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Abstract
Many online applications, such as online social networks
or knowledge bases, are often attacked by malicious users
who commit different types of actions such as vandalism on
Wikipedia or fraudulent reviews on eBay. Currently, most of
the fraud detection approaches require a training dataset that
contains records of both benign and malicious users. How-
ever, in practice, there are often no or very few records of
malicious users. In this paper, we develop one-class adversar-
ial nets (OCAN) for fraud detection with only benign users as
training data. OCAN first uses LSTM-Autoencoder to learn
the representations of benign users from their sequences of
online activities. It then detects malicious users by training
a discriminator of a complementary GAN model that is dif-
ferent from the regular GAN model. Experimental results
show that our OCAN outperforms the state-of-the-art one-
class classification models and achieves comparable perfor-
mance with the latest multi-source LSTM model that requires
both benign and malicious users in the training phase.

Introduction
Online platforms such as online social networks (OSNs) and
knowledge bases play a major role in online communica-
tion and knowledge sharing. However, there are various ma-
licious users who conduct various fraudulent actions, such
as spams, rumors, and vandalism, imposing severe security
threats to OSNs and their legitimate participants. To protect
legitimate users, most Web platforms have tools or mech-
anisms to block malicious users. For example, Wikipedia
adopts ClueBot NG 1 to detect and revert obvious bad edits,
thus helping administrators to identify and block vandals.

Detecting malicious users has also attracted increasing
attention in the research community (Cheng et al. 2017;
Kumar et al. 2017; Yuan et al. 2017a; Kumar, Spezzano, and
Subrahmanian 2015; Yuan et al. 2017b). However, these de-
tection models are trained over a training dataset that con-
sists of both positive data (benign users) and negative data
(malicious users). In practice, there are often no or very few
records from malicious users in the collected training data.
Manually labeling a large number of malicious users is te-
dious.
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1https://en.wikipedia.org/wiki/User:ClueBot\ NG

In this work, we tackle the problem of identifying mali-
cious users when only benign users are observed. The basic
idea is to adopt a generative model to generate malicious
users with only given benign users. Generative adversarial
networks (GAN) as generative models have demonstrated
impressive performance in modeling the real data distribu-
tion and generating high quality synthetic data that is simi-
lar to real data (Goodfellow et al. 2014; Radford, Metz, and
Chintala 2015). However, given benign users, a regular GAN
model is unable to generate malicious users.

We develop one-class adversarial nets (OCAN) for fraud
detection. During training, OCAN contains two phases.
First, OCAN adopts the LSTM-Autoencoder (Srivastava,
Mansimov, and Salakhutdinov 2015) to encode the benign
users into a hidden space based on their online activities,
and the encoded vectors are called benign user representa-
tions. Then, OCAN trains improved generative adversarial
nets in which the discriminator is trained to be a classifier
for distinguishing benign users and malicious users with the
generator producing potential malicious users. To this end,
we adopt the idea of bad GAN (Dai et al. 2017) that the gen-
erator is trained to generate complementary samples instead
of matching the original data distribution. The generator of
the complementary GAN aims to generate samples that are
complementary to the representations of benign users, i.e.,
the potential malicious users. We revise the objective func-
tion of the discriminator in the regular GAN to achieve one-
class classification. The discriminator is trained to separate
benign users and complementary samples. Since the behav-
iors of malicious users and that of benign users are com-
plementary, we expect the discriminator can distinguish be-
nign users and malicious users. By combining the encoder
of LSTM-Autoencoder and the discriminator of the comple-
mentary GAN, OCAN can accurately predict whether a new
user is benign or malicious based on his online activities.

The advantages of OCAN for fraud detection are as fol-
lows. First, since OCAN does not require any information
about malicious users, we do not need to manually com-
pose a mixed training dataset, thus more adaptive to differ-
ent types of malicious user identification tasks. Second, dif-
ferent from existing one-class classification models, OCAN
generates complementary samples of benign users and trains
the discriminator to separate complementary samples from
benign users, enabling the trained discriminator to better
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separate malicious users from benign users. Third, OCAN
can capture the sequential information of user activities. Af-
ter training, the detection model can adaptively update a user
representation once the user commits a new action and pre-
dict whether the user is a fraud or not dynamically.

Related Work

Fraud detection: Many fraud detection techniques have
been developed in recent years (Akoglu, Tong, and Koutra
2015; Jiang et al. 2014; Cao et al. 2014; Ying, Wu, and
Barbará 2011; Kumar and Shah 2018), including content-
based approaches and graph-based approaches. The content-
based approaches extract content features, (i.e., text, URL),
to identify malicious users from user activities on social
networks (Benevenuto et al. 2010). Research in (Kumar,
Spezzano, and Subrahmanian 2015) focused on predicting
whether a Wikipedia user is a vandal by identifying a set
of behavior features based on user edit-patterns. To improve
detection accuracy and avoid manual feature construction, a
multi-source long-short term memory network (M-LSTM)
was proposed to detect vandals (Yuan et al. 2017b). Mean-
while, graph-based approaches identify frauds based on net-
work topologies. Often based on unsupervised learning, the
graph-based approaches consider fraud as anomalies and ex-
tract various graph features associated with nodes, edges,
ego-net, or communities from the graph (Akoglu, Tong, and
Koutra 2015; Manzoor et al. 2016; Ying, Wu, and Barbará
2011; Wu et al. 2013).

One-class classification: One-class classification (OCC) al-
gorithms aim to build classification models when only one
class of samples are observed and the other class of samples
are absent (Khan and Madden 2014), which is also related to
the novelty detection (Pimentel et al. 2014). One-class sup-
port vector machine (OCSVM), as one of widely adopted
for one class classification, aims to separate one class of
samples from all the others by constructing a hyper-sphere
around the observed data samples (Tax and Duin 2004;
Manevitz and Yousef 2001). Other traditional classification
models also extend to the one-class scenario. For example,
one-class nearest neighbor (OCNN) (Tax and Duin 2001)
predicts the class of a sample based on its distance to its
nearest neighbor in the training dataset. One-class Gaus-
sian process (OCGP) chooses a proper GP prior and derives
membership scores for one-class classification (Kemmler et
al. 2013). However, OCNN and OCGP need to set a thresh-
old to detect another class of data. The threshold is either
set by a domain expert or tuned based on a small set of two-
class labeled data. In this work, we propose a framework that
combines LSTM-Autoencoder and GAN to detect vandals
with only knowing benign users. To our best knowledge, this
is the first work that examines the use of deep learning mod-
els for fraud detection when only one-class training data is
available. Meanwhile, comparing to existing one-class al-
gorithms, our model trains a classifier by generating a large
number of “novel” data and does not require any labeled data
to tune parameters.

Preliminary:Generative Adversarial Nets
Generative adversarial nets (GAN) are generative models
that consist of two components: a generator G and a dis-
criminator D. Typically, both G and D are multilayer neural
networks. G(z) generates fake samples from a prior pz on
a noise variable z and learns a generative distribution pG to
match the real data distribution pdata. On the contrary, the
discriminative model D is a binary classifier that predicts
whether an input is a real data x or a generated fake data
from G(z). Hence, the objective function of D is defined as:

max
D

Ex∼pdata [logD(x)]+Ez∼pz [log(1−D(G(z)))], (1)

where D(·) outputs the probability that · is from the real
data rather than the generated fake data. In order to make the
generative distribution pG close to the real data distribution
pdata, G is trained by fooling the discriminator not be able to
distinguish the generated data from the real data. Thus, the
objective function of G is defined as:

min
G

Ez∼pz [log(1−D(G(z)))]. (2)

Minimizing the Equation 2 is achieved if the discriminator is
fooled by generated data G(z) and predicts high probability
that G(z) is real data.

Overall, GAN is formalized as a minimax game
min
G

max
D

V (G,D) with the value function:

V (G,D) = Ex∼pdata [logD(x)]+Ez∼pz [log(1−D(G(z)))].
(3)

Figure 1: The training framework of OCAN

OCAN: One-Class Adversarial Nets
Framework Overview
OCAN contains two phases during training. The first phase
is to learn user representations. As shown in the left side
of Figure 1, LSTM-Autoencoder is adopted to learn benign
user representations from benign user activity sequences.
The LSTM-Autoencoder model is a sequence-to-sequence
model that consists of two LSTM models as the encoder and
decoder respectively. The encoder computes hidden repre-
sentations of inputs, and the decoder computes the recon-
structed inputs based on the hidden representations. The
trained LSTM-Autoencoder can capture the salient informa-
tion of users’ activity sequences because the objective func-
tion is to make the reconstructed input close to the original
input. The encoder of the trained LSTM-Autoencoder, when
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deployed for fraud detection, is expected to map the benign
users and malicious users to relatively separate regions in
the continuous feature space because the activity sequences
of benign and malicious users are different.

Given the user representations, the second phase is to train
a complementary GAN with a discriminator that can clearly
distinguish the benign and malicious users. The generator
of the complementary GAN aims to generate complemen-
tary samples that are in the low-density area of benign users,
and the discriminator aims to separate the real and comple-
mentary benign users. The discriminator then has the ability
to detect malicious users which locate in separate regions
from benign users. The framework of training complemen-
tary GAN is shown in the right side of Figure 1.

The pseudo-code of training OCAN is shown in Algo-
rithm 1. Given a training dataset Mbenign that contains activ-
ity sequence feature vectors ofN benign users, we first train
the LSTM-Autoencoder model (Lines 3–9). After training
the LSTM-Autoencoder, we adopt the encoder in the LSTM-
Autoencoder model to compute the benign user representa-
tion (Lines 11–14). Finally, we use the benign user repre-
sentation to train the complementary GAN (Lines 16–20).
For simplicity, we write the algorithm with a minibatch size
of 1, i.e., iterating each user in the training dataset to train
LSTM-Autoencoder and GAN. In practice, we sample m
real benign users and use the generator to generate m com-
plementary samples in a minibatch. In our experiments, the
size of minibatch is 32.

Our OCAN moves beyond the naive approach of adopting
a regular GAN model in the second phase. The generator of
a regular GAN aims to generate the representations of fake
benign users that are close to the representations of real be-
nign users. The discriminator of a regular GAN is to identify
whether an input is a representation of a real benign user or a
fake benign user from the generator. However, one potential
drawback of the regular GAN is that once the discriminator
is converged, the discriminator cannot have high confidence
on separating real benign users from real malicious users.
We denote the OCAN with the regular GAN as OCAN-r and
compare its performance with OCAN in the experiment.

LSTM-Autoencoder for User Representation
The first phase of OCAN is to encode users to a continu-
ous hidden space. Since each online user has a sequence of
activities (e.g., edit a sequence of pages), we adopt LSTM-
Autoencoder to transform a variable-length user activity se-
quence into a fixed-dimension user representation. Formally,
given a user u with T activities, we represent the activity se-
quence as Xu = (x1, . . . ,xt, . . . ,xT ) where xt ∈ Rd is the
t-th activity feature vector.

Encoder: The encoder encodes the user activity sequence
Xu to a user representation with an LSTM model:

hent = LSTMen(xt,h
en
t−1), (4)

where xt is the feature vector of the t-th activity; hent indi-
cates the t-th hidden vector of the encoder.

The last hidden vector henT captures the information of a
whole user activity sequence and is considered as the user

Algorithm 1: Training One-Class Adversarial Nets
Inputs : Training dataset Mbenign = {X1, · · · ,XN},

Training epochs for LSTM-Autoencoder
EpochAE and GAN EpochGAN

Outputs: Well-trained LSTM-Autoencoder and
complementary GAN

1 initialize parameters in LSTM-Autoencoder and
complementary GAN;

2 j ← 0;
3 while j < EpochAE do
4 foreach user u in Mbenign do
5 compute the reconstructed sequence of user activities

by LSTM-Autoencoder (Eq. 4, 6, and 7);
6 optimize the parameters in LSTM-Autoencoder with

the loss function Eq. 8;
7 end
8 j ← j + 1;
9 end

10 V = ∅;
11 foreach user u in Mbenign do
12 compute the benign user representation vu by the

encoder of LSTM-Autoencoder (Eq. 4, 5);
13 V+ = vu;
14 end
15 j ← 0;
16 while j < EpochGAN do
17 foreach benign user representation vu in V do
18 optimize the discriminator D and generator G with

loss functions Eq. 14, 12, respectively;
19 end
20 end
21 return well-trained LSTM-Autoencoder and complementary

GAN

representation v:
v = henT . (5)

Decoder: In our model, the decoder adopts the user rep-
resentation v as the input to reconstruct the original user
activity sequence X :

hdet = LSTMde(v,hdet−1), (6)

x̂t = f(hdet ), (7)

where hdet is the t-th hidden vector of the decoder; x̂t in-
dicates the t-th reconstructed activity feature vector; f(·)
denotes a neural network to compute the sequence outputs
from hidden vectors of the decoder. Note that we adopt v
as input of the whole sequence of the decoder, which has
achieved great performance on sequence-to-sequence mod-
els (Cho et al. 2014).

The objective function of LSTM-Autoencoder is:

L(AE)(x̂t,xt) =
T∑
t=1

(x̂t − xt)
2, (8)

where xt (x̂t) is the t-th (reconstructed) activity feature vec-
tor. After training, the last hidden vector of encoder hT can
reconstruct the sequence of user feature vectors. Thus, the
representation of user v = henT captures the salient informa-
tion of user behavior.
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Complementary GAN
The generator G of complementary GAN is the same as that
of the bad GAN in (Dai et al. 2017). Basically, it is a feed-
forward neural network where its output layer has the same
dimension as the user representation v. Formally, we define
the generated samples as ṽ = G(z). Unlike the generator
in a regular GAN which is trained to match the distribution
of the generated fake benign user representation with that
of benign user representation pdata, the generator G of com-
plementary GAN learns a generative distribution pG that is
close to the complementary distribution p∗ of the benign
user representations, i.e., pG = p∗.

Following (Dai et al. 2017), we define the complementary
distribution p* as:

p∗(ṽ) =

{
1
τ

1
pdata(ṽ)

if pdata(ṽ) > ε and ṽ ∈ Bv
C if pdata(ṽ) ≤ ε and ṽ ∈ Bv,

(9)

where ε is a threshold to indicate whether the generated sam-
ples are in high-density regions; τ is a normalization term;
C is a small constant; Bv is the space of user representation.
To make the generative distribution pG close to the com-
plementary distribution p∗, the complementary generator G
is trained to minimize the KL divergence between pG and
p∗. Based on the definition of KL divergence, the objective
function is:

LKL(pG‖p∗) = −H(pG)− Eṽ∼pG log p∗(ṽ)

= −H(pG) + Eṽ∼pG log pdata(ṽ)1[pdata(ṽ) > ε]

+ Eṽ∼pG(1[pdata(ṽ) > ε] log τ − 1[pdata(ṽ) ≤ ε] logC),
(10)

where H(·) is the entropy, and 1[·] is the indicator function.
The last term of Equation 10 can be omitted because both τ
and C are constant terms and the gradients of the indicator
function 1[·] with respect to parameters of the generator are
mostly zero.

Meanwhile, following (Dai et al. 2017), the complemen-
tary generator G adopts the feature matching loss (Salimans
et al. 2016) to ensure that the generated samples are con-
strained in the space of user representation Bv.

Lfm =‖ Eṽ∼pGf(ṽ)− Ev∼pdataf(v) ‖22, (11)

where f(·) denotes the output of an intermediate layer of the
discriminator used as a feature representation of v.

Thus, the complete objective function of the generator is
defined as:

min
G

−H(pG) + Eṽ∼pG log pdata(ṽ)1[pdata(ṽ) > ε]

+ ‖ Eṽ∼pGf(ṽ)− Ev∼pdataf(v) ‖22 .
(12)

Overall, the objective function of the complementary gen-
erator aims to let the generative distribution pG close to the
complementary samples p∗, i.e., pG = p∗, and make the
generated samples from different regions (but in the same
space of user representations) than those of the benign users.

Figure 2 illustrates the difference of the generators of reg-
ular GAN and complementary GAN. The objective function

of the generator of regular GAN in Equation 2 is trained to
fool the discriminator by generating fake benign users sim-
ilar to the real benign users. Hence, as shown in Figure 2a,
the generator of regular GAN generates the distribution of
fake benign users that have the similar distribution of real
benign users in the feature space. On the contrary, the ob-
jective function of the generator of complementary GAN in
Equation 12 is trained to generate complementary samples
that are in the low-density regions of benign users (shown in
Figure 2b).

(a) Regular GAN (b) Complementary GAN

Figure 2: Demonstrations of the ideal generators of regular
GAN and complementary GAN. The blue dot line indicates
the high density regions of benign users.

To optimize the objective function of generator, we need
to approximate the entropy of generated samplesH(pG) and
the probability distribution of real samples pdata. To min-
imize −H(pG), following (Dai et al. 2017), we adopt the
pull-away term (PT) proposed by (Zhao, Mathieu, and Le-
Cun 2016) that encourages the generated feature vectors to
be orthogonal. The PT term increases the diversity of gener-
ated samples and can be considered as a proxy for minimiz-
ing −H(pG). The PT term is defined as

LPT =
1

N(N − 1)

N∑
i

N∑
j 6=i

(
f(ṽi)

T f(ṽj)

‖ f(ṽi) ‖‖ f(ṽj) ‖
)2, (13)

where N is the size of a mini-batch.
The probability distribution of real samples pdata is usu-

ally unavailable, and approximating pdata is computationally
expensive. In this paper, we adopt the approach proposed by
(Schoneveld 2017) that a discriminator from a regular GAN
can detect whether the data from the real data distribution
pdata or from the generator’s distribution. The basic idea is
that the discriminator is able to detect whether a sample is
from the real data distribution pdata or from the generator
when the generator is trained to generate samples that are
close to real benign users. Hence, the discriminator is suf-
ficient to identify the data points that are above a thresh-
old of pdata during training. We separately train a regular
GAN model based on benign user representations and use
the discriminator of the regular GAN as a proxy to evaluate
pdata(ṽ) > ε.

The discriminator D takes the benign user representation
v and generated user representation ṽ as inputs and tries to
distinguish v from ṽ. As a classifier, D is a standard feed-
forward neural network with a softmax function as its output
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layer, and we define the objective function of D as:

max
D

Ev∼pdata [logD(v)] + Eṽ∼pG [log(1−D(ṽ))]+

Ev∼pdata [D(v) logD(v)].
(14)

Different from the objective function of the discriminator in-
troduced in the bad GAN for the purpose of semi-supervised
learning, we revise the objective function of D in our com-
plementary GAN based on the regular GAN. The first two
terms in Equation 14 are the objective function of discrimi-
nator in the regular GAN model. Therefore, the discrimina-
tor of complementary GAN is trained to separate the benign
users and complementary samples. The last term in Equation
14 is a conditional entropy term which encourages the dis-
criminator to detect real benign users with high confidence.
Then, the discriminator is able to separate the benign and
malicious users clearly.

Although the objective functions of the discriminators of
regular GAN and complementary GAN are similar, the ca-
pabilities of discriminators of regular GAN and complemen-
tary GAN for malicious detection are different. The discrim-
inator of regular GAN aims to separate the benign users
and generated fake benign users. However, after training, the
generated fake benign users locate in the same regions as the
real benign users (shown in Figure 2a). The probabilities of
real and generated fake benign users predicted by the dis-
criminator of regular GAN are all close to 0.5. Thus, giving
a benign user, the discriminator cannot predict the benign
user with high confidence. On the contrary, the discrimina-
tor of complementary GAN is trained to separate the benign
users and generated complementary samples. Since the gen-
erated complementary samples have the same distribution as
the malicious users (shown in Figure 2b), the discriminator
of complementary GAN can also detect the malicious users.

Figure 3: The fraud detection model

Fraud Detection Model
Although the training procedure of OCAN contains two
phases that train LSTM-Autoencoder and complementary
GAN successively, the fraud detection model is an end-to-
end model. We illustrate its structure in Figure 3. To de-
tect a malicious user, we first compute the user represen-
tation vu based on the encoder in the LSTM-Autoencoder
model (Equations 4 and 5). Then, we predict the user la-
bel based on the discriminator of complementary GAN, i.e.,
p(ŷu|vu) = D(vu).

Early fraud detection: The upper-left region of Figure
3 shows that our OCAN model can also achieve early de-
tection of malicious users. Given a user u, at each step t, the
hidden states henut

are updated until the t-th step by taking the
current feature vector xut

as input and are able to capture the
user behavior information until the t-th step. Thus, the user
representation at the t-th step is denoted as vut

= henut
. Fi-

nally, we can use the discriminator D to calculate the prob-
ability p(ŷut

|vut
) = D(vut

) of the user to be a malicious
user based on the current step user representation vt.

Experiments
Experiment Setup
Dataset: To evaluate OCAN, we focus on one type of mali-
cious users, i.e., vandals on Wikipedia. We conduct our eval-
uation on UMDWikipedia dataset (Kumar, Spezzano, and
Subrahmanian 2015). This dataset contains information of
around 770K edits from Jan 2013 to July 2014 (19 months)
with 17105 vandals and 17105 benign users. Each user edits
a sequence of Wikipedia pages. We keep those users with
the lengths of edit sequence range from 4 to 50. After this
preprocessing, the dataset contains 10528 benign users and
11495 vandals.

To compose the feature vector xt of the user’s t-th edit,
we adopt the following edit features: (1) whether or not the
user edited on a meta-page; (2) whether or not the user con-
secutively edited the pages less than 1 minutes; (3) whether
or not the user’s current edit page had been edited before;
(4) whether or not the user’s current edit would be reverted.
Hyperparameters: For LSTM-Autoencoder, the dimension
of the hidden layer is 200, and the training epoch is 20.
For the complementary GAN model, both discriminator and
generator are feedforward neural networks. Specifically, the
discriminator contains 2 hidden layers which are 100 and 50
dimensions. The generator takes the 50 dimensions of noise
as input, and there is one hidden layer with 100 dimensions.
The output layer of the generator has the same dimension as
the user representation which is 200 in our experiments. The
training epoch of complementary GAN is 50. The threshold
ε defined in Equation 12 is set as the 5-quantile probability
of real benign users predicted by a pre-trained discriminator.
We evaluated several values from 4-quantile to 10-quantile
and found the results are not sensitive.
Repeatability: Our software together with the datasets are
available at https://github.com/PanpanZheng/OCAN.

Comparison with One-Class Classification
Baselines: We compare OCAN with the following widely
used one-class classification approaches:

• One-class nearest neighbors (OCNN) (Tax and Duin
2001) labels a testing sample based on the distance from
the sample to its nearest neighbors in training dataset and
the average distance of those nearest neighbors.

• One-class Gaussian process (OCGP) (Kemmler et al.
2013) is a one-class classification model based on Gaus-
sian process regression.
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Table 1: Vandal detection results (mean±std.) on precision, recall, F1 and accuracy

Input Algorithm Precision Recall F1 Accuracy

Raw feature vector
OCNN 0.5680± 0.0129 0.8646± 0.0599 0.6845± 0.0184 0.6027± 0.0161
OCGP 0.5767± 0.0087 0.9000± 0.0560 0.7023± 0.0193 0.6196± 0.0142

OCSVM 0.6631± 0.0057 0.9829± 0.0011 0.7919± 0.0040 0.7417± 0.0064

User representation

OCNN 0.8314± 0.0351 0.8028± 0.0476 0.8150± 0.0163 0.8181± 0.0153
OCGP 0.8381±, 0.0225 0.8289± 0.0374 0.8326± 0.0158 0.8337± 0.0139

OCSVM 0.6558± 0.0058 0.9590± 0.0096 0.7789± 0.0064 0.7278± 0.0080
OCAN 0.9067± 0.0615 0.9292± 0.0348 0.9010± 0.0228 0.8973± 0.0244

User representation OCAN-r 0.8673± 0.0355 0.8759± 0.0529 0.8701± 0.0267 0.8697± 0.0244

• One-class SVM (OCSVM) (Tax and Duin 2004) adopts
support vector machine to learn a decision hypersphere
around the positive data, and considers samples located
outside this hypersphere as anomalies.
For baslines, we use the implementation provided in ND-

tool 2. The hyperparameters of baselines set as default values
in NDtool. Note that both OCNN and OCGP require a small
portion (5% in our experiments) of vandals as a validation
dataset to tune an appropriate threshold for vandal detection.
However, OCAN does not require any vandals for training
and validation. Since the baselines are not sequence models,
we compare OCAN to baselines in two ways. First, we con-
catenate all the edit feature vectors of a user to a raw feature
vector as an input to baselines. Second, the baselines have
the same inputs as the discriminator, i.e., the user represen-
tation v computed from the encoder of LSTM-Autoencoder.
Meanwhile, OCAN cannot adopt the raw feature vectors as
inputs to detect vandals. This is because GAN is only suit-
able for real-valued data (Goodfellow et al. 2014).

To evaluate the performance of vandal detection, we ran-
domly select 7000 benign users as the training dataset and
3000 benign users and 3000 vandals as the testing dataset.
We report the mean value and standard deviation based on
10 different runs. Table 1 shows the means and standard de-
viations of the precision, recall, F1 score and accuracy for
vandal detection. First, OCAN achieves better performances
than baselines in terms of F1 score and accuracy in both in-
put settings. It means the discriminator of complementary
GAN can be used as a one-class classifier for vandal detec-
tion. We can further observe that when the baselines adopt
the raw feature vector instead of user representation, the per-
formances of both OCNN and OCGP decrease significantly.
It indicates that the user representations computed by the
encoder of LSTM-Autoencoder capture the salient informa-
tion about user behavior and can improve the performance of
one-class classifiers. However, we also notice that the stan-
dard deviations of OCAN are higher than the baselines with
user representations as inputs. We argue that this is because
GAN is widely known for difficult to train. Thus, the stabil-
ity of OCAN is relatively lower than the baselines.

Furthermore, we show the experimental results of OCAN-
r, which adopts the regular GAN model instead of the com-
plementary GAN in the second training phase of OCAN, in
the last row of Table 1. We can observe that the performance

2http://www.robots.ox.ac.uk/∼davidc/publications NDtool.php

of OCAN is better than OCAN-r. It indicates that the dis-
criminator of complementary GAN which is trained on real
and complementary samples can more accurately separate
the benign users and vandals.

Table 2: Early detection results on precision, recall, F1, and
the average number of edits before the vandals are blocked

Vandals Precision Recall F1 Edits

M-LSTM

7000 0.8416 0.9637 0.8985 7.21
1000 0.9189 0.8910 0.9047 5.98
400 0.9639 0.6767 0.7951 3.64
300 0.0000 0.0000 0.0000 0.00
100 0.0000 0.0000 0.0000 0.00

OCAN 0 0.8014 0.9081 0.8459 7.23
OCAN-r 0 0.7228 0.8968 0.7874 7.18

Comparison with M-LSTM for Early Vandal
Detection
We further compare the performance of OCAN in terms of
early vandal detection with one latest deep learning based
vandal detection model, M-LSTM, developed in (Yuan et al.
2017b). Note that M-LSTM assumes a training dataset that
contains both vandals and benign users. In our experiments,
we train our OCAN with the training data consisting of 7000
benign users and no vandals and train M-LSTM with a train-
ing data consisting the same 7000 benign users and a varying
number of vandals (from 7000 to 100). For OCAN and M-
LSTM, we use the same testing dataset that contains 3000
benign users and 3000 vandals. Note that in OCAN and M-
LSTM, the hidden state hent of the LSTM model captures
the up-to-date user behavior information and hence we can
achieve early vandal detection. The difference is that the M-
LSTM model uses hent as the input of a classifier directly
whereas OCAN further trains complementary GAN and uses
its discriminator as a classifier to make the early vandal de-
tection. In this experiment, instead of applying the classifier
on the final user representation v = henT , the classifiers of
M-LSTM and OCAN are applied on each step of LSTM hid-
den state hent and predict whether a user is a vandal after the
user commits the t-th action.

Table 2 shows comparison results in terms of the preci-
sion, recall, F1 of early vandal detection, and the average
number of edits before the vandals were truly blocked. We
can observe that OCAN achieves a comparable performance
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(a) Prob. predicted by OCAN (b) Prob. predicted by OCAN-r (c) F1 score of OCAN (d) F1 score of OCAN-r

Figure 4: Training progresses of OCAN (4a,4c) and OCAN-r(4b,4d). Three lines in Figures 4a and 4b indicate the probabilities
of benign users predicted by the discriminator: real benign users p(y|vB) (green line) vs. generated samples p(y|ṽ) (red broken
line) vs. real malicious users p(y|vM ) (blue dotted line). Figures 4c and 4d show the F1 of OCAN and OCAN-r during training.

as the M-LSTM when the number of vandals in the training
dataset is large (1000, 4000, and 7000). However, M-LSTM
has very poor accuracy when the number of vandals in the
training dataset is small. In fact, we observe that M-LSTM
could not detect any vandal when the training dataset con-
tains less than 400 vandals. On the contrary, OCAN does
not need any vandal in the training data.

The experimental results of OCAN-r for early vandal de-
tection are shown in the last row of Table 2. OCAN-r outper-
forms M-LSTM when M-LSTM is trained on a small num-
ber of the training dataset. However, the OCAN-r is not as
good as OCAN. It indicates that generating complementary
samples to train the discriminator can improve the perfor-
mance of the discriminator for vandal detection.

OCAN Framework Analysis
Complementary GAN vs. Regular GAN: In our OCAN
model, the generator of complementary GAN aims to gener-
ate complementary samples that lie in the low-density region
of real samples, and the discriminator is trained to detect the
real and complementary samples. We examine the training
progress of OCAN in terms of predication accuracy. We cal-
culate probabilities of real benign users p(y|vB) (shown as
green line in Figure 4a), malicious users p(y|vM ) (blue dot-
ted line) and generated samples p(y|ṽ) (read broken line)
being benign users predicted by the discriminator of com-
plementary GAN on the testing dataset after each training
epoch. We can observe that after OCAN is converged, the
probabilities of malicious users predicted by the discrimina-
tor of complementary GAN are much lower than that of be-
nign users. For example, at the epoch 40, the average prob-
ability of real benign users p(y|vB) predicted by OCAN is
around 70%, while that of malicious users p(y|vM ) is only
around 30%. Meanwhile, the average probability of gener-
ated complementary samples p(y|ṽ) lies between the prob-
abilities of benign and malicious users.

On the contrary, the generator of a regular GAN in the
OCAN-r model generates fake samples that are close to real
samples, and the discriminator of GAN focuses on distin-
guishing the real and generated fake samples. As shown in
Figure 4b, the probabilities of real benign users and prob-
abilities of malicious users predicted by the discriminator
of regular GAN become close to each other during train-
ing. After the OCAN-r is converged, both the probabilities

of real benign users and malicious users are close to 0.5.
Meanwhile, the probability of generated samples is similar
to the probabilities of real benign users and malicious users.

We also show the F1 scores of OCAN and OCAN-r on
the testing dataset after each training epoch in Figure 4c and
4d. We can observe that the F1 score of OCAN-r is not as
stable as (and also a bit lower than) OCAN. This is because
the outputs of the discriminator for real and fake samples are
close to 0.5 after the regular GAN is converged. If the proba-
bilities of real benign users predicted by the discriminator of
the regular GAN swing around 0.5, the accuracy of vandal
detection will fluctuate accordingly.

We can observe from Figure 4 another nice property of
OCAN compared with OCAN-r for fraud detection, i.e.,
OCAN is converged faster than OCAN-r. We can observe
that OCAN is converged with only training 20 epochs while
the OCAN-r requires nearly 100 epochs to keep stable. This
is because the complementary GAN is trained to separate the
benign and malicious users while the regular GAN mainly
aims to generate fake samples that match the real samples.
In general, matching two distributions requires more train-
ing epochs than separating two distributions. Meanwhile, the
feature matching term adopted in the generator of comple-
mentary GAN is also able to improve the training process
(Salimans et al. 2016).

Figure 5: 2D visualization of three types of users: real be-
nign (blue star), vandal (cyan triangle), and complementary
benign (red dot)

Visualization of three types of users: We project the user
representations of the three types of users (i.e., benign, van-
dal and complementary benign generated by OCAN) to a
two-dimensional space by Isomap (Tenenbaum, Silva, and
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Langford 2000) and show the projection in Figure 5. We ob-
serve that the generated complementary users lie in the low-
density regions of real benign users. Meanwhile, the gen-
erated samples are also between the benign users and van-
dals. Since the discriminator is trained to separate the benign
and complementary benign users, the discriminator is able to
separate benign users and vandals.

Conclusion
In this paper, we have developed OCAN for fraud detec-
tion when only benign users are available during the training
phase. During training, OCAN adopts LSTM-Autoencoder
to learn benign user representations, and then uses the be-
nign user representations to train a complementary GAN
model. The generator of complementary GAN can gener-
ate complementary benign user representations that are in
the low-density regions of real benign user representations,
while the discriminator is trained to distinguish the real and
complementary benign users. After training, the discrimina-
tor is able to detect malicious users which are outside the
regions of benign users. We have conducted theoretical and
empirical analysis to demonstrate the advantages of com-
plementary GAN over regular GAN. We conducted experi-
ments on a real world dataset and showed that OCAN out-
performs the state-of-the-art one-class classification models.
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