Layout Recognition Attacks on Split Manufacturing

Wenbin Xu, Lang Feng, Jeyavijayan (JV) Rajendran, and Jiang Hu
Department of Electrical and Computer Engineering
Texas A&M University, College Station, Texas
wbxu@tamu.edu,flwave@tamu.edu,jeyavijayan@tamu.edu,jianghu@tamu.edu

ABSTRACT

One technique to prevent attacks from an untrusted foundry is
split manufacturing, where only a part of the layout is sent to
the untrusted high-end foundry, and the rest is manufactured at a
trusted low-end foundry. The untrusted foundry has front-end-of-
line (FEOL) layout and the original circuit netlist and attempts to
identify critical components on the layout for Trojan insertion. Al-
though defense methods for this scenario have been developed, the
corresponding attack technique is not well explored. For instance,
Boolean satisflability (SAT) based bijective mapping attack is men-
tioned without detailed research. Hence, the defense methods are
mostly evaluated with the k-security metric without actual attacks.
We provide the first systematic study, to the best of our knowledge,
on attack techniques in this scenario. Besides of implementing SAT-
based bijective mapping attack, we develop a new attack technique
based on structural pattern matching. Experimental comparison
with bijective mapping attack shows that the new attack technique
achieves about the same success rate with much faster speed for
cases without the k-security defense, and has a much better success
rate at the same runtime for cases with k-security defense. The re-
sults offer an alternative and practical interpretation for k-security
in split manufacturing.

CCS CONCEPTS

+Security and privacy — Hardware reverse engineering; Hard-
ware attacks and countermeasures;

KEYWORDS

Hardware security, split manufacturing, layout recognition attack

ACM Reference Format:

Wenbin Xu, Lang Feng, Jeyavijayan (JV) Rajendran, and Jiang Hu. 2019.
Layout Recognition Attacks on Split Manufacturing. In 24th Asia and South
Pacific Design Automation Conference (ASPDAC °19), January 21-24, 2019,
Tokyo, Japan. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3287624.3287698

1 INTRODUCTION

Split manufacturing is a security technique against untrusted found-
ries. By having only front-end-of-line (FEOL) layers manufactured

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPDAC 19, January 21-24, 2019, Tokyo, Japan

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6007-4/19/01...$15.00
https://doi.org/10.1145/3287624.3287698

Table 1: Comparison of different attack methods.

SAT Network-flow Structural
bijective [3] | attack [19] | pattern matching
Target to attack Cells Wires Cells
Use of structural information N X N
Use of design convention X vV v
Knowledge of circuit netlist v X v
Recovery of BEOL connections X X v

Table 2: Comparison of different defense methods.

Placement Routing K-security [3]
perturbation [19] | perturbation [20] Y
Modification on placement v X v
Modification on routing X v v
Defense for physical attack vV N N
Defense for logical attack X X N

at an untrusted foundry while the back-end-of-line (BEOL) is fabri-
cated at a trusted foundry, attackers in the untrusted foundry do
not have complete information to perform attacks such as Trojan
insertion, piracy, and overproduction [2, 14, 21]. The same principle
can be applied to 3D ICs, where different dies are manufactured by
different foundries, since each 3D IC contains two or more indepen-
dently manufactured ICs which are vertically stacked on top of each
other [3]. Despite the security enhancement, split manufacturing
still has a significant risk of being successfully attacked [8, 12, 19].

There are two attack scenarios in split manufacturing. (i) The
attacker at FEOL foundry does not have circuit netlist and attempts
to reverse engineering the entire design for stealing intellectual
property, and conducting piracy and overproduction; (ii) The at-
tacker has circuit netlist and tries to recognize critical components
on the layout for inserting Trojans. Most existing attack models
are proposed for (i), such as the work in [19], and there are also
defense methods against the attack models, such as placement per-
turbation [19] and routing perturbation [20].

With access to the netlist, the attack in scenario (ii) may seem
to be easier than that in scenario (i). However, (ii) requires much
more understanding of the layout design than (i). More specifically,
the attack in (i) only needs to reproduce the overall design without
understanding its layout details while (ii) must recognize layout
components and match them exactly to the netlist. With BEOL
information missing, the layout-to-netlist matching is not trivial at
all. However, the investigation on scenario (ii) is mostly restricted to
only defense techniques. For example, a previous work [3] proposed
a method using a metric called k-security to protect the layout by
obfuscation. The metric k-security means that for every group of
components of which the connections are visible in FEOL, it will
have at least another k-1 groups which are identical to it logically.
They also proposed a SAT-based algorithm [3] for selecting wires

ASPDAC ’19, January 21-24, 2019, Tokyo, Japan

to be manufactured in BEOL to achieve the k-security. Moreover,
another work [7] improves the algorithm in [3] and realize a shorter
runtime for achieving k-security. More details about the comparison
of different typical attack methods and that of different typical
defense methods are shown in Table 1 and 2.

To the best of our knowledge, this work provides the first sys-
tematic study on the attack in split manufacturing when untrusted
foundry has access to netlist and intends to insert Trojans. Our
work focuses on recognizing critical components in FEOL layouts
rather than actually inserting Trojans. We propose a new attack
technique using structural pattern matching assisted by hints from
design conventions. We also implemented the SAT-based bijective
mapping attack [3]. The experiment results show that the structural
pattern matching attack is more efficient than the bijective map-
ping attack. For split manufacturing without k-security defense,
the proposed attack techniques usually achieve near 100% success
rate. They are also applied to designs with k-security defense to
confirm the effectiveness of such defense. Moreover, the evaluation
by actual attacks reveals richer and more tangible interpretation
for k-security in split manufacturing. The main contributions of
this paper are:

e We proposed an attack method based on structural pattern
matching for layout recognition. Our attack method achieves
shorter runtime and/or better performance than the SAT-
based bijective mapping attack for circuits with and without
k-security defense.

o The attack method we proposed uses both logical informa-
tion and hints from design conventions, which are seldom
considered at the same time within a same attack before.

e Our work on attack techniques provides an alternative way
to evaluate the defense of split-manufactured ICs for Trojan
insertion.

2 PRELIMINARY
2.1 Attack Scenario

In this work, we consider the scenario that an attacker is at an
untrusted FEOL foundry and intends to insert Trojan into split-
manufactured ICs. The attacker needs to understand circuit func-
tions in the FEOL layout so that effective Trojan site can be decided.
The attacker is assumed to know the following information:

(1) Layout of transistor and FEOL metal layers.

(2) Entire circuit netlist or part of the netlist that is related to
Trojan insertion. The attacker may obtain this information
by stealing from design companies or collaborating with an
observer in design stage [3, 7].

(3) The technology library containing information about logic
gates: layout structure, delay, capacitance load, wire capaci-
tance and design specifications.

2.2 Related Work

Split manufacturing was proposed to improve IC security against
reverse engineering and Trojan insertion [4, 6]. There are several
research works showing the benefits of split manufacturing on
digital ICs [9, 10, 15-17] and analog ICs [1]. The concept of split

W. Xu et al.

G: original netlist G’: FEOL layout

® @

(@) (b)

Figure 1: Graph representations of (a) circuit netlist and (b)
its FEOL layout. Each vertex indicates a logic gate, whose
logic type is represented by grayscale.

manufacturing can be extended to 3D or 2.5D IC designs such that
different dies are manufactured at different foundries [18].

For the attack scenario where attackers only have incomplete de-
signs, several works provide different techniques to restore missing
BEOL wires so that the design can be reverse engineered [8, 12, 19].
Their attack is evaluated with a number of correctly restored wires
even though the functions of related layout components are still
unknown. To defend against such kind of attack, several strategies
based on placement or routing are introduced [11, 19, 20]. Different
from heuristic approaches for enhancing security, the work in [13]
proposed a theoretical model based on information theory.

The work in [3] shows a different attack scenario where attack-
ers have access to circuit netlist and intend to recognize layout for
Trojan insertions. It mentions SAT-based bijective mapping attack
without detailed elaboration. It proposes the concept of k-security,
which leads to k identical options when attackers attempt to recog-
nize layout. Indeed, this approach causes up to 200% area overhead.
The recent work [7] proposes to restrict k-security to a small and
critical portion of the circuit so that the overhead can be reduced.
It inserts dummy cells to obfuscate the design further and enhance
the security. However, the defense techniques in both [3] and [7]
are evaluated by k-security without actual attacks.

Although the overall attack and defense in split manufacturing
have been recently studied, there is no investigation on layout
recognition attack driven by Trojan insertion, to the best of our
knowledge.

2.3 SAT-based bijective mapping

SAT-based bijective mapping was briefly mentioned as a Trojan-
driven attack to split manufacturing [3]. Generally, either circuit
netlist or FEOL layout can be modeled as a graph, where each vertex
represents a logic gate, and edges indicate wire nets. Normally, the
netlist graph and its corresponding FEOL layout graph should have
the same vertices, while the netlist graph contains more BEOL edges
that are not available in the layout graph. Given a netlist graph
G = (V,E) and its layout graph G’ = (V’, E’) as shown in Figure 1,
the goal of layout recognition attack is to find the vertex v € V
that corresponds to each vertex v’ € V. In bijective mapping, such
correspondence is designated by Boolean variables

1, ifwv; € V can be mapped to v € V’
$ij = { l ! ¢

0, otherwise.

Layout Recognition Attacks on Split Manufacturing

Then, the bijective mapping should be subject to three constraints:
1) mapping v in G to v’ in G’, 2) mapping v” in G’ to v in G, and 3)
mapping e’ in G’ to e in G.

Thus, the bijective mapping problem is reduced to a SAT in-
stance [3]. By solving it via SAT solver, one can obtain one possible
assignment for the set of ¢;;. When multiple assignments can be
found, SAT or bijective mapping alone cannot decide which is the
correct one. As such, an arbitrary feasible assignment solution is
taken.

In the example shown in Figure 1, we can construct the SAT
constraints as

Fi =($11¢15 + $11912)(P21P05 + P21 $22)($33h34 + Pa3h34)

e e T @)
(943D ag + Pa3Paa) (P55 Pss + Ps5P56)(Pes Pes + PosPos)

Fy =($116y; + $11621)($1260s + $10$22)($336 43 + PasPaz))
(Paaay + PagP3) (P55 Pes + PssPos)(PsePes + Ps6Poo)

F3 =(h11¢33 + $21043)(P12¢34 + Pa2aa) @

(3355 + Pazhes)(P3aPse + Paadbes)
F=F AFyAF;. ©)
By solving Equation (5) via SAT solver, one satisfiable assignment
is q1 = P11012P21P22033P34 P43 Pa4¢55P56Pg5Pes-
The SAT-based bijective mapping is straightforward, but it still
has several drawbacks:

(1) Recognition capability: When multiple feasible mapping
solutions exist, it does not provide any clue on which one is
the truly correct layout recognition. Hence, such attack can
easily fail on circuits with k-security protection.

(2) Scalability: SAT is a well-known NP-complete problem.
Therefore, a solver finds feasible solution using exponen-
tial time in the worst case. Despite the tremendous progress
on SAT solving techniques, the fundamental scalability chal-
lenge is not solved.

(3) Flexibility: Even for small circuits, the SAT-based bijective
mapping can be effective only when it applies with complete
netlist. Even if only a small portion of the layout needs to be
recognized, it is applied to the entire circuit.

3 LAYOUT RECOGNITION ATTACK BY
STRUCTURAL PATTERN MATCHING

We propose a new attack technique to recognize split manufactured
layout in a more scalable manner than the SAT-based bijective map-
ping. Our technique is inspired by structural pattern matching [22],
a technology mapping technique that determines which library
cell can implement a subfunction in a given Boolean network. This
is similar to the attack scenario described in Section 2.1, where
one needs to match components in FEOL layout with those in the
netlist. However, there are several significant differences between
the pattern matching in the attack and that in technology mapping.

e In attacking split manufacturing, the netlist is to match with
incomplete layout where BEOL information is not available.
This is quite different from technology mapping and much
more difficult to handle.

e Technology mapping is to match library cells, which are
typically small. However, security attack is to match larger
subcircuit or entire circuit. Such difference entails different
data representation approaches.

ASPDAC ’19, January 21-24, 2019, Tokyo, Japan

Input 0 | Index Input 0 Input I | Index Input 0 Input 1| Index
0 4 0 0 1 0 0 2
1 5 1 7 8 0 2 3
3 6 AND2 OR2
INV

|Input0 Input 1 Input2| Index | | Input 0 |Input la Input 1b| Index |
25 e[7][8 | 4 6 [o

AND3 OAI21
(b)

Figure 2: Example of the pattern table: (a) circuit netlist and
(b) its pattern tables associated with input pins of logic gates
and indices.

e Technology mapping intends to map one library cell with
many parts in a circuit design. However, the security attack
is to identify a unique matching between netlist and lay-
out. Therefore, a partial matching in a local region is often
inconclusive.

Overall, the pattern matching in the layout recognition attack
is much more challenging than that in technology mapping. We
develop techniques to improve the attack by exploiting hints from
design conventions.

3.1 Pattern Table

The pattern table is to represent logic and structural relationship in
a Boolean network, and plays a similar role as the pattern table in
pattern matching for technology mapping [22]. The format of our
pattern table is the sparse matrix of the pattern table used in [22]. A
pattern table is generated from a circuit netlist according to different
gates, for example, AND2 gate and OR2 gate have separated pattern
tables. The elements in the pattern table are pattern indices. Each
logic gate is assigned with a pattern index. The index of a gate g is
uniquely associated with its gate type and indices of its fanin gates.
Figure 2 shows an example of a circuit netlist and its pattern tables.
In this example, gate G is represented by pattern 8(AND2,1,7)
where 8 is its pattern index, and 1 and 7 are indices of its fanin
gates. Such information will be stored as the second row of AND2
pattern table in Figure 2(b). For an AND?2 gate, the logic function
of its two inputs are identical. This is represented by removing the
solid lines between the columns of input 0 and input 1. Otherwise,
if two inputs are not identical, like input 0 and input 1a of OAI21
gate in Figure 2, we used the solid line to separate the columns of
input 0 and input 1a. If there is no solid line between two columns,
that means the order of input pattern indices does not matter. Given
a complete or partial circuit netlist, we generate pattern tables for
all the gates through a topological order traversal.

ASPDAC ’19, January 21-24, 2019, Tokyo, Japan

— — — BEOL connection

FEOL connection

Figure 3: Matching cells with FEOL layout by using pattern
tables (solid line: FEOL connection, dashed line: BEOL con-
nection).

There is a difference in handling pattern indices between match-
ing an entire circuit and a subcircuit. When matching an entire
circuit, we assume that circuit I/O pins have already been matched
to put more focus on matching of gates. In this case, each of cor-
responding I/O vertices in the netlist has its own unique index.
When to match only a subcircuit, we cannot assume the knowledge
of those I/O nodes. As such, their indices are uniformly 0 like in
technology mapping [22], which are treated as don’t care. By doing
so, we only match the internal logic structure and function of the
subcircuit.

3.2 Matching a Subcircuit with FEOL Layout

In this section, we describe how to match a subcircuit with FEOL
layout. For an entire circuit represented by a graph G, a subcircuit
can be treated as a subgraph G’ C G. By the pattern table generation
defined by Section 3.1, each v” € G’ should be annotated with a
pattern index.

For FEOL layout, a pre-processing is performed to identify logic
gates from transistors according to the cell library. Next, we attempt
to find pattern index for each gate in the layout. The pattern indices
of all layout gates are initialized to 0. Later, if a layout gate is
successfully matched with a node in the netlist, its index is set to
be the same as that in the netlist. Figure 3 shows the layout for
the circuit netlist of Figure 2, in which FEOL layers contain all the
gates and connections in solid lines while BEOL layers include the
connections in dashed lines. In this example, the pattern table of A’
is (AND2, 0, 0), which matches with the 1(AND2, 0, 0) in the netlist.
Therefore, layout gate A’ is also annotated with 1(AND2, 0, 0).

The key challenge here is that the layout information is not
complete. In Figure 3, the dashed lines indicate BEOL connections,
which are invisible to the attacker. For example, one input connec-
tion of gate F’ is at BEOL. In this case, our attack keeps a set of
candidate possibilities and prune them according to the pattern
tables and simple logic reasoning. For example, the input of AND3
can only be 2, 5 or 6 according to the pattern table in Figure 2. Then,
all of them are considered for gate F’. Since pattern 5 has already
been connected to F’, we can exclude the possibility that it is con-
nected to the middle input pin of F’. Likewise, the pattern index
for a layout gate may have multiple candidate possibilities due to
the missing connection information. In Figure 3, the inverter E” has

W. Xu et al.

3 possible input connections "0/1/3", which lead to three possible
pattern indices 4, 5 and 6. From the pattern table in Figure 2(b), we
know 4 cannot be an input to AND3, and therefore we can remove
4. Since pattern 5 has already been input of F” from C’, E’ cannot
be 5, and thus we can identify the pattern index for E’ as 6. This
identification also tells that the middle input to F” must be from
pattern index 2, i.e., gate B’.

3.3 Pruning by Hints from Design Conventions

Due to the missing BEOL information, the attack must guess and
keep a set of candidate solutions. Even after the simple pruning
described in Section 3.2, there could still be multiple candidate
pattern indices for a layout gate. For example, in Figure 3, layout
gate G’ can be matched with either index 1 or index 8. We use the
hints from design conventions as below to perform further pruning.

(1) Load capacitance constraint: To ensure the signal integrity,
a gate in the technology library should honor a limited load
capacitance on its fanouts. When we are examining a po-
tential connection in BEOL layers, those that violate the
load capacitance constraint can be excluded from being a
candidate.

(2) Timing constraint: Digital circuit is sensitive to setup/hold
time constraint. We can obtain an estimate to the actual ar-
rival time and required time on each node of the path through
an educated guess on clock period. If a candidate connection
violates the timing constraints, it should be excluded from
possible BEOL connections in matching cells.

(3) Directionality of the dangling wires: Although BEOL
connections are hidden, the directionality of dangling wires
at lower FEOL layers can still suggest the direction for re-
connection. For example, if a source gate has a dangling wire
pointing toward the south of the layout, those candidates of
sink gates located in its north are most likely disregarded.

If there are still multiple candidates after all pruning, we choose
the one with minimum BEOL wirelength.

3.4 Propagating Candidates along Subcircuit

When multiple candidate indices of a layout gate cannot be imme-
diately pruned to a single one, they are propagated toward circuit
outputs. When a candidate is combined with a fanout gate, and the
combined pattern cannot be found in the netlist pattern tables, this
candidate can be pruned out.

Since the topology of a subcircuit is generally a DAG (Directed
Acyclic Graph), the candidate propagation on it faces the history
consistency issue. Please look at the example in Figure 4, which
has two candidates 2 and 3 for gate B. When they are propagated
to gate D, we have two candidates, 5 that results from combining 1
of gate A with 2, and 6 that is from combining 1 with 3. Likewise,
two candidates 7 and 8 are obtained at gate E. When the candidates
from D and E are propagated to gate F, there are four combinations.
Some of the combinations are illegal. For example, 11 that combines
5 from D and 8 from E is illegal, because this combination implies
that B must be both 2 and 3 simultaneously. One can track the
whole propagation history, but such tracking would cost either
huge runtime or memory storage. Hence, we choose not to track
the history with the risk of keep illegal candidate. However, we can

Layout Recognition Attacks on Split Manufacturing

{9,10,113

| Input 0 Input I | Index
1 2 5
1 3 6
2 4 7
3 4 8
5 7 9
6 8 10
S 8 11
() (b)

Figure 4: Example of propagating candidates along subcir-
cuit: (a) the subcircuit from layout and (b) the pattern table
from netlist.

show that the probability of finally keeping the illegal candidate
is very low. If the pattern (AND2, 5, 8) does not exist in the netlist
pattern table, the combination of 5 and 8 on AND gate can be
directly pruned. Otherwise, like in Figure 4(a), (AND2,5,8) is a
legal pattern and exists in the pattern table. Such probability that
a legal pattern has the same pattern table as an illegal candidate
is very low. This probability can be further reduced by matching
tree-only patterns first.

3.5 Matching of the Entire Circuit

There are two different ways of recognizing the layout of an entire
circuit. One is to build a single pattern table of the entire netlist
and use it to match the layout. Its drawback is that the table can
be either too huge or very slow to search. Thus, we divide the
netlist into subcircuits and use relatively small pattern tables of
these subcircuits to match the layout. Sometimes, there is no need
to recognize the entire layout. For instance, an attacker plans to
insert a Trojan into encryption circuit. Then, only the encryption
part of the layout needs to be recognized.

Given a list of subcircuits with pattern tables, we match each
of them one by one on the layout. Once some layout gates are
recognized, we use the pattern tables of the fanout of the recognized
gates for further matching. If the complete netlist is available, I/O
pins can be treated as matched. As such, the matching starts from
primary inputs and moves toward primary output in topological
order. The matching terminates when no more layout gate can be
further recognized.

4 EXPERIMENT RESULTS

4.1 Experiment Setup

We evaluate our technique by using ISCAS’85 and ITC 99 bench-
mark suites. All the designs are synthesized by Synopsys Design
Compiler using 45nm technology library. Placement and routing
are implemented by Cadence SoC Encounter. The bijective map-
ping attack is solved by an off-the-shelf SAT solver isat3 [5]. The
structural pattern matching attack is implemented with C language.

ASPDAC ’19, January 21-24, 2019, Tokyo, Japan

Table 3: Experiment results on cases without k-security de-
fense (“MR" indicates the ratio of correctly matched cell).

. SAT bijective Structural pattern
Split - .
Design | #cells mapping matching
layer || MR(%) | Runtime || MR(%) | Runtime
c432 109 M3 100.00 0.9s 100.00 0.2s
c1355 222 M3 100.00 5.1s 100.00 0.9s
c1908 197 M3 100.00 3.2s 100.00 0.4s
€2670 374 M3 95.72 28.7s 97.06 14.2s

¢3540 588 M3 100.00 56.9s 100.00 1m37.3s
¢5315 819 M4 | 100.00 | 4m1.8s | 100.00 21.9s

c6288 | 1889 | M3 - >48h 100.00 10.1s
c7552 834 M3 100.00 | 2m51.4s || 99.76 9.5s
c880 192 M3 100.00 2.5s 100.00 0.4s
bo7 258 M3 || 100.00 10.7s 100.00 5.8s
b11 345 M3 || 100.00 13.0s 100.00 1.9s

b13 175 M3 100.00 12.9s 100.00 0.7s

b14 2743 | M4 || 100.00 | 87m9.9s || 100.00 2m34.5s
b15 5533 | M5 - >48h 100.00 | 164m16.4s
b17 17161 | Mo - >48h 98.51 | 1511m29.9s

The experiments run at Intel Xeon CPU with 2.8GHz frequency
and CentOS Linux operating system. We evaluate the effectiveness
of the attack methods by identifying the matching ratio that shows
the percentage of correctly matched cells. The testcases are all sim-
ulated to be split manufactured, and then further prepared in two
ways, one without k-security defense and the other with k-security
defense [3]. To limit the overhead, k-security is applied to a small
portion (about 5 or10 percent) of the circuits with defense.

4.2 Experiments on Cases without k-security
Defense

Table 3 shows the experimental results on cases with k-security
defense. Although our structural pattern matching algorithm is a
heuristic, it can reach the matching ratio similar to the SAT-based
bijective mapping attack and achieve 100% matching ratio in many
cases. In only one design (c7552), the structural pattern matching
has slightly lower matching ratio because of its heuristic nature.
By incorporating the hints from design conventions, the structural
pattern matching sometimes (c2670) provides more accurate attack
than bijective mapping. The runtime advantage of the structural
pattern matching is obvious in larger cases, and it is usually several
times faster than bijective mapping. In a few big cases, the bijective
mapping could not finish after 48 hours, because the SAT instance
contains huge variables and constraints.

4.3 Experiments on Cases with k-security
Defense

We implemented the benchmarks with a certain portion (5% or 10%)
of cells being protected by k-security. Each design has 6 different
secured layouts: 5/10% cells in 2-security, 5/10% cells in 3-security
and 5/10% cells in 4-security. Both the matching ratio (MR) and
runtime of attacks are shown in Table 4.

ASPDAC ’19, January 21-24, 2019, Tokyo, Japan

Table 4: Experiment results on cases with k-security defense
("MR" indicates the ratio of correctly matched cell). Number
in bold indicates higher ratio than the expected success rate
that k-security can guarantee.

SAT bijective Structural pattern
mapping matching
type | secured || MR(%) | Runtime || MR(%) | Runtime
5% 98.17 0.9s 100.00 0.3s
10% 96.33 3.1s 96.33 0.6s
5% 98.17 1.3s 98.17 1.8s
10% 87.16 1.0s 94.50 5.9s

Defense | #cell

Design

2-secure

c432 3-secure

teccure 5% 9266 | 09s || 97.25 | 038s
0% | 90.83 | 12s | 9817 | 13s
> -secure L% 9459 | 665 || 98.65 | 10s
10% | 9189 | 59s | 9595 | 30s
5% 9234 | 56s || 97.75 | 18s
c1355 | 3-secure o195 50 [525 96.85 | 2.1s
teccure 5% 9550 | 55s || 97.30 | 58s
10% || 8919 | 54s 9054 | 19.0s
5% 9679 | 37.1s || 98.89 | 80s
2-secure

10% 91.44 36.8s 96.26 16.5s
5% 97.33 32.1s 98.66 10.6s
10% 91.44 33.5s 93.58 21.5s
5% 94.65 37.7s 95.72 10.2s
10% 90.91 36.2s 93.32 47.0s
5% 98.30 58.1s 99.49 | 2m16.9s
10% 96.94 55.2s 98.13 | 11m29.3s
5% 98.64 55.9s 97.62 58.6s

2670 | 3-secure

4-secure

2-secure

3540 | 3-secure

10% 96.43 57.8s 93.54 | 9m47.6s
4-secure 5% 100.00 | 1m10.2s || 97.45 | 1m25.8s
10% 94.05 | 1m0.2s 92.18 | 17m12.2s
9-secure 5% 95.73 4m3.8s 97.68 | 1ml1.2s
10% 91.70 | 3m48.6s || 95.73 | 3m28.8s
5315 | 3-secure 5% 96.34 | 3m59.5s || 97.56 54.2s
10% 93.28 | 3m51.4s || 94.51 | 2ml8.5s
4-secure 5% 95.60 | 3m44.5s || 97.56 1m3.4s
10% 90.35 | 4m19.1s | 91.82 4m0.2s
9-secure 5% 96.72 1m9.3s 98.94 43.5s
10% 93.66 1m5.9s 96.48 | 3m3.64s
Average | 3-secure 5% 96.56 1m6.9s 97.95 25.4s
10% 92.76 1mb5.8s 94.60 | 2m31.1s
4-secure 5% 95.68 1m?7.8s 97.06 33.2s
10% 91.07 | 1Im12.4s || 93.21 | 4m27.9s

Our structural pattern matching attack mostly obtains higher
matching ratio than the expected success rate that k-security de-
fense can guarantee. Such results are boldface entries in the table.
For example, benchmark c432 with 10% cells defended by 2-security
is expected to have about 95% matching ratio under attack. This is
because cells with k-security protection can be successfully recog-
nized with the probability 1/k. The experimental result shows that
the theoretical guarantee of k-security cannot always be realized
in practice, especially under our structural pattern matching attack,
which significantly outperforms the SAT-based bijective mapping
attack. On the other hand, the runtime advantage of structural pat-
tern matching attack becomes less obvious compared with cases
without k-security defense. Some cases show more runtime than the
SAT-based bijective mapping attack, because we divide the netlist
into subcircuits and use them to match the layout individually.

W. Xu et al.

5 CONCLUSION

This paper considers the scenario where attackers have netlist
information and attempt to recognize split manufactured layout
for Trojan insertion, which was not fully discussed in existing
works. We develop a new attack technique based on structural
pattern matching to address the drawbacks of earlier mentioned
SAT-based bijective mapping attack. Experiment results show that
it is more efficient and more scalable than the bijective mapping
attack. Unlike the theoretical metric of k-security, our proposed
attack method provides an alternative way to evaluate the security
of split manufactured ICs for Trojan insertion in practice.

ACKNOWLEDGMENTS

This work is partially supported by NSF (CNS-1618824), NSF (CNS-
1618797), SRC (2016-TS-2688) and SRC (2016-TS-2689).

REFERENCES

[1] Y.Bi,]J. Yuan, and Y. Jin. 2015. Beyond the Interconnections: Split Manufacturing
in RF Designs. MDPI Electronics (2015), 541-564.

[2] S.Dupuis, P. S. Ba, G. Di Natale, M. L. Flottes, and B. Rouzeyre. 2014. A novel
hardware logic encryption technique for thwarting illegal overproduction and
Hardware Trojans. IEEE International On-Line Testing Symposium (2014), 49-54.

[3] F.Imeson, A. Emtenan, S. Garg, and M. V. Tripunitara. 2013. Securing computer
hardware using 3D integrated circuit (IC) technology and split manufacturing
for obfuscation. USENIX Conference on Security (2013), 495-510.

[4] Intelligence Advanced Research Projects Activity. 2011. Trusted
Integrated Circuits Program. https://www.fbo.gov/utils/view?id=
b8be3d2c5d5babbdffc6975¢370247a6.

[5] iSATS3. 2014. https://projects.avacs.org/projects/isat3.

[6] R. W.]Jarvis and M. G. McIntyre. 2004. Split manufacturing method for advanced
semiconductor circuits. US Patent no. 7195931 (2004).

[7] M.Li, B. Yu, Y. Lin, X. Xu, W. Li, and D. Z. Pan. 2018. A practical split manufac-
turing framework for trojan prevention via simultaneous wire lifting and cell
insertion. ASPDAC (2018), 265-270.

[8] J. MagaAsa, D. Shi, J. Melchert, and A. Davoodi. 2017. Are Proximity Attacks
a Threat to the Security of Split Manufacturing of Integrated Circuits? TVLSI
(2017), 3406-3419.

[9] S. Mitra, H.-S.P. Wong, and S. Wong. 2015. Stopping Hardware Tro-
jans in Their Tracks. http://spectrum.ieee.org/semiconductors/design/
stopping-hardware- trojans-in-their-tracks.

[10] CT.O. Otero, J. Tse, R. Karmazin, B. Hill, and R. Manohar. 2015. Automatic

obfuscated cell layout for trusted split-foundry design. HOST (2015), 56—61.

S. Patnaik, J. Knechtel, M. Ashraf, and O. Sinanoglu. 2018. Concerted wire lifting:

Enabling secure and cost-effective split manufacturing. ASPDAC (2018), 251-258.

[12] J. Rajendran, O. Sinanoglu, and R. Karri. 2013. Is split manufacturing secure?
DATE (2013), 1259-1264.

[13] A. Sengupta, S. Patnaik, J. Knechtel, M. Ashraf, S. Garg, and O. Sinanoglu. 2017.
Rethinking split manufacturing: An information-theoretic approach with secure
layout techniques. ICCAD (2017), 329-326.

[14] M. Tehranipoor and F. Koushanfar. 2010. A Survey of Hardware Trojan Taxonomy
and Detection. IEEE Design Test of Computers (2010), 10-25.

[15] K. Vaidyanathan, B. P Das, E. Sumbul, R. Liu, and L. Pileggi. 2014. Building
Trusted ICs using Split Fabrication. HOST (2014), 1-6.

[16] K. Vaidyanathan, B. P Das, E. Sumbul, R. Liu, and L. Pileggi. 2014. Detecting
Reliability Attacks During Split Fabrication Using Test-only BEOL Stack. DAC
(2014), 156:1-156:6.

[17] K. Vaidyanathan, R. Liu, E. Sumbul, Q. Zhu, F. Franchetti, and L. Pileggi. 2014.
Efficient and Secure Intellectual Property (IP) Design for Split Fabrication. HOST
(2014), 13-18.

[18] J. Valamehr, T. Sherwood, R. Kastner, D. Marangoni-Simonsen, T. Huffmire, C.
Irvine, and T. Levin. 2013. A 3-D Split Manufacturing Approach to Trustworthy
System Development. TCAD (2013), 611-615.

[19] Y. Wang, P. Chen, J. Hu, and J. Rajendran. 2016. The cat and mouse in split
manufacturing. DAC (2016), 1-6.

[20] Y. Wang, P. Chen, J. Hu, and J. Rajendran. 2017. Routing perturbation for enhanced
security in split manufacturing. ASPDAC (2017), 605-510.

[21] Y.Xie, C. Bao, and A. Srivastava. 2017. Security-Aware 2.5D Integrated Circuit
Design Flow Against Hardware IP Piracy. Computer (2017), 62-71.

[22] M. Zhao and S. S. Sapatnekar. 2001. A new structural pattern matching algorithm
for technology mapping. DAC (2001), 371-376.

—_
—_

