PIQ: Persistent Interactive Queries
for Network Security Analytics

Oliver Michel

University of Colorado Boulder
oliver.michel@colorado.edu

Eric Keller

University of Colorado Boulder
eric.keller@colorado.edu

Abstract

Network monitoring is an increasingly important task in the
operation of today’s large and complex computer networks.
In recent years, technologies leveraging software defined net-
working and programmable hardware have been proposed.
These innovations enable operators to get fine-grained in-
sight into every single packet traversing their network at
high rates. They generate packet or flow records of all or a
subset of traffic in the network and send them to an analytics
system that runs specific applications to detect performance
or security issues at line rate in a [ive manner.

Unexplored, however, remains the area of detailed, inter-
active, and retrospective analysis of network records for
debugging or auditing purposes. This is likely due to tech-
nical challenges in storing and querying large amounts of
network monitoring data efficiently. In this work, we study
these challenges in more detail. In particular, we explore
recent advances in time series databases and find that these
systems not only scale to millions of records per second but
also allow for expressive queries significantly simplifying
practical network debugging and data analysis in the context
of computer network monitoring.

CCS Concepts

« Networks — Network monitoring; Network security;

ACM Reference Format:

Oliver Michel, John Sonchack, Eric Keller, and Jonathan M. Smith.
2019. PIQ: Persistent Interactive Queries for Network Security An-
alytics. In ACM International Workshop on Security in Software De-
fined Networks & Network Function Virtualization (SDN-NFVSec ’19),
March 27, 2019, Richardson, TX, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3309194.3309197

1 Introduction

Continuous network monitoring is essential to the op-
eration of data center, enterprise, and wide area networks.
Network monitoring enables operators to detect security
issues, misconfigurations, equipment failure and perform
traffic engineering (7, 8, 12, 13, 21, 24]. Today’s networks are
larger and more complex than ever before; they carry more

John Sonchack

University of Pennsylvania
jsonch@seas.upenn.edu

Jonathan M. Smith

University of Pennsylvania
jms@cis.upenn.edu

traffic, run more advanced applications and are continuing
to grow. Therefore, careful and detailed network monitoring
is increasingly imperative.

With the introduction of modern programmable switches [6,
9, 20], there is new opportunity to meet these challenges.
In fact, network monitoring has become one of the ‘killer
apps’ for modern programmable switches. These network
monitoring systems can generally be organized in two parts:
telemetry systems and analytics systems. Telemetry systems
leverage the programmability of switches to collect and re-
port real time measurements in the data path at rates and
fidelity not possible before [1, 15, 22, 23]. Analytics systems
focus on the practical analysis of this data for performance
monitoring, intrusion detection, and failure detection [11, 14].
They use advances in parallel software-based data processing,
such as stream processing as well as kernel bypass technolo-
gies for data input [2, 10, 16, 19].

Together, telemetry and analytics systems provide fine-
grained visibility into live network conditions that is use-
ful for many applications. But equally important and un-
addressed by current systems is visibility into past network
conditions. There are a variety of reasons why such infor-
mation matters. For some applications, such as network au-
diting, historic information is simply required. For others,
such as debugging, it is essential to not only identify that
the network is in a certain state, but also how it got into that
state. In many cases, historic data is necessary because anal-
ysis is too expensive to do in real time, and many times need
human interaction to investigate. For example, in security
systems, a common scenario is to identify anomalies in real
time and tag related network monitoring records (packet
or flow records) for offline analysis using a heavier weight
analysis system or assistance from a network administrator.

All of the above applications rely on retrospective queries
about the network, which requires some level of record per-
sistence. This poses a significant challenge given the volume
and velocity of record-based monitoring data in networks.
The challenge is not only due to the shear amount of records
that modern telemetry systems can generate, but also due to

https://doi.org/10.1145/3309194.3309197

the high rates (hundreds of millions of packets per second) at
which today’s wide-area and data center networks operate.
In this paper, we analyze this challenge in more detail and
take first steps towards a telemetry system that supports
not only live queries, but also retrospective queries. We ex-
plore the requirements of such a system, identify time-series
databases as a promising starting point, and design strategies
for using modern database engines with state of the art net-
work telemetry and analytics systems. Finally, we sketch the
design of a next generation network monitoring architecture,
centered around programmable hardware that is composed
of telemetry, analytics, and persistence planes, that supports
high performance expressive and retrospective queries.

2 Background

Databases have been successfully deployed and used for
decades in a wide range of applications and are the backbone
of systems across all industries. Traditionally, databases have
been used for online transaction processing workloads, like
in the financial, production and transportation industries.
Advances over the past 10-15 years in data transmission
rates and storage capacity have driven the demand for a
revolution in database and data analytics technologies. These
workloads that are significantly higher in both velocity and
volume are commonly referred to as Big Data workloads. In
this section, we look at this spectrum of database technology
to understand suitability for network monitoring.

2.1 Database Models

Although initially database systems were designed around
the rigid mathematical relational model, the emergence of Big
Data has led to new database designs straying from this orig-
inal model. These databases are often referred to as NoSQL
databases as their relational counterparts use the Structured
Query Language (SQL) as their interface.

Relational database management systems (RDBMS) re-
quire data to be in a fixed format that often needs to be
broken up in several relations in order to fit in this model.
Especially for modern workloads, this process comes with
significant performance drawbacks due to frequent joins. On
the other hand, relational databases are extremely powerful:
They allow for complex data models, can enforce rigid in-
tegrity constraints, follow a strong transactional model and
have a very expressive query interface through SQL.

NoSQL databases generally do not require this fixed stor-
age format and are, as a result, easier to adapt to custom,
irregular and unstructured data. Additionally, they are op-
timized for large volumes of data and often have better I/O
performance and horizontal scalability properties than their
relational counterparts. This is mostly due to the lack of fea-
tures that SQL-based systems implement and enforce in the
database layer, such as integrity constraints.

2.2 Time-Series Databases

Alongside the emergence of Big Data applications, the
widespread deployment of IoT and general sensor data ap-
plications has triggered a shift from traditional transactional
database applications to applications where data has a strong
temporal character. A common example for such data is
measurement-related data where an observation is associ-
ated with a time. A key characteristic of such workloads is
that this data is typically only written once, never updated
and from that point on exclusively read (queried). As a result,
database systems optimized for this type of workload and
equipped with time-series related functions were proposed.
These systems are referred to as time-series databases.

As network monitoring data normally consists of mea-
surements of some sort that are associated with their time
of observation, time-series databases are a natural fit for
our problem domain. We experimented with several systems
and soon realized that an expressive query interface, as well
as join operations across data stored at different levels of
granularity (e.g.,packet records vs. flow records) are essential
requirements for designing a practical and flexible persis-
tence scheme for network monitoring data.

Unfortunately, the vast majority of time-series optimized
databases are implemented as some sort of non-relational
key-value store. While this is suitable for multiple indepen-
dent series of measurements that are never put in context
with each other, this is not suitable for network monitoring
data (see section 5). TimescaleDB [25] provides a promis-
ing alternative: A relational database management system
that is optimized for time-series data. Timescale is an ex-
tension for the PostgreSQL RDBMS, a database system that
has been used for decades and is an industry standard be-
cause of its many features, reliability and scalability [17].
TimescaleDB provides high write throughput, good scala-
bility and most importantly does not compromise on any
traditional database features by providing a full-featured SQL
query interface and allowing for constraints and joins.

2.3 Database Requirements for Network

Record Persistence

TimescaleDB appears to be a good match for the applica-
tion of network monitoring. In the remainder of this paper
we seek to evaluate the suitability of TimescaleDB for this
application. In particular, we answer three key questions:
Is the query interface expressiveness enough? A net-
work administrator must be able to quickly query the data-
base system using a flexible, fast, and intuitive query system
that meets the needs of interactive analysis of historical net-
work telemetry data. In Section 3 we provide examples of
such queries.
At what rates can we insert data? Inserting data into the
database is a key challenge that limits the applicability of

the database. Network monitoring records are commonly
generated at rates of several million per second. As a result,
a database system must be optimized for high write rates,
and we need to understand the degree of aggregation which
is required to meet the insert limits. In Section 4, we evaluate
optimizations for write performance into TimescaleDB.

At what scale can we store data? At these high insert rates,
massive amounts of data can accumulate in short periods
of time. The database system must be scalable enough to
cope with data volumes of billions of records. This, coupled
with the aggregation levels, then determine the window of
time which network operators can interactively query. In
section 5, we analyze the storage requirements for network
records at different granularities.

3 Querying Network Records

Before even discussing performance, we look at the ex-
pressiveness of TimescaleDB in the context of network mon-
itoring. We wish to run retrospective queries and allow for
exploratory data analysis on network records.

3.1 Network Queries

To demonstrate the flexibility of SQL for network monitor-
ing records, we show a set of example queries highlighting
different language features of SQL and TimescaleDB:

1. Bin packet and byte counts in 1s time intervals: Timescale’s
time_bucket () function is useful to make large amounts of
time-series data manageable. For example, this query can be
used to generate a traffic graph over time.

SELECT time_bucket('1 seconds', ts_us) AS interval,
SUM(pkt_count) AS pkt_count, SUM(byte_count) AS byte_count
FROM gpv GROUP BY interval ORDER BY interval ASC

2. Count the number of packets per IP address from a particular
IP subnet within the last hour: PostgreSQL’s INET datatypes al-
lows specifying queries that are not limited to a direct match
on an IP address but can efficiently query at the granularity
of IP prefixes.
SELECT ip_src, SUM(pkt_count) AS pkt_count FROM gpv WHERE ip_src
<< inet '60.70.0.0/16' AND gpv.ts_us > NOW() - interval '1 hours'
GROUP BY ip_src
3. List packets that came from a particular IP subnet: A JOIN
allows to query data across relations and in this case can
result in per-packet records including individual timestamps,
packet sizes, or TCP information. If the underlying packet
records were already deleted, this query would still succeed
but only show aggregate information such as total byte and
packet counts.
SELECT * FROM (gpv RIGHT JOIN pkt ON gpv.gpv_id = pkt.gpv_id)

WHERE gpv.ip_src << inet '60.70.0.0/16'
3.2 Retrospective Queries and Debugging

In section 1 we explained how network analytics suites
are optimized to process large amounts of data quickly. This
is important for the timely detection of intrusions or other
issues within the network. In the case of an anomaly, an
analytics system can generate alerts but does not have the
ability to inspect the problem.

For example, a network record stream processor could
detect an unusually high queue occupancy and queuing de-
lay in a single queue of a switch; a problem often caused by
incorrect load balancing schemes or an adversarial traffic
pattern. We now show how retrospective network queries
can in this scenario help a network administrator to deter-
mine if indeed a misconfiguration is causing this effect or

whether the network is simply at capacity.
As a first step it is of value to determine what packets
actually were in the queue while the alert was raised:

SELECT DISTINCT gpv.ip_src, gpv.ip_dst, gpv.ip_proto, gpv.tp_src,
gpv.tp_dst FROM (gpv RIGHT JOIN pkt ON gpv.gpv_id = pkt.gpv_id)
WHERE pkt.ingress_ts >= '2018-02-19 12:59:11.595"' AND
pkt.ingress_ts < '2018-02-19 12:59:11.600' AND pkt.queue_id = '5'

This query returns a list of flows whose packets were in
the respective queue at this specified time. The administrator
sees that the majority of packets were destined for particular
IP subnet, a cluster that serves video content. The routing
configuration for this subnet shows, that it is reachable via
an ECMP group. After determining the links that are part of
this group, the following query can be used to get insight
into the distribution of packets across these links:

SELECT pkt.queue_id, COUNT(pkt.queue_id) FROM (gpv RIGHT JOIN pkt
ON gpv.gpv_id = pkt.gpv_id) WHERE gpv.ip_dst << inet '53.231/16'
AND pkt.queue_id IN (4,5,6,7) GROUP BY pkt.queue_id;

If the returned distribution is roughly uniform, the load
balancing scheme works, otherwise there is an issue with
this particular ECMP group and its hashing algorithm.

While the stream processor could include a digest of the
packets which were in the particular queue at the time, the
problem may be located well beyond this single queue and
finding the root cause can require a more in-depth analy-
sis of the state of the network. Record persistence and an
interactive query system allow an operator to analyze the
problem in more detail across different network devices with
the goal of identifying the underlying issue.

Furthermore, as all of these queries, took less than one
second to complete on a 200M packet record dataset, this
method is perfectly suitable for interactive debugging and
exploratory data analysis. While query performance might
degrade with larger databases, there are ways to overcome
this issue through precompiling queries [3] or using special-
ized indices or views for frequently performed queries.

4 Inserting Network Records

A key challenge for the design and implementation of
network record based monitoring systems lies in dealing
with high traffic rates of today’s networks. Database sys-
tems, as previously explained, are usually not optimized for
these write-heavy workloads and represent a performance
bottleneck. Therefore, the database write performance deter-
mines how many network records can be saved in a given
amount of time and at which level of aggregation they can
be stored for network analysis. We evaluate TimescaleDB
in this regard and show optimizations that vastly improve
insert performance.

n .

b insert copy

[0}

B

=03

=

302

=

Ed

2 0.1

£

C 0.0 — — —

© T T T T T T T T
QEJ 10000 50000 100000 200000 10000 50000 100000 200000

batch size [#records]

Figure 1: GPV INSERT vs. COPY performance

copy throghput [M tuples/s]

0 20 40 60 80
tuples in database [M]

Figure 2: GPV COPY performance as a function of
database size for PostgreSQL and TimescaleDB

The injection process (commonly implemented through
SQL INSERT statements) is associated with complex underly-
ing logic and tasks, such as updating indices, checking con-
straints, partitioning data, and running triggers. These tasks
can significantly hurt injection performance. TimescaleDB
helps in this case as it is optimized for mainly appending
data as opposed to performing random insert and update
operations. TimescaleDB organizes data in chunks indexed
by timestamp that fit into memory. Each chunk has its own
index. This means that the individual indices are small and
efficiently manageable. Chunks get written to disk asyn-
chronously only after a chunk has been filled entirely.

The insert performance can further be optimized by not
using complex data constraints and injecting data in chunks
using the SQL COPY statement as opposed to using INSERT.
PostgreSQL (Timescale’s underlying database) has a custom
binary format and allows for fast inserts of chunks of data
in this format. Details on this feature and the format can
be found in [18]. We compared the performance of COPY
and INSERT for different chunk sizes. Figure 1 shows the
mean throughput of injecting 10 million rows. At a batch
size of 100K packets using COPY, we achieve an average write
throughput of 360K records per second. This is over an order
of magnitude higher compared to using INSERT.

We also compared the write-performance of TimescaleDB
and standard PostgreSQL with respect to the number of tu-
ples already inserted. Figure 2 shows the results of this exper-
iment. We can see that PostgreSQL’s write performance is ini-
tially higher but degrades with database size. TimescaleDB’s
performance only slightly decreases with database size.

Field Length [Byte] Description

ts_us 8 absolute timestamp in ys
gpv_id 8 unique identifier
flow_key 26 IP 5-tuple

-ip_src 8 IP source address
-ip_dst 8 IP destination address

- tp_src 4 source port

- tp_dst 4 destination port
-ip_proto 2 IP Protocol

sample_id 2 sample identifier

tap_id 2 tap identifier (e.g., switch)
duration 4 GPV duration in ps
pkt_count 2 number of packets in GPV
byte_count 3 number of Bytes in GPV

Table 1: Grouped Packet Vector Format
Field Length [Byte] Description

gpv_id 8 unique identifier (foreign key)
ts_us 8 absolute timestamp in us
queue_id 2 unique queue ID

tcp_flags 2 TCP Flags

egress_delta 4 ingress - egress timestamp
byte_count 2 total packet length
queue_depth 2 experienced queue length
ip_id 2 IP identification field

tcp_seq 4 TCP sequence number

Table 2: Packet Record Format

While a write throughput of 300K - 400K records is still
over an order of magnitude lower than packet rates in high-
speed networks, we explain in section 6 that this rate can
actually be sufficient for most applications since not neces-
sarily every packet needs to be stored at the highest level
of granularity. Using flow-based aggregation schemes, com-
pression rates of 30-40%, while maintaining a good level of
detail per flow, are possible. We further elaborate on this in
the next section. Additionally, we believe that these write
rates can be further improved by optimizing PostgreSQL
storage and transaction settings, as well as inserting records
using multiple threads simultaneously.

5 Storing Network Records

As our goal is to enable interactive retrospective queries,
the storage of the data base is critical in determining the time
window under which we can query. In order to maintain the
ability to analyze stored network records using expressive
and powerful queries, a carefully designed storage format is
imperative. Furthermore, given the volume of records that
can be generated, compression and data retention strategies
must be addressed. In this section we detail the data format
and analyze storage tradeoffs an operator can take for a
particular use case.

5.1 Grouped Packet Vectors

We use the grouped packet vector format (GPV), proposed
in [23], as the record format for our prototype implementa-
tion. A grouped packet vector contains an IP 5-tuple flow key
and a variable length vector of feature tuples from sequential

w
S

cache width
|
B s

N
S

5

64
et ol ol ool

8192 16348 32763 65526 131052 262104 524288
cache height [#slots]

(a) mean GPV length

o

mean GPV length [#packets

99%ile evict latency [s]

o

N

cache width
i . s
B
1 [E
i | :

8192 16348 32763 65526 131052 262104 524288
cache height [#slots]

(b) 99%ile eviction latency

Figure 3: GPV generation properties depending on cache configuration

[=3
S
S

8

= j00- —PKT

g —GPV-16
= 10

] —GPV-32
(7] 1 i

o GPV-64
Q

S

o

250 500 750 1000

number of packet records in database [M]

o

Figure 4: Timescale physical database size for differ-
ent relations as a function of packets stored

| telemetry plane

I
I
I
I
1
: /Nstwork
I
I
! record
] collection
I
I
I
I

e.g., PFE-enabled
switch

queries

Network Administrator

Figure 5: Overall System Architecture

packets in the respective flow. A GPV effectively is a hybrid
between a packet record and a flow record. It inherits some
of the best attributes of both formats and also compresses
packet records by deduplicating the IP 5-tuple.

In order to query GPV data in a relational database system
in a flexible manner, the GPV format must be normalized
through two relations, one for the GPV header (flow data) and
one for the packet features. The columns for the two relations,
including their storage size requirements in TimescaleDB,
are listed in Table 1 and in Table 2.

As opposed to proper flow record generation using TCP
flags and timeouts, we generate GPVs using a simple hash
table-based cache data structure as we use this format mainly
for reasons of data compression. The cache is organized in a
number of slots (cache height) with a fixed amount of packet
features that fit in each slot (cache width). The slot index
is determined through a hash function from the IP 5-tuple.
Individual packets are then appended to the packet feature
vector. A GPV is evicted from the cache when either a hash
collision happens or when the feature vector is full. This

data structure can be implemented in hardware and further
optimized using secondary caches for high-activity flows.

For this work, however, we use a simple single cache im-
plementation in software. The cache performance (in terms
of eviction ratio) is directly dependent on the cache dimen-
sions (number of slots and slot width). Figure 3 depicts the
effects on the eviction behavior for different cache dimen-
sions through experimentation using real-world WAN packet
traces [5]. The larger the cache is in either dimension, the
higher the achieved compression ratio (GPV length) is (see
figure 3a). On the other hand, a large cache requires more
memory and also extends the eviction latency, i.e., the time
a record spends in the cache before being evicted (see fig-
ure 3b). This can be important when running applications on
live data. As a result, the cache dimensions must be carefully
chosen for the application’s requirements.

For the remainder of this paper, we chose a cache height of
213 = 262144 with a width of 32. With these parameters, the
size of the cache in memory is 206 MB. In our simulations,
the mean GPV length is 20.82 with a mean eviction latency
of 0.85 seconds and a 99%ile latency of 2.60 seconds.

5.2 Storage and Record Retention

Storing data in a database generally requires more storage
space than a custom, optimized binary format. In this case,
a GPV header in C++ only occupies 48 Bytes, whereas its
representation in TimescaleDB occupies 56 Bytes. A packet
record requires 34 Bytes in Timescale, but only 24 Bytes
in our custom storage format. The difference mainly stems
from use of different data types, as well as added foreign
key columns. Additionally, TimescaleDB maintains indices
and other metadata for tables. We measured the physical
disk storage required to store 100 million records of each
type. Together with all metadata and indices, a GPV header
occupies 122.7 Bytes and a packet record 97.8 Bytes. In either
case. this is a more than 2X increase over the binary format.
The storage requirements grow linearly with record count.

Looking at these numbers at scale, we can see that using
our format and database layout, 1 billion packet records re-
quire approximately 1TB of disk storage. In addition, each
packet record belongs to a GPV header which occupies stor-
age. The storage requirements of the GPV header in respect
to the total number of records depends on the average GPV

length. At an average GPV length of 16, a billion packet
records require approximately 76GB of GPV records. At an
average length of 64, the requirement goes down to roughly
19GB. The total database size is the sum of the sizes of the
pkt and gpv relations. Figure 4 shows these results in detail.

In our experiments, we inserted up to around 1 billion
records into TimescaleDB. While we did not go beyond this,
Timescale has been successfully used with database sizes
beyond 500 billion records [4]. Our dataset of a 10Gbit/s
wide-area link had an average packet rate of 330K/s [5].
Given a storage budget of 500 billion rows, at this packet
rate, TimescaleDB could store around 17 days of packet-level
data.

In a practical deployment we imagine that an operator
would not necessarily store every single packet record for-
ever. For example, a data retention policy could be defined
in which every GPV header is stored and packet records
are only retained within a storage budget. Various different
policies are imaginable. We leave this discussion open for
future research. Our relational model is designed such that
most queries would still succeed when a GPV header does
not reference any packet records anymore. The query would
then return already aggregated instead of per-packet data.

6 End-to-End Design of a Retrospective

Monitoring System

As the examples and preliminary results in this paper have

demonstrated, retrospective network queries are a powerful
abstraction. It is also practical for next generation monitor-
ing systems to support. Figure 5 illustrates the architecture
of such a system, which would leverage the components
described in this paper along with other recent work. At a
high level, the system can be conceptualized as three planes:
(1) A telemetry plane that collects network records at high
rates in the network and sends them to a software platform.
(2) A real time analytics plane for long-running network
queries, that leverages scale out stream processing engine
to scan network records and detect problems. Suspicious
packets are marked for later analysis.
(3) The component explored in this paper: a persistence plane
and query subsystem in which network records can be saved
over longer times at different granularities and retrospec-
tively queried to further investigate issues in the network
either by a human or by secondary analysis systems.

We envision a general persistence plane with adapters to
consume data from both the telemetry and analytics planes.
In the simplest case, input could be truncated packet headers
cloned from network switches. Most commodity switches
support these features, which are sufficient to enable many of
the examples described in this paper. The persistence plane
could also consume input from more advanced telemetry sys-
tems that leverage programmable forwarding engines, e.g.,

P4 hardware. This would provide two benefits: additional
data about switch state, e.g., queue depths; and reduced net-
work overhead, e.g.,.by preprocessing packet headers into
GPVs in the data plane [23]. More advanced still, the persis-
tence plane could consume input from the real-time analytics
plane. There are at least two use cases for such integration.
First, alerts from the real-time analytics system could trig-
ger more advanced retrospective queries. For example, an
alert indicating high queue depths or a dropped packet could
automatically invoke the diagnostics queries described in
the prior section. Additionally, the real-time analytics plane
can serve as a preprocessor, normalizing record formats and
prefiltering out data that does not need to be stored.

7 Conclusion

Network monitoring is increasingly important in the op-
eration of today’s large and complex network. With the
introduction of modern programmable switches, there are
more opportunities than ever before to collect high fidelity
measurements. As recent real time telemetry and analytics
systems have demonstrated, this can provide visibility into
network conditions that enable powerful new monitoring
applicaitons. But often, visibility into current network con-
ditions is not enough. For debuggers, security systems, and
many other applications, it is critical to also have visibility
into past network conditions.

In this paper, we identify this need for retrospective net-
work analytics and show how such a system can be realized.
We leverage recent trends in database technology, namely
time-series databases. While most time series databases are
implemented as NoSQL, key-value stores with custom query
interfaces, we motivate why for this workload, a traditional
relational database model is better-suited. We study the feasi-
bility of using a relational model based time-series database
(TimescaleDB) for network monitoring records.

We identify the main challenges of this approach and
design strategies and optimizations to tailor an existing data-
base engine for retrospective network analytics. These strate-
gies improve system efficiency significantly and the resulting
prototype serves as both a demonstration of feasibility and
an important first step towards a complete solution. With
this prototype, we explore features of retrospective queries
and motivating use cases. Finally, we sketch the end-to-end
architecture of a next generation monitoring system that
leverages programmable switches, advanced telemetry sys-
tems, and our contributions to support high performance
and expressive retrospective queries.

Acknowledgements

This research was supported in part by the National Science
Foundation under grants 1700527 (SDI-CSCS) and 1652698
(CAREER).

References

(1]

[2]
[3

[t

[10

=

[11

—

(12]

(13]

(15]

(16]

(17

—

(19]

[20]

Barefoot Deep Insight. https://www.barefootnetworks.com/products/
brief-deep-insight/.

Data Plane Development Kit. https://dpdk.org.

DB Toaster. https://dbtoaster.github.io.

Talk: Rearchitecting a SQL Database for Time-Series Data. https:
/Iwww.youtube.com/watch?v=eQKbbCgONqE.

Trace statistics for caida passive oc48 and 0c192 traces — 2015-02-19.
https://www.caida.org/data/passive/tracestats/.

P4: Programming Protocol-independent Packet Processors. SIGCOMM
Comput. Commun. Rev. 44, 3 (jul 2014), 87-95.

AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B., HUANG, N., AND
VaHDAT, A. Hedera: Dynamic flow scheduling for data center net-
works. In 7th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 10) (2010), vol. 7, pp. 19-19.

BeENsoN, T., ANAND, A., AKELLA, A., AND ZHANG, M. Microte: Fine
grained traffic engineering for data centers. In Proceedings of the Sev-
enth COnference on emerging Networking EXperiments and Technologies
(2011), ACM, p. 8.

BossHART, P., GiBB, G., Kim, H.-S., VARGHESE, G., McCKEOWN, N., 1z-
ZARD, M., Mujica, F., AND Horow1Tz, M. Forwarding Metamorphosis:
Fast Programmable Match-action Processing in Hardware for SDN.
In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM
(2013), SIGCOMM °13, ACM, pp. 99-110.

DosBrescu, M., Ea1, N., ARGYRAKI, K., CHUN, B.-G., FaLL, K., JANNAC-
CONE, G., KNIEs, A., MANESH, M., AND RATNASAMY, S. Routebricks:
Exploiting parallelism to scale software routers. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles (New
York, NY, USA, 2009), SOSP 09, ACM, pp. 15-28.

GUPTA, A., HARRISON, R., CANINI, M., FEAMSTER, N., REXFORD, J., AND
WILLINGER, W. Sonata: Query-driven Streaming Network Telemetry.
In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (New York, NY, USA, 2018), SIGCOMM °18,
ACM, pp. 357-371.

HaNnDIGOL, N., HELLER, B., JEYAKUMAR, V., MAZIERES, D., AND McKE-
owN, N. I know what your packet did last hop: Using packet histories
to troubleshoot networks. In 11th USENLX Symposium on Networked
Systems Design and Implementation (NSDI 14) (2014), vol. 14, pp. 71-85.
L1, Y, Miao, R., Kim, C., AND Yu, M. FlowRadar: A Better NetFlow
for Data Centers. In Proceedings of the 13th USENIX Conference on
Networked Systems Design and Implementation (Santa Clara, CA, 2016),
USENIX Association, pp. 311-324.

MicHEL, O., KELLER, E., SONCHACK, J., AND SMITH, J. M. Packet-level
analytics in software without compromises. In Proceedings of the 10th
USENIX Workshop on Hot Topics in Cloud Computing (Boston, MA,
2018), USENIX Association.

NARAYANA, S., SIVARAMAN, A., AND NATHAN, V. Language-Directed
Hardware Design for Network Performance Monitoring. In Proceedings
of SIGCOMM 17 (Los Angeles, CA, 2017), ACM, pp. 85-98.

PanDA, A, HAN, S., JANG, K., WALLS, M., RATNASAMY, S., AND SHENKER,
S. Netbricks: Taking the v out of nfv. In OSDI (2016), pp. 203-216.
PosTGres. Postgresql database system. https://www.postgresql.org.
POSTGRES. Postgresql documentation: Copy. https:
/Iwww .postgresql.org/docs/current/sql-copy.html.

Rizzo, L. netmap: A Novel Framework for Fast Packet I/O. In 2012
USENIX Annual Technical Conference (USENIX ATC 12) (Boston, MA,
2012), USENIX Association, pp. 101-112.

SIVARAMAN, A., CHEUNG, A., Bupiu, M., Kim, C., ALIZADEH, M., BAL-
AKRISHNAN, H., VARGHESE, G., MCKEOWN, N., AND LICKING, S. Packet
transactions: High-level programming for line-rate switches. In Pro-
ceedings of the 2016 ACM SIGCOMM Conference (2016), ACM, pp. 15-28.

[21]

[22]

[23]

[24]

[25]

So-IN, C. A survey of network traffic monitoring and analysis tools.
Cse 576m computer system analysis project, Washington University in
St. Louis (2009).

SONCHACK, J., Aviv, A. J., KELLER, E., AND SMITH, J. M. Turboflow:
Information Rich Flow Record Generation on Commodity Switches. In
Proceedings of the Thirteenth EuroSys Conference (New York, NY, USA,
2018), EuroSys 18, ACM, pp. 11:1—-11:16.

SONCHACK, J., MICHEL, O., Avlv, A.]J., KELLER, E., AND SMITH, J. M.
Scaling hardware accelerated monitoring to concurrent and dynamic
queries with *flow. In Proceedings of the 2018 USENIX Annual Technical
Conference (ATC) (Boston, MA, 2018), USENIX Association.
SPEROTTO, A., SCHAFFRATH, G., SADRE, R., MORARIU, C., PrAS, A., AND
STILLER, B. An overview of ip flow-based intrusion detection. IEEE
communications surveys & tutorials 12, 3 (2010), 343-356.

TimEescALE. Timescale db. https://www.timescale.com/.

https://www.barefootnetworks.com/products/brief-deep-insight/
https://www.barefootnetworks.com/products/brief-deep-insight/
https://dpdk.org
https://dbtoaster.github.io
https://www.youtube.com/watch?v=eQKbbCg0NqE
https://www.youtube.com/watch?v=eQKbbCg0NqE
https://www.caida.org/data/passive/trace_stats/
https://www.postgresql.org
https://www.postgresql.org/docs/current/sql-copy.html
https://www.postgresql.org/docs/current/sql-copy.html
https://www.timescale.com/

	Abstract
	1 Introduction
	2 Background
	2.1 Database Models
	2.2 Time-Series Databases
	2.3 Database Requirements for Network Record Persistence

	3 Querying Network Records
	3.1 Network Queries
	3.2 Retrospective Queries and Debugging

	4 Inserting Network Records
	5 Storing Network Records
	5.1 Grouped Packet Vectors
	5.2 Storage and Record Retention

	6 End-to-End Design of a Retrospective Monitoring System
	7 Conclusion
	References

