we used is that ∀w ∈ Rd,∇L(w) =

∑N
n=1 `

′(〈w, xn〉 , yn))xn ∈ PX (eq.
(22)). This property also holds for instancewise stochastic gradients as defined in eq. (2), i.e., ∇L̃(w) =∑

n∈St `
′(〈w, xn〉 , yn))xn, hence all the results follow.
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A.2 Proofs of propositions in Section 2

A.2.1 PRIMAL MOMENTUM AND NATURAL GRADIENT DESCENT

Recall the optimization problem in Examples 2–3: {(x1 = [1, 2], y1 = 1)}, and `(u, y) = (u− y)2. We have
PX = span(x1) = {z : 2z[1]− z[2] = 0}.

For entropy potential ψ(w) =
∑
i w[i] logw[i] − w[i], we have ∇ψ(w) = logw (where the log is taken

elementwise), and initialization w(0) = [1, 1] satisfies ∇ψ(w(0)) = 0 which is the optimality condition for
minw ψ(w).

1. Proof of Proposition 2a: we use primal momentum with β1 > 0 only in the first step, and ∀t ≥ 2,
βt = γt = 0. We get the following initial updates

Since ∀t ≥ 2, βt = γt = 0, we first note that for t > 2, the updates merely follow the path of standard MD
initialized at∇ψ(w(2)) for a convex loss function. This implies the following:

• for appropriate choice of {ηt}t≥2 (given by convergence analysis of mirror descent for convex functions),
we can get w∞ = limt→∞ w(t) ∈ G, and
• from eq. (25), w∞ satisfies∇ψ(w∞)−∇ψ(w(2)) ∈ PX ⇒ ∇ψ(w∞) ∈ ∇ψ(w(2)) + PX .

Since w∞ satisfies primal feasibility, from stationarity condition in eq. (24), we have

w∞ = w∗ψ = argmin
w∈G

ψ(w) if and only if ∇ψ(w(2)) ∈ PX .

We show that this is not the case for any β1 > 0 and any γ1 ≥ 0. Recall that ∆w(−1) = 0, ∇ψ(w(0)) = 0

and ∇ψ(w) = logw. Working through the steps in eq. (8), for scalars r0 = η0(y1 −
〈
w(0), x1

〉
) and

r̃1 = ηt(y1 −
〈
w(1) + γ1∆w(0), x1

〉
), and any β1 > 0, we have:

• ∇ψ(w(1)) = r0x1 =⇒ w(1) = exp(r0x1), and
• ∇ψ(w(2)) = ∇ψ((1 + β1)w(1)) + r̃1x1 = log (1 + β1) + r0x1 + r̃1x1 ∈ log (1 + β1) + PX /∈ PX .�

2. Proof of Proposition 3a: The arguments are similar to the proof of Proposition 2a. In Example 3, we
again use a finite η1 > 0 to get w(1) and then follow the NGD using infinitesimal η initialized at w(1).

We know that for infinitesimal step-size, the NGD path starting at w(1) follows the corresponding infinitesimal
MD path on a convex problem and hence from eq. (25), the NGD updates for this example converges to
a global minimum w∞ = limt→∞ w(t) ∈ G, that satisfies ∇ψ(w∞) − ∇ψ(w(1)) ∈ PX ⇒ ∇ψ(w∞) ∈
∇ψ(w(1)) + PX .

From stationarity condition in (24), w∞ = w∗ψ = argminw∈G ψ(w) if and only if∇ψ(w(1)) ∈ PX .

For natural gradient descent, w(1) = w(0) − η1∇2ψ(w(0))
−1∇L(w(0)) = [1 + η1r0, 1 + 2η1r0], where

r0 = η0(y1 −
〈
w(0), x1

〉
). We then have ∇ψ(w(1)) ∈ PX ⇔ 2∇ψ(w(1))[1] − ∇ψ(w(1))[2] = 0 ⇔

2 log (w(1)[1])− log (w(1)[2]) = 0⇔ log
(
1 +

η21r
2
0

1+2η1r0

)
= 0.

For any η1 such that η21r
2
0

1+2η1r0
6= 0, we get a contradiction. �

Appendix B. Steepest descent for strictly monotone losses

We prove Theorem 5 in this section.

Theorem 5. For any separable dataset {xn, yn}Nn=1 and any norm ‖·‖, consider the steepest descent updates
from eq. (12) for minimizing L(w) in eq. (1) with the exponential loss `(u, y) = exp(−uy). For all
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initializationsw(0), and all bounded step-sizes satisfying ηt ≤ max{η+,
1

B2L(w(t))
}, whereB := maxn ‖xn‖?

and η+ <∞ is any finite upper bound, the iterates w(t) satisfy the following,

lim
t→∞

min
n

yn
〈
w(t), xn

〉
‖w(t)‖

= max
w:‖w‖≤1

min
n
yn 〈w, xn〉.

In particular, if there is a unique maximum-‖.‖ margin solution w?‖.‖ = argmaxw:‖w‖≤1 minn yn 〈w, xn〉,
then the limit direction is given by w̄∞ = lim

t→∞
w(t)

‖w(t)‖
= w?‖.‖.

The proof is divided into three subsections

1. Generalized duality lemma: we show that for all norms and all w, ‖∇L(w)‖? ≥ γL(w).
2. Properties of∇L(w(t)) and L(w(t)) for steepest descent: we prove two lemmata that show some useful

properties of∇L(w(t)) and L(w(t)).
3. Remaining steps in the proof: putting together above lemmata to prove Theorem 5.

B.1 Generalized duality lemma: for all norms and all w, ‖∇L(w)‖? ≥ γL(w)

The following lemma is a standard result in convex analysis.

Lemma 9 (Fenchel Duality). Let A ∈ Rm×n, and f : Rm → R, g : Rn → R be two closed convex functions
and f?, g? be their Fenchel conjugate functions, respectively. Then,

max
w∈Rn

−f?(Aw)− g?(−w) ≤ min
r∈Rm

f(r) + g(A>r). (31)

Let X ∈ RN×d be the data matrix with xn along the rows of X . Without loss of generality, let yn = 1, as for
linear models yn can be absorbed into xn. Let en denote the nth standard basis in RN .

We define the ‖·‖- maximum margin as,

γ = max
w 6=0

min
n∈[N ]

〈w, xn〉
‖w‖

= max
‖w‖≤1

min
n∈[N ]

e>nXw. (32)

Our primary technical novelty is the following duality lemma that generalizes similar result in Telgarsky
(2013) for `1 norm to general norms: we want to show that ‖∇L(w)‖? ≥ γL(w) for all w, where recall that
‖.‖? is the dual norm of ‖.‖.

Define rn(w) = exp
(
−w>xn

)
≥ 0 and let r(w) = [rn(w)]Nn=1 ∈ RN . Note that L(w) = ‖r(w)‖1 and

∇L(w) = X>r(w). We can now restate ‖∇L(w)‖? ≥ γL(w) as
‖X>r(w)‖

?

‖r(w)‖1
≥ γ.

In the following lemma, we show this holds for any rn(w) ≥ 0. Since norms are homogeneous, this is
equivalent to minr∈∆N−1

∥∥X>r∥∥
?
≥ γ, where ∆N−1 = {v ∈ RN : v ≥ 0, ‖v‖1 = 1} is the N -dimensional

probability simplex.

Lemma 10. For any norm ‖.‖, the following duality holds:

min
r∈∆N−1

∥∥X>r∥∥
?
≥ max
‖w‖≤1

min
n∈[N ]

e>nXw = γ. (33)

This implies, for exponential loss `(u, y) = exp(−uy), the following holds

∀w, ‖∇L(w)‖? ≥ γL(w). (34)
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Proof. Let 1E denote the indicator function which takes value 0 if E is satisfied and∞ otherwise.

Define f(r) = 1r∈∆N−1
and g(z) = ‖z‖?, so that

min
r∈∆N−1

∥∥X>r∥∥∗ = min
r∈RN

f(r) + g(X>r). (35)

The conjugates are f∗(y) = maxr∈∆N−1
〈y, r〉 = maxNn=1 〈y, en〉, and g∗(w) = 1‖w‖≤1. The LHS of

Lemma 9 is

max
w

(
− f∗(Xw)− g∗(−w)

)
= max

w

(
−max

n
e>nXw − 1‖w‖≤1

)
= max
‖w‖≤1

min
n
e>nX(−w)

(a)
= max
‖w‖≤1

min
n
e>nXw

(b)
= γ, (36)

where (a) follows from central symmetry of {w : ‖w‖ ≤ 1}, and (b) from definition of maximum ‖.‖-margin
in eq. (32).

Using weak duality (Lemma 9) on eqs. (35) and (36), we have ∀r, ‖X>r‖? ≥ γ‖r‖1. Finally, recalling
that for exponential loss rn(w) = exp

(
−w>xn

)
, L(w) = ‖r(w)‖1 and ∇L(w) = X>r(w), we have ∀w,

‖∇L(w)‖? ≥ γL(w).

B.2 Properties of∇L(w(t)) and L(w(t)) for steepest descent

Recall the steepest descent updates in eqs. (11) and (12) :

w(t+1) = w(t) + ηt∆w(t), where ∆w(t) satisfies

〈∆w(t),−∇L(w(t))〉 = ‖∆w(t)‖2 = ‖∇L(w(t))‖2?.
(37)

Lemma 11. For exponential loss `(u, y) = exp(−uy), consider the steepest descent iterates w(t) for minimiz-
ing L(w(t)), with any initialization w(0) and any finite step-size ηt that leads to a strictly decreasing sequence
L(w(t)) and satisfies 0 < ηt ≤ max{η+,

1
B2L(w(t))

}, where B = maxn ‖xn‖?. Then the following holds:

(A)
∑∞
t=0 ηt‖∇L(w(t))‖2? ≤ ∞, and hence ‖∇L(w(t))‖? → 0.

(B) Iterates w(t) converge to a global minima L(w(t))→ 0, and hence ∀n
〈
w(t), xn

〉
→∞.

(C)
∑∞
t=0 ηt‖∇L(w(t))‖? =∞.

Proof. 1. Proof of (A): We have that ‖xn‖? ≤ B for all n. Recall that rn(w) = exp(−〈w, xn〉) ≥ 0,
L(w) =

∑
n rn(w), and∇L(w) =

∑
n rn(w)xn. Thus, for all v, we have

v>∇2L(w)v =
∑
n

rn(w)(x>n v)2 ≤
∑
n

rn(w)‖xn‖2?‖v‖
2 ≤ L(w)B2‖v‖2. (38)

Using Taylor’s reminder theorem for the convex loss L, we have

L(w(t+1)) ≤ L(w(t)) + ηt
〈
∇L(w(t)),∆w(t)

〉
+ sup
β∈(0,1)

η2
t

2
∆w(t)

>∇2L
(
w(t) + βηt∆w(t)

)
∆w(t)

(a)

≤ L(w(t))− ηt
∥∥∇L(w(t))

∥∥2

?
+
η2
tB

2

2
sup

β∈(0,1)

L
(
w(t) + βηt∆w(t)

) ∥∥∆w(t)

∥∥2

(b)

≤ L(w(t))− ηt
∥∥∇L(w(t))

∥∥2

?
+
η2
tB

2

2
L(w(t))

∥∥∆w(t)

∥∥2

(c)

≤ L(w(t))−
ηt
2

∥∥∇L(w(t))
∥∥2

?
,

(39)
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where (a) follows from eq. (38) and from the condition on update direction in eq. (37); (b) follows as ηt∆w(t)

is a descent step and along with convexity of L(w) we have supβ∈(0,1) L
(
w(t) + βηt∆w(t)

)
≤ L(w(t)); and

(c) follows as ηt ≤ 1
B2L(w(t))

from the assumption and also using ‖∆w(t)‖ = ‖∇L(w(t))‖? from eq. 37.

Thus, L(w(t))− L(w(t+1)) ≥ ηt
2

∥∥∇L(w(t))
∥∥2

?
, which implies

∀t,
t∑

u=0

ηu
∥∥∇L(w(u))

∥∥2

?
≤ 2

t∑
u=0

L(w(u))− L(w(u+1)) = 2
(
L(w(0))− L(w(t+1))

)
<∞ . (40)

where the final inequality follows as L(w(0)) <∞ and L(w(t)) ≥ 0 ∀t.

In the continuous time limit of η → 0, (A) is equivalently expressed as
∫ t

0
‖∇L(w(t))‖2? <∞. Thus, we have

limt→∞ ‖∇L(w(t))‖? = 0—both for any finite ηt > 0 as well as in the continuous time limit of η → 0.

2. Proof of (B) and (C) : Consider any v ∈ Rd that linearly separates the data, i.e., ∀n, 〈v, xn〉 > 0 (such a
v always exists for linearly separable data), then we have

∀t <∞, v>∇L(w(t)) =
∑
n∈[N ]

exp
(
−
〈
w(t), xn

〉)
x>n v > 0.

Since limt→∞ v>∇L(w(t)) = 0, it must be that ∀n, exp
(
−
〈
w(t), xn

〉)
→ 0, and thus

∥∥w(t)

∥∥→∞.
Using triangle inequality, we have

∞ = lim
t→∞

∥∥w(t)

∥∥ ≤ ‖w(0)‖+
∞∑
t=0

ηt‖∆w(t)‖ = ‖w(0)‖+
∞∑
t=0

ηt‖∇L(w(t))‖?, (41)

where we used ‖∆w(t)‖ = ‖∇L(w(t))‖? from (37). This gives us
∑∞
t=0 ηt‖∇L(w(t))‖? =∞ in (C).

We next show that under the conditions of Theorem 5, L(w(t)) forms a decreasing sequence, and hence
satisfies the assumption in Lemma 11.

Lemma 12. If step-sizes ηt satisfy ηt = ct
B2L(wt)

for ct ≤
√

2 , then L(w(t+1)) ≤ L(w(t)).

Proof. From the Taylor expansion of L (w) in eq. (39), we have

L(w(t+1)) ≤ L(w(t))− ηt‖∇L(w(t))‖2? +
η2
tB

2

2
‖∇L(w(t))‖2? sup

β∈(0,1)

L(w(t) + βηt∆w(t))

(a)

≤ L(w(t))− ηt‖∇L(w(t))‖2?
(

1− ηtB
2

2
max (L(w(t)),L(w(t+1)))

)
,

(42)

where (a) follows from convexity of L.

We want to show that L(w(t+1)) ≤ L(w(t)). Let us assume the contrary that L(w(t+1)) > L(w(t)).

From eq. (42), we have

L(w(t))
(a)
< L(w(t+1)) ≤ L(w(t))− ηt‖∇L(w(t))‖2?

(
1− ηtB

2L(wt+1)

2

)
(b)

=⇒
(

1− ηtB
2L(wt+1)

2

)
≤ 0, (43)

where (a) follows from the contradictory assumption and (b) follows as ηt‖∇L(w(t))‖2? ≥ 0.
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Following up from eq. (43), we have

L(w(t+1)) ≤ L(w(t)) + ηt‖∇L(w(t))‖2?
(
ηtB

2L(wt+1)

2
− 1

)
(a)

≤ L(w(t)) + ηtB
2L(w(t))

2

(
ηtB

2L(wt+1)

2
− 1

)
(b)

≤ L(w(t))− ctL(wt) +
c2tL(wt+1)

2

=⇒ L(w(t+1)) ≤
1− ct

1− 0.5c2t
L(w(t))

(c)

≤ L(w(t)).

where in (a) we used ‖∇L(wt)‖? =
∥∥∑

n exp
(
wTt xn

)
xn
∥∥
?
≤ BL(wt) from triangle inequality and(

ηtB
2L(wt+1)

2 − 1
)
≥ 0 from eq. (43), (b) follows from using ηt ≤ ct

B2L(wt)
for some 0 < ct ≤

√
2,

and (c) follows as for 0 < ct ≤
√

2, 1−ct
1−0.5c2t

≤ 1. This shows L(wt+1) ≤ L(wt) which is a contradiction.

B.3 Remaining steps in the proof of Theorem 5

The steepest descent updates in eq. (37) can be equivalently written as:

w(t+1) = w(t) − ηtγtp(t), where

γt ,
∥∥∇L(w(t))

∥∥
?
, and p(t) ,

∆w(t)∥∥∇L(w(t))
∥∥
?

, which satisfies〈
p(t),∇L(w(t))

〉
=
∥∥∇L(w(t))

∥∥
?
,
∥∥p(t)

∥∥ = 1.

(44)

From eq . 39, using γt = ‖∇L(w(t))‖? = ‖∆w(t)‖, we have that

L(w(t+1)) ≤ L(w(t))− ηtγ2
t +

η2
tB

2L(w(t))γ
2
t

2
= L(w(t))

[
1− ηtγ

2
t

L(w(t))
+
η2
tB

2γ2
t

2

]
(a)

≤ L(w(t)) exp

(
− ηtγ

2
t

L(w(t))
+
η2
tB

2γ2
t

2

)
(b)

≤ L(w(0)) exp

−∑
u≤t

ηuγ
2
u

L(w(u))
+
∑
u≤t

η2
uB

2γ2
u

2

 ,

(45)

where we get (a) by using (1 + x) ≤ exp(x), and (b) using recursion.

Step 1: Lower bound the unnormalized margin: From eq. (45), we have,

max
n∈[N ]

exp
(
−
〈
w(t+1), xn

〉)
≤ L(w(t+1)) ≤ L(w(0)) exp

−∑
u≤t

ηuγ
2
u

L(w(u))
+
∑
u≤t

η2
uB

2γ2
u

2

 . (46)

By applying − log,

min
n∈[N ]

〈
w(t+1), xn

〉
≥
∑
u≤t

ηuγ
2
u

L(w(u))
−
∑
u≤t

η2
uB

2γ2
u

2
− logL(w(0)). (47)
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Step 2: Upper bound
∥∥w(t+1)

∥∥: Using ‖∆w(u)‖ = ‖∇L(w(u))‖? = γu, we have,∥∥w(t+1)

∥∥ ≤ ∥∥w(0)

∥∥+
∑
u≤t

ηu
∥∥∆w(u)

∥∥ ≤ ‖w(0)‖+
∑
u≤t

ηuγu. (48)

Step 3: Lower bound on normalized margin: Combining eqs. (47) and (48)∀n ∈ [N ], we have that

〈
w(t+1), xn

〉∥∥w(t+1)

∥∥ ≥

∑
u≤t

ηuγ
2
u

L(w(u))∑
u≤t ηuγu + ‖w(0)‖

−

∑u≤t
η2uB

2γ2
u

2 + logL(w(0))

‖w(t+1)‖

 . (49)

:= (I) + (II). (50)

We look at the two terms separately,

(I) From the duality Lemma 10, we have γu = ‖∇L(w(u))‖? ≥ γL(w(u)). Hence,
∑
u≤t

ηuγ
2
u

L(w(u))
≥

γ
∑
u≤t ηuγu and further using

∑
u≤t ηuγu →∞ from Lemma 11, we have

∑
u≤t

ηuγ
2
u

L(w(u))∑
u≤t ηuγu + ‖w(0)‖

≥ γ
∑
u≤t ηuγu∑

u≤t ηuγu + ‖w(0)‖
→ γ

(II) For any bounded η ≤ η+,
∑
u≤t

η2uB
2γ2
u

2 ≤ η+B
2

2

∑
u≤t ηuγ

2
u <∞ (from Lemma 11).

Along with using ‖w(t)‖ → ∞ from Lemma 11, we get
∑
u≤t

η2uB
2γ2u
2 +logL(w(0))

‖w(t+1)‖
→ 0.

Using the above bounds in (50), we get limt→∞
w>(t+1)xn

‖w(t+1)‖ ≥ γ := maxw
w>xn
‖w‖ �

Appendix C. Adagrad

Lemma 13. Let L (w) =
∑N
n=1 exp

(
−w>xn

)
, ‖·‖t be some w(t)-dependent norm, and ‖·‖t,∗ be its dual,

and assume that and ∀t : ‖xn‖t,∗ ≤ 1. We examine the following adaptive steepest descent update sequence
w.r.t adaptive norm ‖·‖t:

w(t+1) = w(t) − ηγtp(t), (51)

where
∥∥∇L (w(t)

)∥∥
t,∗ , γt and p(t) is the normalized update satisfying

∥∥p(t)

∥∥
t

= 1 and p>(t)∇L
(
w(t)

)
=∥∥∇L (w(t)

)∥∥
t,∗.

For these adaptive steepest descent updates, for any initialization, w(0) such that ηL
(
w(0)

)
< 1, if w(t)

minimizes L, i.e., L(w(t))→ 0, then we have
∑∞
u=0 γ

2
t <∞.

Proof. First we note that since ‖xn‖t,∗ ≤ 1 and
∥∥p(t)

∥∥
t

= 1.

p>(t)∇
2L (w) p(t) =

N∑
n=1

exp
(
−w>xn

) (
x>n p(t)

)2 ≤ N∑
n=1

exp
(
−w>xn

)
= L (w) . (52)

Additionally, following the arguments of Lemma 12, we can show that −ηγtp(t) for η ≤ 1
L(w(0))

is a descent
direction, hence from convexity of L, we have

max
r∈(0,1)

p>(t)∇
2L
(
w(t) − rηγtp(t)

)
p(t) ≤ max

r∈(0,1)
L
(
w(t) − rηγtp(t)

)
≤ L

(
w(t)

)
. (53)
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From the Taylor expansion of L (w)

L
(
w(t+1)

)
≤ L

(
w(t)

)
− ηγt∇L

(
w(t)

)>
p(t) +

1

2
η2γ2

t max
r∈(0,1)

p>(t)∇
2L
(
w(t) − rηγtp(t)

)
p(t). (54)

Substituting eq. (52) and (53) into eq. 54, we find

L
(
w(t+1)

)
≤ L

(
w(t)

)
− ηγt∇L

(
w(t)

)>
p(t) +

1

2
η2γ2

tL
(
w(t)

)
= L

(
w(t)

)
− η

(
1− η

2
L
(
w(t)

))
γ2
t

(a)

≤ L
(
w(t))

)
− η

2
γ2
t ,

where (a) follows from assumption that η ≤ 1
L(w(0))

≤ 1
L(w(t))

.

Summing over the last equation, we get that η2
∑t
u=1 γ

2
u ≤ L

(
w(0)

)
− L

(
w(t)

)
<∞.

Recall the AdaGrad update w(t+1) = w(t) − ηG
−1/2
(t) ∇L

(
w(t)

)
, where G(t) is a diagonal matrix such that

∀i : G(t)[i, i] =

t∑
u=0

(
∇L

(
w(u)

)
[i]
)2
.

We now prove the Theorem 6. Recall the statement,

Theorem 6. For any linearly separable training data {xn, yn}Nn=1, consider the AdaGrad iterates w(t)

from eq. (13) for minimizing L (w) with exponential loss `(u, y) = exp(−uy). For any fixed and bounded

step-size η <∞, and any initialization of w(0) and G(0), such that η2L
(
w(0)

)
< 1, and

∥∥∥G−1/4
(0) xn

∥∥∥
2
≤ 1,

∀i,∀t : G(t)[i, i] <∞.

Proof. First, we note that AdaGrad is a special case of the adaptive steepest descent algorithm described in
Lemma 13 with respect the norm ‖v‖t =

∥∥∥G1/2
(t) v

∥∥∥
2
. Here the dual norm ‖v‖t,∗ =

∥∥∥G−1/2
(t) v

∥∥∥
2
.

Also from the definition of G(t), we have that G−1
(t) [i, i] is monotonically decreasing for all t, and thus∥∥∥G−1/2

(t) xn

∥∥∥
2
≤
∥∥∥G−1/2

(0) xn

∥∥∥
2
≤ 1, and so we can apply Lemma 13. This implies that

∞ >
∞∑
t=0

∥∥∇L(w(t))
∥∥2

t,∗ =
∞∑
t=0

∥∥∥G−1/2
(t) ∇L

(
w(t)

)∥∥∥2

2

=
d∑
i=1

∞∑
t=0

(
∇L

(
w(t)

)
[i]
)2 [ t∑

u=0

(
∇L

(
w(u)

)
[i]
)2]−1/2

≥
d∑
i=1

∞∑
t=0

(
∇L

(
w(t)

)
[i]
)2 [ ∞∑

u=0

(
∇L

(
w(u)

)
[i]
)2]−1/2

=
d∑
i=1

√√√√ ∞∑
t=0

(
∇L

(
w(t)

)
[i]
)2

This implies that

∀i,∀t : G(t)[i, i] =
t∑

u=0

(
∇L

(
w(u)

)
[i]
)2 ≤ ∞∑

t=0

(
∇L

(
w(t)

)
[i]
)2
<∞ ,
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Appendix D. Gradient descent on factorized parameterization

We first prove the Lemma 8 on convergence of −∇L(w(t)). This lemma holds for any general linear model
(1) with exponential loss `(u, y) = exp(−uy) and are of interest beyond the matrix factorization setup in
Section 4.

D.1 Convergence of −∇L(w(t))

Lemma 8. For almost all linearly separable datasets {xn, yn}Nn=1, consider any sequence w(t) that minimizes
L(w) in eq. (1) with exponential loss, i.e., L(w(t)) → 0. If w(t)

‖w(t)‖
converges, then for every accumulation

point z∞ of
{
−∇L(w(t))

‖∇L(w(t))‖
}
t
, ∃{αn ≥ 0}n∈S s.t., z∞ =

∑
n∈S

αnynxn, where w̄∞ = lim
t→∞

w(t)

‖w(t)‖
and S = {n :

yn 〈w̄∞, xn〉 = minn yn 〈w̄∞, xn〉} are the indices of the data points with smallest margin to w̄∞.

Here for almost all {xn, yn} means that with probability 1 over the dataset {xn, yn} such that the signed
features ynxn are drawn independently from a distribution that is absolutely continuous w.r.t the d dimensional
Lebesgue measure.

Proof. Without loss of generality assume ∀n, yn = 1, else the sign of y can be absorbed into x as xn ← ynxn.

Let X ∈ RN×d denote the data matrix with xn ∈ Rd along the rows of X . Also, for any J ⊆ [N ],
XJ ∈ R|J|×d denotes the submatrix of X with only the rows corresponding to indices in J .

We have that limt→∞ L(w(t)) = 0 for strictly monotone loss over separable data, this implies asymptotically
w(t) satisfies Xw(t) > 0, ‖w(t)‖ → ∞.

Since w(t) converges in direction to w̄∞, we can write w(t) = g(t)w̄∞+ ρ(t) for a scalar g(t) = ‖w(t)‖ → ∞
and vector ρ(t) ∈ Rd such that ρ(t)g(t) → 0. Additionally, this implies ∀n, Xw̄∞ > 0.

We introduce some additional notation:

• Denote the asymptotic margin of xn as γ̄n := 〈xn, w̄∞〉. Additionally, we define the following:
– Let γ = minn 〈xn, w̄∞〉 = minn e

>
nXw̄∞ > 0 denote the smallest margin, where en ∈ RN are

standard basis.
– Let S := {n : 〈xn, w̄∞〉 = γ} denote the indices of support vectors of w̄∞.
– Denote the second smallest margin of w̄∞ as γ̄ := minn/∈S 〈xn, w̄∞〉 > γ.

• Define αn(t) := exp(−〈ρ(t), xn〉) and let α(t) ∈ RN be a vector of αn(t) stacked. For any J ⊂ [N ]
and α ∈ RN , similar to XJ , let αJ ∈ R|J| be the sub-vector with components corresponding to the
indices in J
• B = maxn ‖xn‖2,

Since ‖ρ(t)‖/g(t)→ 0 and γ, γ̄ > 0, we have ∀ε1, ε2 > 0, ∃tε1 , tε2 such that

∀t > tε1 , ∀n, 〈ρ(t), xn〉 ≤ ‖ρ(t)‖2B ≤ ε1γg(t), and
∀t > tε2 , ∀n, 〈ρ(t), xn〉 ≥ −‖ρ(t)‖2B ≥ −ε2γ̄g(t)

(55)

The first prove the following claim:

Claim 1. For almost all {xn}, |S| < d and σ|S|(XS) > 0, where σk(A) is the kth singular value of A.

Proof. Since, S = {n : 〈w̄∞, xn〉 = γ}, we have XSw̄∞ = γ1S ∈ R|S|.
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If X is randomly drawn from a continuous distribution, for any fixed subset J if |J | > d, the column span of
XJ is rank deficient and will miss any fixed vector v that is independent of X with probability 1. Thus,

R|J| 3 1J /∈ colspan(XJ), for almost all XJ ∈ R|J|×d. (56)

Since we always have 1S ∈ colspan(XS), this implies for almost all X , |S| ≤ d and σ|S|(XS) > 0.

Exponential loss: For exponential loss, the gradient at w(t) is given by

−∇L(w(t)) =
∑
n∈S

exp(−γg(t)) exp
(
−ρ(t)>xn

)
xn +

∑
n∈Sc

exp(−γ̄ng(t)) exp
(
−ρ(t)>xn

)
xn

:= I(t) + II(t), (57)

where I(t) =
∑
n∈S exp(−γg(t)) exp

(
−ρ(t)>xn

)
xn and II(t) =

∑
n/∈S exp(−γ̄ng(t)) exp

(
−ρ(t)>xn

)
xn.

To prove the lemma, we need to show that the gradient are dominated by the positive span of support vectors.
Towards this goal, we will now show that lim

t→∞
‖II(t)‖
‖I(t)‖ = 0.

Recall that α(t) = [αn(t)]n is defined as αn(t) = exp(−〈ρ(t), xn〉) and αS(t) ∈ R|S| is a subvector
restricted to indices in S. The following are true for any ε1, ε2 > 0.

Step 1. Lower bound on I(t): There exists tε1 such that for all t > tε1 , we have

‖I‖2 = exp(−γg(t))‖XSαS(t)‖2 ≥ exp(−γg(t))σ|S|(XS)‖αS(t)‖2
≥ exp(−γg(t))σ|S|(XS) max

n∈S
αn(t)

(a)

≥ σ|S|(XS) exp(−(1 + ε1)γg(t)) := C1 exp(−(1 + ε1)γg(t)), (58)

where (a) follows from (55), from which we get αn(t) = exp(−〈ρ(t), xn〉) ≥ exp(−ε1γg(t)), and C1 =
σ|S|(XS) > 0 is a constant independent of t.

Step 2. Upper bound on II(t): Again, for large enough t > tε2 , we have

‖II(t)‖2 =
∑
n/∈S

exp(−γ̄ng(t)) exp
(
−ρ(t)>xn

)
xn ≤ N max

n
exp(−γ̄ng(t))αn‖xn‖2

(a)

≤ exp(−γ̄g(t))BN max
n

αn

(b)

≤ BN exp(−(1− ε2)γ̄g(t)) := C2 exp(−(1− ε2)γ̄g(t)), (59)

where (a) uses ∀n /∈ S, γ̄n ≥ γ̄ (recall that γ̄ is the second smallest margin to w̄∞) and (b) follows from (55),
using αn = exp(−〈ρ(t), xn〉) ≤ exp(ε2γ̄g(t)), and C2 = BN > 0 is again a constant independent of t.

Step 3. Remaining steps in the proof: By combining (58) and (59) using ε1 = (γ̄−γ)/4γ and ε2 = (γ̄−γ)/4γ̄
and an appropriate constant C > 0, we have for any norm ‖.‖

‖II(t)‖
‖I(t)‖

≤ C exp

(
−1

2
(γ̄ − γ)g(t)

)
(a)→ 0, (60)

where (a) follows from γ̄ > γ and g(t) = ‖w(t)‖ → ∞.

Finally, note that− ∇L(w(t))

‖∇L(w(t))‖ = I(t)
‖I(t)+II(t)‖+ II(t)

‖I(t)+II(t)‖ . Since
∥∥∥ II(t)
‖I(t)+II(t)‖

∥∥∥ ≤ ‖II(t)‖/‖I(t)‖
1−‖II(t)‖/‖I(t)‖

t→∞→ 0,

and I(t) ∝
∑
n∈S αn(t)xn for αn(t) > 0, we have shown that every limit point of − ∇L(w(t))

‖∇L(w(t))‖ →∑
n∈S αnxn for some αn > 0.

Recall that in the beginnning of the proof we made a change of variable that xn ← ynxn. Reversing this
change of variable finishes the proof for exponential loss.
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D.2 Proof of Theorem 7

Theorem 7. For almost all datasets {Xn, yn}Nn=1 separable by a p.s.d. linear classifier, consider the gradient
descent iterates U(t) in eq. (18) for minimizing L̄(U) with the exponential loss `(u, y) = exp(−uy) and the
corresponding sequence of linear predictors W(t) in eq. (19). For any full rank initialization U(0) and any
finite step-size sequence {ηt}t, if W(t) asymptotically minimizes L, i.e., L(W(t))→ 0, and additionally the

updates U(t) and the gradients∇L(W(t)) converge in direction, then the limit direction Ū∞ = lim
t→∞

U(t)

‖U(t)‖∗
is

a scaling of a first order stationary point (f.o.s.p) of the following non-convex optimization problem

Ū∞ ∝ f.o.s.p. min
U∈Rd×d

‖U‖22 s.t., ∀n, yn
〈
UU>, Xn

〉
≥ 1. (20)

Proof. In this proof, ‖.‖F , ‖.‖∗, and ‖.‖op denote the Frobenious norm, nuclear norm, and operator norm,
respectively.

From the assumption of theorem, we have that U(t) converges in direction. Let Ū∞ = lim
t→∞

U(t)

‖U(t)‖F
. Noting

that for W(t) = U(t)U(t)
>,
∥∥W(t)

∥∥
∗ =

∥∥U(t)

∥∥2

F
, we have that lim

t→∞
W(t)

‖W(t)‖∗
= lim

t→∞
U(t)

‖U(t)‖F
U(t)

>

‖U(t)‖F
=

Ū∞Ū
>
∞. Denote W̄∞ = lim

t→∞
W(t)

‖W(t)‖∗
= Ū∞Ū

>
∞.

Since W(t) minimizes a strictly monotone loss, we have that ‖W(t)‖∗ →∞ and ∀n, yn
〈
W̄∞, Xn

〉
> 0. Let

γ = minn yn
〈
W̄∞, Xn

〉
denote the margin of W̄∞ and S = {n : yn

〈
W̄∞, Xn

〉
= γ} denote the indices of

the support vectors of W̄∞.

In order to prove the theorem, we can can equivalently show that a positive scaling of Ū∞ given by ¯̄U∞ =
Ū∞/

√
γ is the first order stationary point of eq. (20).

In the remainder of the proof we show that ¯̄U∞ satisfies the following KKT optimality conditions of (20):

To show: yn

〈
¯̄U∞

¯̄U>∞, Xn

〉
≥ 1 and ∃α ≥ 0 s.t., (primal and dual feasibility) (61)

∀i /∈ S : αn = 0 and (complementary slackeness) (62)
¯̄U∞ =

∑
n

αnynXn
¯̄U∞. (stationarity) (63)

Primal feasibility This holds by definition since ¯̄U∞
¯̄U>∞ = W̄∞/γ has unit margin by the scaling.

Dual feasibility and complementary slackness DenoteZ(t) = −∇L(W(t)) =
∑
n exp

(
−yn

〈
W(t), Xn

〉)
ynXn.

From the assumptions in the theorem, we have that Z(t) converge in direction. Let Z̄∞ = lim
t→∞

Z(t)

‖Z(t)‖op

. In

addition, we also assume that L(W(t)) → 0 and that U(t) convergence in direction, which in turn implies
convergence in direction of W(t) = U(t)U(t)

>. Thus, from Lemma 8, we have Z̄∞ =
∑
n∈S αnynXn for

some {αn}Nn=1 such that αn ≥ 0 and αn = 0 for all n /∈ S. We propose this {αn}Nn=1 as our candidate dual
certificate, which satisfies both dual feasibility and complementary slackness.

Stationarity: To prove the theorem, we now need to show that: ¯̄U∞ = DZ̄∞
¯̄U∞, for some positive scalar D,

or equivalently that Ū∞ = DZ̄∞Ū∞. This forms the main part of the proof.

Using the assuptions in the theorem, we have that U(t) and Z(t) converges in direction, we introducing the
following notation to conveniently represent these quantities.

1. Since U(t)

‖U(t)‖F
→ Ū∞, we define g(t) and ρ(t) satisfying the following,

U(t) = Ū∞g(t) + ρ(t) s.t., g(t) :=
∥∥U(t)

∥∥
F
→∞ and

ρ(t)

g(t)
→ 0. (64)
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2. For exponential loss, L(W(t)) → 0 implies Z(t) = −∇L(W(t)) → 0. Thus, using the previously
introduced notation Z̄∞ = lim

t→∞
Z(t)

‖Z(t)‖op

, we define p(t) and ζ(t) as follows

Z(t) = −∇L(W(t)) = Z̄∞p(t) + ζ(t) s.t., p(t) :=
∥∥Z(t)

∥∥
op → 0 and

ζ(t)

p(t)
→ 0. (65)

To show stationarity, we need to show that Ū∞ = DZ̄∞Ū∞, which requires that the columns of W̄∞ are
spanned subset of eigenvectors of Z̄∞ that correspond to the same eigen value.

Let ∆U(t) = U(t+1) − U(t). Substituting expressions of U(t) and Z(t) from (64) and (65), respectively, for the
updates ∆U(t) from eq. (18), we have

∆U(t) = ηtZ(t)U(t) = ηtp(t)g(t)

[
Z̄∞Ū∞ + Z̄∞

ρ(t)

g(t)
+
ζ(t)

p(t)
Ū∞

]
(a)
= ηtp(t)g(t)[Z̄∞Ū∞ + δ(t)] (66)

where in (a) we collect all the diminishing terms into δ(t) = Z̄∞
ρ(t)
g(t) +

ζ(t)
p(t) Ū∞ → 0 as from eqs. (64)–(65),

we have ρ(t)
g(t) ,

ζ(t)
p(t) → 0 and Z̄∞ and W̄∞ are finite quanitities independent of t.

Summing over t, we have that

U(t) − U(0) = Z̄∞Ū∞
∑
u<t

ηup(u)g(u) +
∑
u<t

δ(u)ηup(u)g(u) (67)

Claim 2.
∥∥Z̄∞Ū∞∥∥ > 0 and

∑
u<t ηup(u)g(u)→∞.

Proof. First, recall that for the limit direction W̄∞ = Ū∞Ū
>
∞, minn yn

〈
W̄∞, Xn

〉
= γ > 0 and Z̄∞ =∑

n∈S αnynXn for αn ≥ 0. Thus,
〈
Z∞, W̄∞

〉
=
〈
Z̄∞Ū∞, Ū∞

〉
=
∑
n∈S αnγ > 0 for Ū∞ 6= 0, and hence∥∥Z̄∞Ū∞∥∥ > 0.

Secondly, since δ(t) → 0 in eq. (67), ∃t0 such that ∀t > t0,
∥∥δ(t)∥∥ ≤ 1 and since all the incremental

updates to gradient descent are finite, we have that supt
∥∥δ(t)∥∥ < ∞. Additionally, since p(t) =

∥∥Z(t)

∥∥
op

and g(u) =
∥∥U(t)

∥∥
F

are positive, we have that bt =
∑
u<t ηup(u)g(u) is monotonic increasing, thus if

lim supt→∞ bt =∞ then limt→∞ bt =∞. On contrary, if lim supt→∞ bt = C <∞, then we have from eq.
(67),

∥∥U(t)

∥∥ ≤ ∥∥U(0)

∥∥+
∥∥Z̄∞Ū∞∥∥C +

(
supt

∥∥δ(t)∥∥)C <∞ which is a contradiction to
∥∥U(t)

∥∥→∞.

From the above claim, we have that the sequence bt =
∑
u<t ηup(u)g(u) is monotonic increasing and

diverging. Thus, for at =
∑
u<t δ(u)ηup(u)g(u), using Stolz-Cesaro theorem (Theorem 17), we have that

lim
t→∞

at
bt

= lim
t→∞

∑
u<t δ(u)ηup(u)g(u)∑
u<t ηup(u)g(u)

= lim
t→∞

at+1 − at
bt+1 − bt

= lim
t→∞

δ(t) = 0.

=⇒ for δ̃(t) → 0, we have
∑
u<t

δ(u)ηup(u)g(u) = δ̃(t)
∑
u<t

ηup(u)g(u), (68)
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Subtituting eq. (68) in eq. (67), we have

U(t)
(a)
=
[
Z̄∞Ū∞ + δ′(t)

] [∑
u<t

ηup(u)g(u)

]
(69)

=⇒
U(t)∥∥U(t)

∥∥ =
Z̄∞Ū∞ + δ′(t)∥∥∥Z̄∞Ū∞ + δ′(t)

∥∥∥
F

(a)→ Z̄∞Ū∞∥∥Z̄∞Ū∞∥∥ (70)

=⇒ Ū∞ = lim
t→∞

U(t)∥∥U(t)

∥∥ =
1∥∥Z̄∞Ū∞∥∥ Z̄∞Ū∞, (71)

where in (a) we absorbed all the diminishing terms into δ′(t) = δ̃(t) + U(0)/
∑
u<t ηup(u)g(u)→ 0 and (b)

follows since Z̄∞Ū∞ 6= 0 and hence dominates δ̃(t).

We have thus shown that Ū∞ = DZ̄∞Ū∞ for D = 1

‖Z̄∞Ū∞‖ which completes the proof of the theorem.

Appendix E. Preliminaries

Lemma 14 (Sub-differentials of norms). For a generic norm ‖v‖ for v ∈ V , recall the dual norm ‖y‖? =
sup‖v‖≤1 〈y, v〉. The sub-differential of a norm ‖.‖ at v is defined as ∂‖v‖ = {y : ∀∆ ∈ V, ‖v + ∆‖ ≥
‖v‖+ 〈y,∆〉}.

We have the following results on the properties on the sub-differentials are readily established:

1. ∂‖v‖ = {y : ‖y‖? = 1, and 〈y, v〉 = ‖v‖}

2. y ∈ ∂‖v‖2 if and only if v ∈ ∂‖v‖2

3. if there exists v1, v2 ∈ V and g ∈ V? such that g ∈ ∂‖v1‖ and g ∈ ∂‖v2‖, then forallα, β > 0,
g ∈ ∂‖αv1 + βv2‖.

Proof. 1. It can be easily verified that {y : ‖y‖? = 1, and 〈y, v〉 = ‖v‖} ⊆ ∂‖v‖ Conversely, ∀y ∈ ∂‖v‖,
from the definition, we have ∀∆, ‖v‖+ ‖∆‖ ≥ ‖v + ∆‖ ≥ ‖v‖+ 〈y,∆〉 =⇒ ‖y‖? = sup∆6=0〈 ∆

‖∆‖ , y〉 ≤
1. Using ‖y‖? ≤ 1 along with ∆ = −v, we have 〈y, v〉 ≥ ‖v‖ = sup‖y‖?≤1 〈v, y〉 ⇒ 〈y, v〉 =
sup‖y‖?≤1 〈v, y〉 ‖v‖, which by homogeneity of norms implies ‖y‖? = 1.

2. From above result, y ∈ ∂ 1
2‖v‖

2 ⇔ ‖y‖∗ = ‖v‖ and 〈y, v〉 = ‖v‖2 = ‖y‖2? ⇔ v ∈ ∂‖y‖2?.

3. g ∈ ∂‖v1‖ ∩ ∂‖v2‖ implies ‖g‖? = 1, ‖v1‖ = 〈g, v1〉, and ‖v2‖ = 〈g, v2〉. Using triangle inequality,
‖αv1 + βv2‖ ≤ α‖v1‖ + β‖v2‖ = 〈g, αv1 + βv2〉 ≤ sup‖y‖?≤1 〈y, αv1 + βv2〉 = ‖αv1 + βv2‖ =⇒
‖αv1 + βv2‖ = 〈g, αv1 + βv2〉.

Lemma 15 (Limit points of a compact sets). If {at}∞t=1 is a sequence contained in a compact set at ∈ C,
then there exists at least one limit point of {at} in C. That is, ∃a∞ ∈ C and a subsequence {atk}∞k=1, such
that limk→∞ atk = a∞.

Theorem 16 (L-Hopital’s Rule, proof in Theorem 30.2 of Ross (1980)). Let s ∈ R ∪ {−∞,∞}, and
f(x) and g(x) be continuous and differentiable functions such that limx→s

f ′(x)
g′(x) = L exists. If either (a)

limx→s f(x) = limx→s g(x) = 0, or (b) limx→s |g(x)| =∞, then limx→s
f(x)
g(x) exists and is equal to L

Theorem 17 (Stolz–Cesaro theorem, proof in Theorem 1.22 of Muresan & Muresan (2009)). Assume that
{ak}∞k=1 and {bk}∞k=1 are two sequences of real numbers such that {bk}∞k=1 is strictly monotonic and
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diverging (i.e., monotonic increasing with bk →∞ or monotonic decreasing with bk → −∞). Additionally, if
limk→∞

ak+1−ak
bk+1−bk = L exists, then limk→∞

ak
bk

exists and is equal to L.
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