Shimmy: Shared Memory Channels for High Performance Inter-Container
Communication

Marcelo Abranches; Sepideh Goodarzy; Maziyar Nazari; Shivakant Mishra, Eric Keller
University of Colorado, Boulder

Abstract

With the increasing need for more reactive services, and the
need to process large amounts of IoT data, edge clouds are
emerging to enable applications to be run close to the users
and/or devices. Following the trend in hyperscale clouds, ap-
plications are trending toward a microservices architecture
where the application is decomposed into smaller pieces that
can each run in its own container and communicate with
each other over a network through well defined APIs. This
improves the development effort and deployability, but also
introduces inefficiencies in communication. In this paper, we
rethink the communication model, and introduce the ability to
create shared memory channels between containers support-
ing both a pub/sub model and streaming model. Our approach
is not only applicable to the edge clouds but also beneficial in
core cloud environments. Local communication is made more
efficient, and remote communication is efficiently supported
through synchronizing shared memory regions via RDMA.

1 Introduction

Cloud computing has had a tremendous impact on the way
applications are built and deployed. While largely centralized
in hyperscale data centers, this impact is poised to extend to
the edge. This move has already started with the emergence
of cloud and co-location providers focused on the edge, such
as Vapor.io [14] and EdgeConneX [6]. The reason is clear,
in being closer to the users, edge clouds can provide more
reactive services, and in being closer to the devices, edge
clouds can process the data closer to the source, resulting in a
more efficient design.

In the hyperscale clouds, containerization (e.g., with
Docker [4] or rkt [11]) is quickly becoming widely used
because they provide a lightweight environment which sup-
ports isolation of resources. The major public cloud com-
puting providers, including Amazon Web Services [1], Mi-
crosoft Azure [10], and Google Cloud Platform [7] have em-

*All three authors contributed equally to this paper

braced container technology with hosted container services
built around container orchestration technology such as Ku-
bernetes [9] or Mesos [2].

With this, application developers have already been rethink-
ing the design of applications, namely toward microservices.
This design promotes breaking applications into smaller, inde-
pendent parts which can communicate through a well defined
interface. In doing so, this enables faster development cycles,
better failure isolation, and finer grained scalability.

The communication plays a key role in this new design.
Application developers prefer to have a low latency platform
to make microservice containers to communicate with each
other as quickly as possible. Similarly, cloud providers want
to utilize their resources as much and as efficiently as possible.
Efficiency becomes more important in edge clouds, where
resources may be more limited than core clouds.

While developers are embracing new design principles,
such as with the 12 factor app [13], the communication chan-
nels are largely assumed to need to follow traditional means.
In particular, applications continue using Berkeley sockets
with TCP/IP, but that isn’t really a requirement from the under-
lying infrastructure. In fact, container orchestration includes
a layer (e.g., the CNI [3] layer with technologies such as
Weave [15] and Istio [8]) which map between the traditional
network interfaces applications use, and the flexible and dy-
namic (and largely local area) communication the container
systems are deployed around. Of course, this layer introduces
extra latency and other inefficiencies. Recent work demon-
strated the ability to use RDMA to transfer data between
containers more efficiently [20], but we ask if there’s some-
thing more.

In this paper, we propose that we rethink the communica-
tion interface of microservices, as we have with the rest of the
design of applications. In particular, we propose that we build
around a shared memory channel. That is, we treat contain-
ers as connected via a collection of shared memory channels
that can be either a bi-directional stream (as in TCP/IP) or a
publish/subscribe channel. This optimizes local communica-
tion (between containers co-located on the same server), but

can also support fast and efficient remote communication by
synchronizing memory regions via RDMA technology.

Shared memory as a widely used network channel is im-
practical as a traditional means being that we traditionally
need to support independently operating ‘machines’, which
TCP/IP is ideally suited for. But with modern infrastructures
we can assume these applications are run within a container
orchestration framework, which provides control over both the
communication interface, and the communication medium,
which makes this proposal practical.

In the rest of this paper, we provide a motivating example
edge computing application which follows the model of multi-
ple, communicating containers (Section 2). We then overview
our architecture (Section 3), and how we broker the com-
munication (Section 4) and setup shared memory channels
(Section 5). We then discuss our initial prototype (Section 6),
which is a first step toward feasibility, and evaluation (Sec-
tion 7) which demonstrates the lower latency (important for
edge computing). We then wrap up with conclusions and
future work (Section 8).

2 Motivating Example

In this section we are going to talk about an example in
which we will identify the necessity of existence of a high-
throughput low-latency communication in a pipeline of con-
tainers whether in core clouds or edge gateways. Let’s assume
we have an image processing application consists of multiple
containers, in which an image, in every step, will go through
an application running in a container and the generated result
will be the input for another container or set of containers.

In Figure 1 we have the image raw data as an input to
the first container which will extract metadata and put it in
a good shape for processing. The result will be passed as an
input to the second container which will process metadata.
The third one will be either a container playing role as an
object detection algorithm application (Tensorflow) or, for the
sake of user privacy, blurring the face of a person which is
present in the picture. In the next step, based on the previous
step, we will either resize the image provided by the object
detection application and output it if the data comes from
the object detection application container or run the object
detection algorithm on the blurred image at first and then, we
will resize the result image and output it. This is sort of tree-
structured pipeline of containers in which we need passing
data as quickly as possible between them [19].

These types of applications motivated us to rethink the com-
munication model to provide one that is efficient for local and
remote communication and support streaming and pub/sub
models of data transfer.

Process metadata

Object detection

I

Extract metadata

Face blurring

Object detection

Image resize

Figure 1: A motivating example showing an image processing
pipeline

3 Overview

Shown in Figure 2 is an overall view of how the shared mem-
ory channels fit into the overall system. We assume that ap-
plications are run in a container orchestration system such
as Kubernetes. These systems consist of hosts that can run
containers. Each host runs a container management daemon
(e.g., a docker daemon) which provides an interface to the
orchestrator to run a container on that specific host. Running
the infrastructure is the orchestrator which manages what con-
tainers should be running, and determining which hosts to run
them on (via the scheduler). This functionality is exposed to
administrators via an API.

We add two new components to this overall orchestration
system, a single instance of Shimmy agent running on each
host shared by all containers on the host (Figure 2), and the
Shimmy master, which there is logically only one. We intro-
duce the ability for admins to define new shared memory com-
munication channels as part of the overall multi-container ap-
plication. The Shimmy master is then responsible for tracking
the container deployments and interfacing with the Shimmy
agents on the hosts in order to ensure that the communication
channels that were defined are established between the asso-
ciated containers (whether local or remote). As future work,
we envision the schedules becoming channel aware and be
designed to optimize the overall amount of local communi-
cation. In the following sections we will detail the Shimmy
master and Shimmy agent.

4 Shared Memory Channel Object

Our design is based around the idea that container orches-
tration frameworks are becoming very much the operating
system of the cloud. That is, applications consist of multi-
ple containerized services that interconnect with one another
and are deployed and managed by an orchestrator. With this,

Container Orchestration API

Controllers

Orch daemon
Container daemon

Container Container Container
1 2 3

Figure 2: System Architecture (red highlighted components are
where Shimmy sits, the green darkened line represents a pub/sub
channel with container 1 as publisher and 2 and 3 as subscribers)

Orch daemon
Container daemon

we envision that rather than applications dictating their com-
munication patterns (e.g., by explicitly specifying endpoints
within the application code), they are described through the
configuration system which describes the overall application.

To explain, consider how one aspect of networking in Ku-
bernetes works today. A Service is a resource type which
provides a single entry point to a group of Pods (contain-
ers) running the same application. To create a Service, you
define a yaml file which specifies, among other things, the
network information (port numbers). This yaml file also spec-
ify a selector (e.g., app:myappname, where app is the key and
myappname is the value), which is used to match against Pods.
Any Pod that species that key-value pair as a tag becomes
associated with that service (meaning, it is considered in the
set of Pods which the Service provides an entry to). Istio [8]
extends this concept to configure proxies running in side cars
to the containers that can apply access control rules to the
traffic. In each case, it was outside of the application code
where aspects of the connectivity were defined.

Likewise, we envision a new resource type, SharedMemo-
ryChannel, which can be described through a yaml file which
would include (in Kubernetes) a selector (to match against
the container names) and a type (pub/sub or stream). When
Kubernetes, in this case, deploys a Pod and matches a Shared-
MemoryChannel object, the Shimmy master would note this
and then notify the Shimmy agent on the host for which the
Pod was deployed, and then subsequently attach a shared
memory channel of the desired type to the Pod. We detail the
actions of the agent in the next section.

5 Establishing Shared Memory Channels

As previously mentioned, the Shimmy agent runs on each
server. Much like the kubelet and docker agent, it provides

the functionality necessary to perform some action on a given
host. It has a well defined API that the Shimmy master uses
to indicate what it wants done (since it has the cluster-wide
perspective, and manages the application as a whole). Here,
we outline how shared memory channels are established.

Allocating memory: The Shimmy agent is a process that
runs on the host. When a channel needs to be established on
the host it is resident on, it will allocate memory to be shared.
This is done through the shmget() system call. This call re-
turns a shm_id which identifies the shared memory region. For
pub/sub type communication, we only need one shared mem-
ory region per host (even if there are multiple subscribers) that
has a container attached to the channel. For streaming type
communication, we need to set up one shared memory region
per direction on each host which has a container attached to
the channel.

Attaching to a container: The shared memory channel is
between the process in a container and the Shimmy agent. To
make this happen, we need to break the barrier of the isolation
that containerization provides. Fortunately this is simple, and
just requires specifying that the inter-process communication
namespace can be shared between the container and the host
(done with —ipc="host” in Docker, or hostIPC=true in Ku-
bernetes). Then, the container just needs to know the shm_id
to use, which, following the principles of the 12 factor apps,
could be passed in as an environment variable.

Application interface: Internal to the application, the ap-
plication needs to initialize its end of the channel, much as it
would need to setup a network socket even with the network
interface already attached. The shm_id is needed to pass to
the operating system to indicate the shared memory region
to use. Once done, then it is simple copying into and out of
memory. The semantics of the memory region need to be
consistent, so an API is used to provide an ability to read and
write to the channel.

Synchronizing across machines: Shared memory is an
inter-process communication mechanism, and therefore is
highly efficient. In a full microservice model, some containers
that need to communicate will inevitably end up on different
hosts. To do this, we leverage RDMA technology. RDMA
enables directly copying from one region of memory from one
host to another without involving the processor. This requires
the Shimmy agent to serve as both a RDMA server and an
RDMA client. For channels involving a remote container, the
agent will continuously transfer data using RDMA.

6 Prototype

As a first step, we focused on creating the Shimmy agent, and
supporting the publish/subscribe communication type. Al-
though we have mentioned we support streaming communica-
tion type, pub/sub model is a common type of communication
in the edge platforms and it is comparable to the well-known
systems like Apache Kafka and Mosquitto. This allows us

to demonstrate setting up shared memory based communica-
tion channels between containers, supporting both local and
remote communication. We have not fully integrated into Ku-
bernetes, so, currently the application needs to do the work to
create the shared memory objects (rather than being described
in a Kubernetes configuration, which then creates the com-
munication channels transparently to applications running in
individual containers).

w Kubernetes API
ResT AP
Broker

Shared-Memory
(topic)

- 4

Figure 3: Prototype design

publisher Subscriber

Figure 3 shows the current architecture of our proposal.
The Broker (the Shimmy agent) is a python application that
is responsible for managing the creation and subscriptions
of topics. We are using the sysv_ipc library to perform tasks
related to shared memory. In order to allow publishers, sub-
scribers, and the broker to attach to common shared memory,
we are using the Kubernetes option hostIPC: True, to that all
of them share the same IPC namespace. The broker interacts
with Kubernetes API, to determine the location of containers.

The publishers and subscribers interact with the broker
using REST APIs for setting up topics and subscriptions,
and other management tasks. Data communication is done
through shared memory.

After setting up topics and subscriptions, applications use
the shared memory channels to perform the data transfer,
using the sysv_ipc libraries. If the publisher and subscriber
are co-located, they will both be accessing the same shared
memory region. If they are not, an RDMA client or server will
synchronize the memory regions between the two servers.

7 Evaluation

In the preliminary evaluation of our system we have com-
pared Shimmy with the Mosquitto message broker [16] and
with Kafka [17] as they are both well known data streaming
platforms that also use the publisher/subscriber model. We
have built docker containers for Mosquitto, Kafka, and also
for the publishers and for the subscribers in each of this en-
vironments. Mosquitto implements the MQTT protocol [18]
and uses the TCP/IP stack for communication. Kafka also
uses TCP/IP.

We compared the systems in two scenarios: local commu-
nication where publishers and subscribers were on the same

host, and remote communication, where publishers and sub-
scribers were on different hosts. For remote communication
Shimmy was using the shared memory with the RDMA syn-
chronization mechanism described in the previous sections.

7.1 Setup

We performed our tests using two Cloudlab Servers (1x Xeon
ES5-2450 processor (8 cores, 2.1Ghz), 16GB Memory (4 x
2GB RDIMMs, 1.6Ghz), 1 x Mellanox MX354A Dual port
FDR CX3 adapter w/1 x QSA adapter) running Ubuntu 16.04.
For our system we have built docker containers for the broker,
publisher, and subscriber.

The tests consisted in publishing 16 Bytes and also 100
KB messages. We measured average latency and throughput
for each system to make the subscriber receive ten thousand,
a hundred thousand and a million of messages. We do not
include the setup times (e.g topic subscriptions) in our mea-
surements for any of the systems.

7.2 Results

In Figures 4 and 5 we can see the average throughput and
latency for each system with co-located (local) publisher and
subscribers. The Shimmy Broker had better throughput and
lower latency than Mosquitto and Kafka in all the tests that
we performed due to being able to communicate via shared
memory rather than going through the kernel networking
stack. As the size of messages increases, the overhead to read
and write data in the memory channels also increases, but
even for 100 KB messages our system had better performance
than Kafka and Mosquitto.

Figure 6 shows the average throughput and latency for 16
Bytes messages when the publisher and subscriber are not co-
located, and therefore have to communicate over a network.
We can see that for remote communication, Shimmy also had
better average throughput and lower latency than Mosquitto
and Kafka.

Of course, we need to more fully evaluate the system, test-
ing the scalability and robustness, but initial results demon-
strate the potential of this approach. It should be noted that, at
this point the synchronization of the shared memory channel
is not complete as a result of which we were not able to report
reliable results for bigger message size (100KB) in remote
communication.

8 Conclusions and Future Work

As applications are moving toward the edge of the network,
closer to the end users and devices, latency is becoming a
critical factor. In this paper we proposed a re-thinking of
the communication model as we evolve the application de-
velopment and deployment model toward microservices. We
propose a model around shared memory channels that lends

= B Shimmy
s 107 [Mosquitto
] 1 Kafka
g 6
o 10
o
©
@
0 10°
=
5.4
310
ey — — -
=)
32103
o 10
£
=

2

10%T0~a 10~5 1076

Number of Messages

B Shimmy
10? 3 Mosquitto
[Kafka

o [] B

Latency (seconds)

10°

8
1074 10°5 10°6
Number of Messages

Figure 4: Throughput and latency of local communication for 16 bytes messages (Y-axis is in log scale).

10°

B Shimmy
[Mosquitto
[Kafka

Throughput (Messages/second)

JELLIEL |

10™4 10"5 1076
Number of Messages

10°

I Shimmy
[Mosquitto
] [Kafka

w -

©

c

S

(93

Sl [- -

>

v

c

13

o

©

-

-5
107 Jo~a 10°5 1076

Number of Messages

Figure 5: Throughput and latency of local communication for 100KB messages (Y-axis is in log scale).

= I Shimmy
5 10 [Mosquitto
> 1 Kafka
&
& 10°
(o))
©
@
O 10
=3
5.4
3 10
g [[
(2]
3.3
o 10
e
[

2

10°J0~a 1075 106

Number of Messages

I Shimmy
107 [0 Mosquitto
[Kafka

ol [[]]

Latency (seconds)

8
10 1074 10”5 106

Number of Messages

Figure 6: Throughput and latency of remote communication for 16 bytes messages (Y-axis is in log scale).

itself to efficient local communication. To enable remote com-
munication, we extend by synchronizing memory through
RDMA.

Our work is only a first step. There’s a great deal of work
to fully realize and evaluate this new approach. Specifically,
we intend to focus on integration into Kubernetes, first creat-
ing a SharedMemoryChannel object, and then enabling the
scheduler to be application aware — meaning, it will attempt
to optimize the amount of local communication by scheduling
containers that communicate with each other to run on the
same host.

As Shimmy will be running on Edge/Cloud environments
(possibly in multi-tenant scenarios), we will provide mech-
anism for isolating the shared memory channels. Currently,
we are integrating our system with Kubernetes policies and

SELINUX [12], so that we can control which Pods from
which namespaces can access each shared memory channel.

Besides, Shimmy agent should be able to handle concurrent
data consumption by multiple instances of an application. Let
us say we have 2 instances of a microservice component.
In pub/sub communication model, clearly both subscriber
instances have access to all of the data available in the shared
memory channel, whereas in streaming communication model
Shimmy agent will take care of concurrent access to the data
and the data consumed by an instance will not be available to
the other instance. Thus, they can do their work independently
and parallelly. We can think of it as a load balancing effort
done by the system.

Discussion

(a) what kind of feedback they are looking to receive: The
community can help us with feedback regarding how can
we improve our communication models and infrastructure to
provide a complete low latency/high throughput platform for
edge/cloud computing. What critical functionality in missing
in our current proposal? What kind of evaluation we could
perform in order to show the value of our platform? What
are other platforms that we should compare our platform
with? Are there other technologies that we could leverage
to improve our proposal? Are there other communication
models or paradigms (other than pub/sub and streaming) that
we should provide?

(b) the controversial points of the paper: In this paper
we are re-thinking how inter-container communication should
be done in a edge/cloud computing environment. Tradition-
ally, inter container communication occurs through IP overlay
networks. We propose a high-performance platform for con-
tainer communication using shared memory, on a cloud native
platform for edge clouds. We are building our platform on
the top of Kubernetes. Our model does assume that we will
move toward describing the communication patterns of an
application (where an application consists of multiple, inter-
communicating micro-services each running in containers) at
the orchestration layer (as configuration) rather than within
applications.

(c) the type of discussion this paper is likely to generate
in a workshop format: We see a trend towards the use of
kernel bypass technologies to improve network performance
(e.g. DPDK [5] and Netmap [21]). We follow this trend and
propose a lightweight mechanism for inter container com-
munication that bypasses the kernel networking stack. This
paper should generate a discussion about new methods for pro-
viding kernel bypass communication systems, that leverages
mechanisms other than TCP/IP kernel stack bypass.

(d) the open issues the paper does not address: In the
future work session, we described the issues that we are cur-
rently not addressing, but are in our road map. In general, it’s
an early prototype that focused on the pub/sub system and
largely leaves the full Kubernetes integration implementation
as future work. Also, applications would need to be modified
to take advantage of Shimmy’s architecture, but we hope that
the performance benefits will make it worth.

(e) under what circumstances the whole idea might fall
apart: As we leverage container orchestrators to build our
platform, our proposal may fall apart if the interest, adoption
and development of this kind of platform starts to slow down
(which we do not see this happening in a near future). Also
currently we leverage specialized hardware (RDMA NICs)
to perform remote IPC, so the availability of this kind of
hardware is critical to our proposal.

Acknowledgement
This work was supported in part by NSF Grants 1652698 (CA-
REER) and 1406192 (SaTC) and the Coordenacgdo de Aper-
feicoamento de Pessoal de Nivel Superior - Brasil (CAPES) -
Finance Code 001.
References

[1] Amazon Web Service. https://aws.amazon.com.

[2] Apache Mesos. http://mesos.apache.org.

[3] Container Networking Interface.
com/containernetworking/cni.

https://github.

[4] Docker. https://www.docker.com.

[5] DPDK, Data Plane Development Kit. https://www.
dpdk.org/.

[6] EdgeConneX. https://www.edgeconnex.com/.
[7] Google Cloud. https://cloud.google.com.
[8] Istio. https://istio.i0/.

[9] Kubernetes. https://kubernetes.io.

[10] Microsoft Azure. https://azure.microsoft.com/
en-us.

[11] RKT. https://github.com/rkt/rkt.

[12] SELINUX.
Main_Page.

https://selinuxproject.org/page/

[13] The twelve factor app. https://12factor.net/.
[14] Vapor.io.
[15] Weave. https://www.weave.works.

[16] Eclipse Mosquitto: An open source MQTT broker.
https://mosquitto.org/, 2018.

[17] Kafka - A distributed Streaming Platform. http://
kafka.apache.org/, 2018.

[18] MQ Telemetry Transport. http://mgtt.org/, 2018.

[19] Akkus Istemi Ekin et al. Sand: Towards high-
performance serverless computing. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages
923-935, Boston, MA, 2018. USENIX Association.

https://aws.amazon.com
http://mesos.apache.org
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://www.docker.com
https://www.dpdk.org/
https://www.dpdk.org/
https://www.edgeconnex.com/
https://cloud.google.com
https://istio.io/
https://kubernetes.io
https://azure.microsoft.com/en-us
https://azure.microsoft.com/en-us
https://github.com/rkt/rkt
https://selinuxproject.org/page/Main_Page
https://selinuxproject.org/page/Main_Page
https://12factor.net/
https://www.weave.works
https://mosquitto.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://mqtt.org/

[20] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu, 113-126, Boston, MA, 2019. USENIX Association.
Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong

Guo, Vyas Sekar, and Srinivasan Seshan. Freeflow: [21] Luigi Rizzo. netmap: A novel framework for fast packet
Software-based virtual RDMA networking for container- i/o. In 2012 USENIX Annual Technical Conference
ized clouds. In 16th USENIX Symposium on Networked (USENIX ATC 12), pages 101-112, Boston, MA, 2012.

Systems Design and Implementation (NSDI 19), pages USENIX Association.

	Introduction
	Motivating Example
	Overview
	Shared Memory Channel Object
	Establishing Shared Memory Channels
	Prototype
	Evaluation
	Setup
	Results

	Conclusions and Future Work

