




Event Type of relations Inference examples Inference dim.

“PersonX pays PersonY
a compliment”

If-Event-Then-Mental-State

PersonX wanted to be nice
PersonX will feel good
PersonY will feel flattered

xIntent
xReact
oReact

If-Event-Then-Event

PersonX will want to chat with PersonY
PersonY will smile
PersonY will compliment PersonX back

xWant
oEffect
oWant

If-Event-Then-Persona
PersonX is flattering
PersonX is caring

xAttr
xAttr

“PersonX makes
PersonY’s coffee”

If-Event-Then-Mental-State

PersonX wanted to be helpful
PersonY will be appreciative
PersonY will be grateful

xIntent
oReact
oReact

If-Event-Then-Event

PersonX needs to put the coffee in the filter
PersonX gets thanked
PersonX adds cream and sugar

xNeed
xEffect
xWant

If-Event-Then-Persona
PersonX is helpful
PersonX is deferential

xAttr
xAttr

“PersonX calls the police”

If-Event-Then-Mental-State
PersonX wants to report a crime
Others feel worried

xIntent
oReact

If-Event-Then-Event

PersonX needs to dial 911
PersonX wants to explain everything to the police
PersonX starts to panic
Others want to dispatch some officers

xNeed
xWant
xEffect
oWant

If-Event-Then-Persona
PersonX is lawful
PersonX is responsible

xAttr
xAttr

Table 1: Examples of If-Event-Then-X commonsense knowledge present in ATOMIC. For inference dimensions, “x” and “o” pertain to
PersonX and others, respectively (e.g., “xAttr”: attribute of PersonX, “oEffect”: effect on others).

“agent” or the “theme” of the event. We omit cases where the
combination is unlikely to lead to commonsense anticipa-
tion. For example, it is usually only the “agent” who causes
the event, rather than the “theme”, thus we do not consider
that branching. We later exploit this hierarchical structure of
inferential relations for designing effective neural network
architectures that can learn to reason about a given event.

Data

To build ATOMIC, we create a crowdsourcing framework
that allows for scalable, broad collection of If-Then knowl-
edge for given events.

Compiling Base Events

As base events for our annotations, we extract 24K com-
mon event phrases from a variety of corpora. To ensure
broad and diverse coverage, we compile common phrases
from stories, books, Google Ngrams, and Wiktionary id-
ioms (Mostafazadeh et al. 2016; Gordon and Swanson
2008; Goldberg and Orwant 2013). Following Rashkin et
al. (2018), we define events as verb phrases with a verb
predicate and its arguments (“drinks dark roast in the morn-
ing”). If a verb and its arguments do not co-occur frequently

enough,2 we replace the arguments with a blank placeholder
(“drinks in the morning”). In order to learn more gen-
eral representations of events, we replace tokens referring
to people with a Person variable (e.g. “PersonX buys Per-
sonY coffee”). In future work, other types of variables could
be added for other entity references (e.g. “PersonX moves to
CityX”).

For events with multiple people explicitly involved, we
run a short annotation task to help resolve coreference chains
within phrases. Disambiguating the participants is impor-
tant, since it can drastically change the meaning of the event
(e.g., “PersonX breaks PersonX’s arm” vs. “PersonX breaks
PersonY’s arm” have very different implications). Three
workers selected whether each “Person” mention in an event
refers to PersonX, PersonY, or PersonZ, and we keep base
events with combinations that at least two workers selected
as valid (ppa=77%).

Crowdsourcing Framework

To ensure scalability, we implement a free-form text annota-
tion setup which asks workers to write answers to questions
about a specific event. We chose free-text over structured or
categorical annotation for two reasons. First, categorical an-

2We use frequency thresholds of 5 and 100 for stories and blogs,
respectively, and limit ourselves to the top 10,000 events in Google
Ngrams.





Dataset Model xIntent xNeed xAttr xEffect xReact xWant oEffect oReact oWant

DEV

9ENC9DEC 8.35 17.68 5.18 10.64 5.38 13.24 6.49 5.17 12.08
NearestNeighbor 6.14 11.36 3.57 5.81 4.37 7.73 8.02 6.38 8.94

EVENT2(IN)VOLUNTARY 7.51 17.80 5.18 10.51 4.78 12.76 7.04 4.84 12.48
EVENT2PERSONX/Y 7.31 17.08 5.26 9.78 4.83 12.14 6.38 4.84 11.45
EVENT2PRE/POST 7.58 17.17 – 10.50 4.73 11.78 6.71 4.87 11.52

TEST

9ENC9DEC 8.68 18.15 5.18 10.34 5.43 14.50 6.61 5.08 12.73
NearestNeighbor 6.64 11.35 3.37 5.52 4.59 8.17 7.58 5.88 9.18

EVENT2(IN)VOLUNTARY 7.94 18.22 5.02 9.78 4.78 13.67 7.16 4.71 13.23
EVENT2PERSONX/Y 7.67 17.33 5.09 9.45 4.82 13.19 6.59 4.68 11.70
EVENT2PRE/POST 7.96 17.42 – 9.79 4.75 12.85 6.90 4.76 11.97

Table 3: Average BLEU score (reported as percentages) for the top 10 generations for each inference dimension: comparison of
multitask models to single-task model. Note that BLEU scores are known to be brittle to generations worded differently from
the references (Liu et al. 2016). We embolden the best performing model for each dimension.

Model xNeed xIntent xAttr xEffect xReact xWant oEffect oReact oWant average

9ENC9DEC 48.74 51.70 52.20 47.52 63.57 51.56 22.92 32.92 35.50 45.32

EVENT2(IN)VOLUNTARY 49.82 61.32 52.58 46.76 71.22 52.44 26.46 36.04 34.70 47.93
EVENT2PERSONX/Y 54.04 53.93 52.98 48.86 66.42 54.04 24.72 33.80 35.08 46.41
EVENT2PRE/POST 47.94 57.77 52.20 46.78 72.22 47.94 26.26 34.48 35.78 46.76

gold ATOMIC annotations 81.98 91.37 78.44 83.92 95.18 90.90 84.62 86.13 83.12 86.18

Table 4: Precision at 10 (%) of generated inferences as selected by human judges for four models, averaged and broken down
by dimension. We embolden the best performing model for each dimension. EVENT2(IN)VOLUNTARY outperforms all other
models significantly (p < 0.05). For comparison, we show precision of gold ATOMIC annotations. Note that there is a varying
number of gold annotations per event/dimension, while all models were constrained to make 10 predictions.

h. The target is represented by a sequence of vectors
t = {t0, t1, . . .}, where each ti ∈ R

h

dec
is based on a

learned embedding. The decoder then maximizes p(ti+1 |

h
(i)
dec

, t0, . . . , ti) = softmax(Wo × GRU(h
(i)
dec

, ti) + bo).

Single vs. Multitask Learning We experiment with var-
ious ways to combine the commonsense dimensions with
multitask modeling. We design models that exploit the hier-
archical structure of the commonsense dimensions (depicted
in Figure 2), sharing encoders for dimensions that are re-
lated. Specifically, we explore the following models:

• EVENT2(IN)VOLUNTARY: We explore grouping dimen-
sions together depending on whether they denote volun-
tary (e.g., xIntent, oWant) or involuntary (e.g., xReact,
oEffect) events. This model has one encoder for four “vol-
untary” decoders, as well as another encoder for five “in-
voluntary” decoders.

• EVENT2PERSONX/Y: We dissociate dimensions relating
to the event’s agent (PersonX) from those relating to the
event’s theme (others, or PersonY). This model has one
encoder for six “agent” decoders as well as another en-
coder for three “theme” decoders.

• EVENT2PRE/POST: We split our dimensions based on
whether they are related to causes (xNeed, xIntent) or ef-

fects (e.g., xWant, oEffect, xReact). In this model, there
are two encoders and eight decoders.5

As a single task baseline, we train nine separate encoder-
decoders, one for each dimension (9ENC9DEC).

Training Details To test our models,
we split seed events into training, validation, and test sets

(80%/10%/10%), ensuring that events that share the same
first two content words are in the same set.

As is common in generation tasks, we minimize the cross
entropy of the distribution over predicted targets compared
to the gold distribution in our data.6 During multitask train-
ing, we average the cross entropy of each task. Since multi-
ple crowdworkers annotated each event, we define our train-
ing instances to be the combination of one worker’s anno-
tations. During experiments, we use the 300-dimensional
GloVe embeddings, yielding an encoder input size of ienc =
1324 once concatenated with the 1,024-dimensional ELMo
embeddings. In the encoder, ELMo’s character-level model-
ing allows for an unlimited vocabulary. We set the encoder
and decoder hidden sizes to henc = 100 and hdec = 100.

5We omit xAttr in this model, as it is trivially covered in the
single task baseline.

6All our experiments were run using AllenNLP (Gardner et al.
2017).





knowledge—much of which is taxonomic in nature7—
ATOMIC focuses on sequences of events and the social
commonsense relating to them. This focus means that while
events and dimensions in ATOMIC loosely correspond to
concepts and relations from ConceptNet, individual dimen-
sions, such as intents, can’t be mapped cleanly onto any
combination of ConceptNet’s relations. The correspondence
is neither one-to-one nor one-to-many. Still, in order to
empirically investigate the differences between ConceptNet
and ATOMIC, we used the following best-effort mappings
between the dimensions and relations:

• Wants: MOTIVATEDBYGOAL, HASSUBEVENT, HAS-
FIRSTSUBEVENT, CAUSESDESIRE

• Effects: CAUSES, HASSUBEVENT, HASFIRST-
SUBEVENT, HASLASTSUBEVENT

• Needs: MOTIVATEDBYGOAL, ENTAILS, HASPREREQ-
UISITE

• Intents: MOTIVATEDBYGOAL, CAUSESDESIRE, HAS-
SUBEVENT, HASFIRSTSUBEVENT

• Reactions: CAUSES, HASLASTSUBEVENT, HAS-
SUBEVENT

• Attributes: HASPROPERTY

We then computed the overlap of <event1,

dimension, event2> triples in ATOMIC with the
<concept1, relation, concept2> triples in
ConceptNet. We found the overlap to only be as high as 7%
for wants, 6% for effects, 6% for needs, 5% for intents, 2%
for reactions, and 0% for attributes. Moreover, only 25%
of the events in ATOMIC are found in ConceptNet. Thus,
ATOMIC offers a substantial amount of new inferential
knowledge that has not been captured by existing resources.

Related Work
Descriptive Knowledge from Crowdsourcing Knowl-
edge acquisition and representation have been extensively
studied in prior research (Espinosa and Lieberman 2005;
Speer and Havasi 2012; Lenat 1995). However, most prior
efforts focused on taxonomic or encyclopedic knowledge
(Davis and Marcus 2015), which, in terms of epistemol-
ogy, corresponds to knowledge of “what”. Relatively less
progress has been made on knowledge of “how” and “why”.
For example, OpenCyc 4.0 is a large commonsense knowl-
edge base consisting of 239,000 concepts and 2,039,000
facts in LISP-style logic (Lenat 1995), known to be mostly
taxonomic (Davis and Marcus 2015). In fact, only 0.42% of
ATOMIC events appear in OpenCyc, which we found con-
tains 99.8% relations that are either taxonomic (isA), string
formatting relations, or various definitional relations. A typ-
ical example is shown below:

(genls (LeftObjectOfPairFn

SuperiorLobeOfLung) LeftObject)

(isa (WordNetSynsetReifiedFn

460174) WordNetSynset)

(genls (AssociatesDegreeInFn

EngineeringField) AssociatesDegree)

7While ConceptNet includes various inferential relations (e.g.,
entails, causes, motivated by), their instances amount to only about
1% of ConceptNet.

Importantly, these LISP-based representations of OpenCyc
are non-trivial to integrate into modern neural network based
models, as it is not straightforward to compute their embed-
ding representations. In contrast, the natural language rep-
resentations in ATOMIC can be readily used to obtain their
neural embeddings, which can also be mixed with pretrained
embeddings of words or language models.

Similarly, ConceptNet (Speer, Chin, and Havasi 2017)
represents commonsense knowledge as a graph that con-
nects words and phrases (concepts) with labeled edges (re-
lations). While ConceptNet provides relatively more infer-
ential relations (e.g., “entails”, “causes”, “motivated by”),
they still amount to only about 1% of all triples in the graph.
In contrast, ATOMIC is centered around events represented
with natural language descriptions. While events and dimen-
sions in ATOMIC loosely correspond to concepts and rela-
tions in ConceptNet, the two represent very different infor-
mation and ultimately have relatively small overlap as dis-
cussed in the Results section.

Recent work by Gordon and Hobbs (2017) compiles a list
of nearly 1,400 commonsense axioms in formal logic, which
connect abstract concepts to each other. For example, they
define an event as being made up of subevents, ex-
pressed by:

(forall (e)

(iff (event e)

(or (exists (e1 e2)

(and (nequal e1 e2)(change’ e e1 e2)))

(exists (e1)

(subevent e1 e)))))

These axioms are abstract in that they are not grounded with
respect to specific objects, events, or actions. In contrast, our
work presents 880K triples of commonsense knowledge ex-
pressed in natural language and fully grounded with con-
crete events, actions, mental states.

The recent work of Rashkin et al. (2018) introduced a
commonsense inference task about events and mental states:
given an event described in natural language, the task is to
generate the reaction and intent of actors involved in the
event. ATOMIC is inspired by this work, but substantially
scales up (i) the crowdsourcing procedure to nine dimen-
sions per event, and (ii) the size of the knowledge graph—
from 77K events in Event2Mind to 300K events in ATOMIC.
Moreover, while the primary focus of (Rashkin et al. 2018)
was inferential knowledge, its scope was limited to mental
states.

Acquired Knowledge from Extraction and Induction
More generally, the goal of moving beyond static common-
sense knowledge to enable automated commonsense rea-
soning has inspired much research. Several projects have
sought to extract commonsense inferential rules from nat-
urally occurring resources such as large corpora (Schubert
2002), movie scripts (Tandon, de Melo, and Weikum 2017),
and web how-tos (Chu, Tandon, and Weikum 2017). Such
systems must inevitably deal with reporting bias (Gordon
and Van Durme 2013), or the fact that the frequency and
selection of phenomena represented in natural language sys-
tematically differ from what occurs in the real world. Other



approaches have sought to induce commonsense rules from
large knowledge bases (Galárraga et al. 2013; Yang et al.
2015). While these approaches have also had success, the
choice of schema and information represented in current
knowledge bases limits the scope of propositions such sys-
tems can learn.

Scripts and Narrative Reasoning Other work has fo-
cused more specifically on representing and reasoning about
sequences of events, similarly to ATOMIC. Early work on
event sequences studied scripts, a kind of structured repre-
sentation for prototypical sequences of events (Schank and
Abelson 1977). More recently, narrative event chains have
been proposed as a similar formalism for prototypical se-
quences of events that may be learned from raw text (Cham-
bers and Jurafsky 2008). This work additionally proposed
the Narrative Cloze Test as a benchmark for story under-
standing. In contrast to narrative event chains, the ROC Sto-
ries Corpus crowdsources event sequences represented as
natural language stories rather than using a specific for-
malism (Mostafazadeh et al. 2016). Additionally, the Story
Cloze Test adapts these stories into a new benchmark by re-
quiring systems to choose between the true and a false end-
ing to the story. Our work interpolates between these two
approaches by representing events in natural language while
structuring the relationships between events into the edges
of a graph. The Choice of Plausible Alternatives (COPA)
task offers a similar benchmark for commonsense under-
standing of events and their relationships (Roemmele, Be-
jan, and Gordon 2011). In COPA, a system is presented a
premise and two alternatives that might have a causal rela-
tionship with the premise. While COPA, like ATOMIC, rep-
resents events as free-form text with structured relationships,
it covers only a limited number of relations (cause and ef-
fect) and is smaller in scale (contains only 1,000 instances).

Conclusion

We present ATOMIC, an atlas of everyday commonsense in-
ferential knowledge about events described in natural lan-
guage and associated with typed if-then relations. ATOMIC

consists of over 300k events associated with 877k infer-
ential relations, making it the largest knowledge graph of
its kind. Our crowdsourcing framework gathers annotations
in the form of free-form textual responses to simple ques-
tions which enables large-scale high quality collection of
commonsense about events. We also present neural network
models that can learn to reason about previously unseen
events to generate their likely causes and effects in natural
language.
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