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Abstract – This paper presents the design, implemen-
tation, and evaluation of TurboTrack, a 3D localiza-
tion system for fine-grained robotic tasks. TurboTrack’s
unique capability is that it can localize backscatter nodes
with sub-centimeter accuracy without any constraints on
their locations or mobility. TurboTrack makes two key
technical contributions. First, it presents a pipelined ar-
chitecture that can extract a sensing bandwidth from
every single backscatter packet that is three orders of
magnitude larger than the backscatter communication
bandwidth. Second, it introduces a Bayesian space-time
super-resolution algorithm that combines time series of
the sensed bandwidth across multiple antennas to en-
able accurate positioning. Our experiments show that
TurboTrack simultaneously achieves a median accuracy
of sub-centimeter in each of the x/y/z dimensions and a
99th percentile latency less than 7.5 milliseconds in 3D
localization. This enables TurboTrack’s real-time proto-
type to achieve fine-grained positioning for agile robotic
tasks, as we demonstrate in multiple collaborative appli-
cations with robotic arms and nanodrones including in-
door tracking, packaging, assembly, and handover.

1 Introduction
The emergence of agile and miniature robots has led
to a novel set of capabilities and sensing tasks. Nan-
odrones that can fit in your palm are used for mapping
indoor environments and are deployed in swarms for
emergency response and hazard detection in urban set-
tings [29, 67, 43]. Dexterous robotic arms have shifted
manufacturing automation from assembly lines that con-
sist of dozens of robots, each of which is dedicated to
a single task, to a pair of multi-functional robots that
can collaborate on picking up, assembling, and packag-
ing items [16, 25]. Personal robots like the Roomba are
already cleaning our homes, and their roles are expected
to expand to folding clothes, washing dishes, and helping
with other daily routines [4, 47, 21].

A fundamental challenge that still faces agile robots,
however, is their ability to operate in highly cluttered set-
tings [28, 42, 27]. While highly-trained vision systems
can perform accurate classification and tracking tasks,
their performance suffers in cluttered environments, and
fails if the object of interest is fully occluded, e.g., if a
robot must pick up an item from under a pile [74, 48].
Moreover, tracking individual nanodrones in a swarm
is challenging even in line-of-sight settings due to their

constrained size and payload, which prevent instrument-
ing them with visually identifiable markers [33, 44].

RF-based identification and localization offers an al-
ternative sensing modality that is highly robust to visual
clutter, providing an attractive solution and a comple-
mentary sensing capability. Motivated by the recent ad-
vances in RF-based localization by the networking com-
munity [68, 45, 60, 50, 72], in this paper, we set out to
build a system for RF-based identification and 3D lo-
calization for fine-grained robotic tasks. Building such a
system requires meeting requirements along three fronts:

• Accuracy: To enable agile manipulation tasks, like
grasping and packaging, we need to achieve sub-
centimeter localization accuracy [57, 18]. Such accu-
racy is needed to enable a robot to align its grip with
an object for item grasping and manipulation tasks.

• Mobility: Robotic arms and nanodrones are in con-
stant mobility as they perform sensing and localiza-
tion. Hence, a localization system for fine-grained
robotic tasks must be fast enough to track them and
deal with random mobility patterns.

• Scalability: Since robots are expected to manipulate
everyday items, we need cost-effective solutions that
scale to hundreds or thousands of items, even in rela-
tively confined areas like homes or small businesses.

Unfortunately, no system exists today that can realize
all three goals simultaneously. On one hand, WiFi and
Bluetooth-based solutions [34, 73, 68] are not scalable
in our context since it is not feasible or cost-effective to
tag every item with a Bluetooth or WiFi radio. On the
other hand, billions of manufactured items are already
tagged with few-cent RFIDs, making RFID-based local-
ization attractive from a scalability standpoint. However,
RFID localization solutions are limited either in their
accuracy or in their ability to deal with mobility. Tech-
niques like Tagoram [75] and RFIDraw [71] can work
with mobile RFIDs, but they have decimeter-scale accu-
racy in obtaining a tag’s exact position;1 this prevents us-
ing them for tasks like grasping or manipulation. Others
like MobiTagBot [60] and RFCompass [69] achieve high
accuracy but require the tag to remain static for multiple
seconds as they perform their localization; this prevents
them from tracking nanodrones or enabling agile tasks

1These techniques track changes in distance so they can accurately re-
cover the shape of a trajectory, but relatively low accuracy in obtaining
the exact position.
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Figure 1: TurboTrack in an Assembly Task. Left figure shows a bottle and its cap tagged with RFIDs. Middle figure shows two robots collaborating
on assembly, where one robot puts a cap on a bottle carried by another. Right figure shows TurboTrack’s tracking output as the robots move the cap
(in green) and bottle (in red) into position for assembly and compares it to a ground-truth vision-based system (in blue) to show its accuracy.

where a robot needs to move and manipulate the object
of interest simultaneously.

The main contribution of this paper is to build an
RF localization system that can achieve all the above
requirements. Our system, TurboTrack, introduces two
main innovations that together allow it to achieve the
high accuracy and unconstrained mobility needed to de-
liver fine-grained robotic tasks:

(a) One-Shot Wideband Estimation: TurboTrack’s first
component allows it to estimate an RFID’s response over
a wide bandwidth – one that is three orders of magnitudes
larger than the backscatter communication bandwidth.
The large bandwidth can be used to mitigate reflections
from other objects in the environment and isolate the
RFID’s response. This component is inspired by past
work that performs frequency hopping for wideband es-
timation [45]. In contrast to this past work, which needs
every RFID to remain static as it repeatedly queries it
dozens of times while hopping frequencies, TurboTrack
can estimate the wide bandwidth in one shot from every
single RFID response. To do so, it introduces a wideband
localization helper which acts like a radar. The helper
transmits a wideband signal, and measures its reflection
off different objects in the environment, including the
RFID. In §3, we describe how TurboTrack constructs
the helper’s wideband signal to be compatible with the
RFID protocol, and how it synchronizes the helper with
an RFID reader to isolate the RFID’s reflection and es-
timate its wideband channel from every single response.
This one-shot estimation component enables TurboTrack
to operate correctly with moving targets.

(b) Bayesian Space-Time Super-Resolution: In prin-
ciple, if one could estimate multiple GHz of bandwidth
off an RFID using the above technique, then we could
apply standard ultra-wideband ranging methods to di-
rectly localize a tag. Unfortunately, the bandwidth that
can be estimated from an RFID remains limited by the
RFID’s antenna response and impedance matching cir-
cuitry. Specifically, because of their designs that opti-
mize for energy harvesting efficiency, the ability to sense
an RFID’s channel significantly degrades beyond a cou-

ple hundred MHz, even if we perform frequency hop-
ping [45]. Such bandwidth is still an order of magnitude
lower than that required for sub-centimeter localization
using ultra-wideband techniques [56, 14].

TurboTrack’s second innovation is a space-time super-
resolution algorithm that overcomes this challenge. Its
key insight is that while few hundred MHz of bandwidth
cannot enable sub-centimeter positioning, they narrow
down the potential locations of an RFID to a handful
of candidates. By combining these candidates over space
(multiple antennas) and time, TurboTrack zooms in on
the exact location. In §4, we formalize this as a Gaus-
sian mixture problem and incorporate it into a Bayesian
framework that fuses spatio-temporal bandwidth mea-
surements. Further, to deal with the nonlinear nature of
the measurements, we introduce an approximate infer-
ence algorithm that exploits RF and geometric properties
of the underlying estimators to design a computationally
efficient solution for highly accurate positioning.

We built a prototype of TurboTrack using USRP X310
software radios and tested it with off-the-shelf, battery-
free RFIDs. Our evaluation with over a million location
measurements demonstrates that TurboTrack can achieve
sub-centimeter localization accuracy in each of the x/y/z
dimensions. TurboTrack’s 99th percentile error remains
lower than 2-cm in each of the dimensions, while retain-
ing a 99th percentile latency smaller than 7.5 millisec-
onds in 3D localization. Further, we compared its per-
formance to two state-of-the-art proposals, RFind [45]
and RFIDraw [71]. Our results show that TurboTrack
achieves two to three orders of magnitude improvement
in localization accuracy of moving targets.

Finally, to demonstrate TurboTrack’s capability in mo-
bile and accurate positioning, we tested it in two classes
of agile and fine-grained robotic tasks. First, we show
how it can accurately track collaborative tasks between
robotic arms including packaging, handover, and assem-
bly. Second, we demonstrate how it can accurately track
nanodrones as they fly in indoor environments.

Contributions. TurboTrack’s contributions are:
• The first system architecture that performs one-shot



wideband estimation from every backscatter packet,
enabling low-latency and high-precision localization.

• A spatio-temporal Bayesian framework for RF local-
ization that fuses time series of bandwidth and phase
measurements across multiple antennas.

• An approximate inference algorithm with fast con-
vergence time for RF localization. The algorithm
achieves computational efficiency by incorporating
the properties of RF signals and the geometric nature
of its measurements.

• A real-time prototype implementation and evalua-
tion demonstrating the system’s ability to track fine-
grained robotic tasks performed using robotic arms
and nanodrones.

We note that our current implementation inherits some
of the limitations of RFIDs. Most importantly, its range
of operation is limited by a reader’s ability to power
up battery-free tags, which is typically within less than
10 m. However, this limitation is not inherent to our de-
sign since both TurboTrack’s architecture and algorithms
are general to any backscatter sensor and do not stop
at RFIDs. For example, they could work with battery-
assisted or solar-powered tags, which would enable long-
range communication [56, 55]. Such tags may be at-
tached to nanodrones or robotic arms to track the robots
themselves over tens to hundreds of meters and not just
the items they manipulate.

2 Design Overview
TurboTrack is a system that enables ultra-low latency,
very high accuracy localization of backscatter sensors
for fine-grained robotic applications. TurboTrack’s local-
ization works both in line-of-sight and through occlu-
sions. Further, TurboTrack can operate with inexpensive
backscatter sensors like off-the-shelf RFIDs without re-
quiring any hardware modifications, and it is fully com-
patible with today’s standard UHF RFID protocol. The
sensors can be attached as stickers to objects of interest
(e.g., manufacturing items) for object manipulation or to
miniature robots like nanodrones for tracking.

Architecturally, TurboTrack combines a standard
RFID reader with a wideband localization helper as
shown in Fig. 2. The helper transmits wideband sig-
nals, and captures their reflections off different ob-
jects in the environment. The combination of a standard
reader with a wideband helper enables both identification
(through the RFID’s identifier) and accurate localization
(using the wideband signals). To deliver both of these
tasks, TurboTrack’s centralized controller synchronizes
the helper’s signals with the RFID reader at the physi-
cal layer, and, at the protocol level, it incorporates the
helper’s operation into the reader’s finite state machine.

Algorithmically, TurboTrack leverages the wideband
channel estimates for localization. It fuses estimates
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Figure 2: System Architecture. TurboTrack combines a reader with a
localization helper to obtain wideband estimates. It fuses the estimates
across space and time via a Bayesian framework, and solves for accu-
rate 3D positions using approximate inference. MoG refers to Mixture
of Gaussians, and SIS refers to Sequential Importance Sampling.

across multiple receive antennas of the localization
helper and across time through a spatio-temporal
Bayesian framework. It models each antenna’s measure-
ments as a Gaussian mixture, and solves for each tag’s
location and trajectory through an approximate inference
algorithm customized for backscatter localization. The
algorithm linearizes and approximates the antenna mea-
surements in 3D and propagates their beliefs through a
particle filter. The resulting accuracy is high enough to
enable TurboTrack to track fine-grained robotic tasks.

The next sections describe TurboTrack’s operation at
the architectural (§3) and the algorithmic levels (§4).

3 One-Shot Wideband Estimation
In this section, we describe how TurboTrack’s helper can
obtain wideband estimates from every single (narrow-
band) RFID response. The one-shot estimation enables
it to track changes in the channel at very high speeds.
Then, in §4, we describe how it uses the wideband esti-
mates for accurate localization.

3.1 Primer on Backscatter Modulation
In backscatter networking, a wireless device called a
reader starts a communication session by sending a sig-
nal on the downlink. A backscatter sensor, e.g., an RFID,
harvests energy from this signal and powers up. To com-
municate with the reader, the sensor switches between
two states: reflective and non-reflective, to transmit bits
of zeroes and ones.

Our past work has observed that backscatter modula-
tion is frequency agnostic [45], meaning that RFIDs not
only modulate the reader’s signal but also all transmit-
ted signals in the environment. This enables us to es-
timate an RFID’s channel out-of-band. In particular, as
an RFID backscatters the reader’s signal, we can trans-
mit an unmodulated wave at another sensing frequency
and estimate the RFID’s channel at that frequency. By
hopping the sensing frequency across successive RFID
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Figure 3: One-shot Estimation Architecture. The helper transmits OFDM sym-
bols. The receiver demodulates these symbols by performing an FFT followed by an
overall channel estimation step. The overall channel is fed into an RFID packet and
edge detection module that allow discovering the RFID’s state transitions. Using the
output of the edge detection and elimination block, TurboTrack can extract reliable
wideband channel estimates.
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Figure 4: Two Modulations. RFIDs communicate by
switching between reflective and non-reflective states.
TurboTrack’s localization helper constructs and decodes its
symbols to accommodate the backscatter switching.

responses, we can emulate a large bandwidth – 1000×
larger than typical RFID backscatter bandwidths of few
100 kHz. But, such an approach needs to query the same
RFID many times before it can sense a wide bandwidth.
Thus, it requires the RFID to remain static, reducing the
reader’s throughput and increasing the tracking latency.

TurboTrack’s first component focuses on estimating
a wide bandwidth in a single shot, i.e., from every sin-
gle RFID response. In principle, one could do that by
simply transmitting a wideband signal from the local-
ization helper simultaneously with the reader, and esti-
mating the channel across its bandwidth. However, this
approach is complicated by two main factors. First, the
RFID’s switching process introduces a fast fading chan-
nel for the wideband signals; ignoring such fading cor-
rupts the wideband estimates. Second, by spreading its
transmitted signal over a wide bandwidth rather than a
single frequency, the helper’s signal-to-noise ratio (SNR)
significantly degrades, which limits its ability to detect
the RFID’s response and precludes channel estimation.

The rest of this section describes how TurboTrack’s
helper overcomes these challenges. On the transmit
side, the process involves constructing backscatter-aware
wideband transmissions. And on the receive side, it in-
volves robustly detecting the RFID’s response for accu-
rate channel estimation.

3.2 Backscatter-Aware Wideband Transmissions
To simplify channel estimation over a wide bandwidth,
TurboTrack borrows the OFDM (Orthogonal Frequency
Division Multiplexing) modulation technique from WiFi
and LTE systems. At a high level, OFDM divides a wide-
band channel into an array of narrowband channels, and
performs modulation in the frequency domain.

For the purpose of this paper, we do not need to delve
into the details of how OFDM operates beyond the FFT
and IFFT blocks of Fig. 3. Specifically, an OFDM mod-
ulator encodes information in the frequency domain as
X(f) then takes an IFFT before transmitting the signal
over the air. The receiver demodulates the signal by tak-
ing an FFT as shown in Fig. 3, and can estimate the chan-
nel H(f) by dividing the FFT’s output by X(f).

So, how can we construct OFDM symbols to be

friendly with backscatter modulation? To see why
OFDM construction is important, consider Fig. 4 which
shows both the backscatter modulation and the OFDM
symbols over time. OFDM channel estimation assumes
that the entire OFDM symbol lies within a channel co-
herence time (i.e., that the channel does not change dur-
ing the estimation process). However, as a backscatter
sensor switches its impedance, it causes an extremely
fast-fading channel and corrupts the entire OFDM chan-
nel estimate. Hence, if we choose long OFDM symbols,
then all of them will be corrupted with the backscatter
switching process. On another hand, if we choose very
short symbols, we cannot pack many frequencies into
them, which would prevent us from estimating the wide-
band channel at sufficient frequency resolution to deal
with frequency selectivity.

To address this challenge and obtain both non-
corrupted and fine-grained wideband estimates,
TurboTrack’s helper exploits information from the
RFID reader about the backscatter switching rate.
Specifically, the reader communicates that rate (called
backscatter link frequency or BLF) in its downlink com-
mand to the backscatter sensor. Hence, by coordinating
with the RFID reader, the localization helper can use the
BLF to construct its OFDM symbols.

In particular, to ensure that the channel is not cor-
rupted, an OFDM symbol must lie within a specific RFID
reflection mode (i.e., transition-free region). Hence, the
OFDM symbol duration Tsymbol must be smaller than
half the period of an RFID switching period Tswitching:

Tsymbol <
Tswitching

2
=

1

2BLF

Knowing that an OFDM symbol consists of N sam-
ples (i.e., N subcarriers), each with time period Tsample,
and denoting the overall bandwidth of the helper’s
OFDM transmission B, this means that we should
choose N such that N < B

2BLF . For example, if the
helper’s OFDM bandwidth is 100MHz and the backscat-
ter link frequency is 500 KHz, N must be less than 100.

3.3 Robust Wideband Channel Estimation
Now that we know how the localization helper constructs
its transmitted symbols, we switch our focus to how it



can obtain robust channel estimates on the receive side.
Recall that the difficulty in wideband estimation arises
from the low SNR at each subcarrier since the power is
spread across frequencies. This complicates packet de-
tection2 and reduces the reliability of the sensed channel.

(a) Robust Packet Detection: First, to compensate for
the reduced power and robustly estimate the beginning of
a backscatter packet, TurboTrack exploits the frequency
agnostic property of backscatter modulation. In partic-
ular, since the different OFDM subcarriers undergo the
same backscatter modulation, we can incoherently aver-
age their estimates. Such averaging would enable us to
reliably observe changes in the overall reflected power
and use them to detect the beginning of the RFID re-
sponse. Specifically, for every OFDM symbol at time n,
we compute Hcombined(n) =

∑
f |H(f, n)|.

Next, we leverage our knowledge of the RFID packet’s
preamble to detect the packet start. Specifically, every
RFID packet payload is preceded by a known preamble
p(n). Hence, the localization helper correlates the aver-
aged channel estimates Hcombined(n) with the preamble
to detect packet start. We can write this correlation as:

D(∆) =

T∑
n=1

p∗(n)Hcombined(n+ ∆)

where T is the preamble length and ∆ is the time in-
stance where correlation is performed. The helper identi-
fies the packet beginning whenD rises above a threshold.

(b) Edge Flip Elimination: Next, TurboTrack pro-
ceeds to eliminating corrupted OFDM symbols. Recall
from §3.2 that TurboTrack constructs the OFDM sym-
bols to accommodate for the backscatter reflection rate.
While this ensures that at least one whole symbol is in
a reflective or non-reflective state, it does not ensure that
all OFDM symbols are non-corrupted.

By leveraging the knowledge from the previous step –
namely when an RFID packet starts as well as the RFID’s
switching frequency – TurboTrack’s localization helper
can automatically detect and discard erroneous channel
estimates (marked in red in Fig. 4). In doing so, it only
retains the channel estimates that are obtained when the
RFID is reflecting or not reflecting, while eliminating es-
timates corrupted by RFID state transitions.

(c) Channel Estimation: Now that we have eliminated
erroneous OFDM channel estimates, we can proceed to
estimating the RFID channels at each of the subcarriers.
Note that the OFDM channel estimates H(f) not only
consist of the RFID’s reflection but also the direct path
between the helper’s transmit and receive antennas as
well as other reflections in the environment. To estimate
the RFID’s channel, TurboTrack exploits that the differ-
ence between the reflective and non-reflective states is
2The helper cannot simply rely on the reader’s packet detection, since
the reader uses much lower bandwidth and lower sampling rate.

due to the RFID, and subtracts them from each other to
obtain the RFID’s channel.

Mathematically, assume that after discarding the erro-
neous channel estimates from the preamble, the helper is
left with L symbols where the RFID is non-reflective and
M symbols where it is reflective, we can estimate these
channels at each subcarrier f as:

Ĥ2(f) ∝ 1

L

L∑
H(f |reflective)− 1

M

M∑
H(f |non-reflective)

Note that in the above equation, we only average over
the reflective states of a single RFID response, enabling
one-shot wideband estimation.

Finally, to improve the efficiency of the wideband esti-
mation process, TurboTrack incorporates the localization
helper into the finite state machine of the RFID reader.
In doing so, the helper only needs to perform OFDM
processing (packet detection, edge elimination, etc.) over
the short interval of time during which it expects the
RFID’s response rather than over the entire duration of
the reader’s communication session. Specifically, the re-
ceiver opens a short time window immediately after the
reader finishes transmitting its query command. In our
implementation, this window is 300µs-long in compar-
ison to the 2ms-long communication session. As a re-
sult, this synchronous architecture saves significant com-
putational resources (by 6.6×), allowing TurboTrack to
achieve ultra-high frame rates and ultra-low latency.

A few additional points are worth noting about
TurboTrack’s use of OFDM for channel estimation:

• Because the helper’s transmitter and receiver are con-
nected to the same oscillator, the estimated channels
do not have any carrier frequency offset (CFO) or
sampling frequency offset (SFO). Hence, unlike WiFi
or LTE, we do not need to correct for them.

• Since the helper transmits the same OFDM symbol
back-to-back to estimate the channel, each OFDM
symbol acts a cyclic prefix for the subsequent one.

• Since the helper’s transmit and receive antennas are
co-located, the line-of-sight would dominate the chan-
nel estimate, and we do not expect any sampling off-
set (or packet detection delay) between the transmit-
ted and received OFDM symbols. To correct for any
sample offsets introduced by the hardware channel,
we perform a time-domain correlation that allows us
to detect the beginning (i.e., first sample) of the first
OFDM symbol. Moreover, we perform a one-time cal-
ibration with a known RFID location in order to elim-
inate other over-the-wire hardware channels.

• Similar to standard OFDM receivers, the localization
helper drops the DC subcarrier as it is less robust to
noise, and since dropping it improves the dynamic
range of the ADC (Analog-to-Digital Converter).

• To further improve its signal-to-noise ratio (SNR),
TurboTrack employs an Exponential Moving Average



(EMA) on the channel estimates. The EMA provides
more robust channel estimates and higher accuracy
without sacrificing frame rate.

4 Bayesian Space-Time Super-Resolution
So far, we have discussed how TurboTrack can estimate
an RFID’s channel over a wide bandwidth. In this sec-
tion, we describe how it uses this wide bandwidth to es-
timate and track an RFID’s 3D location.

4.1 Bootstrapping Localization
Before we describe TurboTrack’s localization algorithm,
we start by asking whether backscattering a large band-
width would be sufficient for precise localization. In
principle, if one could backscatter a very large bandwidth
off an RFID, then we could directly use that bandwidth
to localize the tag in a manner similar to ultra-wideband
(UWB) ranging systems [58]. In particular, UWB sys-
tems leverage their large bandwidth to compute the time-
of-flight – i.e., the time it takes their signals to travel be-
tween a transmitter and a receiver; they then map this
time-of-flight to the distance traveled by multiplying it
by the speed of propagation. Because time and frequency
are inversely related, their distance resolution is inversely
proportional to their bandwidth:

resolution = speed/bandwidth
Since RF signals travel at the speed of light, obtaining
sub-centimeter resolution using UWB ranging would re-
quire a bandwidth of 30 GHz.

Unfortunately, backscattering 30 GHz off RFID tags is
neither feasible nor desirable for multiple reasons. First,
backscatter devices have antennas and impedance match-
ing circuits that are optimized to harness energy within
a specific frequency band. Hence, signals backscattered
significantly outside their optimal frequency band have
very poor SNR, making channel estimation infeasible.
Second, even if one could backscatter such a wide band-
width off the tags, generating it would require very costly
RF radios and processing its reflections would be com-
pute intensive as it would require processing 30 GS/s.

To achieve higher accuracy without such a large band-
width, one could leverage the phase of the backscattered
signal since it is very sensitive to changes in distances.
Specifically, in the noiseless case, we can express the
phase φ as:3

φ = 2π
d

λ
mod 2π

where d is the distance traveled and λ is the wavelength.
The difficulty in using the phase, however, is that it

wraps around every wavelength. Hence, it allows us to
accurately recover a fractional distance dfrac modulo the
wavelength. Said differently, we would know that the ac-
tual distance is dfrac + nλ, but n is an unknown integer.

3In presence of multipath, we can use a large bandwidth to obtain “san-
itized phases” [45] by projecting on the direct path after identifying it.

Since TurboTrack obtains a wide bandwidth and the
phase from every antenna, it can combine them to nar-
row down the candidate locations to a handful. For
example, if we consider a bandwidth of 100 MHz
and a wavelength of 33 cm, this leaves us with only
resolution/λ = 9 potential candidate locations for the
tag. Hence, TurboTrack still needs a mechanism to re-
solve ambiguity and identify the correct candidate.

4.2 Bayesian Formulation
To localize tags, TurboTrack employs a Bayesian frame-
work that fuses measurements across space and time:
• Spatially, each distance candidate maps to an el-

lipse whose foci are the transmit and receive anten-
nas. This is because TurboTrack’s antennas measure
the round-trip distance from the transmitter to the
backscatter tag, and back to the receiver. Since a given
transmit-receive pair has multiple distance candidates,
this leads to multiple confocal ellipses as shown in
Fig. 5(a). Adding more receive antennas would cre-
ate other sets of ellipses. However, due to noise, we
do not expect the correct ellipses from all antennas to
intersect at the same point; hence, we cannot simply
rely on voting to identify the correct candidate.

• Temporally, as the tag moves, each of the candidate
locations traces a different trajectory. The intuition of
using temporal series is that because noise is random,
we expect the intersection points that correspond to
the actual location to be closer to each other across
time, providing opportunities to identify them.

Hidden Markov Model. Given the above intuition, we
formulate the localization problem as a Hidden Markov
Model (HMM), as shown in Fig. 5(b). HMMs form a
class of powerful Bayesian inference models with hidden
states and observed variables. In our context, the hidden
states correspond to the actual locations of the RFID over
time, and the observations are the candidate distances ob-
tained from the different receive antennas.

Most importantly, TurboTrack’s HMM has a nonlinear
Gaussian observation model and a linear Gaussian transi-
tion model: the distance observations are nonlinear in the
state variables (the coordinates) as can be seen with the
dist function, while state transitions are linearly related
due to motion. Unfortunately, the nonlinearity prevents
us from adapting common solutions like Kalman Filters
to model the distributions [35].

TurboTrack’s goal is to find the most likely trajectory
x1 . . .xT given the observations (distance candidates)
y1 . . .yT. Formally, it needs to solve for the maximum
aposteriori (MAP):

x∗
0:T = arg max

x0:T

p(x0:T | y0:T)

where xt is a d dimensional coordinate vector of the
tag, yt is a k dimensional vector of the estimated dis-
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Figure 5: TurboTrack exploits RF and geometric properties for estimation. (a) shows that distances map to confocal ellipses. (b) shows the
HMM with nonlinear observations. (c) shows centroid approximation. (d) shows geometric linearization

tances from each receiver, and p(x|y) denotes the poste-
rior probability distribution.

Solving the above MAP inference problem requires us
to model the likelihood function p(yi | xi) and the prior
p(x0:T). In particular, per Bayes’ rule, we can write the
posterior as: p(x0:T | y0:T) ∝ p(y0:T | x0:T)p(x0:T)

Next, we describe how we model the likelihood func-
tion and prior given the geometric nature of the problem
and the underlying wireless properties of the estimators.

Likelihood Function. We first model TurboTrack’s like-
lihood function. Recall from §4.1 that the distance from
a given transmit-receive antenna pair exhibits as multiple
candidates. We formulate the likelihood as a mixture of
Gaussian (MoG), where each Gaussian is centered at a
different integer wavelength. In particular, given the true
distance d, we approximate the distance estimates dest
with the following distribution:

z(dest|d;σw) =

N∑
i=−N

w(i)N (d+ iλ, σ2
w)

N∑
i=−N

w(i) = 1
(1)

where N is determined by the total number of candi-
dates, i is integer wavelength, and σw corresponds to the
standard deviation of Gaussian noise. The weights w(n)
denote the discrete distribution of different integers.4

The above formulation models the likelihood distribu-
tion for one receiver. Since TurboTrack employs multiple
receivers, each provides a different set of distance esti-
mates. Because estimates from different antennas are in-
dependent, the overall likelihood p(yt | xt) is a product
of those from different receivers:

p(yt | xt) =

k∏
j=1

z(yt[j] | dist(xt)[j];σw) (2)

where dist : Rd → Rk returns the round trip distance
to the RFID, k denotes the total number of receivers, and
j is the index of each receiver.

Transition Model. Next, we model the prior p(x1:T).
Since the prior consists of a Markov time series of the
RFID’s location, we use a simple transition model:

xt = xt−1 + vt,vt ∼ N (0, Σv) (3)

4These weights could correspond to the value of the fractional Fourier
transform or a MUSIC projection [32]. In our implementation, we
found the overall algorithm performance is the same in both cases, so
we used the fractional Fourier as it is less computationally expensive.

where vt’s correspond to linear position changes, drawn
from a Gaussian distribution with zero mean and covari-
ance matrix Σv . Together, Eqs. 2 and 3 form our HMM.

4.3 Approximate Inference via Particle Filters
Due to the nonlinear observation model, we cannot solve
the MAP problem analytically. So, TurboTrack resorts
to approximate inference solutions, specifically particle
filters. Instead of propagating beliefs through analytical
probability distributions, these models approximate dis-
tributions with a set of particles [30]. Approximating dis-
tributions with particles requires us to answer two main
questions: First, how can we choose particles so that their
discrete distributions accurately represent the analytical
distributions? And second, how can we update these par-
ticles with new observations (distance candidates)?

In the rest of this section, we describe how
TurboTrack’s algorithm exploits the RF and geometric
structures of our measurements to answer these ques-
tions and develop a computationally efficient solution.
For simplicity, our exposition focuses on 2D localization
using three antennas, but the technique can naturally gen-
eralize to 3D with an arbitrary number of antennas.

4.3.1 Initial Sampling Function
Standard particle filters bootstrap the sampling process
by populating the entire d-dimensional space with ex-
ponentially many particles [63]. In contrast, TurboTrack
leverages its first observation to bootstrap its inference
with a relatively small number of particles. In particu-
lar, recall from §4.1 that each receive antenna discov-
ers a finite number of distance candidates, which can be
mapped to a set of ellipses in 2D as shown in Fig. 5(a).

To obtain an initial set of particles, one option is to
consider all intersection points between ellipses from dif-
ferent antennas. But, this is undesirable for three rea-
sons. First, any such two-way intersection point leaves
out important information about distance measurements
from other receive antennas. Second, it would result in a
polynomially large number of intersection points.5 Third,
such a set of intersection points would not be represen-
tative of the distribution as they are sparsely distributed
rather than concentrated at the most likely locations.
5The total number of intersection points is the number of distance can-
didates raised to the power of the number of receive antennas.
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Figure 6: TurboTrack’s Particle Filter. We show the particles in 2D space over time. Colors indicate particle weights, with red being highest and
blue lowest. We label the actual location and that with highest weight. Over time, the highest weight particle converges to the correct one.

Instead, TurboTrack first identifies the most likely in-
tersection points then uses them to sample particles that
are representative of the distribution. At a high level, it
exploits the fact that each antenna’s distance measure-
ments can be modeled as a Mixture of Gaussians as
per §4.2 in order to (1) prune out unlikely candidates,
and (2) linearize the intersection points into a mixture of
2D Gaussians. Subsequently, it can sample from a mix-
ture of 2D Gaussians then adapt the particle weights as
per standard importance sampling [62].

Step 1: Pruning. In the pruning step, TurboTrack uses
the distances between intersection points to identify the
most likely candidates. In particular, given a tuple of dis-
tance measurements from three antennas, [d0, d1, d2], we
can plot three ellipses and identify the three closest inter-
section points between them as shown in Fig. 5(c).6 In
the noiseless case, the three points coincide. Otherwise,
we compute the average distance between them and dis-
card all points whose average is above a threshold.

Formally, if we denote the intersection points as
{xs

01,x
s
12,x

s
02}. TurboTrack will only keep tuple s 7 in

the set C := {s | r(s) ≤ T} where

r(s) :=
1

3
(‖xs

01 − xs
12‖2 + ‖xs

01 − xs
02‖2 + ‖xs

12 − xs
02‖2)

Step 2: Geometric Linearization. Next, TurboTrack ap-
proximates each intersection point as a 2D Gaussian us-
ing the original distance distributions of the correspond-
ing ellipses. To see why this linearization is possible,
consider two intersecting ellipses in Fig. 5(d), whose in-
tersection point we denote as xs

01. Since the noise on the
distance measurements is much smaller than the size of
the ellipses, the curvature of the ellipses around the inter-
section point is relatively flat. This allows us to approx-
imate the distribution as a 2D Gaussian centered around
xs
01 and whose axes lie along the normals to the two el-

lipses at the intersection point.
Formally, if we denote the two axes by the normal vec-

tors: a,b, and define A = [a, b], then we obtain Rij as
a Gaussian distribution in the 2D coordinate system:

Rij ∼ N (xs
01, Σs

01 = AV AT ) s.t. V =

(
σ2
w 0
0 σ2

w

)
(4)

6Three ellipses can have at most six intersection points, from which we
choose the closest three.

7s is integer tuple [s0, s1, s2] for [d0 + s0λ, d1 + s1λ, d2 + s2λ].

where V denotes the diagonal covariance matrix, which
represents the fact that the distance errors from the dif-
ferent antennas are independent.

Step 3: Centroid Approximation. So far, we have iden-
tified the most likely tuples of intersection points, and we
have linearized each of the intersection points as a 2D
Gaussian. Next, TurboTrack fuses every surviving tuple
into a single candidate. This step is important because
it combines measurements from all antennas (while the
previous step considered antennas only in pairs). To do
so, it approximates any given candidate x0 as the cen-
troid of its three corresponding intersection points (from
Step 1). For simplicity, we assume mutual independence
between the intersection points, which results in the fol-
lowing Gaussian distribution f(x0;y0, s):

f(x0;y0, s) ∼ N (µs, Σs)

µs =
1

3
(xs

01 + xs
12 + xs

02)

Σs = (
1

3
)2(Σs

01 + Σs
12 + Σs

02)

(5)

This provides us with a set of 2D Gaussian distribu-
tions, each centered at a likely candidate position.

Step 4: Weighting and Initial Sampling. In the final
step, we combine the set of Gaussian distributions into
a single 2D mixture of Gaussians. To do so, we assign
weights proportional to the product of weights of indi-
vidual integers to tuples in C. This provides us with the
initial sampling distribution q0(x0;y0):

q0(x0;y0) =
∑
s∈c

w(s)

w
f(x0;y0, s)

w(s) = w(s0)w(s1)w(s2), w =
∑
s∈c

w(s)
(6)

Given this distribution, we can now efficiently sample
a small number of particles {x(i)

0 } and use them to ap-
proximate the distribution. After sampling, we normalize
every particle’s weight to the total weights.

Fig. 6(a) shows an example output of initial sampling
in 2D space. Each particle’s color indicates its normal-
ized weight, where red and blue indicate highest and
lowest probability. The particles are concentrated in sev-
eral clusters which correspond to the fused intersection
points. While the actual location is in one of the clus-
ters, the one with the highest weight is in another cluster
(due to noise). This shows the power of fusing across an-
tennas and emphasizes the need to resolve ambiguity by
exploiting target motion and fusing over time.



4.3.2 Sequential Sampling
So far, we have described how TurboTrack can obtain
an initial set of particles by fusing RF observations from
multiple antennas at a single point in time t = 0.
Next, we discuss how TurboTrack can update its parti-
cles through new observations over time. To do so, it
adapts Sequential Importance Sampling (SIS), a well-
known particle update filter, to our problem domain.

As its name indicates, SIS operates through a sequen-
tial process. To select representative particles for the
probability distribution at some time t, it uses the (new)
observations from time t and the probability distribution
from the previous state t−1. Hence, for every particle i, it
is optimal to sample from the following distribution [15]:

p(xt | x(i)
t−1,yt) ∝ p(yt | xt)p(xt | x(i)

t−1)

Recall that we have already modeled both terms on
the right hand side. In particular, we know that p(xt |
x
(i)
t−1) is a Gaussian as per the motion model in Eq. 3.

Moreover, p(yt | xt) can be approximated as a Gaussian
as per Eq. 5. Because the product of two Gaussians is
Gaussian, the overall sampling function is both Gaussian
and approximately optimal.8

Now that we know the sampling distribution for a
given particle i, SIS samples a single particle from that
distribution for time t. It then repeats the same process
for all the particles. After obtaining all the samples at
time t, it normalizes their weights then moves to the next
time step t+ 1 and repeats the same process.

Few additional points are worth noting about
TurboTrack’s inference algorithm:
• MAP Inference: At every point in time, TurboTrack

can make a decision about the most likely location by
choosing the particle with the highest weight. It can
also update the past trajectory since every particle can
backtrack its entire history. This allows us to continu-
ously update the trajectory with new observations.

• Resampling: It is known that even with optimal ap-
proximate sampling functions, the SIS algorithm can
degenerate to a small number of particles [30, 38]. To
avoid degeneracy, TurboTrack follows a standard re-
sampling approach. In particular, at every time t, it es-
timates the effective sample size N̂eff = 1∑N

i=1(w
(i)
t )2

,

and resamples when it is lower than a threshold.
• Computational Efficiency: In the sample update step,

TurboTrack exploits that many of the particles i come
from the same Gaussian in the Gaussian mixture be-
cause they share the same tuple of intersection points.
Hence, to optimize computation, it computes the se-
quential sampling function once for each cluster and
reuses it for all particles in that cluster.

8Note that p(yt | xt) is a mixture of Gaussians as per Eq. 6, but we
approximate it to the Gaussian nearest to x

(i)
t in the mixture.

• Outlier Detection & Recovery: The SIS filter accounts
for Gaussian noise but does not incorporate mech-
anisms to deal with wireless interference or strong
leakage from multipath.9 To deal with such scenarios,
TurboTrack employs outlier detection and recovery.
We identify two scenarios for outlier detection. The
first is when the centroid at t is far from that at t − 1.
The second is when all particles are assigned near-zero
weights, indicating that there is no valid position given
current distance estimation. To recover from such out-
liers, TurboTrack leverages its high frame rate and ex-
trapolates the previous estimates.

Finally, Alg. 4.1 summarizes TurboTrack’s approximate
inference algorithm and Fig. 6 shows how the algorithm
converges to the right candidate over time.

Algorithm 4.1 TurboTrack’s Approximate Inference
Input: Distance estimations: y0:T

Initialization: At time t = 0
. Compute mixture of Gaussian function q0(x0;y0)

(a) Prune unlikely intersection points of y0

(b) Linearize unpruned tuples as Gaussians per Eq. 4
(c) Approximate Gaussians per Eq. 5
(d) Assign weights to tuples per Eq. 6

. Sample and assign weights
For i = 1, ..., N :

(a) Sample x
(i)
0 from q0(x0;y0)

(b) Assign weights: ŵ0
(i) = p(y0 | x(i)

0 )

. Normalize weights: w(i)
0 = ŵ0

(i)/
∑N

j=0 ŵ0
(j)

Iteration: For time t = 1, ..., T
For i = 1, ..., N :
. Compute Gaussian function f(xt;yt, s

(i))
(a) Identify the tuple s(i) corresponding to the

intersection point10closest to x
(i)
t−1

(b) Linearize tuple as per Eq. 4
(c) Approximate Gaussian as per Eq. 5

. Sample and assign weights
(a) Sample x

(i)
t from

π(xt | x(i)
t−1,y0:t) ∝ p(xt | x(i)

t−1)f(xt;yt, s
(i))

(b) Add to history: x(i)
0:t = (x

(i)
0:t−1,x

(i)
t )

(c) Assign weights:

ŵt
(i) = w

(i)
t−1

p(yt | x(i)
t )p(x

(i)
t | x

(i)
t−1)

π(x
(i)
t | x

(i)
t−1,y0:t)

. Normalize weights: w(i)
t = ŵt

(i)/
∑N

j=0 ŵt
(j)

. Compute effective sample size N̂eff .
If N̂eff < Nthres, resampling based on w(i)

t

Output: MAP Trajectory: x∗0:T = arg max{
x
(i)
0:t,w

(i)
0:t

} w(i)
0:t

9Recall that we mitigate (but not eliminate) multipath by projection.
10Recall that the intersection point can be computed from yt + s(i)λ.



5 Implementation & Evaluation
Localization Helper: We implement TurboTrack’s lo-
calization helper on USRP X310 software radios, all syn-
chronized to the same external clock [11]. We use three
USRPs with two UBX daughterboards each. Since each
USRP can support two chains, we use one chain at a
transmitter and four as receivers. Each transmit/receive
chain is connected to a circularly polarized patch an-
tenna [8]. All antennas are arranged in a single plane,
with a separation of 40 cm between any two adjacent
pairs. USRPs sample at 100 MSps and send data over
Ethernet to a computer using the Intel Converged Net-
work Adapter X520-DA2 [3] to support high data rates.
The computer runs Ubuntu 16.04 and has an 4-core 8-
thread 64-bit Intel Core i7 processor and 16GB RAM.

RFID Reader: We adapt a USRP RFID reader devel-
oped by past work [36] and implement it on USRP
N210 software radios [12] with SBX daughterboards.
The reader implements the EPC Gen2 protocol [2]. The
reader powers up and communicate with the RFID tags,
setting various parameters such as the BLF and tag se-
lection in multi-tag scenarios.

Real-time Processing. We implement the algorithms de-
scribed in §3-§4 directly into the USRP’s UHD driver in
C++. Our implementation consists of a multi-threaded
pipelined architecture with worker pools. On the trans-
mit side, we use two threads in total: one for the RFID
reader and another one for the OFDM transmitter. On
the receive side, we use one thread for extracting buffer-
sized packets from the USRPs. In addition, every an-
tenna has a worker pool of two threads; each worker ex-
tracts and processes individual RFID responses from the
shared buffer, computes and timestamps the wideband
estimates, and feeds them to an output buffer. Finally, we
aggregate the threads, combining the wideband estimates
from all the antennas to perform 3D localization.

Our implementation runs in real-time, transmitting
and receiving OFDM symbols, decoding, estimating
channels, performing super-resolution and localization
(Σv = 5mm)11. Our OFDM symbols use N = 20 sub-
carriers over a bandwidth of 100 MHz to increase re-
silience to RFID state-transitions. In contrast, the RFID
BLF is set to 40 kHz.

Baselines: We implemented two baselines:

• RFind [45]: represents a state-of-the-art system for
centimeter-scale RFID positioning. It emulates a large
bandwidth by frequency hopping. As per the imple-
mentation described in the original paper, the hopping
process takes few seconds (for channel acquisition).

11In principle, one could learn the HMM parameters, but setting a con-
stant standard deviation worked well for our applications.

We reproduced the implementation and wrote the code
directly into the UHD driver of the USRP (as we did
for TurboTrack).

• RF-IDraw [71]: represents a state-of-the-art system
for high-accuracy RFID tracking.12 As per the au-
thors evaluation, RF-IDraw can achieve high track-
ing accuracy but decimeter-scale accuracy in exact po-
sitioning. It combines various antenna patterns. We
faithfully reproduced the authors’ implementation on
Thingmagic m6e [6] RFID readers.

RFID tags: We evaluated TurboTrack with commercial,
off-the-shelf, passive UHF RFID tags. We tested it with
multiple tags including Avery Dennison AD-238u8 [1],
Alien Squiggle [17], and Smartrac [10]. Each tag costs
about 5-10 cents. Because our tags are vertically polar-
ized, we program the robots to maintain their orienta-
tion to minimize phase changes from orientation changes
(for both TurboTrack and the baselines). Alternatively,
one could use circularly polarized tags to avoid this
problem, or incorporate an orientation-phase model into
TurboTrack’s inference algorithm.

Robots: We tested TurboTrack with three kinds of mov-
ing robots. For 2D evaluation, we attached an RFID to
a Roomba [4]. For 3D evaluation, we attached the RFID
to an item carried by LeArm 6DoF robotic arms [5] (as
shown in Fig. 1) and to A20 minidrones from Poten-
sic [7] (as shown in Fig. 12).

Ground truth: We use the OptiTrack system [9] to
obtain ground truth location measurements. The Opti-
Track is an optical tracking system which consists of
an array of tripod-mounted infrared cameras that can
achieve millimeter-scale accuracy by relying on infrared-
reflective markers placed on the objects of interest. Since
the OptiTrack can only operate in line-of-sight, in our
non-line-of-sight evaluation, we ensure that while the
RFIDs of interest are occluded from our antennas, they
remain in LOS of the OptiTrack cameras.

Evaluation Environment: We evaluated TurboTrack in
a standard office building, fully furnished with tables,
chairs, computers. We tested it in both line-of-sight and
non-line-of-sight settings, where RFIDs are within 6m of
the antennas. We performed NLOS testing similar to past
work [45, 71] by blocking the visible LOS path between
an RFID and TurboTrack’s antenna using standard office
cubicle dividers made of wood.

12Mathematically, RF-IDraw’s tracking algorithm is similar to Tago-
ram’s [75] method for tracking movement with unknown track and
both systems achieve comparable tracking and localization accuracy.
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Figure 7: 3D Localization Accuracy in Line-of-Sight. The figure
plots the CDF of TurboTrack’s localization error in LOS along each
of the x/y/z dimensions.
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Figure 8: 3D Localization Accuracy in Non-Line-of-Sight. The figure
plots the CDF of TurboTrack’s localization error in NLOS in the x/y/z
dimensions.

6 Results

6.1 Performance Evaluation

We first evaluated TurboTrack’s performance quantita-
tively. Specifically, we evaluated its localization accu-
racy, latency, and performance with moving targets.

(a) 3D Localization Accuracy: We tested TurboTrack’s
localization accuracy in LOS an NLOS settings. We per-
formed 5,000 experimental trials, each lasting between
30 seconds and one minute. This allowed us to collect
more than 20 million location measurements. In each
trial, we performed different arbitrary movements with
the robotic arm or the drone carrying the RFID. We
compute the tracking error as the difference between
TurboTrack’s location estimate and the ground truth from
OptiTrack.

Figs. 7-8 plot the CDFs of the location errors in each
of the x, y, and z dimensions for both LOS and NLOS set-
tings. Our results show that TurboTrack achieves a me-
dian error less than 1 cm and a 90th percentile error is
less than 2 cm in each dimension. Further, we note that
the accuracy in LOS is slightly better than its accuracy in
NLOS settings. This is expected since the SNR is higher
in LOS, resulting in higher accuracy.

(b) Latency & Frame Rate: Next, we evaluated the la-
tency of TurboTrack’s pipelined architecture in both 2D
and 3D localization. Our 2D trials were performed using
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Figure 9: Tracking Error vs. Speed. We plot the median 2D tracking
accuracy of TurboTrack (violet), RF-IDraw (green), and RFind (red) vs
speed. Error bars indicate 10th and 90th percentiles.

an RFID attached to a Roomba. The latency is computed
as the time difference between the time the USRP obtains
an RFID response and the time it outputs a location. We
ignore the time-of-flight of the wireless signal since it is
only few nanoseconds for the distances of testing (few
meters) hence negligible for our latency measurements.

Our results shows that the 99th percentile latency mea-
surements for 2D and 3D tracking are 6.6 ms and 7.3 ms,
respectively. This latency is primarily limited by the pro-
cessing time of the computer rather than the latency of
the RFID’s response or acquisition. Specifically, in both
the 2D and 3D experiments, TurboTrack’s receivers all
obtain the RFID responses at the same time, yet the
difference in latency is due to the difference in pro-
cessing speed. We also note that across these experi-
ments, TurboTrack could achieve a frame rate of 300
frames/second in both 2D and 3D localization. This high
frame rate owes to TurboTrack’s pipelined architecture
which decouples the frame rate from the latency, en-
abling it to achieve both high frame rates and low latency.

(c) Performance with Motion: TurboTrack’s high accu-
racy, low latency, and high frame rate aim at enabling it
to track objects in continuous motion, as necessary for
robotic manipulation and tracking tasks. Next, we evalu-
ated TurboTrack’s accuracy with motion and compare it
to our baselines. In fairness to RF-IDraw, we focused on
2D tracking since the system was only evaluated in 2D.

We perform 400 experimental trials, each time vary-
ing the speed at which an RFID moves. We varied the
speed by attaching the RFID on a mobile Roomba whose
speed can be controlled. Fig. 9 plots the CDF of track-
ing accuracy for RFind, RF-IDraw, and TurboTrack. It
is important to note that the figure is in log-log scale to
demonstrate how much TurboTrack is more capable in
maintaining its accuracy despite high speed motion.

Our results show that TurboTrack outperforms both
RF-IDraw and RFind across all speeds. Even at speeds
of 50 cm/s, which is the maximum speed of Roomba
[4], its error remains under 2 centimeters. This is due to



three reasons: First, it has significantly higher frame rates
than RFind. Second, it has more resilience to multipath
than RF-IDraw due to its larger bandwidth. And lastly, its
Bayesian framework boosts its accuracy and robustness.

We also note that RFind suffers the most with motion,
even at speeds as low as 2 cm/s. This owes to its fre-
quency hopping process, which requires the object to re-
main static for 3 s. On the other hand, while RF-IDraw
can deal with some movements, its ability to accurately
track the phase diminishes beyond speeds of few cm/sec.

In the above result, we eliminated the initial position
error as per RF-IDraw’s implementation. In fairness to
RFind, we run 100 additional experiments with a static
RFID and compute RFind and RF-IDraw’s accuracy. We
summarize our results in the table below.

RFind RF-IDraw TurboTrack
Median (cm) 0.87 19 0.51
90th percentile (cm) 2.3 63 1.1

Table 1: Positioning Accuracy.

The table shows that both TurboTrack and RFind out-
perform RF-IDraw, which has a median accuracy of
19 cm. This result is expected since RF-IDraw is de-
signed for high tracking accuracy rather than high lo-
calization accuracy. In the RF-IDraw paper [71], the au-
thors call this the initial position error. We also note
that even though RFind has larger overall bandwidth
than TurboTrack (around 200 MHz vs TurboTrack’s
100 MHz), TurboTrack takes advantage of motion and
fuses measurements across multiple antennas to achieve
a 90th percentile error of around 1.1 cm.

6.2 Microbenchmarks

Next, we would like to understand the effectiveness of
each of TurboTrack’s sub-components. To do so, we
ran micro-benchmarks with partial implementations of
the system as well as with simplified variants. This en-
ables us to gain deeper understanding into the impor-
tance of each component as well as the effectiveness
of TurboTrack’s design choices from two main perspec-
tives: localization accuracy and computational efficiency.

(a) Decomposing TurboTrack’s Gains. We would like
to quantify the accuracy gains arising from TurboTrack’s
space-time super-resolution algorithm and the different
sub-components of this algorithm. Hence, we imple-
mented three variants of the algorithm and compared
their localization accuracy; we focus on 2D localiza-
tion for simplicity. All three schemes are given the same
distance estimates obtained from TurboTrack’s one-shot
wideband estimation algorithm over 100 MHz of band-
width. The schemes differ in how they perform localiza-
tion based on these distance estimates:
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Figure 10: Comparing Partial Implementations of TurboTrack. The
figure plots the CDF of the 2D localization errors of three different
localization schemes, all of which use the output of TurboTrack’s one-
shot wideband estimation.

1. Ellipse Intersection: Recall from §4 that each dis-
tance estimate maps to an ellipse whose foci are the
transmit and receive antennas. A simple localization
method would consider the most likely distance esti-
mate from each receive antenna, map it to an ellipse,
and solve for the intersection point of the ellipses in
order to identify the tag’s location [14, 13]. To imple-
ment this scheme, we select the distance estimate with
the highest weight from each receive antenna (where
the weights are obtained from the amplitude of the
interpolated FFT in a manner similar to [13]). Since
TurboTrack employs more antennas than the number
of ellipses needed for 2D localization, we solve for
all the intersection point and assign the one closest to
the ground truth as the tag’s location. Doing so pro-
vides this scheme with more information than we pro-
vide TurboTrack’s super-resolution algorithm. Hence,
TurboTrack’s ability to outperform this scheme is a
stronger demonstration of its effectiveness.

2. Standard (Gaussian) Particle Filter: The second lo-
calization scheme employs a standard Gaussian par-
ticle filter. The main difference between this scheme
and TurboTrack’s algorithm is that its likelihood func-
tion (i.e., Eq. 1) is a single Gaussian (centered around
the most likely distance estimate and with a large stan-
dard deviation) rather than a mixture of narrow Gaus-
sians. This scheme also incorporates the SIS filter.

3. TurboTrack’s Super-Resolution Algorithm: The final
scheme implements TurboTrack’s space-time super-
resolution algorithm, which incorporates the proposed
Mixture of Gaussians (MoG) likelihood function and
SIS filter.

Fig. 10 plots the CDFs of the localization error for
each of the three schemes. We observe the following:

• All three schemes achieve a median error less than
20 cm. This decimeter-scale error of moving RFIDs
is smaller than that of state-of-the-art systems (as per
in §6.1(c)), and is possible because of TurboTrack’s
one-shot wideband estimation technique.
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Figure 11: Tracking Error vs. Number of Particles. The figure plots
the median error of 2D localization as a function of the number of par-
ticles for TurboTrack’s sampling method and compares it to a uniform
sampling method. The figure shows that TurboTrack can converge to
sub-centimeter accuracy using 25× less particles.

• The error distribution of the ellipse intersection
method exhibits multiple discontinuities. This is be-
cause there are multiple candidate distance estimates
(as described in §4.2), and the scheme picks one of
them independently in every frame. Thus, while the
error is small if the correct candidate is chosen, the
error is typically larger than a wavelength (33 cm) if
the incorrect candidate has a higher weight (e.g., due
to noise). We note that this scheme’s results are in line
with the reported errors in [45] when using the same
bandwidth with frequency hopping for static RFIDs.

• Interestingly, the ellipse intersection method has
slightly smaller median error (16 cm) than that of a
standard particle filter-based method (17 cm). How-
ever, the 90th percentile error of the particle filter is
smaller than that of the intersection-based method.
This is due to two reasons. First, the ellipse intersec-
tion scheme is given more information since we allow
it to choose the intersection point closest to the ground
truth. And second, the particle filter smoothes the tra-
jectory, which increases its median error but enables it
to achieve better tail performance.

• Finally, TurboTrack’s full implementation signifi-
cantly outperforms both partial schemes, achieving at
least 30× improvement in median accuracy (5 mm
median error).

(b) Complexity Gain of Approximate Inference. Next,
we would like to quantify the efficiency (complexity)
gains arising from TurboTrack’s approximate inference
algorithm and its initial sampling scheme. To do so, we
compare the algorithm to a baseline implementation of a
standard Gaussian particle filter. The baseline uniformly
samples 2D space and updates particles weights using
the Gaussian filtering method described in §6.2(a).

The complexity of a particle filter is a direct function
of the number of particles N used to represent the dis-
tribution. Hence, to compare the two schemes, we ran
both particle filters (the baseline and TurboTrack’s) with
the same number of particles over 30-second-long trajec-

tories, and we computed the localization accuracy. We
repeat this process multiple times, each time with a dif-
ferent number of particles.

Fig. 11 plots the median error (on the y-axis) as a func-
tion of the number of particles (on the x-axis) in log-log
scale for each of the two schemes. The figure shows that
TurboTrack’s inference algorithm can converge to sub-
centimeter accuracy with only 100 particles; in compari-
son, to achieve the same accuracy, the uniform sampling-
based scheme requires around 2500 particles. Since the
complexity of the particle filters is O(N), this demon-
strates that TurboTrack’s algorithm is more computation-
ally efficient.

6.3 Qualitative Performance

Finally, we evaluated TurboTrack qualitatively in fine-
grained robotic tasks. Our results, shown in Fig. 12-13,
demonstrate the ability to track nanodrones docking, ma-
neuvering, and even flying simultaneously. The results
also show that TurboTrack’s fine-grained tracking can be
an enabler for collaborative packaging and handover be-
tween robotic arms.

7 Related Work & Conclusion
(a) RF-based Localization is a long studied problem in
the networking community. Early work relied on measur-
ing the received signal strength (RSS) [54, 76, 24, 26],
the angle of arrival (AoA) [49, 77, 20, 40], and the re-
ceived signal phase [19, 41]. These proposals could op-
erate correctly in line-of-sight but not in the presence
of multi-path since constructive and destructive interfer-
ence make the strength, angle, and the phase of the re-
ceived signal unpredictable.

Unfortunately, state-of-the-art proposals that can deal
with multi-path cannot deliver on the mobility or accu-
racy requirements for fine-grained robotic tasks. In par-
ticular, solutions that achieve high accuracy require the
target to remain static for seconds as their antennas move
over multiple meters, collecting measurements from dif-
ferent spatial locations then combining them to local-
ize [70, 60, 69, 51]. Others, like RFind [45], achieve
high accuracy without requiring antenna motion, but they
still require the object of interest to remain static for few
seconds as they perform frequency hopping over a large
bandwidth. As demonstrated in §6, this leads to large er-
rors in mobile settings. Fundamentally, even if one could
hop frequencies faster, such systems would still suffer
from a range-Doppler ambiguity [46] and have lower ac-
curacy, frame rate, and throughput than TurboTrack.

To avoid this latency problem, researchers have looked
into recovering the shape of the trajectory while sacrific-
ing exact positioning [71, 75, 61, 39]. These proposals
focus on tracking changes in distances and can achieve
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Figure 12: Tracking Nanodrones. (a) shows the nanodrone we use in our experiments. (b), (c), and (d) show TurboTrack’s output and the ground
truth (dotted blue) in tracking docking, maneuvering, and two drones flying simultaneously.
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Figure 13: Robotic Manipulation. (a) shows two robotic arms collaborating on packaging an RFID-tagged item in an RFID-tagged box. (c) shows
one robotic arm handing over an RFID-tagged item item to another. (b) and (d) show TurboTrack’s output for tracking the RFID tagged items.

high accuracy over short periods of time, however, they
have decimeter-scale accuracy (i.e., tens of centimeters)
in computing the exact location. As a result, while they
may recover the shape of a trajectory of an RFID or
a WiFi device, they cannot enable precise positioning
tasks like grasping or manipulation. In contrast to all of
these proposals, because TurboTrack computes the wide-
band estimates from every single RFID response, it can
achieve precise positioning and at low latency.

(b) Super-resolution algorithms have been extensively
studied both theoretically and practically. Most past work
falls in the imaging community, where the goal is to ob-
tain a higher-resolution image by combining images of
the same scene across multiple viewpoints [65, 23, 37,
64] or across time frames in a video [31, 22, 52, 53].
While TurboTrack is inspired by this body of work, it
differs in two key aspects. First, in contrast to imaging
systems which rely only on pixel intensity, TurboTrack
also has access to phase information and utilizes it in
its super-resolution algorithm. Second, its formulation is
unique in how it models and linearizes distances obtained
from wideband RF measurements and how it incorpo-
rates them into a computationally efficient particle filter.

The RF community has also taken interest in super-
resolution algorithms, with famous algorithms like MU-
SIC [32], smoothed MUSIC [59], and ESPRIT [66].
TurboTrack builds on this body of work as well, and to
the best of our knowledge introduces the first Bayesian
spatio-temporal framework that combines bandwidth and
phase measurements to achieve this level of accuracy.

Naturally, TurboTrack also relates to a growing liter-

ature on object manipulation in the robotics community.
The majority of past work relies on vision-based or opti-
cal systems which, unlike TurboTrack, cannot operate in
visually occluded settings [48, 74, 42]. Finally, we note
that some of the RF localization solutions mentioned
above [69, 60] have been explored in this context as well,
but they lacked the localization accuracy and/or the low
latency required to deliver on these tasks. TurboTrack is
inspired by this work and builds on it to enable highly ac-
curate tracking and identification for fine-grained robotic
tasks, particularly in cluttered or occluded settings.
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