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We argue that the resolution to the black hole information paradox lies in a proper accounting of the
implications of diffeomorphism invariance for the Hilbert space and observables of quantum gravity. The
setting of asymptotically anti–de Sitter spacetime is adopted for most of the paper, but in the framework of
canonical quantum gravity, without invoking AdS/CFT duality. We present Marolf’s argument that
boundary unitarity is a consequence of diffeomorphism invariance and show that its failure to apply in the
classical limit results from a lack of analyticity that has no quantum counterpart. We argue that boundary
unitarity leads to a boundary information paradox, which generalizes the black hole information paradox
and arises in virtually any scattering process. We propose a resolution that involves operators of the
boundary algebra that redundantly encode information about physics in the bulk and explain why such
redundancy need not violate the algebraic no cloning theorem. We also argue that the infaller paradox,
which has motivated the firewall hypothesis for black hole horizons, is ill-posed in quantum gravity,
because it ignores essential aspects of the nature of the Hilbert space and observables in quantum gravity.
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I. INTRODUCTION

The black hole information paradox holds promise for
teaching us something fundamental about quantum gravity.
The paradox concerns how to reconcile well-established
principles of local quantum field theory with expectations
from quantum gravity. We currently lack direct experimen-
tal evidence of quantum gravity, so the paradox provides a
welcome challenge to our understanding of the foundations
of quantum gravity, in particular of the nature of its states
and observables. To be sure, despite many decades of
research and discussion, it is not universally agreed that any
paradox exists in the first place [1–3]. In this paper we
review compelling arguments that it does exist, and we
argue that it can be resolved by paying close attention to the
role of diffeomorphism invariance in the theory. Our
conclusion is not that local QFT or quantum gravity has
some unexpected breakdown, but that we just need to better
understand the quantummechanical framework of quantum
gravity.
The information paradox has many faces. The one we

focus on in this paper is raised by Marolf’s argument for
boundary unitarity [4]. This argument is founded on the
assumption that the diffeomorphism invariance of classical
general relativity extends to quantum gravity. The argument
is agnostic about the form taken by the UV completion of
the theory, as long as it preserves the classical property—
which follows from diffeomorphism invariance—that the
Hamiltonian is a boundary term. In that case, the algebra of
boundary observables includes the Hamiltonian. We con-
sider the case of asymptotically anti–de Sitter (AdS)
spacetime, so that the boundary is timelike. Then, the fact

that the Hamiltonian is a boundary observable arguably
implies that the boundary algebra evolves continuously into
itself. If that is so, then information available at the
boundary at one time is also available at any other time.
Note that, although we focus on the example of asymptotic
AdS boundary conditions, we are not invoking AdS/CFT
duality, or any particular UV completion of the quantum
gravity theory (although it may be that such a duality is
inevitably what a UV completion looks like).
One of our aims in this paper is to support this argument

that the boundary algebra evolves into itself and to explain
why the argument fails to apply in the classical case. This
will hinge on a property of analyticity that wewill establish.
Our other aim is to resolve what we will call the “boundary
information paradox” (BIP). This paradox is the apparent
contradiction between unitary evolution of boundary
observables and the presence of bulk degrees of freedom
(d.o.f.), some of which propagate to the boundary while
being entangled with others that remain in the bulk. A key
point we shall argue is that the BIP arises in generic
processes, not only ones involving black holes. It is an
information paradox, but not a black hole information
paradox. We regard the BIP as a training ground for
understanding the Hilbert space and observables of
quantum gravity.
We postpone to the end of the paper a consideration of

the “infaller paradox,” wherein local bulk physics appa-
rently exhibits violation of the monogamy of entanglement
in the neighborhood of a black hole horizon. Having
developed some understanding of the Hilbert space and
observables of quantum gravity, we will argue that the
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infaller paradox is actually ill-posed, so that it is not clear
whether there is any such paradox at all.
We do not make use of reduced phase space quantiza-

tion, nor do we make use of AdS/CFT duality, other than as
an example. Let us explain why not. The bulk/boundary
dichotomy at the center of our considerations would be
obscured if we were to adopt the framework of reduced
phase space quantization, where all gauge freedom is
eliminated before quantization. Instead, we adopt the
framework of Dirac quantization, in which the physical
Hilbert space is the subspace of a kinematic Hilbert space
that is annihilated by the gauge constraint operators, and in
which physical (i.e., gauge invariant) observables commute
with the constraints. In the reduced phase space approach,
the question of boundary unitarity just does not even come
up. We elect to consider the Dirac quantization, because it
poses puzzles that are hopefully instructive concerning the
nature of quantum gravity. The question whether or not
Dirac and reduced phase space quantization are equivalent
remains open [5–8].
In the setting of AdS/CFT duality, the usual presumption

is that the algebra of boundary observables is identical to
the algebra of conformal field theory (CFT) observables.
Moreover, the completeness of the boundary algebra might
be a generic feature of quantum gravity [9], at least in a
superselection sector [10]. If that is so, then, in a sense, the
boundary information paradox is resolved simply by the
fact that all information always resides at the boundary.
However, our aim is to learn something about the Hilbert
space and observables of quantum gravity, by confronting
the paradox from the bulk viewpoint: the physical Hilbert
space is, according to Dirac quantization, a subspace of a
kinematic Hilbert space, which itself is, as in nongravita-
tional quantum field theory, roughly a tensor product of local
factors. The boundary observables act on the boundary
kinematic factor. To resolve the BIP, then, one must under-
stand how it is that certain “bulk observables” can also
correspond to boundary observables,1 without violating
quantum mechanics. To this end, it does not help to simply
invoke completeness of the CFTobservables. It should also
be emphasized that, even if bulk physics is only “emergent,”
emergent bulk diffeomorphism invariance may nevertheless
be essential to resolving the information paradox. After all,
the paradox is concerned with the emergent bulk physics.
The rest of the paper is structured as follows. In Sec. II

the argument for BU is recalled, and we identify analyticity
of time evolution as a key distinction between the quantum
and classical cases. Section III poses the BIP, and Sec. IV
posits our proposed resolution of the paradox, which
involves the notion of the “nebulon,” which is our name
for the nebulous operators of the boundary algebra that
redundantly encode information about physics in the bulk.
The purpose of Sec. V is to explore more specific

descriptions of the nebulon, both nonperturbative and
perturbative, as well as to answer an objection from
Ref. [11] to the proposal that “nebulous bulk d.o.f.” could
resolve the black hole information paradox. In Sec. VI we
explain how it could be that the nebulon avatar mechanism
is not precluded by the (algebraic) no-cloning theorem.
In Sec. VII we recall the infaller paradox, which is special
to black holes, and we argue that as stated heretofore it is
ill-posed in quantum gravity, because it ignores essential
aspects of the nature of the Hilbert space and observables in
quantum gravity. Finally, we close in Sec. VIII with a few
remarks.

II. BOUNDARY UNITARITY

The Hamiltonian of a classical theory with diffeomor-
phism symmetry, such as general relativity, is a linear
combination of constraints, plus a boundary term if the
spatial manifold Σ has a boundary ∂Σ [12],

H ¼
Z
Σ
NμCμ þH∂ : ð1Þ

Here Nμ are the lapse and shift functions, Cμ are the
constraints, and H∂ is the boundary term. If Nμ approaches
an asymptotic time translation at the boundary,H generates
that time translation via Hamilton’s equations. The con-
straints arise because of bulk diffeomorphism symmetry.2

The Poisson brackets of the constraints close on the
constraints (the constraints are “first class”); hence the
constraints generate “gauge” transformations correspond-
ing to diffeomorphisms. Any gauge-invariant observableO
Poisson commutes with the constraints fO; Cμg ¼ 0 (up to
terms that vanish with the constraints), so the evolution of
observables with respect to asymptotic time-translations is
governed entirely by the boundary term H∂ ,

dO
dt

¼ fO; Hg ¼ fO; H∂g: ð2Þ

So far this is all classical physics.
In the quantized version of the foregoing structure, the

canonical variables become operators, the Poisson bracket
relations become commutator relations, and presumably, if
the diffeomorphism symmetry survives quantization, the
algebra of the constraints still closes on the constraints. Of
course it is well known that the quantization of general
relativity cannot by itself make sense, without some “UV
completion” of the theory. But if the diffeomorphism
symmetry survives this UV completion it is plausible that

1And how, perhaps, boundary observables could be complete.

2Throughout this paper “diffeomorphism” refers to bulk
diffeomorphism. Diffeomorphisms that act nontrivially at the
boundary must preserve the boundary conditions, and that
nontrivial action gives rise to symmetry rather than gauge
transformations.
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the Hamiltonian is still a boundary term, and that gauge
invariant observables evolve by commutation with this
Hamiltonian, according to the equation,

dO
dt

¼ 1

iℏ
½O; H∂ �; ð3Þ

using the Heisenberg picture. In Sec. IV we discuss the
possibility that in the UV completion of the gravity theory
the Hamiltonian is no longer localized at the boundary, and
we argue that even if so, that in itself likely does not
eliminate the BIP.

A. Boundary observables and unitarity

Boundary unitarity refers to the time evolution of
boundary observables, by which we mean (gauge invariant,
self-adjoint) observables that can be built from the fields in
the intersection of any neighborhood of a bulk Cauchy slice
with any neighborhood of the boundary. We refer to the
algebra generated by these as the boundary algebra
A∂ associated with the given (asymptotic) Cauchy slice.
The Hamiltonian—at least at the level of effective field
theory (EFT)—is in the boundary algebra, as is the
commutator of the Hamiltonian with anything in the
algebra. The time derivative (3) is therefore in A∂ , which
leads to the expectation thatA∂ evolves unitarily into itself.
This property was termed “boundary unitarity” (BU) in [4].
BU implies that the information contained in boundary
observables is time independent.
Note that we are not assuming that the boundary algebra

includes all observables, although that might be the case.3

Moreover, if there is more than one boundary of the
spacetime, then there is more than one boundary algebra,
so the observables at one boundary are clearly not
complete, but this does not change anything essential in
our considerations. There would be one term in the
Hamiltonian for each boundary, and the algebra of observ-
ables at any one boundary would evolve into itself.
But before getting carried away with the implications of

BU and the paradox it raises, we must examine more
closely the justification for the expectation that A∂ evolves
unitarily. Something more than the argument already given
is clearly required, because the corresponding classical
statement is not true [4,13]. There are solutions of the
Einstein equation that agree exactly, for example, with the
Schwarzschild-AdS solution outside some radius on some
time slice, and which nevertheless have disturbances
which propagate out to the boundary at a later time [14]

(see also [15–17]). The arrival of such disturbances would
clearly constitute new information in the boundary observ-
ables, so would violate the classical version of BU. In fact,
the quantum case has a key property that the classical case
lacks: analyticity of time evolution.

B. Classical case

The classical evolution equation (2) is closely analogous
to the quantum one (3), and the reasoning we applied above
for the latter applies to the former: the rate of change of an
observable is another element of the boundary algebra.
However, as just noted, that must not in general be
sufficient to infer that this property is shared by the
time-dependent solution to this equation. That solution
can be written formally, as

OðtÞ ¼ etf·;HgOð0Þ; ð4Þ

where f·; Hg denotes the operation of taking the Poisson
bracket with the function to its right, placed in the first entry
of the bracket. Expanding the exponential, (4) becomes an
infinite series of nested Poisson brackets. The question,
then, is whether this series converges, for all t, to the actual
solution to (2), on each integral curve of the Hamiltonian
vector field on phase space. The answer is evidently no, not
in general: not all solutions are analytic in t with infinite
radius of convergence, so in general the series does not
converge to the solution for all t. Thus, although it formally
appears from (2) that the values of the boundary observ-
ables at one time determines the values at any other time,
that fails to be the case.
Let us illustrate this concretely using a massless

scalar field ϕðx; tÞ in 1þ 1 spacetime dimensions. The
Hamiltonian is H ¼ R

dx½1
2
π2 þ 1

2
ð∂xϕÞ2�, the conjugate

momentum is π ¼ ∂tϕ, and for the observable we take
O ¼ ϕðxoÞ, for some fixed xo. Consider now a right-
moving solution: ϕðx; tÞ ¼ fðx − tÞ, for some function f.
This solution is determined by the initial data ϕðx; 0Þ ¼
fðxÞ and πðx; 0Þ ¼ −∂xfðxÞ. For n nested commutators,
f…ffϕðxÞ; Hg; Hg…; Hg is equal to ∂n−1

x πðxÞ for odd n,
and ∂n

xϕðxÞ for even n. Using the initial condition we thus
find, on this particular trajectory,

etf·;Hgϕðxo; 0Þ ¼
X∞
n¼0

1

n!
ð−tÞn∂n

xfðxoÞ; ð5Þ

which is the Taylor series for fðxo − tÞ. If fðxÞ is not
analytic with infinite radius of convergence, then for some t
the series will fail to agree with ϕðxo; tÞ. For example,
suppose fðxÞ is a bump function, exp½−1=ðx2 − 1Þ� for
jxj < 1 and 0 for jxj ≥ 1, and choose xo ¼ 2. Then the
series converges to zero for all t, whereas ϕð2; tÞ is nonzero
for 1 < t < 3. Alternatively, if we choose xo ¼ 0, then the
series converges to the correct solution only for jtj < 1.

3It was recently argued in Ref. [9] that in canonical quantum
gravity, if a Reeh-Schlieder property holds for boundary oper-
ators, and if the projection on the vacuum lies in A∂ , then indeed
A∂ would coincide with the full algebra of observables. Also, in
the setting of AdS/CFT duality, it is tempting to identify the
CFT observables, which are complete for the theory, with the
boundary observables.

DIFFEOMORPHISM INVARIANCE AND THE BLACK HOLE … PHYS. REV. D 100, 046002 (2019)

046002-3



C. Quantum case

The classical analysis suggests that, if BU is to hold, then
there must be something about quantum mechanics that
enforces analyticity, or something like it, for the time
dependence of the boundary observables. This is indeed the
case. The solution to (3) takes the form,

OðtÞ ¼ eitH=ℏOð0Þe−itH=ℏ: ð6Þ

We assume that H is self-adjoint, so that the exponential
e−itH=ℏ is well-defined in terms of the spectral projections
of H [18].4 Moreover, the exponential is a bounded
operator. To ensure that the operator on the right-hand
side of (6) is defined everywhere, we assume that also O is
bounded. Then (6) is indeed the solution to (3) wherever the
latter is defined.5 And, since it is a product of three
operators each of which lies in A∂ , it too lies in A∂ .
While the preceding argument for BU is logically

sufficient, we can give a more constructive account by
considering expectation values hψ jOðtÞjψi, and restricting
to energy-bounded observables. This will also exhibit
clearly the difference between the classical and quan-
tum cases.
By inserting complete sets ofH eigenstates on either side

of Oð0Þ, we obtain using (6) an expression for the
expectation value as a double sum,

hψ jOðtÞjψi ¼
X
m;n

eiðωm−ωnÞtOmnhψ jmihnjψi; ð7Þ

where Hjni ¼ ℏωnjni and Omn ¼ hmjOð0Þjni. If the
spectrum of H includes a continuum, then the summation
over the eigenstates includes integration. Since the expo-
nentials are analytic functions of t, the expectation value
hψ jOðtÞjψi is a sum of analytic functions. Were there a
finite number of terms in the sum, it too would be analytic,
but there are in general an infinite number of terms, so we
must be more careful.
If, as we shall assume, the Hamiltonian is bounded

below, the range of the frequencies summed over in
(7) is bounded below. To ensure analyticity, we can
cut off the energy at some upper bound Λ and consider
the energy-projected observable OΛ ≔ PΛOPΛ. Since the
Hamiltonian is in A∂ , so is PΛ, because PΛ is a function of
the Hamiltonian,

PΛ ¼ ΘðΛ −HÞ; ð8Þ

where Θ is the Heaviside step function and Λ is the energy
cutoff. Hence the projected observable OΛ is also in A∂ ,
provided that O is. Moreover, the expectation value
hψ jOΛðtÞjψi is analytic in t. To see this, just note that it
is the diagonal value of a double Fourier transform,
Fðt; t0Þ ¼ R

dω
R
δω0e−iωte−iω0t0fðω;ω0Þ, where fðω;ω0Þ

has compact support in each argument. Such a function
is analytic in each argument, and hence the functionGðtÞ ≔
Fðt; tÞ is analytic in t.
For each energy cutoff Λ we thus have an algebra of

boundary observables AΛ∂ whose expectation values in any
state evolve analytically. It follows that the collection of all
time derivatives of the expectation values at one time
determines the values at any other time. This is a concrete
formulation of boundary unitarity. The statement holds for
any cutoff Λ; hence for each Λ there is a BU property.
Moreover, we can take Λ arbitrarily large, and so come
arbitrarily close to encompassing all boundary observable
values for finite energy states. It is the unitarity of time
evolution in quantum mechanics that leads to the analy-
ticity property noted here. In contrast, the classical argu-
ment for boundary unitarity fails precisely on account of
the lack of analyticity in time.
It is worth noting that the fact that the energy-projected

observable PΛOPΛ is in the boundary algebra is possible
only in the presence of gravity. In local, relativistic field
theory without gravity, by contrast, an energy-projected
version PΛAPΛ of a local observable A is never localized to
any open proper subregion U of spacetime. To see this,
suppose PΛAPΛ were localized to some region U, and
choose any observable B localized in the causal comple-
ment Uc of U. Microcausality then implies

ðPΛAPΛÞBjψi ¼ �BðPΛAPΛÞjψi; ð9Þ

where jψi is any state, and the minus sign applies when
both of the operators are fermionic. Equation (9) implies in
particular that, for all B localized in Uc, the state
BðPΛAPΛÞjψi has energy content bounded by Λ. This
contradicts the generalized Reeh-Schlieder theorem which
asserts that, by acting on a state of finite energy content
with operators localized in Uc, we can approximate any
other state arbitrarily well [19,20], including ones with
energy content greater than Λ.

III. BOUNDARY INFORMATION PARADOX

The fact that bulk particles can propagate to the
boundary raises a puzzle for BU [21]: how can the
boundary algebra evolve unitarily into itself, when “new
information” can arrive at the boundary? When such a
particle arrives at the boundary and influences the boundary
observables, it appears that the boundary algebra is not

4Of course we do not know whether or not H is in fact self-
adjoint in (UV completed) quantum gravity. Here we assume that
it is, because our main interest is in exploring whether BU can be
reconciled with local quantum field theory, rather than in
establishing BU itself. We note as well that, if AdS/CFT duality
is valid,H is identified with the Hamiltonian of the CFT, which is
presumably self-adjoint.

5And (6) replaces (3) wherever the rhs of (3) is not well
defined, as is usual in quantum mechanics.
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evolving autonomously. We shall call this puzzle the
boundary information paradox (BIP). An example of it
arises when a black hole emits Hawking radiation which is
correlated with the field behind the horizon, yet which
reaches the boundary. However, the BIP arises even when
no black hole is present. If a bulk particle propagates to the
boundary after having been dynamically correlated with
bulk d.o.f., this puzzle is like the Hawking radiation one.
The entropy of the boundary algebra seems to increase.
Moreover, there is even a puzzle without such correlation,
because the arrival of a bulk particle at the boundary seems
to introduce new information there. The BIP focuses
attention on an aspect of the black hole information
paradox that deserves more attention than it has received,
namely, the puzzle of continuous unitary evolution of
boundary observables.
Consider, for example, a scattering type process in which

particles are injected from the boundary and interact in the
bulk, forming a state that emits a massless particle while
leaving behind a long-lived resonance that is correlated to
the early emitted particle. The arrival of the decay particle
at the boundary can be detected by the measurement of
some boundary observableO, which is then correlated with
the remaining resonance. This appearance of correlation
between a boundary observable and a nonboundary one
violates the fact that the boundary algebra evolves unitarily
into itself.
This scenario is rather similar to one in which the long-

lived resonance is a black hole. The key difference is that,
in the case of the black hole, the early Hawking radiation is
correlated specifically to partner field modes behind the
horizon of the black hole. Also, the infinite redshift at
the horizon implicates a mixing of bulk UVand IR d.o.f. in
the process. However, from the viewpoint of boundary
unitarity, these distinctions are immaterial.
We speak of dynamical correlation and avoid the

concept of “entanglement,” because the latter refers to a
state in a Hilbert space composed of two or more factors.
In the setting of quantum gravity, however, a tensor
factorization according to spatial localization is not
available [22–25]. Moreover, the particles or field quanta
referred to in the previous paragraph are not gauge
invariant with respect to diffeomorphisms; and, if they
are gravitationally dressed in order to become so, then
they are no longer spatially localized. But we have framed
the BIP so as not to presume spatial factorization of the
Hilbert space or any particular gravitational dressing. The
algebra of boundary observables is defined without
invoking a boundary factor of the quantum gravity
Hilbert space.
Despite the absence of a factorized Hilbert space, given

an algebra of quantum observables one can define the
algebraic entropy of a global quantum state restricted to the
subalgebra [26,27], which generalizes the notion of the von
Neumann entropy of a state restricted to a tensor factor.

The BIP can be phrased in terms of the behavior of this
algebraic entropy: if the Hamiltonian is an element of the
subalgebra, then the algebraic entropy of the subalgebra
cannot change in time. BU thus implies that the entropy of
the boundary algebra never changes, and yet the arrival of
bulk particles at the boundary appears to entail entropy
change.

IV. RESOLVING THE BIP

We can see two possible routes to resolving the BIP:
(1) The Hamiltonian is not in A∂ .
(2) A∂ contains an avatar of any bulk d.o.f. with which it

can be correlated.
The argument for BU, reviewed in Sec. II, is that, on
account of diffeomorphism invariance, the Hamiltonian
must be inA∂ . However, the boundary algebra was defined
using a notion of locality that makes sense within field
theory but may cease to be meaningful in the UV
completion of the gravitational theory. For instance, strict
localization of the Hamiltonian to any neighborhood of the
boundary may not be possible in string theory, because of
the extended nature of strings. In this case, the Hamiltonian
would couple EFT boundary observables to non-boundary
observables, so observables initially in A∂ would evolve to
observables not contained inA∂ , and the BU argument as it
stands would fail.6

That said, this failure would not necessarily provide a
resolution to the BIP, because the observables involved in
the BIP may be restricted to the low energy effective field
theory sector, and it is not at all clear that a tiny amount of
dynamical mixing with observables outside of A∂ would
suffice to account for the nonconservation of information in
A∂ . Note also that the asymptotic redshift appears to help
suppress such mixing. A finite Killing energy, defined with
respect an asymptotic global time translation Killing vector
∂t, corresponds to a vanishing proper energy in the frame
defined by the unit vector ∼r−1∂t, where r is the asymptotic
area radius coordinate. Hence there is not enough energy to
create “stringy” excitations near the boundary.
For the remainder of this paper, we will focus on the

second route, namely, the possibility that A∂ already
contains an avatar—i.e., an image, copy or representative—
of any component of the bulk d.o.f. needed to preserve the
information available at the boundary. Related approaches
to solving the black hole information paradox have
been discussed before, for example in the form of black
hole complementarity and “A ¼ RB” [28–31]. These have
been critiqued as nonviable, generally for reasons related
to the “no-cloning theorem” of quantum mechanics, or

6In the AdS/CFT context, it is plausible that there is no
nontrivial subalgebra of the CFT that is invariant under time
evolution. (We thank Hong Liu for a discussion on this point.) If
this is the case, then either A∂ must be equivalent to the entire
CFT algebra, or the Hamiltonian must not lie in A∂ .
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contradictions resulting from the presence of the same
quantum information in more than one location. It seems
to us that, if formulated carefully, no contradictions or
violations of no cloning need arise. In the next section we
articulate a little more explicitly the nature of our proposed
resolution, and in the following section we confront the no-
cloning issue.

V. THE NEBULON

The notion that such a an avatar must be available at the
boundary to purify Hawking radiation was proposed in
[21], in which the continuous unitarity feature of the BIP
was emphasized. This proposal was criticized in [11],
which argued that “nebulous bulk d.o.f.” could play no
role in evading a version of the black hole information
paradox involving an auxiliary system that extracts and
converts Hawking quanta into excitations of a separate
system attached to spacetime. (That criticism will be
addressed below.) Inspired by that denigration, we are
moved to embrace the term, and here refer to the required
avatar as the nebulon.

A. Who is the nebulon?

Since it is diff invariance that leads to the BIP in the first
place, we expect that diff invariance should lie at the root its
resolution. The impact of diff invariance on the structure of
the quantum gravity state space is indeed very strong.
Classically, the Hamiltonian constraint builds the nonlocal
aspects of gravity, like the link between sources and
geometry in the bulk and multipole moments measurable
at infinity, into the structure of the phase space. At the
quantum level, in the setting of Dirac quantization, the
Wheeler-DeWitt equation presumably does the same job,
and more: it encodes also any evolution with respect to
internal clocks. So a likely candidate for the nebulon
mechanism is the Wheeler-DeWitt equation.
Another key aspect of the nebulon may be simply the

time evolution of the boundary observables. For example, a
bulk particle arriving at the boundary appears to bring new
information. But, if (thanks to diff invariance) BU indeed
holds, that information must have already been available at
the boundary before the arrival of the particle. Long ago,
in the setting of AdS/CFT, the boundary state that antici-
pates the arrival of a particle was referred to as a precursor
[32–34], the precursor being a CFT state. It is easy, in a
sense, to describe the precursor observable: we can “sim-
ply” time evolve the boundary particle detection observable
backwards in time, to express it as a boundary observable at
any earlier time. At the earlier time, it is presumably a
highly “scrambled” looking observable, which would be
difficult to recognize as the precursor of a simple particle
detection, and yet BU guarantees its existence in A∂ .
Although the above considerations suggest that the nebulon
may exist already at the EFT level, it may be that the

nebulon mechanism involves the UV completion in an
essential manner.

B. Perturbative nebulon?

The nebulon has already appeared, and not so nebu-
lously, in the context of AdS/CFT, at the level of effective
field theory, at zeroth order in Newton’s constant, in the
guise of expressions for bulk operators in terms of
boundary operators. We have in mind for example the
well-known HKLL [35] reconstruction of a bulk scalar
field, which uses the scalar field equation of motion to
express a bulk field in terms of its boundary values in the
region of the boundary that is spacelike related to the bulk
point. Another example is the less well-known BBPR
reconstruction [36,37], which uses the Reeh-Schlieder
property [19] that arises from the strong vacuum entangle-
ment, together with the fact that the Hamiltonian—and
therefore the projection onto the ground state—is in the
boundary algebra. Although both of those examples were
studied in the context of AdS/CFT, and mostly with pure
AdS as a background, they do not, as far as we can see,
require anything beyond the general setting of asymptoti-
cally AdS quantum gravity.
As mentioned, these “bulk reconstruction” approaches

work, initially, without accounting for gravitational cou-
pling, and without enforcing diffeomorphism invariance.
Perturbative corrections at lowest order in Oð1=NÞ, where
N is the central charge of the CFT presumed dual to the
quantum gravity theory, were constructed by Kabat and
Lifshitz (in a Fefferman-Graham gauge) in [38]. To the
extent that any quantum gravity theory is dual to a CFT, this
can presumably be viewed as a gravitational perturbation
expansion in ðLPlanck=LAdSÞD−2 where D is the bulk
spacetime dimension.
In another approach [4], Marolf argued (without invok-

ing AdS/CFT) that, using the bulk equations of motion,
bulk operators can be expressed in terms of boundary
operators lying to the past of the bulk point. Moreover he
argued that the dependence on the boundary algebra can be
squashed down to the infinitesimal neighborhood of a
single Cauchy slice, using the fact that the Hamiltonian,
and therefore the time evolution operator, lies in the
boundary algebra. He inferred from this that, to all orders
in perturbation theory, all bulk operators are represented
in the boundary algebra at any time.7 We view this line
of reasoning (which can also be applied to the HKLL
reconstruction), as well as the BBPR reconstruction
[36,37], as strongly supporting the nebulon hypothesis.
However, since the boundary Hamiltonian (when expressed

7He allowed, however, that beyond perturbation theory it
might not be the case that the boundary algebra is complete in
this sense. But such incompleteness, were it to be the case, would
not be incompatible with BU, which refers only to the unitary
evolution of the boundary algebra, be it compete or not.
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in terms of the canonically normalized metric perturbation)
is inversely proportional to the gravitational coupling κ,
the operation of squashing to a single time slice, and the
projection onto the ground state, are nonperturbative in the
coupling, so that the realization of the nebulon on a single
time slice may be essentially nonperturbative.
It should be further noted that the perturbative analysis of

“gravitational splitting” in [39,40] casts doubt on the
existence of a perturbative nebulon.8 It was shown there
that, to first order in κ, inequivalent states can be indis-
tinguishable outside some compact set U. These states are
constructed in [39] by acting on a “split vacuum” with
operators that are dressed so as to be gauge invariant to first
order in κ, and in such a way that observables localized
outside of U are sensitive to only the Poincaré charges of
these states. This seems to imply that the algebra of
operators outsideU, and in particular the boundary algebra,
does not contain observables that can distinguish these
different states, and hence that the boundary algebra must
not be complete. This conclusion is in tension with BU, and
with what is known about bulk reconstruction in AdS/CFT,
but there is no contradiction: the splitting analysis was
perturbative on one time slice, whereas the boundary time
evolution that plays a role in BU and bulk reconstruction, or
translation of bulk operators to the boundary [24], is
nonperturbative.
A caveat should be attached to any perturbative dis-

cussion of this sort: the notion of a bulk operator satisfying
bulk microcausality, i.e., commuting with operators at
spacelike related points, apparently cannot be defined
on the entire Hilbert space of the theory [27,41].
Instead, it was argued in [41] that local bulk observables
are defined only on a semiclassical subspace of the full
quantum gravity theory Hilbert space. This subspace, was
called the code subspace, because it appears that the
encoding of bulk quantum information in the boundary
algebra is redundant, in the manner of a quantum error-
correcting code (QEC). In particular, the HKLL construc-
tion can be carried out restricting to a single “causal
wedge” of AdS (and this can be generalized to a
reconstruction in an entanglement wedge of a deformed
spacetime [42]). Since a given bulk point can lie in many,
overlapping causal wedges, one obtains many inequivalent
boundary representatives for the same bulk operator. Be
that as it may, this redundant encoding aspect of holog-
raphy presents no problem for BU.

C. AUX vs Nebulon

Reference [11], “An Apologia for Firewalls,” gave an
argument involving an auxiliary system, AUX, purporting
to demonstrate that purification of Hawking radiation by
nebulous d.o.f. could not solve the BIP, since it would be

inconsistent with unitary evolution. The AUX system
interacts with asymptotically AdS spacetime at the boun-
dary, coupling to it only via the boundary value of a bulk
scalar field; i.e., AUX couples only to a single trace, scalar
primary operator in the CFT dual to the gravity theory. Via
this interaction, a scalar Hawking quantum can be
absorbed, its energy being transferred to an infinitely large
AUX reservoir from which it will never return. If then a
large black hole is formed from a pure state, it can
evaporate completely, depositing all of the initial energy
in the AUX reservoir. Since the entire evolution is unitary,
the entropy of the AUX state must vanish.9

The argument in [11] was that since AUX couples only
to the scalar Hawking quanta, and not to any nebulous d.o.f.
that might have purified the Hawking quanta, the AUX
quanta must inherit the entropy of the Hawking quanta, and
therefore AUX can not wind up in a pure state, unless the
Hawking quanta taken together, by themselves, are in a
pure state. Reference [11] draws the conclusion that there
must be a firewall at the black hole horizon that precludes
the entanglement of Hawking quanta with behind-horizon
partners. However, this conclusion does not follow from the
assumptions. As the black hole shrinks, and the temper-
ature decreases, the scalar field quanta interact with the
gravitational field, and hence, if only indirectly, with
everything. Any entanglement between scalar and nebulon
d.o.f. will be channeled into the extracted scalar quanta as
the system cools. That is, the entanglement between the
scalar quanta and the nebulons will be extracted into AUX
through the scalar channel. A simple analogy makes this
transparent: consider a gas mixture of helium and neon in a
zero entropy state that looks like a high temperature
equilibrium state, and imagine cooling the gas by coupling
an auxiliary refrigerant AUX, able to absorb kinetic energy
of only the neon atoms at the walls of the container. Despite
the entanglement of the neon with the helium atoms, and
despite the fact that AUX couples only to the neon, it is
obvious that once the atoms have cooled to zero temper-
ature (and assuming the ground state has zero entropy),
AUX winds up in a pure state.

VI. NO-CLONING CONSTRAINTS

The nebulon avatar mechanism for resolving the BIP
posits that the same quantum information can “simulta-
neously” take more than one form in a single global
quantum state. For example, a particle can be correlated
with two different subsystems, using either of which the
same correlation information can be measured. The idea
behind this is that the Wheeler-DeWitt equation may
enforce redundant encoding of the quantum information.

8We thank Steve Giddings for calling our attention to this
issue.

9In the scenario of Ref. [11] the black hole was only allowed to
evaporate down to another stable black hole, much smaller than
the initial one. For rhetorical simplicity, here we allow the black
hole to evaporate completely.
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This mechanism was proposed in [21] and illustrated with
an example involving four spins. However, that example
involves only Abelian observable algebras, which are
inadequate for quantum state tomography (and for describ-
ing the physics at hand), and linear algebra imposes very
strong constraints on the structure of redundant encoding
for non-Abelian algebras. Such constraints are captured by
the algebraic no-cloning theorem (ANC) [41]. In this
section we review the ANC, and then explain how the
nebulon avatar mechanism might evade it.

A. The algebraic no-cloning theorem

In the framework of Dirac constrained quantization,
the physical Hilbert space Hphys is the subspace of a
“kinematical” Hilbert space Hkin that is annihilated by
the diffeomorphism constraints,

Hphys ¼ fjψi ∈ HkinjCjψi ¼ 0g; ð10Þ

where C represents the constraints, which generate gauge
transformations. Now suppose Hkin is composed of two
tensor factors,

Hkin ¼ HA ⊗ HB: ð11Þ

In the gravity setting, we have in mind that one factor
corresponds to the kinematic d.o.f. in the near boundary
region, and the other corresponds to the d.o.f. deeper in the
bulk. But at the moment we are just concerned with the
algebraic structure.
We are interested in an algebra A of physical operators,

i.e., operators that commute with the constraints C and
therefore map the space of physical states to itself. The
ANC states:

If A is measurable on both tensor factors, then it can
only be an Abelian algebra.

What it means for A to be measurable on the tensor factor
HA is that, for every operator O ∈ A, there exists an
operator OA acting on HA such that

Ojψi ¼ ðOA ⊗ IBÞjψi ð12Þ

for all physical states jψi ∈ Hphys.
10 A similar definition

applies to measurability in the other tensor factor, HB. The
proof of the ANC is trivial (as is that of the classic no-
cloning theorem of quantummechanics [43]): Consider any
two operators in the algebra, and represent one of them on
one tensor factor as in (12), and the other one on the other
tensor factor. The two representatives commute, simply
because they act on different tensor factors. By hypothesis,
the action of the representatives on the physical states is the

same as that of the original operators, so this implies that all
of the operators in A must commute when acting onHphys.

B. How gravity bypasses the ANC

The ANC appears to present an insurmountable obstruc-
tion to our proposed resolution of However, the situation in
quantum gravity does not conform to all of the assumptions
of the ANC theorem. To identify the wrong assumption, we
consider the algebra of Poincaré charges (ADM energy,
momentum etc.) of asymptotically flat spacetime. This
algebra is non-Abelian, but every operator in it can be
expressed both as a bulk integral and as a surface integral. It
would thus seem that the Poincaré charges are measurable
in both the near-boundary tensor factor and the bulk tensor
factor. Indeed, this fact was recently exploited by Donnelly
[44], in the linearized theory, to implement quantum state
tomography of single-particle bulk states via boundary
measurements.
How is the above observation about the Poincaré charges

to be reconciled with the ANC? We suppose that the
reconciliation must be that the “second copy” of the
observables, i.e., the bulk version, is not actually fully
contained on a separate (kinematic) tensor factor, because
the bulk integral must actually go all the way to infinity,
since otherwise it is not even gauge invariant. Similarly, in
the case of the nebulon, we suppose it is because of
gravitational dressing required to turn the resonance into a
gauge-invariant observable. It has been proved by Donnelly
and Giddings [23], using a perturbation expansion in
Newton’s constant,11 that for any operator with nonzero
Poincaré charge such gravitational dressing always
extends to infinity.12 Put slightly differently, this dressing
theorem—which has also been extended to asymptotically
AdS gravity [24]—implies that the division of kinematic
Hilbert space into a near-boundary tensor factor and bulk
tensor factor does not pass to the level of the algebra of
gauge invariant observables. The theorem asserts that there
do not exist any gauge-invariant observables (with nonzero
asymptotic charges) acting on the bulk tensor factor alone,
since all such observables extend to the boundary.

VII. INFALLER PARADOX

We turn in this section to a brief consideration and
critique of the infaller paradox [11,45]. The infaller para-
dox is based on the supposition that black hole evaporation
is a unitary process, and the argument goes as follows.

10This is equivalent to the requirement that the expectation
values of O and OA ⊗ IB agree for all physical states.

11The expansion is really in the ratio of a relevant energy to the
Planck energy. As such, the result applies to the observables
acting on a class of low energy states.

12Poincaré charges are given by surface integrals at infinity, so
that if an operator does not extend to infinity, it will commute
with all the Poincaré charges and hence, since the Poncaré group
has no Abelian invariant subgroup, the operator cannot carry any
Poincaré charge.
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After a black hole has radiated more than half of the
Hawking radiation (i.e., past the Page time), each sub-
sequent Hawking quantum qmust be essentially maximally
entangled with the earlier radiation. Moreover, Alice, who
is hanging around outside the black hole, can distill from
the earlier radiation a special qubit s that has extremely
high probability of being maximally entangled with a
particular subsequent Hawking quantum q. With this
special qubit s in hand, Alice can choose to measure either
the joint state of sq or the state of q̃q, where q̃ is the partner
behind the horizon with which q is strongly entangled. This
measurement takes place in a semiclassical region of
spacetime, and in a setting where gravitational effects
are negligible, and quantum gravity subtleties can be
ignored, so ordinary local quantum field theory should
correctly describe the results of Alice’s measurements.
Subtleties of diffeomorphism invariance, dressed operators,
and the quantum gravity Hilbert space, seem to be
irrelevant for this measurement part of the argument. But
the double entanglement of q with both s and q̃ is
impossible in quantum mechanics. So, assuming Alice
can indeed possess the special qubit s, and barring a
breakdown in local, low energy effective field theory (such
as that explored in [46]), one must conclude that q cannot
after all be strongly entangled with q̃. But such entangle-
ment is inevitable in the regular vacuum, so it follows that
there must be a “firewall” rather than a smooth vacuum at
the horizon.
The weak link in this infaller paradox reasoning is the

argument that Alice can possess the special qubit s. This
link goes far beyond the assumption that local quantum
field theory should hold good in a local region of spacetime
where Alice’s measurements of sq or q̃q take place. Indeed,
it relies on treating the Hilbert space of black hole plus
radiation like an ordinary quantum system, without gravity.
The Hilbert space is taken to have the form Hbh ⊗ Hrad,
and the radiation d.o.f. are further factorized into the early
radiation an the late radiation, Hrad ¼ Hrad;e ⊗ Hrad;l.
Invoking Page’s theorem [47,48], the argument asserts
that, past the Page time (and assuming a randomness in
the structure of the state), each of the later Hawking quanta
in Hrad;l must be essentially maximally entangled with the
earlier ones in Hrad;e. Further, the argument supposes that
Alice knows precisely the initial state that formed the black
hole, and knows precisely the Hamiltonian of the system,
so that in fact she knows precisely how q is entangled with
Hrad;e, and therefore she can perform a unitary operation on
the early radiation to distill a special qubit s that she knows
must be maximally entangled with q.
Two factors related to diffeomorphism invariance render

this argument dubious in the gravitating case. First, as
discussed above, the Hilbert space is not factorized in
the way that has been assumed. This means not only
that the quantum states cannot be characterized as they are
in the formulation of the paradox, but also the very

assumption that the Hawking radiation must be self
purifying, with no involvement of nebulons, is not justified.
Second, the protocol for distillation on the early radiation
must be diff invariant; in particular, the identification of the
spacetime location of quanta acted on, and how they are
acted on, must be diff invariant. But diff invariant observ-
ables (with nonzero asymptotic charges) require dressing
that reaches to the boundary [23,24]. This means that the
distillation protocol implicates both local and global
gravitational d.o.f. other than the ideal QFT Hawking
quanta to which the original argument applies, and it calls
into question whether Alice could possibly carry out the
distillation, even in principle. Moreover, the Hawking
quantum with which a particular special distilled qubit is
supposed to be perfectly entangled must also be identified
in a gauge invariant fashion via some gauge invariant
observable. Unlike for Alice’s measurements themselves
on the Hawking quanta, it is incorrect to argue that these
quantum gravitational effects are irrelevant.
In short, the effects of gravity and diffeorphism invari-

ance turn the distillation protocol of Alice from a quasilocal
to a global procedure, and although the effects that make it
global may each be perturbatively small in the gravitational
coupling, the protocol requires her to keep track of a huge
amount of information, to very high precision. It seems
perfectly possible that the global aspect of her task cannot
be neglected, and that the upshot is that she simply cannot
possess a special qubit that would violate local QFT near
the horizon. That is, the delicate task of distilling the special
qubit s and identifying the particular Hawking qubit q with
which it is supposed to be maximally entangled may be not
only exceedingly challenging technologically, but may
simply be impossible in principle, on account of the
gravitational physics.

VIII. CLOSING REMARKS

The main points we would like to emphasize are the
following: 1) The boundary unitarity argument of Marolf
appears sound, and the fact that it does not apply in the
classical limit is understood to result from a lack of
analyticity that has no quantum counterpart. 2) The black
hole information paradox is just a special case of a more
general boundary information paradox. 3) The resolution of
the paradox(es) does not require a breakdown of known
physics such as a firewall at the horizon [11] or a breakdown
of local quantum field theory as in nonviolent nonlocality
[46], but rather just a better accounting for the impact of
diffeomorphism invariance on the global structure of the
Hilbert space and observables in quantum gravity.
The role of diffeomorphism invariance has been almost

completely ignored in the voluminous literature on the
information paradox. This is rather ironic given that, as
made clear by the boundary unitarity argument, it is
precisely diffeomorphism invariance that leads to the
paradox in the first place. We have argued that, as in the
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case of other famous paradoxes of physics (the twin
paradox, the Gibbs paradox, the EPR paradox…), the
resolution is found not by forbidding the paradoxical
scenario, nor by modifying the theory that led to the
paradox—rather it is found by more deeply learning the
lessons of the theory as to what is observable, and what is a
meaningful statement about the world.
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