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Abstract
We introduce the Wasserstein transform, a method
for enhancing and denoising datasets defined on
general metric spaces. The construction draws in-
spiration from Optimal Transportation ideas. We
establish the stability of our method under data
perturbation and, when the dataset is assumed to
be Euclidean, we also exhibit a precise connec-
tion between the Wasserstein transform and the
mean shift family of algorithms. We then use this
connection to prove that mean shift also inherits
stability under perturbations. We study the perfor-
mance of the Wasserstein transform method on
different datasets as a preprocessing step prior to
clustering and classification tasks.

1. Introduction
Optimal transport (OT) is concerned with finding cost effi-
cient ways of deforming a given source probability distribu-
tion into a target distribution (Villani, 2003; 2008; Santam-
brogio, 2015). In recent years, ideas from OT have found
applications in machine learning and data analysis in general.
Applications range from image equalization (Delon, 2004),
shape interpolation (Solomon et al., 2015), image/shape
(Solomon et al., 2016; Rubner et al., 1998) and document
classification (Kusner et al., 2015; Rolet et al., 2016), semi-
supervised learning (Solomon et al., 2014), to population
analysis of Gaussian processes (Mallasto & Feragen, 2017)
and domain adaptation (Courty et al., 2017).

In line with previous applications of OT, we represent
datasets as probability measures on an ambient metric space.
We introduce the so called Wasserstein transform (WT)
which takes this input dataset and alters its interpoint dis-
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tance information in order to both enhance features, such as
clusters, present in the data, and to denoise the data. As a
theoretical contribution, we prove the stability of our con-
struction to perturbations in the input data (i.e. changes in
the input probability measure).

We also interpret our proposed feature enhancing method
as both a generalization and a strengthening of Mean Shift
(MS) (Cheng, 1995; Fukunaga & Hostetler, 1975) which
can operate on general metric spaces. Although mean shift
has been generalized to data living on Riemannian mani-
folds (Subbarao & Meer, 2009; Shamir et al., 2006), our
interpretation departs from the ones in those papers in that
we do not attempt to estimate a local mean or median of
the data but, instead, we use the local density of points to
iteratively directly adjust the distance function on the metric
space. We do this without appealing to any intermediate
embedding into a Euclidean space. As a further contribution,
through this connection between the WT and MS, we are
able to prove that MS is stable to data perturbations. We are
not aware of any extant results in the literature that address
this type of stability for MS methods.

Our experiments show that the Wasserstein transform is
effective in both denoising and resolving the well known
chaining effect that affects linkage based clustering methods.
Furthermore, we compared the perfomance of our method
with mean shift on the MNIST dataset (LeCun et al., 1998)
and on Grassmannian manifold data (Cetingul & Vidal,
2009).

2. Optimal Transport Concepts
Given a compact metric space (X, dX) one of the fundamen-
tal concepts of OT (Villani, 2003) is the so called Wasser-
stein distance on the set of all probability measures P(X)
onX . The `1-Wassertein distance dW,1(α, β) between prob-
ability measures α, β ∈ P(X) is obtained by solving the
following linear optimization problem:

dW,1(α, β) := inf
µ∈Π(α,β)

∫∫
X×X

dX(x, x′) dµ(x× x′),

where Π(α, β) is the set of all couplings between the prob-
ability measures α and β: namely, µ in Π(α, β) is a prob-
ability measure on X × X whose marginals are α and β,
respectively.
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Figure 1. In this illustration α is the empirical probability measure

associated to the point cloud X shown in the figure, and dX is the

Euclidean distance. With the truncation kernel, the Wasserstein

transform Wε will calculate the dissimilarity (via dW,1) of the ε-

neighborhoods (shown as light red disks) corresponding to all pairs

of points to produce a new distance d(ε)
α on X . For example, for the

pair of left most points, A and B, their respective ε-neighborhoods

are not only similar, but also the distance between these regions

is small so d(ε)
α (A,B) will be small too. Something similar is

true for the pair C and D. In contrast, despite the fact that the

points B and C are very close to eachother, their ε-neighborhoods

are structurally different: the neighborhood of B is essentially 2-

dimensional whereas that of C is 1-dimensional. This will result in

d(ε)
α (B,C) being large. Similarly, since the ε-neighborhood of E

is 0-dimensional and that of G is 1-dimensional, despite being very

close to each other d(ε)
α (E,G) will be large. Finally, d(ε)

α (E,F )
will equal the ground distance between E and F since their respec-

tive neighborhoods consist of a single point (cf. Remark 2.1).

Remark 2.1 (Wasserstein distance between Dirac mea-

sures). A simple but important remark (Villani, 2003) is
that for points x, x′ ∈ X , if one considers the Dirac mea-
sures supported at those points (which will be probability
measures), δx and δx′ , then the Wasserstein distance be-
tween these Dirac measures equals the ground distance:
dW,1(δx, δx′) = dX(x, x′).

Remark 2.2 (A lower bound on Euclidean spaces). It
is known (Rubner et al., 1998) that in Euclidean space
R

d, ‖mean(α)−mean(β)‖ ≤ dW,1(α, β) for any α, β ∈
P(Rd). In words, in Euclidean spaces, the Wasserstein dis-
tance between two probability measures is bounded below
by the Euclidean distance between their respective means,
which is compatible with the fact that α and β can certainly
have the same means but can still be quite different as mea-
sures. In Section 3.4, this simple fact will help elucidating a
relationship between MS and WT on Euclidean spaces.

3. The Wasserstein Transform
Given a compact metric space (X, dX), we introduce a

subset Pf (X) of P(X), which consists of those probabil-

ity measures on X with full support: the support supp(α)
of a probability measure α is the largest closed subset

such that every open neighborhood of a point in supp(α)
has positive measure. Given an ambient metric space

X = (X, dX), we interpret a given probability measure

α ∈ Pf (X) as the data. For example, given point cloud

X = {x1, . . . , xn} ⊂ R
d one could choose α to be the

empirical measure 1
n

∑n
i=1 δxi . The ambient space distance

between data points (in this case the Euclidean distance) is

not always directly useful, and by absorbing information

about the spatial density of data points, the Wasserstein

transform introduced below produces a new metric on the

data points which can be used in applications to reveal and

concentrate interesting features present but not apparent in

the initial presentation of the data. The essential idea behind

the Wasserstein transform is to first capture local informa-

tion of the data and then induce a new distance function

between pairs of points based on the dissimilarity between

their respective neighborhoods. Localization operators are

gadgets that capture these neighborhoods.

3.1. Localization Operators

One can always regard a point in a metric space as a Dirac

measure supported at that point. More generally, a point in a

metric space can be replaced by any reasonable probability

measure which includes information about the neighbor-

hood of the point – this leads to the notion of localization
operators for probability measures.

Definition 1. Let (X, dX) be a metric space – referred to
as the ambient metric space. A localization operator L is
a map from Pf (X) to Markov kernels over X , i.e., given
α ∈ Pf (X), L produces L(α) = (X,mL

α(·)), where for
every x ∈ X , mL

α(x) is a probability measure on X . We
refer to mL

α(x) as the localized measure at x.

The following are two simple extreme examples. (a) Given

α in Pf (X), let mL
α(x) ≡ α, ∀x ∈ X , which assigns to

all points in X the probability measure α. This is a trivial

example in that it does not localize the measure α at all. (b)

For any α in Pf (X), let mL
α(x) = δx, ∀x ∈ X . This is a

legitimate localization operator but it does not retain any

information from α. We will see some useful choices of

localization operators in the next couple sections.

3.2. The Wasserstein Transform

After specifying a localization operator L and given α ∈
Pf (X), one associates each point x in X with a probability

measure mL
α(x), and then obtains a new metric space by

considering the Wasserstein distance between each pair of

these localized measures.

Definition 2 (The Wasserstein transform). Let (X, dX) be
a given ambient metric space and let α ∈ Pf (X). Given
a localization operator L, the Wasserstein transform WL

applied to α gives the distance function dLα on X defined by

dLα(x, x
′) := dW,1

(
mL

α(x),m
L
α(x

′)
)
, ∀x, x′ ∈ X.

By WL(α) we will denote the (pseudo) metric space

(X, dLα). Even if in this paper we consider only the �1-

Wasserstein transform, it is possible to formulate a similar

transform using the notion of �p-Wasserstein distance.
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Figure 2. Iterating the Wasserstein transform: iteratively change
the metric based on density of points as indicated by α.

Remark 3.1 (Iterating the Wasserstein transform). The
Wasserstein transform can be iterated any desired number
of times with the purpose of successively enhancing features
and/or reducing noise. See Figure 2. After applying the
Wasserstein transform once to α ∈ Pf (X), the ambient
metric space (X, dX) is transformed into (X, dLα). Then we
can apply the Wasserstein transform again to α on the am-
bient space (X, dLα) etc. This fact is useful in applications
such as clustering; see Section 5.

3.3. Local Truncations

We now concentrate on a particular type of localization
operator which we call local truncation. Given α ∈ Pf (X)
and a scale parameter ε > 0, consider for each x ∈ X the
probability measure

m(ε)

α (x) :=
α|Bε(x)

α(Bε(x))
,

arising from restricting α to the closed ball Bε(x) and
then renormalizing to obtain a new probability measure.
In other words, for each set A ⊂ X , the measure of
that set is m(ε)

α (x)(A) = α(Bε(x)∩A)
α(Bε(x)) . When X is finite,

X = {x1, . . . , xn}, and α is its empirical measure, this
formula becomes

m(ε)

α (x)(A) =
#{i|xi ∈ A and dX(xi, x) ≤ ε}

#{i| dX(xi, x) ≤ ε}
.

We denote the resulting Wasserstein transform by Wε, and
in this case, for each α, the new metric produced by Wε(α)
will be denoted as d(ε)

α . See Figure 1 for an intuitive expla-
nation.

Remark 3.2 (Behavior across scales). Notice that as ε→
∞ one has m(ε)

α (x) = α for any x ∈ X. However, for
ε → 0, m(ε)

α (x) → δx. In words, ε acts as a localization
parameter: for small ε the renormalized measures absorb
local information, whereas for large values the renormal-
ized measures for different points become indistinguishable.
Thus we have the following for any x, x′ in X:

(1) as ε→ 0 one has d(ε)
α (x, x′)→ dX(x, x′); and

(2) as ε→∞ one has d(ε)
α (x, x′)→ 0.

A B C D E F

Figure 3. After applying one iteration of the Wasserstein transform,
both the distance between A,C and the distance between C,E
should remain almost the same since these are all critical points of
f . According to the formula in Remark 3.3, since f ′ has negative
sign at B and B lies to the right of A, B will be pushed towards A,
while D will be pushed away from A since f ′(D) > 0 and it lies
to the right of A. Similarly both D and F are pushed towards E.

Interpretation of Wε(α) on the real line. Using the fact
that the Wasserstein distance on R admits a closed form
expression (Villani, 2003) we are able to prove the following
Taylor expansion.

Remark 3.3 (Taylor expansion for d(ε)
α (x, x′) ). When X is

a subset of the real line, and the probability measure α has
a density f , we have the asymptotic formula for d(ε)

α (x, x′)
as ε→ 0: for x′ > x and f(x), f(x′) > 0,

d(ε)

α (x, x′) = x′ − x+
1

3

[
f ′(x′)

f(x′)
− f ′(x)

f(x)

]
ε2 +O(ε3).

The interpretation is that after one iteration of the Wasser-
stein transform Wε of α, pairs of points x and x′ on very
dense areas (reflected by large values of f(x) and f(x′))
will be at roughly the same distance they were before apply-
ing the Wasserstein transform. However, if one of the points,
say x′ is in a sparse area (i.e. f(x′) is small), then the
Wasserstein transform will push it away from x. It is also
interesting what happens when x and x′ are both critical
points of f : in that case the distance does not change (up to
order ε2). See Figure 3 for an illustration. See the supple-
mentary document for a proof of this Taylor expansion.

3.4. The Wasserstein Transform as a Generalization of
Mean Shift to Any Metric Space

Mean Shift (Cheng, 1995; Fukunaga & Hostetler, 1975) is
a clustering method for Euclidean data which operates by it-
eratively updating each data point until convergence accord-
ing to a rule that moves points towards the mean/barycenter
of their neighbors. More specifically, given a point cloud
X = {x1, . . . , xn} in Rd, a kernel functionK : R+ → R+,
and a scale parameter ε > 0, then in the kth iteration the ith
point is shifted as follows: xi(0) = xi and for k ≥ 0,

xi(k + 1) =

∑n
j=1K

(
‖xj(k)−xi(k)‖

ε

)
xj(k)∑n

j=1K
(
‖xj(k)−xi(k)‖

ε

) . (1)

The kernels of choice are the Gaussian kernel K(t) =

e−t
2/2, the Epanechnikov kernel K(t) = max{1− t, 0}, or
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the truncation kernel K(t) (which equals 1 if t ∈ [0, 1] and
is zero otherwise).

To see how the Mean Shift method can be embedded in the
framework of the Wasserstein Transform, let us firstly intro-
duce a new type of localization operator. We assume that the
ambient spaceX is a convex compact subset of Rd endowed
with Euclidean distance. Given any localization operator
L, define a new localization operator Lms as follows: for
α ∈ Pf (Rd), and x ∈ X , mLms

α (x) := δmean(mLα(x)). In
words, at a fixed point x, Lms applied to a measure α at
x first localizes α via L to obtain mL

α(x), and then further
localizes this measure by only retaining information about
its mean. The fact that we can actually compute the mean
(or barycenter) of a probability measure (and that this mean
remains inX) is enabled by the assumption that the ambient
space is (a convex) subset of Euclidean space.

Since by Remark 2.1, the Wasserstein distance between
Dirac measures equals the ground distance between their
support points, then, considering the Wasserstein transform
WLms(α) arising from Lms, we have for all x, x′ ∈ X that

dL
ms

α (x, x′) =
∥∥mean

(
mL
α(x)

)
−mean

(
mL
α(x′)

)∥∥ .
The connection with mean shift. Now, given any kernel
function K and ε > 0 as in the case of mean shift one
obtains an associated kernel based localization operator
LK,ε such that for any x ∈ X and A ⊂ X ,

mLK,ε
α (x)(A) :=

∫
A
K
(‖x−x′‖

ε

)
dα(x′)∫

Rd K
(‖x−x′‖

ε

)
dα(x′)

.

Now, if for a point cloud X = {x1, . . . , xn} in Rd we
consider α to be the empirical measure induced by X , that
is, α = 1

n

∑n
i=1 δxi , then, for the localization operator

mLK,ε defined above, we obtain, for x ∈ X , the following
formula which agrees with the result (1) of applying one
iteration of mean shift to the points in X:

mean
(
mLK,ε
α (x)

)
=

∑n
i=1K

(‖x−xi‖
ε

)
xi∑n

i=1K
(‖x−xi‖

ε

) .

Now, that the metric space WLK,ε(α) contains the same
information as the collection of mean shift points above fol-
lows from the classical distance geometry fact that any finite
set in Rd can be reconstructed up to rigid transformations
from its interpoint distance matrix (Blumenthal, 1953).

Remark 3.4 (The Wasserstein transform as a strengthening
of mean shift). Note that in general, because of Remark 2.2
one has that whenever X ⊂ Rd is convex and compact, and
α ∈ P(Rd), then for all x, x′ ∈ X ,

‖mean(m(ε)

α (x))−mean(m(ε)

α (x′))‖ ≤ d(ε)

α (x, x′),

which indicates that the mean shift procedure provides a
lower bound for the result of applying the Wasserstein trans-
form to a dataset represented by α. In other words, in a
certain sense the Wasserstein transform retains, via d(ε)

α ,
more information about the dataset than mean shift.

4. Stability Under Perturbations of α
The goal of this section is to establish the stability of the
Wasserstein transform Wε(α) under perturbations of the
probability measure α representing the dataset.

As a byproduct of this, we will also obtain a novel stability
result for mean shift. We are not aware of extant related
stability results for MS in the literature.

As before we fix a compact metric space (X, dX) (the am-
bient space). Probability measures on X are required to
satisfy a mild doubling type condition.

Definition 3. Given Λ > 0, we say that a Borel measure
α on X satisfies the Λ-doubling condition if for all x ∈
supp(α), r1 ≥ r2 > 0 one has

α(Br1(x))

α(Br2(x))
≤
(
r1

r2

)Λ

.

Remark 4.1. Suppose α ∈ Pf (X) and diam(X) < D.
If α satisfies the Λ-doubling condition, then we have
α(Br(x)) ≥ ψΛ,D(r), for all x ∈ X and r > 0, where

ψΛ,D(r) := min
(

1,
(
r
D

)Λ)
.

Proof. Take r1 = D, r2 = r in Definition 3, we have when
r ≤ D, α(BD(x))

α(Br(x)) ≤
(
D
r

)Λ
.Notice thatX = BD(x), hence

we have α(BD(x)) = α(X) = 1. Therefore

α(Br(x)) ≥
( r
D

)Λ

≥ min

(
1,
( r
D

)Λ
)
.

When r > D, obviously we have α(Br(x)) = α(X) =

1 ≥ min
(

1,
(
r
D

)Λ)
.

Setup and assumptions. We assume that the diameter
of X satisfies diam(X) := maxx,x′∈X dX(x, x′) <
D for some D > 0. Additionally, we assume that
two (fully supported) probability measures α and β in
Pf (X) are given and satisfy the doubling condition for
some Λ > 0. Also, since our results below are for local
truncations, we fix a scale parameter ε > 0.

Define ΦΛ,D,ε(η) := η
ψΛ,D(ε) +

[(
1 + η

ε

)Λ − 1
]

for η ≥ 0.

Remark 4.2. Notice that ΦΛ,D,ε(η) is an increasing func-
tion of η and furhermore that limη→0 ΦΛ,D,ε(η) = 0.
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Then, we have the following stability result for the local-
ization (via local truncations) of two different probability
measures on the same ambient space. The stability is ex-
pressed in terms of the Wasserstein distance itself.

Theorem 4.3 (Stability of local truncations).

sup
x∈X

dW,1

(
m(ε)

α (x),m(ε)

β (x)
)

≤(1 + 2ε)ΦΛ,D,ε

(√
dW,1(α, β)

)
.

Remark 4.4. We have also established a stability theo-
rem for WT with Lipschitz kernels based localization op-
erators in which no condition such as Λ-doubling condi-
tion is required. Assume X is a compact metric space. If
K : R+ → R+ is any C-Lipschitz kernel, then there exist
constants N > 0 and M > 0 only depending on K and X ,
such that for all probability measures α and β on X , and
all x ∈ X:

dW,1
(
mK
α (x),mK

β (x)
)
≤ 2C diam(X) +M

N
dW,1(α, β).

Above, mK
α (x)(A) =

∫
A
K(d(x,y) dα(y)∫

X
K(d(x,y) dα(y)

for A ⊂ X . See
(Mémoli et al., 2018) for more details.

By Remark 4.2, Theorem 4.3 indicates that if α and β are
similar in terms of the Wasserstein distance, then for every
point x ∈ X the localized measures m(ε)

α (x) and m(ε)

β (x)
will also be similar. As a consequence of Theorem 4.3 we
obtain the following two theorems:

Theorem 4.5 (Stability of d(ε)
α ).

sup
x,x′∈X

‖d(ε)

α (x, x′)− d(ε)

β (x, x′)‖

≤2(1 + 2ε)ΦΛ,D,ε

(√
dW,1(α, β)

)
.

Proof. By applying the triangle inequality for the Wasser-
stein distance [1], we have for any x, x′ ∈ X

‖d(ε)

α (x, x′)− d(ε)

β (x, x′)‖

=
∥∥∥dW,1(m(ε)

α (x),m(ε)

α (x′)
)
− dW,1

(
m(ε)

β (x),m(ε)

β (x′)
)∥∥∥

≤
∥∥∥dW,1(m(ε)

α (x),m(ε)

α (x′)
)
− dW,1

(
m(ε)

α (x),m(ε)

β (x′)
)∥∥∥

+
∥∥∥dW,1 (m(ε)

α (x),m(ε)

β (x′)
)
− dW,1

(
m(ε)

β (x),m(ε)

β (x′)
)∥∥∥

≤dW,1
(
m(ε)

α (x′),m(ε)

β (x′)
)

+ dW,1

(
m(ε)

α (x),m(ε)

β (x)
)

Therefore by taking supremum on both sides and invoking
Theorem 4.3 we obtain the claim.

Theorem 4.6 (Stability of mean shift for local truncations).
Assume that (X, dX) is a subspace of Rn with Euclidean dis-
tance. Then, for mean shift arising from local ε-truncations
we have:

sup
x∈X

∥∥∥mean(m(ε)

α (x))−mean(m(ε)

β (x))
∥∥∥

≤(1 + 2ε) ΦΛ,D,ε

(√
dW,1(α, β)

)
.

Proof. By Remark 3.4 and Theorem 4.3 we have ∀x ∈ X ,∥∥∥mean (m(ε)

α (x))−mean
(
m(ε)

β (x)
)∥∥∥

≤dW,1
(
m(ε)

α (x),m(ε)

β (x)
)

≤(1 + 2ε)ΦΛ,D,ε

(√
dW,1(α, β)

)
.

4.1. The Proof of Theorem 4.3

Proof of Theorem 4.3. To bound the Wasserstein distance
between the localized measures associated to α and β,
dW,1

(
m(ε)
α (x),m(ε)

β (x)
)
, it is more convenient to first an-

alyze the Prokhorov distance (Gibbs & Su, 2002), and
then convert the result to a Wasserstein distance bound
by the lemma below. Recall that the Prokhorov distance
dP (α, β) between probability measures α and β equals
inf{δ > 0 : α(A) ≤ β(Aδ) + δ, ∀A ⊂ X}. Here Aδ

is the δ-fattening of A: the set of points in X which are at
distance less than δ from a point in A. Though seemingly
asymmetric, dP is actually symmetric (Gibbs & Su, 2002).

Lemma 4.7 (Theorem 2 of (Gibbs & Su, 2002)). Given a
metric space (X, dX) with bounded diameter, then ∀α, β ∈
Pf (X), we have the following relation between the Wasser-
stein and Prokhorov distances:(
dP (α, β)

)2 ≤ dW,1(α, β) ≤
(
1 + diam(X)

)
dP (α, β).

Remark 4.8. If α and β are not fully supported, then by
restricting the metric d to S = supp(α) ∪ supp(β) ⊂
X , the rightmost inequality above can be improved to
dW,1(α, β) ≤

(
1 + diam(S)

)
dP (α, β).

Claim 1. For any x ∈ X , we have
dP
(
m(ε)
α (x),m(ε)

β (x)
)
≤ ΦΛ,D,ε

(
dP (α, β)

)
.

Proof of Claim 1. Suppose dP (α, β) < η for some η > 0.
Fix x ∈ X and assume WLOG that β(Bε(x)) ≤ α(Bε(x)).
Then invoke the expression dP (m(ε)

α (x),m(ε)

β (x)) =

inf{δ > 0 : m(ε)
α (x)(A) ≤ m(ε)

β (x)(Aδ) + δ, ∀A ⊂ X}.
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For any A ⊂ X we have the following inclusions:

(A ∩Bε(x))η ⊂ Aη ∩ (Bε(x))η ⊂ Aη ∩Bε+η(x)

= Aη ∩
(
Bε(x) ∪

(
Bε+η(x)\Bε(x)

))
⊂ Aη ∩Bε(x)

⋃
Aη ∩Bε+η(x)\Bε(x)

⊂ Aη ∩Bε(x)
⋃
Bε+η(x)\Bε(x).

Then by monotonicity of measure and the fact that
dP (α, β) < η, we have

m(ε)

α (x)(A) =
α(A ∩Bε(x))

α(Bε(x))

≤β((A ∩Bε(x))η) + η

α(Bε(x))
≤ β((A ∩Bε(x))η) + η

β(Bε(x))

≤β(Aη ∩Bε(x)) + β(Bηε (x)\Bε(x))

β(Bε(x))
+

η

β(Bε(x))

≤β(Aη ∩Bε(x))

β(Bε(x))
+
β(Bε+η(x)) + η

β(Bε(x))
− 1

≤m(ε)

β (x)(Aη) +
(

1 +
η

ε

)Λ

− 1 +
η

β(Bε(x))

≤m(ε)

β (x)(Aη) + ξ,

where ξ := ΦΛ,D(η) =
(
1 + η

ε

)Λ − 1 + η
ψΛ,D(ε) , and

the last inequality follows from Remark 4.1. Note that
since

(
1 + η

ε

)Λ − 1 ≥ 0, and ψΛ,D(ε) ≤ 1, then ξ ≥
η. Thus, from the inequality above, and since Aη ⊂ Aξ,
then m(ε)

α (x)(A) ≤ m(ε)

β (x)(Aη) + ξ ≤ m(ε)

β (x)(Aξ) + ξ.

Therefore dP (m(ε)
α (x),m(ε)

β (x)) ≤ ξ = ΦΛ,D(η). Then
by letting η → dP (α, β) we have dP (m(ε)

α (x),m(ε)

β (x)) ≤
ΦΛ,D,ε

(
dP (α, β)

)
, where the RHS is independent of x, so

the proof is done.

We now finish the proof of Theorem 4.3. Since
supp

(
m(ε)
α (x)

)
and supp

(
m(ε)

β (x)
)

are both con-
tained in Bε(x) and diam(Bε(x)) ≤ 2ε, we have
from Remark 4.8 that dW,1

(
m(ε)
α (x),m(ε)

β (x)
)
≤

(1 + 2ε) dP

(
m(ε)
α (x),m(ε)

β (x)
)

. Now, from this
inequality, by Claim 1 above we in turn obtain
dW,1

(
m(ε)
α (x),m(ε)

β (x)
)
≤ (1 + 2ε) ΦΛ,D,ε (dP (α, β)).

Finally, since ΦΛ,D,ε(η) is an increasing function of η, by
Lemma 4.7 we obtain the statement of the theorem.

5. Implementation and Experiments
In the case of the WT arising from local truncations, Wε,
for each pair of points x, x′ ∈ X , the computation of
d(ε)
α (x, x′) = dW,1(m(ε)

α (x),m(ε)
α (x′)) only requires knowl-

edge of the rectangular chunk of dX consisting of those
points in Bε(x) × Bε(x

′) and, as such, the size of each

instance of dW,1 can be controlled by choosing ε to be
sufficiently small. The solution of the associated Kan-
torovich optimal transport problem was carried via en-
tropic regularization (Cuturi, 2013; Genevay et al., 2016;
Peyré et al., 2017) using the Sinkhorn code from (Peyre,
2017). The computation of the matrix

((
d(ε)
α (x, x′)

))
x,x′∈X

is an eminently parallelizable task. In our implementa-
tion we ran this on a 24 core server via Matlab’s par-
allel computing toolbox. In all of our experiments we
used the implementation sinhorn_log from (Peyre,
2017) with options.niter = 2, epsilon = 0.05, and
options.tau = 0.

Ameliorating the chaining effect. In this application we
considered the case of clustering two well defined disk
shaped blobs (each containing 100 points) connected by a
thin trail consisting of 30 points. This is a standard scenario
in which standard single linkage hierarchical clustering fails
to detect the existence of two clusters due to the so called
chaining effect. However, successive applications of the
Wasserstein transform Wε (corresponding to local trunca-
tions) consistently improve the quality of the dendrograms.
See Figure 4 for results. See Figure 5 for a study of the
effects of increasing ε and the number of iterations on this
dataset. As already suggested by the interpretation in Figure
1, ε-neighborhoods of points in the interior of the dumbbell
are essentially two dimensional, whereas ε-neighborhoods
of points on the chain are one dimensional – this means that
their Wasserstein distance will be quite large, thus having
the desired effect of separating the clusters in the sense of
the distance d(ε)

α .

Figure 4. (Chaining effect and WT.) Top left: A dumbbell shape
consisting of two disk shaped blobs each with 100 points and sep-
arated by a thin chain of 30 points in the plane with Euclidean
distance. The diameter of the initial shape was approximately 4.
From left to right: 0,1, 2, 3, and 4, iterations of Wε for ε = 0.3.
The top row shows MDS (multi-dimensional scaling) plots of the
successive metric spaces thus obtained (color is by class: first
blob, chain, and second blob), the middle row shows their dis-
tance matrices (ordered so that first we see the points in one blob,
then the points on the connecting chain, and then the points of
the second blob. The third row shows the corresponding single
linkage dendrograms. Notice how the the MDS plot/distance ma-
trices/dendrograms at iteration 5 exhibit clearly defined clusters.
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Table 1. (Classification results over the MNIST database.) Entries show the number of incorrectly classified images over 5K test
images (with 5K training images). The best performance of dT (tangent distance) is for k=1 and k=3. In both cases WT provides a better
performance than dT. There is no major difference between the performance of the exact calculation of WT and the one via Sinkhorn,
however these take place for different values of knn. Notice that in this dataset the best performances of MS and WT are similar (although
they happen for different values of knn).

knn 1 2 3 4 5 10 20 50 100 500
WT-Exact-1 121 144 121 122 116 135 181 258 345 1231

WT-Sinkhorn-1 125 145 118 121 114 142 183 259 342 1182
MS-1 117 131 128 133 133 157 199 285 371 1223
dT 133 166 130 141 145 176 219 324 435 1198

Table 2. (Classification results over the Grassmann manifold dataset: error rates.) The best overall performance (0.9753) was
obtained by 3-iterations of WT with ε = 0.9. For all ε except 1.2 WT has better performance than directly using the manifold distance
(which is the baseline). The best performance (1.8148) of MS corresponds to the Gaussian kernel for ε = 0.8. The best performance
of WT for that value of ε (1.0039) is the one corresponding to the 3rd iteration. For ε = 0.9 the best performance of MS (1.9155) is
worse than the baseline 1.7903 whereas the performance of WT is still better (0.9751). Interestingly, whereas in some cases successive
iterations of WT improve its performance, with these parameter choices, in no case did further iterations of MS improve performance.
For ε = 1.0 and 1.1 the only method that performs better than the baseline is one iteration of WT. For ε = 1.2 all methods performed
below the baseline. For all values of ε the performance of MS with the truncation kernel was not competitive neither with that of MS with
Gaussian kernel, nor with that of WT. See Figure 8 regarding the choice of the range of ε.

N = 1.0 dist trunc1 trunc2 trunc3 gauss1 gauss2 gauss3 wass1 wass2 wass3
ε = 0.8 1.7903 13.1189 22.7249 27.1865 1.8148 8.3543 31.5804 1.4912 1.1150 1.0039
ε = 0.9 1.7903 15.7174 28.9120 51.0221 1.9155 13.2684 44.0966 1.2031 1.3344 0.9753
ε = 1.0 1.7903 19.3057 43.2942 58.2056 2.1883 15.7550 54.4154 1.2328 2.1466 8.7605
ε = 1.1 1.7903 25.8416 58.0784 75.3460 2.3203 23.3293 65.4943 1.7193 7.3658 75.2454
ε = 1.2 1.7903 28.2444 68.2164 71.4105 2.4537 33.3808 74.4915 2.5633 65.2158 75.2193

Figure 5. (Chaining effect: varying ε and number of iterations
of WT.) In this figure we computed 14 different iterations of the
dumbbell dataset for ε = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
and 0.4. Notice how distance matrices corresponding to the lower
right corner show a very well defined block structure indicative of
the presence two large clusters (the blobs) and a smaller one (the
points originally corresponding to the chain) .

Denoising of a circle. In this example we study a dataset
consisting of 800 points uniformly spaced on a circle with
radius 1 and centered at the origin in R2. This circle is heav-
ily corrupted by 1200 outliers chosen uniformly at random
in the unit square [−1, 1] × [−1, 1]. This type of prepro-
cessing may help in applications where one wishes to detect
voids/loops in data which may signal periodicity (Perea,
2016; Emrani et al., 2014). We compare the performance of

MS

WT

Figure 6. (Denoising of a circle: several iterations of mean shift
vs. Wε.) The top row shows the result of applying mean shift
with the truncation kernel; the bottom row shows 2D MDS plots of
the results obtained from applying the local truncation Wasserstein
transform Wε. In each case ε was chosen to be 0.3 relative to
the diameter at each iteration. The first column shows the initial
dataset which is the same for both cases. From left to right we
show increasing number of iterations. Notice how Wε is able to
better resolve the shape of the circle; in particular, it is better at
displacing interior points towards the high density area around
the circle. This feature indicates that Wε can be useful as a
preprocessing step for persistent homology calculations (Perea,
2016) or before applying nonlinear dimensionality reduction or
manifolds learning techniques to a dataset.

Wε with MS (with the same kernel and same parameter ε)
through 6 succesive iterations. See Figure 6.

Experiment on the MNIST dataset. In this example we
performed knn classification on 5K test images (using 5K
training images) from the MNIST dataset. We used both
deskewing and the tangent distance dT as explained in (Le-
Cun et al., 1998). We tested 3 different methods via one
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dist trunc1 trunc2 trunc3 gauss1 gauss2 gauss3 wass1 wass2 wass3

ε= 0.8

ε= 0.9

ε= 1.0

ε= 1.1

ε= 1.2

Figure 7. (Grassmann manifold experiment: distance matri-
ces.) This figure shows the distance matrices (for one realization
of the 400 random points in G10,6) corresponding to the rows and
columns from Table 2. From this figure, it is evident that WT can
help accentuate clustering by moving apart points in different clus-
ters and by concentrating similar points. It is apparent that when
the parameter ε is large, all three methods perform poorly, further-
more, their performance degrades with further iterations (columns
4, 7, and 10). Figure 8 provides one possible explanation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1000

2000

3000

4000

5000

6000

7000

Figure 8. (Grassmann manifold experiment: choice of ε.) The
figure shows the histogram of the manifold distance matrix on
G10,6 corresponding to one realization of the 400 random matrices.
Whereas ε = 0.8 seems to be small enough so that any ball Bε(x)
around a point x of the dataset captures only local information,
values of ε ≥ 1.2 would induce balls Bε(x) each of which cover
a very large portion of the dataset thus failing to be local. This
helps explain the poor performance of both MS (truncation and
Gaussian) and WT when ε = 1.0, 1.1 and 1.2 in Table 2.

iteration of each method. WT-Exact-1 means the exact
computation of the WT (via a standard linear programming
algorithm for solving each OT problem (Rubner, 1998)),
WT-Sinkhorn-1 means computation via the Sinkhorn
algorithm, whereas MS-1 refers to mean shift (with the
truncation kernel). In each of the three cases the ε parameter
(defining the neighborhood) was chosen to be the same and
equal to 0.075 of the maximal value of the tangent distance
matrix corresponding to the 10K points under consideration.
The classification was done for different values of knn. In
each case, we partitioned the data into the same 5K training
points and 5K test points. See Table 1 for the classification
results, which indicate that the best performance for MS is
comparable to the best performance of WT (for both the ex-
act computation and Sinkhorn). We now present results on a

dataset with a more intricate underlying geometric structure.

Experiment on a Grassmann manifold data. We tested
WT on the synthetic dataset employed in (Cetingul & Vidal,
2009). In our experiments we generated 400 matrices from
the Grassmann Manifold G10,6 (Absil et al., 2004; Hüper
et al., 2010) as follows: we first generated 4 randomly se-
lected (well separated) loci. We then randomly perturbed
each loci 100 times. This was done following Section 4.1 of
(Cetingul & Vidal, 2009) by corrupting the angles determin-
ing each loci by uniform random noise of width N = 1 and
mean zero. We then randomly split the set into 100 test ma-
trices and 300 train matrices and estimate the error on a 3nn
classification task. The error is averaged over 10000 ran-
dom selections of the test and train sets. The manifold G10,6

comes equipped with a certain distance which we simply
refer to as the ”manifold distance” (see the supplementary
document). For each point, its 3nns are determined by four
different metrics: the manifold distance, the manifold dis-
tance after MS with the truncation kernel, the manifold
distance after MS with the Gaussian kernel, and the WT of
the manifold distance. Both the WT and MS with trunca-
tion kernel require a parameter ε determining the truncation
width. The Gaussian kernel requires a standard deviation
parameter which we set to 2/3 the ε-value of used for Wε.
We then repeated the above for the parameter ε ranging over
{0.8, 0.9, 1.0, 1.1, 1.2}. See Table 2 and Figures 7 and 8.
For details about computational techniques and mathematics
on the Grassmannian data, see the supplementary document.

6. Conclusions
We introduced the Wasserstein transform as a method that
takes a dataset represented by a distance matrix and a proba-
bility measure and iteratively alters the distance matrix with
the goal of enhancing features and/or removing noise. We
established the stability of our method under data perturba-
tions, and exhibited a connection with the MS algorithm
which permits establishing the stability of MS as well. We
validated the ability of WT to reduce the chaining effect and
to denoise data on synthetic datasets. We applied WT to clas-
sification tasks on MNIST and Grassmann manifold datasets
and showed that WT performed at least as well as MS, de-
spite being applicable in wider settings. For future work,
it seems of interest to investigate the theoretical behaviour
of the iterated WT, e.g., its connection with Ricci/gradient
flows. It also seems of interest to study the experimental
performance of versions of the WT based on `p-Wasserstein
distances for p > 1 and/or other localization operators.
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