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Abstract— In this paper, a built-in self-test and in situ analog
circuit optimization platform is proposed and characterized.
By integrating a fully digital optimization engine and self-
test circuits along with circuits-under-optimization (CUO), this
platform can automatically find an operating point that makes
a good balance among multiple competing characteristic goals.
Therefore, the arbitrary linear time-invariant CUO can be
optimized even when there are large process-voltage-temperature
variations and aging effects of devices. This platform is analyzed
to determine the required accuracy of its building blocks in terms
of noise and linearity. The feasibility of this platform is proved
by a case study utilizing a Tow-Thomas bandpass biquad.

Index Terms— Aging, built-in self-test (BIST), calibration,
digitally-assisted analog circuit, distortion, linearity, low-power,
noise, optimization, PVT tolerant, stability, tuning, verification.

I. INTRODUCTION

APROCESS-Voltage-Temperature (PVT) variation and
device aging have been one of the critical issues of

analog circuits especially in modern technologies. To meet all
specifications even in the worst-case scenario, the design cen-
tering technique has been utilized [1], [2]. The technique can
be explained in Fig. 1. If the specifications of circuit character-
istics z1 and z2 are given by a customer explicitly, the region
of acceptable performance specifications (gray area) in the
performance space [2] can be drawn over a 2-dimensional
surface, where x-axis and y-axis represent metric of z1 and z2,
respectively; the larger z1 and z2 the better performance. After
mapping the region of acceptable performance to the design
parameter space, a design centering can be accomplished
by finding a design point that maximizes the yield in the
parameter space; the newly obtained design point can be drawn
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Fig. 1. Comparison between a conventional 1-dimensional tuning/calibration
and N-dimensional optimization.

in the performance space as shown in Fig. 1. At the design
center, z1 and z2 characteristics can stay in the acceptable
performance region even when the design is affected by severe
PVT variations and device aging after fabrication. However,
this design centering requires large over-designs (margins).
For example, in Fig. 1, z1 and z2 are higher than their
minimum requirements at the design center. As a result, other
circuit characteristics, such as power or area consumption, are
sacrificed, which might be prohibitively expensive.

To overcome the limitation of design centering, one possible
alternative is placing a design point at the near edge of the
acceptable performance specification region such as design
point A in Fig. 1. At A, z1 is reduced compared to the
characteristic at the design center to minimize its over-design;
thus, the excessive sacrifice of other characteristics, such as
power or area, can be relaxed. However, in case of severe PVT
variations and device aging, the actual operating point of the
design can be moved outside of the acceptable performance
region like A�. To solve this issue, a tuning/calibration has
been exploited to relocate A� to the inside of the acceptable
performance region.

One common tuning/calibration methodology is designing
analog circuits with digitally-controlled tuning knobs and
using automatic test equipment (ATE) [3]. After chip fabrica-
tion, ATE can automatically check the validity of the analog
circuits chip by chip and find an optimal control code for
each chip. This code can be written in a ROM or eFUSEs
and be retrieved when the chip is powered on. Unfortunately,
ATE usually requires high setup cost and does not support
complex/high-accuracy measurements for analog circuits.

In this context, many on-chip methodologies, including
built-in self-tests (BISTs) and on-chip tuning/calibration, have
been researched for various analog circuits [4]. The method-
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ologies can be classified into two groups depending on how
to verify their target characteristics. The first category uses
indirect measurements based on statistics [5]–[7]. Since the
characteristics of an analog circuit are correlated with each
other, a statistical model can be used to “predict” the target
characteristics from other characteristics that are easily mea-
sured in a cost effective way. For example, in [5], the target
characteristics of an RF power amplifier, such as gain, linear-
ity, power consumption, and power efficiency, are predicted
from the measurements of the DC bias current of the amplifier
and the R/C values of the passive components. Even though
this method can test and calibrate multiple analog circuit
characteristics simultaneously from the minimal set of rela-
tively simple measurements, it has several drawbacks. First,
it has limited accuracy. Because of the statistical nature of
this approach, there are deviations between the predicted and
actual characteristics. Due to these deviations, the calibrated
circuit might not be in an optimal setting. Second, it is hard
to fully integrate the statistical model on a chip because of the
high complexity of the model. Therefore, an external computer
is still needed, which makes an in situ calibration impossible.

The other category utilizes on-chip direct measurements to
evaluate target characteristics [8]–[14]. For example, in [8]
and [9], the matching network or the gain of the low-noise
amplifier is calibrated by measuring signal power or ampli-
tudes at various nodes. In [10]–[12], Q or ωO of the analog
baseband filter is tuned by evaluating the amplitude/phase
response of the replica (master) circuit, or the RC time
constant of the capacitor array. Although methods in this
category can provide relatively accurate calibration results
and in situ corrections, there are two major drawbacks. First,
these methods can be used only for a very limited number of
specifications and cannot make a balance between one and
another. For example, in [10] and [12], Q and/or ωO can
be tuned, but other circuit characteristics, such as stability,
power consumption, settling time, etc., cannot be validated.
Even if the others can be calibrated by adding more dedicated
tuning circuits, there is no systematic way to make a “balance”
among multiple circuit characteristics that are in a trade-
off relationship and to find an “optimal” control code for
the CUT. This issue will be more evident when the CUT
has a large programmability to support many standards and
scenarios because the total number of possible combinations
of control codes increases exponentially with the number of
control bits. Second, some methods in this category require
a replica circuit, which is tuned instead of a main circuit.
These methods can be problematic in a nanometer technology
because a good matching between the two circuits cannot be
guaranteed anymore.

In this paper, we propose a built-in self-test and in situ
analog circuit optimization platform. This platform directly
measures excitation and response signals for a circuit-under-
optimization (CUO). Based on the results of the measure-
ments, the fully-digital optimization engine extended from [15]
automatically finds an optimal control code for the CUO to
fulfill multiple arbitrary weighted characteristic goals simul-
taneously. Therefore, the CUO can have and maintain well-
balanced optimal characteristics even in severe PVT variations

Fig. 2. Conceptual architecture of the proposed platform.

and device aging. This can be illustrated in Fig. 1. At design
point B located near the bottom-left edge of the acceptable
performance specification region, the characteristics z1 and z2
are relaxed compared to the characteristics at the point A and
the design center; thus, other characteristics, such as power
and area consumption, can be jointly optimized. When PVT
variations and device aging move the actual operating point
of the design to B �, the N-dimensional optimization in the
proposed platform can relocate B � to the optimal operating
point B , whereas the 1-dimensional tuning/calibration cannot
move B � to B . Therefore, this platform allows designers to
position their design at B since the effects of the variations
can be well compensated. In addition, this platform can test
and optimize a wide range of different analog blocks without
their replicas.

Because most circuit blocks except the CUO will be
powered-off after the optimization process is completed,
the power consumption overhead is not a critical issue in
this platform. Also, the area overhead can be mitigated by
reusing mixed-signal circuits and digital computation blocks,
such as a frequency synthesizer, a low-speed analog-to-digital
converter (ADC), and arithmetic logic units (ALU), in many
system-on-chip products. Even if those blocks are not available
for the overhead reduction, the platform can be justified by
a higher yield and lower power optimal characteristics of
the CUO.

The rest of this paper is organized as follows. In Section II,
the proposed platform architecture is introduced. Section III
describes the role and the structure of a cost function. The rea-
son why we need an optimization engine and the algorithm
that supports it are discussed in Section IV. In Section V,
the required accuracy of each building block in the platform
is analyzed. Section VI presents the Monte-Carlo simulation
results of the platform and the measurement results of an
integrated circuit (IC) prototype. Finally, conclusions are made
in Section VII.

II. THE PROPOSED PLATFORM ARCHITECTURE

A. Optimization With BIST

The full concept of the proposed platform is illustrated
in Fig. 2. The complete platform consists of an analog BIST
part and a digital optimization part. Characteristics of the CUO
in the analog BIST part can be changed by the N-dimensional
control vector

−→
V = [

x �1, x �2, · · · , x �N
]
, which is a collection

of tuning variables (knobs), such as widths of transistors,
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Fig. 3. Frequency- and time-domain characterizations. (a) I/Q sampling for
the frequency-domain characterization. (b) Multi-phase sub-sampling for the
time-domain characterization.

resistances, capacitances, and bias currents. These variables
are modified by implementing arrays of transistors, resistors,
and capacitors with digitally-controlled switches [15]. Once
the vector is given as a digital code, characteristics of the
CUO can be evaluated by stimulating it and analyzing its
responses. In this platform, two types of responses can be
measured and analyzed. One is a frequency-domain response
and the other is a time-domain response. These two responses
will be discussed in detail in Section II-B and II-C. Dur-
ing the evaluation of i -th response, zmeas,i is calculated.
After all evaluations are complete, the overall performance
of the CUO is quantified by computing a cost function value
of the control vector

−→
V . The cost function is defined as a

summation of differences between the extracted characteristic
zmeas,i and the target characteristic ztar,i for all i . Before the
optimization, the cost function value can be high due to severe
PVT variations and device aging. The optimization engine
finds the optimal control vector

−−→
Vopt , which makes the cost

function a minimum, by changing
−→
V via an optimization

algorithm.

B. Frequency-Domain Characterization of a CUO

To characterize a CUO in the frequency domain, the excita-
tion signal generator (ESG) in Fig. 2 utilizes a square wave and
generates a sinusoidal signal VE SG by suppressing harmonic
components of the square wave [16]. The CUO is stimulated
by the sinusoidal signal and generates a sinusoidal response
VRE S . The ORA samples the input and the output signals of
the CUO (VE SG, VRE S) with the same frequency ω1. Since
the frequency of the sampled signals are identical to that of
the sampling clock, the input of ORA is down-converted to
DC, and the DC output is digitized using a low-speed ADC.
By changing the phase of the sampling clock, the two-step
in-phase and quadrature (I/Q) sampling [17] can be accom-
plished without an additional sampler as depicted in Fig. 3(a).
If the input of ORA can be expressed as a sinusoidal
signal,

y(t) = A cos (ω1t − θ) (1)

the sampled I/Q values can be represented as

yI [m] = y(t) · δ(t − mT ) = A cos (θ)

yQ[m + 1] = y(t) · δ(t − (m + 1)T − T/4) = A sin (θ) (2)

where T = 2π/ω1, and δ(t) indicates a Dirac delta function.
The magnitude and the phase responses of the CUO can

be extracted by comparing the magnitudes and the phases
of VE SG and VRE S , which are calculated from the sampled
values.

After the evaluation of the magnitude and the phase
responses of the CUO at ω1, a new sinusoidal signal at
frequency ω2 is generated, and the entire calculation process is
repeated. By iterating this procedure multiple times, the trans-
fer function of the CUO can be estimated. A cost function
quantifies the difference between the estimated transfer func-
tion and the target transfer function as a metric that can be
utilized for CUO optimization.

C. Time-Domain Characterization of a CUO

For a highly optimized CUO, direct measurements of
time-domain characteristics are mandatory because indirect
prediction of the characteristics from the frequency-domain
measurements is not accurate. It is true that time-domain
characteristics can be derived from the estimated transfer
function when a CUO is an ideal 1st- or 2nd-order system [18].
However, many practical circuit systems have higher orders
than second order since many non-ideal factors, such as
parasitic components and finite G BW of op-amps, can be
prominent in a real system. Therefore, time-domain character-
istics of a CUO cannot simply be deduced from its frequency
characteristics; they should be optimized together with other
circuit characteristics.

To evaluate time-domain characteristics of a CUO, a step
input signal is applied to the CUO. The step input can be
emulated by utilizing a square wave in the ESG. Because many
circuit systems have complex poles, the CUO might show an
under-damped response that has a frequency close to ωO as
depicted in Fig. 3(b). The most straightforward way to extract
the peak value and the settling time of the response is sampling
the response with a frequency much higher than ωO . However,
it requires a fast sampler, and that can be a burden for the entire
platform. To mitigate this issue, a multi-phase sub-sampling
can be deployed [13]. Instead of sampling multiple times
within a single-clock cycle, an integer number of clock-cycle
delays can be introduced between two consecutive sampling
actions. For convenience, sub-sampled data are displayed in
a single-clock cycle in Fig. 3(b). This sub-sampling can be
effective only when the input and the output of the CUO are
periodic signals. Even though the effective operating speed of
the sampler can be relaxed by utilizing this technique, the fine
timing resolution (�t ) is still required. Adequate values for
�t will be explored in Section V.

In addition, the time-domain characterization is also useful
for the stability test of a CUO. As shown in Fig. 4, the step
response of a CUO will diminish in time if the CUO is
stable. However, the response will keep growing or maintain
an oscillation if it is unstable or marginally stable. Therefore,
the oscillation can be detected by sampling the step response
during multiple-clock cycles. If the sampled values converge
to a DC voltage, the CUO can be considered a stable system.
Otherwise, the CUO is in an unstable state or a marginally-
stable state. This test result can be incorporated in a cost
function as a penalty term.
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Fig. 4. Stability test. (a) Stable case. (b) Unstable or marginally stable case.

Fig. 5. Magnified view around the design point B in Fig. 1, and equi-cost
lines when M = 2, α1 = α2 = 1, and PE = 0 in (3).

III. COST FUNCTION

Before the optimization engine finds an optimal control
vector

−−→
Vopt , on-chip quantitative evaluation of each control

vector
−→
V is required. For that purpose, a cost (or error)

function should be defined. It measures the difference between
the target and the measured characteristics of a CUO when
the control vector

−→
V is assigned to the CUO as shown

below.

C(
−→
V ) =

M∑

i=1

αi

∣∣
∣zmeas,i(

−→
V )− ztar,i

∣∣
∣+ PE(

−→
V ) (3)

where αi is a constant for each i , PE is a penalty function,
and M is the total number of measured characteristics of a
CUO. When the measured characteristics of a CUO at

−→
V

are far from the target, the cost function value C(
−→
V ) is

high, and the optimization engine will try a different
−→
V to

minimize C(
−→
V ). On the other hands, when C(

−→
V ) is smaller

than a certain cost criterion, or when the maximum number of
algorithmic iteration has been reached, the optimization engine
stop finding a better

−→
V , and

−→
V will be fixed.

Ideally, the target design point should be located at the edge
of the acceptable performance region to minimize power and
area consumption while satisfying all specifications. However,
in this case, the actual operating point of a CUO after
optimization can be outside the acceptable performance region,
since there is a possibility that the optimization engine fails to
find the design point that has exact zero cost due to the limited
number of iterations. Therefore, by assigning a small margin
(θ1) to the target design point (B) as shown in Fig. 5, we can
achieve a good balance between the optimization quality and
the probability of finding an actual operating point inside the
acceptable performance region after optimization (reliability).
The quantitative relations between the probability, the margins,

and the algorithm stopping criteria will be presented in
Section IV.

In (3), zmeas,i(
−→
V ) can represent various values. In the

frequency-domain characterization, zmeas,i (
−→
V ) can be a mag-

nitude or a phase response of a CUO at a certain frequency ω.
In the time-domain characterization, zmeas,i(

−→
V ) can be a time-

domain characteristic such as a peak value or a settling time of
a CUO. By varying αi , each term of the cost function can have
a different weight. For instance, if α1 = 1 and αi = 0 ∀i �= 1,
then the cost function only evaluates zmeas,1(

−→
V ) and ignores

all the other zmeas,i(
−→
V ). In this specific case, the optimization

engine will find the
−→
V that makes

∣∣
∣zmeas,1(

−→
V )− ztar,1

∣∣
∣ a min-

imum. In this way, relative importance of each specification
can be given by the user of this platform, and a right “balance”
among various circuit characteristics can be achieved.

Another term PE(
−→
V ) represents a penalty function. In a

constrained optimization problem, its constraint can be added
to the cost function as a penalty term. Then, this transformed
problem can be solved in the same way as an unconstrained
optimization [19]. Through design-time simulations, we can
carefully choose the weighting factor for the penalty term
to satisfy the corresponding constraint while the original
objective is not significantly sacrificed. For example, in Fig. 5,
z1 and z2 characteristics of a CUO can be optimized only
when the CUO is stable. Therefore, the characteristics should
be constrained within the region, where the stable operation
of the CUO is guaranteed. The confinement can be achieved
by inserting the following penalty to the cost function.

PEstb(
−→
V ) =

{
∞ if unstable or marginally stable,

0 otherwise.
(4)

The optimization engine automatically rules out the control
vector

−→
V that makes the CUO unstable or marginally stable

because the cost is too high in that case.
In addition, the power consumption of a CUO can also be

included in a cost function as a penalty. Because the minimum
power consumption is always a desired characteristic, it does
not need to be measured when bias currents can be controlled
monotonically even in PVT variations and device aging. This
monotonicity can be easily obtained by utilizing thermometer
codes for the control of resistors. The penalty function for
minimum bias current can be represented as

PEpwr (
−→
V ) = x �bias (5)

where x �bias is an element of
−→
V . When the actual bias current

of a CUO is proportional to the control code value x �bias ,
the optimization engine will try to minimize the control code
x �bias itself, and the bias current will be the smallest value
while satisfying all the other constraints and requirements.

Overall, the entire penalty term can be expressed as a
function of stability and power consumption.

PE(
−→
V ) = PEstb(

−→
V )+ β · PEpwr (

−→
V ) (6)

In (3) and (6), appropriate weight (αi , β) should be chosen
because each term can have a different unit and empha-
sis according to CUO specifications. This can be done by
checking optimization results in simulations and adjusting the
weight.



LEE et al.: BUILT-IN SELF-TEST AND IN SITU ANALOG CIRCUIT OPTIMIZATION PLATFORM 3449

Fig. 6. Tow-Thomas biquad. (a) Schematic. (b) ωO & Q characteristics.

IV. OPTIMIZATION ENGINE

Based on the costs of various control vectors, the opti-
mization engine tries to find the optimal control vector

−−→
Vopt ,

which makes Copt(= C(
−−→
Vopt )) a minimum. The most intuitive

algorithm to find
−−→
Vopt is enumerating all possible combinations

of the control knob settings. However, this approach is not real-
istic in that the size of the space of

−→
V increases exponentially

as the number of bits of the control knobs increases.
To overcome this issue, one common approach is utilizing

an orthogonal tuning/calibration [20]. In the orthogonal tuning,
each circuit characteristic can be tuned one by one, and
each tuning action does not affect other circuit characteristics.
Since each characteristic is tuned independently, a set of
specifications can be divided and conquered separately. Thus,
this approach can find

−−→
Vopt much faster because the size of

the total search space increases linearly with the number of
control knobs.

Unfortunately, orthogonal tuning is not a possible option
when many specifications should be dealt simultaneously
because circuit characteristics have trade-off relationships with
each other by nature. This can be well illustrated by the
following example. In Fig. 6(a), if each op-amp is modeled
as a two-pole system, the relation between Qactual , ωO,actual ,
and G BW can be shown as in Fig. 6(b). In this figure, Qideal

and ωO,ideal mean Q and ωO of the filter when the G BW
is infinite, whereas Qactual and ωO,actual are Q and ωO

when the G BW is a given value. As we can see, Qactual

and ωO,actual are not orthogonal to the G BW . When the

G BW is too small, β ·PEpwr (
−→
V ) in (6) is negligible because

the G BW is proportional to the power consumption of the
op-amps, whereas αi

∣
∣∣zmeas,i(

−→
V )− ztar,i

∣
∣∣ in (3) is large due

to the limited tuning ranges. On the contrary, when the G BW
is larger than needed, β · PEpwr (

−→
V ) is too high. After all,−−→

Vopt is located between those two extreme cases. Thus, all
settings for the G BW should be checked to find

−−→
Vopt . When

the orthogonal tunings are applied to the CUO at each G BW
setting, the size of the total search space will be 3 × 210,
provided that the control knobs for Qactual , ωO,actual , and
gain at ωO,actual are orthogonal to each other, and all control
knobs have 5 bits per each knob, including the knob for the
G BW . If the G BW of two op-amps are tuned separately,
the size will be 3 × 215. The important point here is that
the size of the search space increases exponentially when
more non-orthogonal circuit characteristics should be tuned
together. Consequently, the orthogonal tuning scheme cannot
be a universal solution due to its limitation.

Instead of trying to reduce the size of search space,
another approach to discover

−−→
Vopt efficiently is utilizing well-

established optimization algorithms. Regardless of dependen-
cies among control knobs, the methodologies previously intro-
duced are based on enumeration, which are close to brute-force
methods. Optimization algorithms can be a powerful tool as
they reduce the required time for searching when the size of
search space is given.

In general, analog circuit optimization is a non-convex prob-
lem if there are no special approximations [21]. Even though
a complete theory discovering an “exact” global minimum
within a reasonable time has not been found yet for non-
convex optimization, there are many meta-heuristic algorithms
that can converge to a sub-optimal point [22]. Since those
algorithms are on the basis of heuristics, discovering

−−→
Vopt

cannot be guaranteed. However, if the algorithms are designed
properly, the final results of the algorithms can be very close
to the optimal one. There are two types of meta-heuristic
algorithms. The first type is a single-solution approach, which
stores only one previous candidate and modifies it to get a
new candidate. Pattern search (PS), sensitivity search (SS),
and simulated annealing (SA) can be included in this category.
The second type is a population-based approach. Algorithms in
this category maintain a number of previous candidates and
exploit previous search experience to guide the search process
for a new candidate better. Genetic algorithm (GA) and
Nelder-Mead method (NM) are examples of this type.

The SA-SS hybrid algorithm is utilized in this paper even
though any kind of meta-heuristic algorithm can be used for
the platform proposed in this paper. First, because population-
based algorithms require larger memory than single-solution
algorithms, they are ruled out to reduce hardware complexity
and area overhead. Second, among single-solution algorithms,
SA is good at exploring search space and approaching to the
points close to a global optimum, but poor at converging to
the optimum. On the other hand, SS searches well around an
initial starting point, but can be trapped in a local minimum.
Therefore, by merging the two algorithms, a global optimum
can be found quickly, with local minima avoided [15].
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Algorithm 1: Simulated-Annealing and Sensitivity-Search
(SA-SS) Hybrid Algorithm
Input : Initial virtual temperature Tmax , cooling rate k,

maximum number of SA iterations M AX S A,
maximum number of SS iterations M AX SS , and
cost function threshold θ

Output: The optimal solution
−−→
Vopt and the corresponding

cost function value Copt

1 Initialize T ← Tmax ; Copt ←∞;
−−→
Vopt ← I N I T ;

2 Set global counter i ← 0;
3 while i < M AX S A & Copt > θ do
4
−−→
Vnew ← R AN DO M;

5 Cnew ← C(
−−→
Vnew);

6 C�← Cnew − Copt ;
7 if C� < 0 then

8 (
−−→
Vopt , Copt )← (

−−→
Vnew, C(

−−→
Vnew));

9 else
10 if ex p(−C�/T ) > random(0, 1) then
11 (

−−→
Vopt , Copt )← (

−−→
Vnew, C(

−−→
Vnew));

12 end
13 end
14 T ← kT ; i ++;
15 end
16 Ctmp ←∞;
17 for i = 0; i < M AX SS & Copt < Ctmp; i ++ do
18 Ctmp = Copt ;

19 for each neighbor
−→
Vj of

−−→
Vopt do

20 if C(
−→
Vj ) < Copt then

21 (
−−→
Vopt , Copt )← (

−→
Vj , C(

−→
Vj ));

22 end
23 end
24 end
25 return (

−−→
Vopt , Copt );

A pseudo code for the hybrid algorithm is shown in
Algorithm 1. It consists of two parts. The first part is an
SA phase, which is described in Steps 3-15. The second part
is an SS phase, which is shown in Steps 17-24. In the SA
phase, a random control vector

−−→
Vnew is newly generated at

each iteration (Step 4). If the cost of the new control vector is
smaller than the previous optimal cost, the previous vector and
the cost of it are updated to the new one (Steps 5-8). Even if
the new cost is larger than the previous cost, the update is exe-
cuted if the condition shown in Step 10 is true (Steps 10-12).
In Step 10, T is virtual temperature that is utilized for the
algorithmic annealing process. C� is the difference between
the new cost and the previous optimal cost. random(0, 1) is a
randomly selected number between 0 and 1 at each iteration.
When T is very large, e−C�/T will be close to 1, and a major-
ity of new control vectors are going to replace previous vectors
even if the replacement can increase the cost temporarily.
By repeating this process, “hill climbing” can occur, and local
minima can be avoided. However, the hill-climbing activity
becomes unusual as T decreases (0 < k < 1). Therefore,

Fig. 7. Relation between the number of SA/SS iterations, the normalized
cost criterion, and the probability of having a cost smaller than the criterion
after the number of iterations. (a) M AXSS = 0. (b) M AXSS = 3.

the final solution can converge to a global minimum. After
M AX S A iterations, or after the point that has a cost smaller
than θ is found, the SA phase is closed, and the optimization
engine starts the SS algorithm (Step 16). By adding/subtracting
1-LSB to each control knob, all neighbors (

−→
Vj ) of the current

optimal vector can be evaluated (Steps 19-20). The engine
will take the

−→
Vj that generates the lowest cost (Step 21).

This process will be repeated until there is no room for
improvement, or until the maximum iteration limit (M AX SS)
has been reached.

To make the SA-SS algorithm more reliable and effective,
the stopping criteria and the parameter k should be chosen
and verified by testing sample chips or by running repetitive
simulations. Fig. 7 shows the results of such simulations.
It reveals the relation between the number of SA/SS iterations
and the probability of having a cost smaller than a certain
criterion after the number of iterations. In the simulations,
all costs (Cnorm) and cost criteria (θnorm) are normalized by
the cost of a fixed starting point. As the figure indicates,
if we have large θnorm , a relatively small number of SA/SS
iterations are required to obtain Cnorm(

−−→
Vopt) smaller than

θnorm with high probability (0.8~0.9). However, large θnorm

means huge back-off (margin) from the edge of an acceptable
performance region as shown in Fig. 5. Therefore, the criteria
(M AX S A, M AX SS, θ ) should be chosen according to the
user’s need; if the user wants high-quality optimization, θ
should be small but M AX S A and M AX SS will be large.

One possible concern regarding this platform is that the
optimization algorithm can converge to a bad solution that
is far from an acceptable performance region because of the
heuristic nature of the algorithm. Even though it is true that we
can lower the probability of having the bad solution by allow-
ing enough iterations, we cannot avoid the situation 100%
especially when the CUO should be optimized periodically to
track PVT variations and device aging.

A feasible solution is supporting multiple modes of
operation. For example, a CUO can support a dual-mode
operation: a conservative mode and an optimization mode.
The dual modes have two different design points. For example,
the design center in Fig. 1 for the conservative mode and B for
the optimization mode. When the CUO is powered on, it starts
from the conservative mode; thus, the operating point of it is
still inside an acceptable performance region even if there are
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large PVT variations and device aging. In some applications,
the CUO does not need to be always on [23]. When the
CUO is in an idle state, the mode can be changed to the
optimization mode. If the optimization process successfully
finds a good operating point inside an acceptable performance
region before the end of the idle state, the CUO will have the
updated operating point. Otherwise, the CUO will maintain
the previous conservative operating point and wait until the
next idle state comes. If the CUO should always be in an on
state for other applications, we can exploit two same CUOs:
one is in the optimization mode while the other is in use.
By following this approach, we can guarantee that the actual
operating point of a CUO is always inside an acceptable
performance region after the optimization process is complete.

V. ANALYSIS OF REQUIRED ACCURACIES FOR PLATFORM

BUILDING BLOCKS

A. Definitions

1) Control Vector: A control vector can be defined as a
collection of tuning variables (knobs).
−→
V = [

x �1, x �2, · · · , x �N
]
, x �k = (xk − xk,min)/xk,L S B (7)

where x �k is a normalized non-negative integer value.
2) Euclidean Distance: A Euclidean distance between two

control vectors,
−→
V and

−−→
Vcen , can be defined as shown below.

d(
−→
V ,
−−→
Vcen) =

√√√
√

N∑

i=1

(
x �i − x �cen,i

)2
(8)

where N indicates the total number of tuning variables.
3) Percent Root-Mean-Square Error (%RMSE): In order to

quantify how close the actual characteristics of a CUO are to
the specifications given by the user of this platform, a %RMSE
can be defined as

%RMSE(
−→
V ) = 100×

√√
√
√ 1

L

L∑

i=1

(
zact,i(

−→
V )− ztar,i

ztar,i

)2

(9)

where zact,i means i -th actual characteristic of a CUO at−→
V , and ztar,i indicates i -th target characteristic of a CUO
set by the user. It should be mentioned here that zact,i is
different from zmeas,i in (3). Due to the non-idealities of an
ESG, an ORA, and digital computation blocks, the measured
characteristics of a CUO on a chip will have some errors
compared to the actual characteristics of the CUO. If we
consider that all circuits except the CUO will be powered-
off after the optimization process is completed, the measured
characteristics themselves are not important in the perspective
of the user. Instead, the important thing is whether the actual
characteristics of the CUO at

−→
V are close enough to speci-

fications or not. This can be revealed by the %RMSE, and it
can be utilized as an indicator of optimization accuracy.

In the frequency-domain characterization, zact,i and ztar,i

will be an actual gain and a required gain, respectively,
at fi . According to the frequency range of interest, the total
number of frequency points (L) should be big enough to
cover all the range. Also, the frequency step ( fstep) between
two adjacent frequency points should be small enough to
accurately measure the difference between a target transfer

function and an actual transfer function. In this paper, it is
assumed that L = 100 and the frequency points are spread
evenly in a logarithmic scale from ωO/10 to 10 · ωO when
the CUO has a bandpass frequency response. Regardless of
the types and orders of the CUO, L and fstep can be set in a
similar manner.

In the time-domain characterization, zact,i and ztar,i can
be a settling time, a peak value, or a peak time. Because
we are not going to optimize the entire shape of a step
response, the %RMSE does not need to be defined over a
finite set of time samples {ti } different from the %RMSE for
the frequency-domain characterization.

B. Design of the Cost Function

There are two major differences between the cost function
and the %RMSE. First, unlike the %RMSE, the cost function
is based on measured characteristics. If there are significant
errors in the measurements, the %RMSE and the cost will
show a significant deviation. Second, some realistic factors of
on-chip in situ optimization should be considered for the cost
function. For instance, in the frequency-domain characteriza-
tion, the total number of frequency points (M) and fstep should
be reasonable values. If M is too big, the time that is required
to complete the optimization process will be unrealistically
long. Therefore, the cost function should be designed properly.

The cost function for the frequency-domain characterization
can be:

C(
−→
V ) =

M∑

i=1

αi

∣
∣
∣Gmeas(

−→
V , fi )− Gtar ( fi )

∣
∣
∣+ PE(

−→
V ) (10)

where Gmeas means the measured gain at
−→
V and fi ; Gtar

indicates the target gain at fi , which is given by the user.
To choose right values for M and fstep, the relationship
between those parameters and the %RMSE should be eval-
uated. Ideally, the optimization engine should always find the
optimal control vector

−−→
Vopt among

−→
V . However, in reality,

it is not always possible because of several non-idealities,
which will be clarified later. If we define a sub-optimal control
vector

−−→
Vsopt as a vector that makes the normalized cost

(C(
−−→
Vsopt)/C(

−−→
Vopt)) smaller than a certain criterion (Ccrit ),

there will be a number of
−−→
Vsopt that satisfy the condition, and it

can be assumed that the engine can discover one of the several−−→
Vsopt regardless of the non-idealities. In this case, the worst
%RMSE(

−−→
Vsopt) can be extracted among the various

−−→
Vsopt for

each combination of M and fstep. To find all
−−→
Vsopt , C(

−→
V )

should be enumerated for all
−→
V at each M and fstep setting.

For the time-domain characterization, the cost function
can be:

C(
−→
V ) =

3∑

i=1

αi
∣∣TCmeas,i − TCtar,i

∣∣+ PE(
−→
V ) (11)

where TCmeas,i and TCtar,i indicate the i -th element of
TCmeas and TCtar , respectively. The two TC vectors can be
defined as shown below.

TCmeas =
[
STmeas(

−→
V ,�t ), PVmeas(

−→
V ,�t ), PTmeas(

−→
V ,�t )

]

TCtar = [STtar , PVtar , PTtar ] (12)
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Fig. 8. Relation between the %RMSE and the design parameters of the cost
functions. (a) %RMSE and {M, fstep}. (b) %RMSE and �t .

Fig. 9. Effect of distortions in the frequency-domain characterization.

In (12), ST, PV, and PT mean a settling time, a peak value,
and a peak time individually. An appropriate �t can also be
chosen by following the same simulation procedure discussed
before.

Fig. 8 shows the simulation results for the cost function
design. In these simulations, it is assumed that the CUO
has a 2nd-order bandpass frequency response and Ccrit =
1.5. As Fig. 8(a) shows, if M and fstep are too small,
the %RMSE can be large. To achieve better than 1% accuracy
in the frequency-domain characterization, {M, fstep} should be
larger than or equal to {3, fbw}, where fbw = ωO/(2π Q), and
the center of the frequency points is located at ωO . The relation
between the %RMSE and �t/TO for the CUO is revealed
in Fig. 8(b), where TO = 2π/ωO . To get accuracy close
to 1%, �t should be around 1% of TO . If the time-domain
characteristics are not the primary concern, this requirement
can be relaxed.

Even though we assume that the CUO have a 2nd-order
bandpass frequency response, the analyses proposed here and
the following subsections are not limited to the specific CUO.
In other words, the same analyses can be applied to any
orders/types of CUOs to get valuable design information.

C. Analysis of the Effect of Distortions

Distortions in the analog blocks can distort a cost function.
As shown in Fig. 9, the measured gain (Gmeas) can be
represented as the summation of the actual gain (Gact ) and
the error (E), which stems from the distortions of the analog
blocks. In the worst case scenario, E can be so large that
Gmeas matches the target gain (Gtar ) even though Gact is
quite different. In this extreme case, the cost will be close to

Fig. 10. Block diagram for the distortion analysis.

zero according to (10) if there is no penalty term. However,
the %RMSE is not zero because the actual transfer function
is different from the target. Unfortunately, the optimization
engine operates based on the cost function, and the engine
will find the

−→
V that makes Gmeas = Gtar . Therefore,

the final control vector after optimization (
−−→
Vdis ) can have

large %RMSE if errors originated from the distortions are big
enough.

The error E can be obtained as follows. In Fig. 10, if the
node B is connected to the ORA through the mux, the signal at
node D can be represented as shown below when we assume
that the phases of the three tones are the same.

yD(t) � B1 cos(ωi t)+ B2 cos(2ωi t)+ B3 cos(3ωi t) (13)

Then the magnitude of y(t) will be expressed:

Mag(yD(t)) =
√

y2
I [m] + y2

Q[m + 1] = B1 + B2 + B3 (14)

If xD(t) also has three tones that have A1, A2, and A3
amplitudes, and if all phases of the three tones are identical,
Gmeas can be derived:

Gmeas = B1 + B2 + B3

A1 + A2 + A3
= B1

A1
× 1+ Bdisto/B1

1+ Adisto/A1
(15)

where Adisto = A2 + A3, Bdisto = B2 + B3. To calculate
Adisto and Bdisto, the power of 2nd- and 3rd-order harmonic
distortions (HD2, HD3) should be obtained at node A, B ,
and D. At node A, the power of harmonic distortions can
be expressed as shown below [24].

HDkE SG = OIPkE SG − k(OIPkE SG − PE SG) (16)

where k = 2 or 3, and P means the power of an output
main tone. Also, OIP2 and OIP3 indicate an output intercept
point for 2nd- or 3rd-order harmonic distortion individually.
All terms in (16) are in the dBm scale. The three tones at node
A are transferred to node B .

PCU O = Gact (
−→
V , fi )

∣
∣
d B + PE SG

HDkCU O,trans = Gact (
−→
V , k fi )

∣
∣
d B + HDkE SG (17)

Because of the output main tone of the CUO, 2nd- and
3rd-order harmonics are newly generated.

HDkCU O,sel f = OIPkCU O − k(OIPkCU O − PCU O) (18)

Approximately, HDkCU O can be expressed as the power
summation of the two signals.

HDkCU O � 10 log10(10HDkCU O,trans /10 + 10HDkCU O,sel f /10)

(19)
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Fig. 11. Simulation results showing the relation between the %RMSE and OIP3H of each block (OIP2H = 60 dBm for all blocks). (a) Simulation of
the frequency-domain characterization. OIP3HCU O = 30 dBm. (b) Simulation of the frequency-domain characterization. OIP3HE SG = OIP3HO R A =
PE SG + 20 dB. (c) Simulation of the time-domain characterization. PE SG = 8.6 dBm (−3 dBFS for a 1.2 V supply voltage).

By taking the similar approach, HD2O R A and HD3O R A can
be calculated for each mux setting. After that, the power of
the two harmonics can be converted to Adisto or Bdisto.

By enumerating
−→
V and calculating the distorted cost at each−→

V ,
−−→
Vdis can be found if OIP2H and OIP3H are given for each

block. In this way, %RMSE(
−−→
Vdis) and linearity specifications

can be related. The relation is shown in Fig. 11. As indicated
in Fig. 11(a), to maintain the %RMSE smaller than 1% for the
frequency-domain characterization, OIP3H of the ESG and the
ORA should be 20 dB larger than PE SG . This is equivalent to
−40 dB total harmonic distortion (THD). When the ESG and
the ORA have −40 dB THD, the CUO should have −30 dB
THD from Fig. 11(b). In these simulations, OIP2H of all
blocks are assumed very high because 2nd-order distortions
are negligible if we use fully-differential circuits.

A similar analysis can be applied to the time-domain
characterization. The only difference between the two analyses
is that the input and the output of the CUO have many
frequency components in the time-domain characterization.
Because most power of the CUO output is concentrated
on around a certain frequency depending on the frequency-
domain characteristic of the CUO, we can add the power of
the tones near the frequency and consider it the power of a
main tone. Then 2nd- and 3rd-order harmonic tones can be
obtained from the main-tone power when OIP2H and OIP3H
of each block are given. The tones can be added to the original
step response that does not include any non-idealities, and the
time-domain characteristics can be extracted from the realistic
waveform. Fig. 11(c) shows the required OIP3H for the CUO
and the ORA to get a certain level of optimization accuracy in
the time-domain characteristic optimization. To obtain around
1% accuracy, OIP3H of both blocks should be more than
10 dBm.

D. Analysis of the Effect of Noise

There are many noise sources in this platform. First,
the thermal and flicker noises of the ESG, the CUO, and the
ORA contribute to the total noise of this platform. Second,
the ADC in this platform makes noise because of the effects of
its quantization and its integral and differential nonlinearities
(INL, DNL). Third, the digital computation block, which
makes computation errors because of its finite bit-width,

Fig. 12. Effect of noise in sensitivity-search optimization.

can be considered a noise source. Since the output of the
CUO is a random number while the optimization algorithm
is progressing, the errors that stem from the ADC and the
digital computation block are randomized as well and can be
classified as noise.

As discussed in Section IV, the SA-SS hybrid algorithm is
utilized in this platform. Therefore, the effect of noise should
be evaluated in the two phases (SA & SS) separately. For
convenience, the relation between the SS algorithm and the
circuit noise is discussed first. Fig. 12 shows the effect of
noise in the SS phase. Even when the SS phase is started
from the global optimum (

−−→
Vopt ),

−−→
Vopt can have a bigger cost

than that of its neighbors temporarily because of the noise at
t = t0. In this case,

−−→
Vopt will be substituted by one of its

neighbors (
−→
Vn1). By following the same process,

−→
Vn1 can be

replaced by another control vector at t = t1. We can consider
this phenomenon a hill climbing because the ideal cost of the
newly selected control vector can be bigger than that of the
previous vector. As this illustration shows, a current control
vector will keep changing to its neighbor around

−−→
Vopt due

to the fluctuation of the cost. By recording the history of the
selected control vectors and by extracting the biggest %RMSE
in the history, the worst-case %RMSE can be obtained in a
simulation.

In the SA phase, hill climbing can occur and local minima
can be escaped even if there is no circuit noise. Therefore, this
natural hill-climbing action can be considered an “intentional
noise” injected by the algorithm itself. If the total circuit noise
of this platform is not very huge compared to the “intentional
noise,” the circuit noise is not going to degrade the quality
of the SA optimization. However, near the end of the SA
algorithm, the “intentional noise” is diminished a lot, and it
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Fig. 13. Block diagram for the noise analysis.

Fig. 14. Simulation results that represent the relation between the %RMSE
and PE SG/PNoise . (a) Simulation of the frequency-domain characterization.
(b) Simulation of the time-domain characterization. PE SG = 8.6 dBm,
and Gtar (ωO) = 0 dB.

might be comparable to the total circuit noise. For simplicity,
we assume that the SA algorithm can find one of the sub-
optimal control vectors (

−−→
Vsopt) regardless of the level of circuit

noise. Then we can focus on the effect of circuit noise in the
SS phase, which was discussed in the previous paragraph, and
ignore the noise effect in the SA phase.

To simulate the effect of noise, an additive white noise
model is exploited, and all analog circuit blocks are assumed
noiseless as shown in Fig. 13. The model includes noise from
the ADC and the other analog blocks. Because the sampling
speed of the ADC is much slower than the sampling speed of
the ORA, the noise appeared at the input of the ADC will
be heavily aliased by the sampling activities of the ADC.
Therefore, it can be assumed that the sampled noise of the
analog blocks has a white spectrum at the output of the
ADC. Other errors that stem from the ADC itself can also
be considered white noise because the input DC signal of the
ADC can be any values while the optimization is progressing
as mentioned earlier. Another thing that has to be mentioned
here is that the phase noise of the sampling clock in the
ORA will be ignored in this analysis. This can be justified
because the input of the ORA also has the similar phase noise,
and those two noises are correlated. The correlation can be
understood if we consider that the ESG and the ORA receive
their clock signals from the same frequency synthesizer, and
the ESG does not add the significant amount of phase noise
because it is based on delay cells [16].

Simulation results are shown in Fig. 14. In these simula-
tions, the same CUO is utilized as the previous analyses, and
the worst-case %RMSE is extracted after 1000 sensitivity-
search iterations. In addition, the errors from finite bit-width
computations are ignored, and they will be analyzed in

Section V-E. As Fig. 14(a) shows, if the output power of the
ESG (PE SG) is 0 dBm and the target gain at ωO (Gtar(ωO ))
for the CUO is 0 dB, more than 47.5 dB PE SG/PNoise is
required to get the %RMSE better than 1%, where PNoise

means the total noise power at node 1 in Fig. 13. This result
means PNoise should be smaller than −47.5 dBm. If PE SG

is reduced to −20 dBm and Gtar (ωO ) is increased to 20 dB,
PNoise should be reduced to the value smaller than −62.5 dBm
to achieve better than 1% accuracy. This requirement can be
relaxed by allowing a large signal that has power larger than
0 dBm at the output of the CUO. On top of that, averaging in
the digital domain can be exploited. This will be discussed in
Section V-F.

Fig. 14(b) reveals the required PE SG/PNoise to achieve a
certain level of accuracy for the time-domain characterization.
In these simulations, a relatively large square wave (8.6 dBm)
is exploited because most power of the wave is concentrated on
a low-frequency range, and the low-frequency part is heavily
attenuated by the CUO. If we consider that the time-domain
characteristics are extracted from the output of the CUO only,
the input power and the target gain of the CUO do not
need to be changed while the output power of the CUO is
maintained. As the simulation results show, when the noise
level is −47.5 dBm, the worst-case %RMSE is around 9%.

E. Analysis of Bit Widths for Digital Computation Blocks

To compute a cost for the frequency-domain characteriza-
tion, five arithmetic operations should be supported in the
digital domain: addition, subtraction, multiplication, division,
and square root. On top of these operations, the optimization
algorithm shown in Algorithm 1 requires an exponential
operation, a random number generation, and other simple oper-
ations. Because the exponential operation can be approximated
to a linear equation, it is not a mandatory operation. Also,
a random number can be easily generated from a pseudo
random number generator, such as a linear-feedback shift
register. If we consider that all operations needed for the
cost calculation and the optimization can be implemented in
an area-efficient way except the multiplication, the division,
and the square root operation, it can be assumed that all
operations except those three can support full resolution. For
instance, if we define one word as two bytes (16-bit), all
operations except those three should support 16-bit inputs,
16-bit outputs, or both. Based on this assumption, we can focus
only on the accuracy of the cost calculation. This is because
the optimization algorithm shown in Algorithm 1 utilizes the
three operations only at Step 10 and 14, and calculating the
precise probability of a hill climbing at those steps is less
important than getting an accurate cost.

Since the magnitude of x(t) and y(t) in Fig. 13 can be any
real numbers, each computation block should support one of
the two real number representations: fixed-point or floating-
point. In this analysis, it is assumed that each computation
block has a fixed-point representation because of its simplicity.

To quantify the error caused by the finite-bit width of each
computation block, a signal-to-noise ratio (SNR) should be
defined first. When the ideal output and the finite-bit-width
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Fig. 15. Digital computation flow and bit width at each node.

TABLE I

REMARKS AND SIMULATION RESULTS OF THE BIT-WIDTH

ANALYSIS FOR DIGITAL COMPUTATIONS

output of each computation are Y and Ŷ , signal and noise
power can be defined as a mean-square of Y and Ŷ − Y
individually as shown below.

Psignal = 1

n

n∑

i=1

Y 2
i Perror = 1

n

n∑

i=1

(
Ŷi − Yi

)2
(20)

Then the SNR can be expressed as a ratio of the two.
Fig. 15 shows the entire digital computation flow and the bit

width of each block in the frequency-domain characterization.
Each node has an I integer-bit width and F fraction-bit width.
Since the addition and the subtraction support full resolution
(16-bit) as mentioned earlier, the bits at node 3 and 4 should
be expended and truncated, respectively.

While changing the bit widths, the SNR at node 3 and 7
in Fig. 15 can be calculated. Because there are too many
variables, some assumptions should be made as summarized
in Table I. In addition, the table shows simulation results,
which reveal the relation between the SNR and the bit widths
(F2, F3). In these simulations, xI and xQ are sampled from a
0 dBm sinusoidal signal. Also, yI and yQ are extracted from
a sinusoidal signal that has random power from −20 dBm to
6 dBm. The phases of the sampling clocks for x(t) and y(t)

are given randomly as well. As the table indicates, F2 and F3
should be larger than or equal to 2 and 9, respectively,
to achieve around 55 dB SNR at node 3 and 7.

To compare noise that is generated from the analog circuits
and the digital computations, the SNR transfer from node 1
to nodes 3 and 7 in Fig. 15 should be evaluated. We are
considering here a SNR transfer instead of a noise transfer
because the power of the signal is also converted while it is
processed by the digital circuits. From a computer simulation,
a 0 dB SNR transfer was observed at nodes 3 and 7 when there
were no errors that come from the digital blocks. Therefore,
if we have a 50 dB SNR at node 1, the SNR will be still
50 dB at node 7. If we consider that the total power of errors
produced by the digital circuits will be 54.3 dB smaller than
the signal power at node 7 when (F2, F3) = (2, 9), the total
SNR at node 7 including all noise from the analog circuits
and the digital computation errors will be 48.6 dB, which is
equivalent to the %RMSE smaller than 1% from Fig. 14.

In the time-domain characterization, the square root and the
division computations are not needed because the magnitudes
and the gain do not need to be calculated anymore. Therefore,
the output of the ADC and node 3 in Fig. 15 should be
connected directly. If F4(=F6) is bigger than or equal to 9,
the SNR at node 7 will be better than 54.3 dB at least because
the results in Table I include all errors that originate from the
CORDIC and the divider.

F. Overall Linearity & Noise Requirements and Averaging

Noise and linearity requirements are summarized in Table II.
When PE SG is 0 dBm, PNoise should be smaller than
−50 dBm to obtain 1% accuracy in the frequency-domain
characterization as discussed in Section V-D. If we divide this
specification evenly between the ADC (PNoise,ADC ) and the
other analog circuit blocks (PNoise,Ana ), each part should have
smaller than −53 dBm noise power. If we assume that the peak
SNDR of the ADC can be obtained at 0 dBFS, the required
maximum ENOB for the ADC will be 10.47-bit for the 1.2 V
supply voltage because 0 dBFS = 11.6 dBm.

There are two approaches that relax the noise requirement.
The first approach is increasing PE SG . For example, if PE SG

is increased up to 6 dBm, the required ENOB of the ADC
can be 9.47-bit as shown in Table II. However, maintaining
−40 dB THD for the ESG and the ORA, and −30 dB THD
for the CUO will be more demanding because the power of
harmonic tones grow more quickly than the power of a main
tone. The second approach is averaging the outputs of the
ADC. If the window size for the averaging is 2n , the reduction
of noise power is 3n dB. Therefore, the required SNR at the
output of the ADC can be relaxed to 44 dB when 4-point
averaging is utilized. In this scenario, the required ENOB for
the ADC will be 9.47-bit when PE SG = 0 dBm.

In the time-domain characteristic optimization, a full-scale
square wave can be utilized to stimulate the CUO because
the linearity requirements are more relaxed compared to
the requirements of the frequency-domain characterization as
shown in Fig. 11. In this case, PE SG/PNoise can be more than
60 dB if PNoise equals −50 dBm and the 1.2 V supply voltage
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TABLE II

SUMMARY OF NOISE AND LINEARITY REQUIREMENTS

Fig. 16. Reduction of power consumption and standard deviations of multiple characteristics of a biquad. White bars: 100 samples before optimization;
Black bars: 100 samples after optimization. (a) Gain @ ωO . (b) ωO/2π . (c) Q. (d) Peak value when a step input is applied. (e) 5% settling time. (f) GBW.

is utilized. Overall, all requirements summarized in Table II
can also guarantee around 1% accuracy in the time-domain
characterization, if �t is small enough.

VI. SYSTEM VERIFICATION

To show the feasibility of this platform, the Tow-Thomas
bandpass biquad shown in Fig. 6(a) is utilized in this case
study. Unlike the conventional tuning/calibration approaches
introduced in [10]–[12], the biquad includes a control knob
that changes the G BW of op-amps. Because this platform
does not depend on any characteristics of linear time-invariant
CUOs, we choose the biquad as a simple example in this
section to clearly prove the concept of this platform. Once
it proves that the simple example can be optimized, this
platform can be applicable to more complex CUOs without
an additional area overhead. For instance, if a biquad can be
optimized in this platform, high-order filters that consist of
any number of cascaded biquads can also be optimized by the
same process.

Also, this platform is not very complex for analog circuit
designers to exploit. Once the designers have an accurate
model of this platform, which is discussed in Section V,
the underlying algorithm (SA-SS) of this system can be
designed and be verified relatively easily in simulations
because it has only a few parameters as discussed in
Section IV. The only things the designers need to focus on

are developing a suitable cost function based on specifications
and determining appropriate control knobs.

A. Verification Through System-Level Simulations

A realistic model of the biquad is used in this system-level
simulations. If we model each op-amp in Fig. 6(a) as a two-
pole system and assume that it has a 50 dB DC gain and sec-
ond pole at G BW , the filter transfer function will have six
poles and three zeros. Based on the system equation, a mathe-
matical model for the filter can be developed and utilized. This
model has four control knobs [x �G BW , x �G , x �Q , x �ωO

], and each
one has 5 bits. The 1-LSB and the center value for x �G BW are
35 MHz and 600 MHz, respectively. x �G and x �Q change R1
and R3 individually and have 1 K	 1-LSBs and 22 K	 center
values. x �ωO

modifies C1 and C2 simultaneously and has 50 fF
1-LSB and 1.95 pF center value. The relatively small 1-LSBs
for the R & C components are used on purpose to show the
fine optimization capability of this platform at certain levels
of noise and distortions.

In addition, to mimic PVT variations and device aging,
the simulations include several non-ideal factors. Normal
distributions that have 10% standard deviations (σ ) of original
values are applied to the 1-LSBs and to the center values of
all R & C components and the G BW . Also, the simulations
meet the noise and linearity requirements shown in the second
row of Table II.
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Fig. 17. Integrated circuit prototype and measurement results. (a) Chip die photogarph of the proposed platform. (b) Normalized cost function values over the
2-dimensional search space, and visited points selected by the optimization engine (dots). (c) Optimization result when the biquad has high power consumption
(dotted line) & minimum power consumption (solid line).

TABLE III

COMPARISON OF TUNING/CALIBRATION PLATFORMS WHICH UTILIZE OPTIMIZATION ALGORITHMS

Fig. 16(a)-(f) represent 100 Monte-Carlo simulation results
of the case study. In the figure, white bars depict charac-
teristics of 100 samples before optimization, whereas black
bars stand for characteristics after optimization. Based on the
data distribution, approximated probability density functions
(PDFs) are plotted in the form of solid and dotted curves on
top of the histogram. Also, outliers are excluded to obtain
a well-matched solid curve around a mean value. As the
figure indicates, on average, the G BW of op-amps and the
σ of the five characteristics are reduced by 80% and 82%,
respectively. If we consider that the ratio between the G BW
and ωO/2π is 36.3 in [12] and 71.1 in [29], the optimized
CUO has relatively small G BW (G BW/(ωO/2π) = 22.9)
without employing any circuit techniques. Since the power
consumption (G BW ) of each sample is minimized while
the same five frequency- and time-domain characteristics are
maintained, the actual operating point of each sample is
located at the edge of its operation limit, which verifies the
strength of this platform. The relatively large deviation in
the G BW after optimization can be understood if we recall
that the value is optimized indirectly as a penalty in the cost
function.

In the system-level simulations, only one trial of optimiza-
tion takes place for each sample. Even though the results show
small characteristic deviations after optimization, there are still
a small number of outliers in the histogram. These outliers
cannot be avoided 100% because Algorithm 1 operates on the
basis of randomness. Therefore, multiple trials are needed for
the exceptional outliers as discussed in Section IV.

Because the evaluations of
−→
V take most time in the entire

optimization process, the total number of the evaluations deter-
mines the algorithm efficiencies in comparison between the
proposed and the other approaches introduced in Section IV.
From the simulation results, one trial of optimization requires

around 1500 evaluations. If we compare this number to
the values from the brute-force method and from the semi-
orthogonal tuning in Section IV, more than 99% and 50%
reductions are observed, respectively.

B. Integrated Circuit Prototype & Measurement Results

Fig. 17(a) shows an IC prototype of the self-contained
system. The prototype was fabricated in 0.18 µm standard
CMOS technology. Fig. 17(b) presents the measured values
of the cost function over 2-dimensional search space. For
convenience, x �G BW and x �G are fixed. In this figure, black
dots indicate visited points selected by the optimization engine.
Because of the finite bit width discussed in Section V-E, cost
function values that are larger than the maximum limit are
trimmed to the maximum value. As we can see, an intensive
search is conducted around the optimal point [x �Q, x �ωO

] =
[20, 23]. After optimization, around 71% power reduction can
be achieved while other biquad specifications are maintained
as shown in Fig. 17(c).

Table III compares this platform with other tuning platforms
that use optimization algorithms. The main contribution of
this paper is that all building blocks, including an ESG,
an ORA, and an optimization engine, are integrated in a
single chip, proving the on-chip, in situ operation of this
platform. The optimization algorithm is selected in terms of
the efficiency of hardware implementation.

C. Strengths of This Platform

Operating the Tow-Thomas (TT) biquad efficiently is a
very active research topic. Unlike [12] and [29], our work
does not rely on a master-slave approach; our optimization
can be beyond the conventional Q and ωO tuning and can
use G BW as a design parameter. Thus, we can drastically
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reduce the G BW while monitoring that the filter is stable and
meets for instance the Q and ωO specifications. Other spec-
ifications such as linearity requirements can be accomplished
by increasing the minimum G BW without having excessive
margins. That is equivalent to finding the minimum power
consumption that satisfies all requirements. In addition, thanks
to the versatility and the efficiency of the optimization engine,
various characteristics of a CUO can be programmed based
on users’ need within ranges of control knobs. To the best of
authors’ knowledge, this approach was not available before.

VII. CONCLUSION

A built-in self-test and in situ analog circuit optimization
platform has been proposed and characterized. Different from
the conventional on-chip direct tuning/calibration methods
dedicated to a specific characteristic, this platform seamlessly
and efficiently optimizes programmable circuit characteristics
as a whole. As a result, the CUO can have and maintain well-
balanced optimal characteristics even in severe PVT variations
and device aging. Because this platform does not depend on
special characteristics of the CUO, any linear time-invariant
circuits can be the CUO.
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