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ABSTRACT

When designing a real-time multiprocessor locking protocol, the
allowance of lock nesting creates complications that can kill par-
allelism. Such protocols are typically designed by focusing on the
arbitration of resource requests that should be prohibited from exe-
cuting concurrently. This paper proposes “concurrency groups,” a
new concept that reflects an alternative point of view that focuses
instead on requests that can be allowed to execute concurrently. A
concurrency group is simply a group of lock requests, determined
offline, that can safely execute together. This paper’s main contribu-
tion is the CGLP, a new real-time multiprocessor locking protocol
that supports lock nesting through the use of concurrency groups.
The CGLP is able to reap runtime parallelism benefits that have
eluded prior protocols by investing effort offline in the construction
of concurrency groups. A schedulability study is presented to quan-
tify such benefits, as well as an efficient approach to determining
such groups using an Integer Linear Program (ILP) solver.
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1 INTRODUCTION

While real-time multiprocessor locking protocols have been studied
for over thirty years [20], the issue of enabling unrestricted lock nest-
ing—i.e., a task holding locks on several resources simultaneously—
in an efficient manner was considered only relatively recently [23].
The desire to support nesting is motivated by practical concerns: use
cases are common in practice in which a task must access multiple
resources at once without interference from other tasks. However,
unrestricted lock nesting causes complications in real-time systems.

Many of these complications are rooted in the fact that it is diffi-
cult to avoid negating the parallelism that the underlying hardware
platform affords. This difficulty is due, at least in part, to two fun-
damental problems. The first is a problem we call the Transitive
Blocking Chain Problem: when lock nesting is allowed, chains of
requests can form that prevent resource requests from being satis-
fied even though the requested resources are free. The second is
a problem we call the Request Timing Problem: even in protocols
designed to reap gains in parallelism, such gains can be negated by
even small variations in resource request durations or other timing
details. All existing real-time multiprocessor locking protocols that
allow nesting are subject to one or both of these problems.

In this paper, we present the CGLP, the first ever protocol de-
signed to address both problems. The design of the CGLP reflects a
fundamentally different approach compared to prior work: rather
than viewing a locking protocol as merely preventing resources from
being accessed concurrently, we instead view it as a mechanism that
safely allows concurrency with respect to shared resources. Doing
so allows us to take advantage of the timing information provided
in real-time systems to gain parallelism; this is reflected in the
determination of per-request blocking bounds (which are used in
schedulability analysis). The CGLP is designed around a new notion:
groups of tasks called concurrency groups that may safely execute
concurrently.

Before describing the CGLP further, we first describe the two
fundamental problems noted above in more detail.

Transitive blocking chain problem. Most approaches to coor-
dinating resource accesses order requests using a pre-determined
scheme such as first-in-first-out (FIFO), which we assume here.
Any such scheme can result in chains of requests all blocked on a
single request. Such a transitive blocking chain can cause a request
to be blocked by another request with no resources in common.
This problem can affect both nested and non-nested requests. We
illustrate it via an example involving only nested requests.

Example 1.1. Consider a scenario with six tasks and seven re-
sources, £q through £4. Each task 7; issues a single request, R;, for
two resources for some duration. In Fig. 1, resources are shown
along the horizontal axis, and requests have enqueued in task-index
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Figure 1: FIFO-ordering.
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Figure 2: Optimized offline ordering.

order. The maximum duration of each request is illustrated by a
box of that height numbered with the corresponding task’s index.
In Fig. 1, R1 holds €4 and ¢},. This prevents R from acquiring £,
and {¢c. Thus, R is blocked by R 1. A transitive blocking chain may
form, as shown in Fig. 1. Such a chain causes R4 to experience
blocking for up to the duration of three critical-section lengths.

When determining schedulability, we must account for the worst-
case ordering of request execution to calculate the worst-case block-
ing of each task. The ordering in Fig. 1 illustrates the chain that
causes the worst-case blocking for R4.

Example 1.1 (continued). To solve the Transitive Blocking Chain
Problem, the CGLP partitions the requests in Fig. 1 into two groups
wherein concurrent execution is allowed, as shown in Fig. 2. At
runtime, resource access is provided on a per-group basis. As seen
in Fig. 2, doing so prevents transitive blocking chains from forming.

We call groups of tasks as just described concurrency groups. Such
groups are determined offline based on task-system characteristics.

Request timing problem. Although existing approaches have
addressed the Transitive Blocking Chain Problem [13, 17], worst-
case blocking under these approaches is heavily dependent on the
timing of request issuances and differences in request durations.
Such timing-related variations can cause “gaps” in the underlying
queues utilized by a protocol. Such gaps inhibit parallel execution.

Example 1.2. Consider requests R1-R4, shown in Fig. 3, issued
in numerical order and enqueued. R is then issued. By any protocol
known to us, R5 will be enqueued after R4. Another “slot” that
could have been considered is shown in Fig. 3, but R5 cannot
be inserted here, as this would further delay R4. (Such delays
are problematic because the number of later-arriving requests is
generally unbounded.) Observe how the timing of the issuance of
R caused a gap just after time 30 into which no conflicting request
can fit.

The CGLP obviates such gaps by using task-system characteris-
tics to pre-determine the “slots” into which requests are inserted.
Because this determination is made offline, it is not subject to run-
time timing variations.
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Figure 3: An illustration of the Request Timing Problem. R5
may not be inserted in the earlier slot marked by an ‘X, as
this would delay an already issued request.

In many protocols, having to deal with requests of different
durations can also cause “gaps” similar to that in Ex. 1.2. Thus, such
differences are also a source of the Request Timing Problem. The
concurrency groups of the CGLP are constructed so as to minimize
such differences and thus eliminate these gaps.

Contributions. We introduce a new real-time multiprocessor lock-
ing protocol, the CGLP, that allows lock nesting and that results
in lower blocking and overhead than prior protocols for many sys-
tems. We gain analytical advantages by focusing on which tasks
may execute requests concurrently.

The CGLP has an offline component for determining concur-
rency groups that simplifies the arbitration of requests at runtime.
This component examines various optimizations to the request or-
dering that would be impractical to explore at runtime. We begin
by framing the construction of concurrency groups as a graph-
coloring problem and then explore approaches for determining
groups that improve worst-case blocking bounds. To assess the
CGLP, we conducted a schedulability study, the results of which are
presented herein. We also present a fast approach for determining
concurrency groups using an Integer Linear Program (ILP) solver.

Organization. We begin with necessary background in Sec. 2. In
Sec. 3, we introduce the CGLP by first presenting a basic variant of it
and an analysis of its blocking complexity. We then consider various
extensions to the protocol in Sec. 4. We present the aforementioned
schedulability study in Sec. 5 and conclude in Sec. 6.

2 BACKGROUND

Before summarizing prior work on real-time locking protocols for
multiprocessor systems, we provide necessary details of our task
and resource models.

System model. We focus on a sporadic task set I' comprised of
n tasks {ry..7n } on a multiprocessor platform with m processors.
We assume these tasks are scheduled with a job-level fixed-priority
scheduler such as Global Earliest Deadline First (G-EDF).

Resource model. When a task requires access to one or more
resources, it issues a request. We denote an arbitrary request as R ;
and an arbitrary resource as £q. We say a request R; is satisfied
when it holds all of its required resources, denoted D ;LR executes
its critical section for at most L; time units before it completes and

'We assume the use of dynamic group locks [23], which coalesce all resources a task
may require concurrently under a single request. For example, if a task requires access
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releases all of its held resources. A request is active from the time
it is issued to the time it completes. The maximum critical-section
length of any request is denoted Lmax. We call a request R; a
write request if it requires mutually exclusive access to D; or a read
request if other requests may access D; concurrently.

A particular challenge is allowing nested resource access, in
which a task holds multiple resources concurrently. We focus pri-
marily on providing efficient synchronization for nested write re-
quests; other work has presented methods for efficiently handling
read requests and non-nested requests in the presence of write re-
quests and nested requests [17]. We also consider how our protocol
can be extended to accommodate read requests.

We measure efficiency with regard to reducing the delays lower-
priority tasks cause for higher-priority tasks. Specifically, we look
at priority-inversion blocking (pi-blocking), the delay a task incurs
due to waiting for access to one or more resources held by a lower-
priority task. Achieving a reduction in pi-blocking ought to be done
with minimal introduction of additional overhead. In this paper, we
focus on locking protocols that are spin-based; a task busy-waits
until its request is satisfied.

Prior work. There is a large body of work aimed at locking proto-
cols for multiprocessor systems. However, few of these approaches
allow for nesting. We focus on those that do. One synchronization
approach that allows nested access to resources is the multiprocessor
bandwidth inheritance protocol (M-BWI) [8, 9]. Another approach
is MrsP [6, 10, 27]. Rather than using dynamic group locks, both
the M-BWI and MrsP require an ordering on nested resource ac-
quisition to prevent deadlock.? A straightforward bound on the
blocking a request may experience when deadlock is prevented by
resource ordering is exponential in the number of resources [21].
Computing a tight bound on worst-case blocking is NP-hard when
nesting is allowed [26].

The real-time nested locking protocol (RNLP) [13, 16, 17, 22-25]
family of protocols also supports nested requests, and each protocol
uses dynamic group locks. Of the protocols mentioned, most do
not handle the Transitive Blocking Chain Problem. Those that do
are the fast RW-RNLP [17] and the C-RNLP [13]. The fast RW-
RNLP eliminates transitive blocking chains for non-nested requests
(and read requests) by ensuring that they are enqueued in separate
data structures from nested requests. (Non-nested requests can also
experience increased blocking due to transitive blocking chains.
For example, a request for {£¢} issued after R4 in Ex. 1.1 would be
blocked for up to 4 - Lmax time units.) Only once requests are at
the head of their respective queue(s) do they compete for resources;
it is not possible for a chain of blocking to impact a non-nested (or
read) request. Nested write requests, however, may still suffer from
transitive blocking chains under the fast RW-RNLP.

To our knowledge, the C-RNLP is the only protocol that breaks
transitive blocking chains for nested write requests. To do so, when
any request R; is issued, all other active requests must be evalu-
ated to determine the earliest spot in the queues corresponding to
D; in which R; may cut ahead without increasing blocking times

to £ and then conditionally requires access to either £, or £, it issues a single request
for {€a, Cp, Cc}.

This ordering refers to the order in which resources must be acquired by a given task,
not the order in which requests are satisfied [12].
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for other requests. This requires the maintenance of a significant
amount of state, which can be detrimental to the protocol’s perfor-
mance. Existing implementations require a mutex to ensure safe,
atomic insertion into all the maintained queues that are required.

We present the CGLP, which builds on the notion of a reader-
reader locking protocol (a synchronization mechanism that man-
ages resource access between groups of read requests [16]). The
CGLP can be implemented without the use of a mutex and allows
one group of requests access at a time; any requests from another
group must wait until the satisfied requests complete. In this sense,
the protocol alternates between phases in which different groups of
requests are satisfied. This reader-reader paradigm is an extension
of the R®LP [17], which coordinates three groups of read requests.
Existing work [16, 17] has also explored layering synchronization
mechanisms to first establish that some group of requests does
not overlap, and thus could be viewed as a group of read requests
relative to each other.

The CGLP is motivated by the current lack of a solution to the
Request Timing Problem. Existing protocols miss opportunities for
concurrent execution because of these timing issues. This occurs
based on the design of these protocols, which is based on the notion
of which requests must be prevented from executing concurrently.
Our new approach groups requests that are allowed to execute con-
currently. These groups are established by using a graph coloring
approach. Such an approach has been used to solve a variety of
other resource allocation problems [2, 3, 7, 14].

3 CONCURRENCY GROUPS

We develop the Concurrency Group Locking Protocol (CGLP) to
address both the Transitive Blocking Chain Problem and the Re-
quest Timing Problem. Recall the pathological case of transitive
blocking presented in Sec. 1. Although each nested request required
only two resources, a FIFO-ordered synchronization protocol could
cause a long chain of transitive blocking, as illustrated in Fig. 1. The
blocking chain in this example could be eliminated by partitioning
the requests into the two groups shown in Fig. 2 and allowing only
one group to execute at any given time. This captures the basic
intuition of the CGLP; the protocol is described in detail below.

In this section, we begin by discussing how to generate concur-
rency groups for an arbitrary set of write requests. Then we show
how phase-based access to resources can be achieved by generaliz-
ing a phase-based protocol. We finish this section by showing how
the CGLP can address the Request Timing Problem.

3.1 Offline Group Creation via Graph Coloring

The Vertex Coloring Problem entails finding the minimum number
of colors, k, with which the vertices of a graph can be colored such
that no adjacent vertices have the same color. A graph that requires
atmost k colors is said to be k-colorable. Given a set of write requests,
we seek to create concurrency groups. All requests in a single group
must not share any resources. Our goal is to create the minimum
number of groups, as this maximizes the possible concurrency. We
transform our problem to the Vertex Coloring Problem in two steps.
First, for each request R;, we create a corresponding vertex S;.
Once we have added all vertices to the graph, we add edges. An
edge is added between S; and Sj, where i # j, if D; N D; # (.
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Figure 4: An example coloring.

Example 3.3. Consider a task set that produces five requests: R4
for D1 = {€a,le}, Ry for Dy = {€c,le}, R3 for D3 = {€p, ¢4},
Ry for Dy = {la, €y}, and R5 for Ds = {{4,{e }. The graph repre-
sentation of these requests is shown in Fig. 4. For example, Sy is
connected to S; and S3 because D4NDy = {€q} and D4ND3 = {p }.
Sy does not have an edge to either S; or Ss, as Dy N Dy = () and
D4y N Ds = 0.

To determine the minimum number of concurrency groups, we
find the minimum k such that the graph can be colored with k
colors. This results in k groups, G; through Gy. A specific coloring
informs which requests belong in which group; if a vertex S; is
assigned color g, R; € Gg.

Example 3.3 (continued). This graph is 3-colorable, so only three
concurrency groups are required. In particular, we can color the
vertices as shown in Fig. 4, which results in G; = {R1,R3}, G2 =
{R32,R4},and G3 = {Rs}.

By our construction of the graph and the constraints on a so-
lution to the Vertex Coloring Problem, none of the requests in a
given concurrency group require any overlapping resources. As
is standard for the analysis of real-time systems, we assume that
all possible requests are known a priori. Thus, we can run a k-
colorability analysis offline to determine the number of groups
required for a given system and add each request to a group based
on its assigned color. Though the Vertex Coloring Problem is NP-
hard, we shown in Sec. 5 that, for many systems, groups can be
determined in a reasonable amount of time. What remains is to
coordinate access to these groups of requests during runtime.

3.2 Group Arbitration

Arbitration among concurrency groups must occur online. At most
one group may be allowed to be satisfied at a time. All requests in
a given group may run concurrently with each other, but requests
from different groups must not be allowed to execute together.

In this way, requests within the same group may be considered to
be read requests relative to each other. Thus, we must provide syn-
chronization between k groups of readers. We do so with a protocol
called the R¥LP, which we present as a k-phased extension to the
2-phased [16] and 3-phased [17] reader-reader locking protocols.

Example 3.3 (continued). R1 and R3, both in G1, do not share re-
sources, so no synchronization protection is required between them.
However, G; and G, cannot be allowed to execute concurrently.
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Figure 5: Trace of executions of requests.

To refine how we reason about the RkLP, we present a series of
rules that encapsulate how this protocol functions. We call the time
during which a group is active a phase.

G1 Each group is either active, waiting, or inactive, and at most

one group is active at any time.

G2 If a request belonging to an inactive group is issued, then
the group becomes active if no group is active, or waiting if
there is an active group.

G3 A waiting group becomes active once all groups that were
active or waiting when this group entered the waiting state
have completed a single phase of execution.

G4 All active requests in a group that becomes active are satis-
fied immediately.

Example 3.3 (continued). As depicted in Fig. 5, R is issued at
time t = 1. Because no other groups are active at t = 1, Gj be-
comes active immediately, by Rule G2. By Rule G4, R is satisfied
immediately. At t = 1.5, Rs is issued. At most one group can be
active at any time and G; is still active, so G3 is now waiting, by
Rules G1 and G2. By Rules G3 and G4, R5 will be satisfied when
G1 has completed a phase of execution. This occurs at time ¢ = 6.

G5 All requests satisfied in a phase finish by the end of that
phase.

G6 When all satisfied requests of a phase finish, the group
enters the waiting state if there are any active requests in
the group. Otherwise it enters the inactive state.

G7 When all satisfied requests of a phase finish, the completion
of the last request and the transition to a new active phase,
if there was a waiting group, happen atomically.

Example 3.3 (continued). Gs is active from ¢t = 6 to t = 11. R
completes by the end of that phase, by Rule G5. When R 5 completes,
G3 becomes inactive, by Rule G6. At that time, G2 becomes active,
by Rules G3 and G7.

G8 If a request belonging to the active group is issued while
the group is active, it becomes satisfied immediately as part
of the current phase only if there are no waiting groups. (If
there is a waiting group, it will be satisfied in the next active
phase of its group.)
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Example 3.3 (continued). R3 is issued at time t = 2.5, while G; is
active and there are waiting groups, so R3 must wait for the next
active phase of G1, by Rule G8.

The above rules capture how the k concurrency groups alternate
between active phases. We discuss our spin-based implementation

of the R¥LP in an online appendix [18].

3.3 Bounding Blocking

The essential component to determining schedulability given a
locking protocol is the bound on worst-case pi-blocking. With
the R¥LP, the bound depends on the time it takes each of the k
groups to execute. Intuitively, each phase may execute for up to the
maximum critical-section length, Ly qx. Below, we show a bound
on the worst-case acquisition delay.

LEmMMA 3.1. When there is at least one waiting group, the current
phase of the active group ends within Lmax time units.

Proor. When there is at least one waiting group, newly issued
requests belonging to the active group are not immediately satisfied,
by Rule G8. Therefore, only the currently satisfied requests must
complete before the active group enters the waiting state. Any
satisfied request executes for at most Lnqx time units. Thus, the
current phase of the active group will end within Lymqx time units,
and the active group will become waiting or inactive. O

THEOREM 3.1. In a system with k concurrency groups, a request
Ri has a maximum acquisition delay of k - Lmax-.

Proor. Upon being issued, if request R; belonging to G4 is not
satisfied immediately, then at least one group is waiting, by Rules G2
and G8. Furthermore, Gy is either waiting or active.

Suppose Gy is waiting. Some other group must be active, by
Rule G2. Because there is a waiting group (Gg), the active group
will complete within Lyqx time units, by Lemma 3.1. By Rule G3,
Gy will become active once all groups that were active or waiting
when Gy entered the waiting state have completed a single phase
of execution. Because there are at most k concurrency groups, at
most k — 1 other groups could have been active or waiting when
Gg entered the waiting state. Thus, at most k — 1 other groups must
complete a phase, and each phase will last for at most Lax time
units. Hence, the maximum acquisition delay for R; isk — 1+ Lmax
in this case. (By Rule G4, as soon as G4 becomes active, R; will be
satisfied.)

Suppose instead that G4 is active. Because R; is not satisfied
immediately, there must be a waiting group (preventing R; from
being satisfied immediately due to Rule G8). G4 will complete its
active phase within Ly qx time units. Its group will then transition
to the waiting state by Rule G6. As reasoned above, the waiting Gy
will become active, and thus R; be satisfied, within k — 1 - Liax
time units. Thus, in total, the worst-case acquisition delay for R;
is k - Lmax time units. m]

We revisit our example to see that this blocking bound is tight.

Example 3.3 (continued). When R3 is issued at t = 2.5 in Fig. 5,
it cannot be satisfied immediately, by Rule G8. Its maximum acqui-
sition delay is 3 - Lmax, corresponding to a phase of each of Gy, Gs,
and G, as illustrated in Fig. 5.
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Figure 6: An illustration of the maximum blocking for R;.

3.4 Refining the Blocking Bound

Up to this point, we have not specified the critical-section lengths,
so we treated each as Ly qx. In this section, we focus on the ben-
efits of allowing critical-section lengths to factor into the group
assignments. When requests have varying critical-section lengths,
the bound in Theorem 3.1 may be overly pessimistic. When analyz-
ing the impact of each concurrency group on the blocking a given
request may experience, we define the maximum critical-section

length of a group Gy to be Lrgrian'

Example 3.3 (continued). Let the critical-section lengths of the
five requests be L = 10, L = 55, L3 = 60, Ly = 25, and Ls = 30
time units. Then, LY = 60, L92 =55 and L%, = 30.

LEMMA 3.2. When there is at least one waiting group, the current

phase of the active group Gg ends within Lg,fax time units.

ProoOF. As in Lemma 3.1, when at least one group is waiting,
no new requests belonging to gg may be satisfied. Thus, the cur-
rent phase of G4 will end once all satisfied requests complete, the

. . R ¢/
maximum duration of which is L,,7, . O

THEOREM 3.2. The acquisition delay a request R; may experience
is at most ZI.:C:1 L,gn"ux time units.

Proor. As in Theorem 3.1, R; may need to wait for the com-
pletion of at most one phase of each of the k groups, including its
own, before being satisfied. Thus, the maximum acquisition delay
of R; is Zle L%ax. O

Example 3.3 (continued). Consider the execution trace shown in
Fig. 6. In this trace, R is released at t = 45 and satisfied at time
t = 145, so it is blocked for 100 time units. By Theorem 3.2, the
worst-case blocking of R is 60 + 55 + 30 = 145 time units. Note
that this is far less time than the 3 - 60 = 180 time units given as a
bound by Theorem 3.1.
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Figure 7: An alternate coloring.

4 EXTENSIONS

Now that we have explained the fundamental components to the
CGLP, we discuss several extensions to the protocol, such as per-
formance improvements and the handling of both read and write
requests. For a given set of requests, it can also be beneficial to
explore alternate concurrency groupings or optimizations based on
the number of requests per resource.

4.1 Alternate Coloring Choices

In the basic version of the CGLP, we picked an arbitrary coloring of
the vertices that required the minimum number of colors. However,
there can be multiple ways to color a set of vertices with k colors,
resulting in different concurrency groups.

Example 4.3 (continued). Continuing the running example from
the prior section, there are multiple ways of forming three concur-
rency groups for this set of requests. For example, instead of the
coloring shown in Fig. 4, the coloring shown in Fig. 7 would yield

G1 ={R1}, G2 ={R2,R3},and G3 = {R4, Rs}.

As an extension to the basic CGLP, the concurrency groups
should be chosen in a manner that minimizes blocking. This can
be done by considering the critical-section lengths in light of the
blocking bound given in Theorem 3.2 when assigning groups.

Example 4.3 (continued). By Theorem 3.2, the worst-case block-
ing of any of the requests under the grouping shown in Fig. 4 is
60 + 55 + 30 = 145 time units. In contrast, the blocking under the
grouping of Fig. 7 is at most 10+ 60+ 30 = 100 time units. Therefore,
the grouping shown in Fig. 7 should be used instead of that in Fig. 4.

Ex. 3.3 highlights the improvements in worst-case blocking that
can be achieved by creating concurrency groups based on the
critical-section lengths of the requests.

4.2 Mixed-Type Requests

A mixed-type request is one in which the task requires write access
for one or more resources and only requires read access for some
resources. Such a request may occur when a task must read one
or more values from various buffers or sensors before writing a
resulting computation to some other region of shared memory. We
capture these different synchronization requirements in a manner
that allows us to exploit the relaxed resource sharing assumptions
for read requests. We do so by modifying how we generate the
graph corresponding to the requests.
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Figure 8: Graph of mixed-type requests.

A vertex is created for each request, as before. However, the ad-
dition of edges is changed to reflect this different sharing paradigm.
When listing the set of resources D; required by a request R;, we
denote the type of access required (read or write) with a superscript.
For example, D; = {4, é’;’} indicates that R ; requires read access
to {q and write access to {p,.

Example 4.4. Consider a set of requests R through R4, which
require resources Dy = {(g,(}'}, D2 = {€q, 6"}, D3 = {€', ()]},
and Dy = {¢y, f;v} Here, R1 and R, are mixed-type requests and
Rs3 and R4 are write requests.

We define D}” = {£y ¢} € D;} as the set of resources to which
‘R requires write access. An edge is added between two vertices
corresponding to requests R; and R; if R; # R; and D}’ N D; #
0V D; N D} # 0.

Example 4.4 (continued). The graph corresponding to this set of
requests is shown in Fig. 8. Here, D}” = {¢}, }. Although both R; and
R require {4, both read £4: when comparing R1 and Rz, we check
{€} N {ta,tc} =0 and {€c} N {a,l,} = 0, so no edge is added
between S; and Sy. This fits the intuition that R1 and Rz could
be satisfied concurrently. For Ry and Ry, {€a,lp} N {€a, 4} =
{€a} # 0, so an edge is added between S; and S;.

Given graphs created in this manner, the graph coloring and
blocking analysis approaches presented in Sec. 3.1 and Sec. 3.4 can
be applied.

4.3 Hierarchical Organization

Our initial approach to determining concurrency groups required
constructing a graph with one vertex per request. Here we explore
adding a layer of hierarchy to the request management scheme. We
begin by considering a group of six requests: the five requests from
Ex. 3.3 and one additional request.

Example 4.5. Consider the task set with the requests from Ex. 3.3
and a sixth request, R, for D¢ = {€q, {c} with a critical-section
length of at most Lg = 55 time units. Using the graph coloring
approach described in Sec. 3.1, we can determine that four concur-
rency groups are required. One such grouping is shown in Fig. 9.
This grouping results in worst-case blocking for all requests of
10 + 60 + 30 + 55 = 155 time units.

This example highlights the impact a single request may have
on the task system as a whole. Instead of the worst-case acquisition
delay of 100 time units from Ex. 3.3, each request in this set may
experience 155 time units of blocking.
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Figure 10: Three scheduling groups with one layer of hierar-
chy for R; and Rg.

We propose a slight modification to the creation of concurrency
groups that will lower the worst-case blocking for most requests at
the cost of increasing the worst-case blocking for a few requests.
This modification allows a vertex to represent multiple requests
and requires additional synchronization between those requests.

Example 4.5 (continued). For the purpose of this example, we
choose Ry and R to be represented by a single vertex. (This choice
reduces the required number of concurrency groups from four to
three.) We construct a new graph with five vertices. We let each of
S1, 83, S4, and Ss represent the request with the same index. Sy
represents both R, and R.

When constructing a graph, edges are added between vertices
based on all requests the vertices represent. Then, the graph color-
ing approach can be used as described in Sec. 3.1.

Example 4.5 (continued). When creating the graph shown in
Fig. 10, edges from Sy are added based on requests that conflict
with either R5 or R.

To ease the discussion of when requests are satisfied under this
scheme, instead of referring to the requests in a group, we will refer
to their corresponding slots. Each vertex corresponds to exactly
one slot, and multiple requests may compete to occupy the slot
in the active phase of its group. The request that occupies its slot
is satisfied according to the rules for requests above, and at most
one request can occupy a slot at a time. To ensure this, additional
coordination among requests that share a slot is required. Therefore,
we require such requests to first acquire a mutex corresponding
to the slot. This introduces an additional layer of hierarchy and
additional blocking for these requests; a request must now wait
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until it acquires the mutex to occupy its slot and thus be eligible
to be satisfied when its concurrency group becomes active. (Note
that the use of a mutex in this context shifts the blocking a request
experiences from one lock structure to another; this modification
can be implemented without the use of a mutex for updating the
overall lock state [18].)

The necessary coordination can be expressed as two additional
rules:

G9 When multiple active requests compete for a slot, at most
one request can occupy the slot at a time. Only requests
occupying slots are considered in Rules G1 throug G8.

G10 When a request completes, it no longer occupies its slot. If
another active request for the slot exists when a request
completes, the transition between requests occupying the
slot is atomic.

THEOREM 4.3. The worst-case acquisition delay a request R; com-
peting with s other requests to enter the concurrency group Gg is

(s+1) X, LY9¢, . if a FIFO-ordered mutex is used.

Proor. If R; is at the head of the queue for its slot, then it
experiences acquisition delay of at most }}, L%‘ax time units (The-
orem 3.2).

Otherwise, if R; is not at the head of the queue, there is a differ-
ent request, R j, that occupies R;’s slot. R j experiences acquisition

delay of up to >, L,gn"ax time units (Theorem 3.2). It then executes

during Gg’s active phase, which lasts for up to L?ngax.

By Rule G10, when R completes, the subsequent request in
the queue immediately occupies the slot in G4. Call this request
Rx. If another group is waiting, R is not satisfied immediately.
Instead G, transitions from the active state to the waiting state.
Then, as in Theorems 3.1 and 3.2, Rx must wait for up to k — 1
active phases of other groups incurring a delay of up to 3., L,gn”a %
time units before being satisfied. If R; # Rx, another active phase
of Liya + (during which R is satisfied) of duration up to L,gnga » time
units contributes to the acquisition delay experienced by R;. In
this manner, for each of the s — 1 requests between R; and R, R;
is delayed for an additional (Zcig L,g,fax) + Lg,fax =Y L,g,fax.

Finally, once R; occupies its slot, it is delayed up to 3}, L‘,;n“ax

time units. Therefore, R; experiences worst-case acquisition delay
Ge g Ge Ge _
Och Lmax + ngax + (S - 1) Zc Lmax + Zcig Lmax -

(s+1) X, LY, . time units. o

Example 4.5 (continued). When the concurrency groups depicted
in Fig. 10 are used, R and R have a maximum acquisition delay
0f2-104+60+30 = 200 time units. All other requests have maximum
acquisition delay of 100 time units.

In essence, we can leverage additional knowledge about the tasks
to increase blocking for some requests in order to lower blocking
for other requests. The decision of which requests to map to the
same vertex can depend on multiple factors. The resources that
the requests require must be considered; for each request mapped
to a slot, multiple edges may need to be added to the vertex. In
general, to see the benefits of the tighter blocking bounds from
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Protocol Worst-Case Total
Acquisition Delay | Overhead (ps)
CGLP Yg Litax 3.1
U-CRRNLP |  Cj+1-Lmax 13.0
G-C-RNLP | C; - Lmax +Ci - L; 15.1
RNLP m-L; 13.5
MCS m-L; 0.7

Table 1: Blocking bounds and overhead of each protocol. In the
bounds of C-RNLP, C; is the number of requests which conflict with
Ri. (The reported overhead of the CGLP is the maximum of that
measured with between two and ten concurrency groups.) Overhead
values were measured on a dual-socket 8-cores-per-socket machine
with 32 GB of DRAM, running Ubuntu 16.04.

Sec. 3.4, a vertex should represent requests with similar critical-
section lengths. Furthermore, some tasks may be able to incur a
higher amount of blocking and still meet their deadlines; this will
depend on the execution time and period of each task.

An additional consideration is that in some applications it may
be reasonable to expect requests for the same set of requests to
have similar properties, such as critical-section length or ability to
incur blocking. Grouping requests in this manner has the added
benefit that a large number of identical requests only impacts the
blocking of those requests and not other requests in the system.

5 EVALUATION

To evaluate the effectiveness of the CGLP, we compared it to prior
real-time locking protocols in a schedulability study. Additionally,
we explored how long it takes to determine concurrency groups.

5.1 Schedulability Study

Our primary method of evaluation is comparing schedulability of a
variety of task sets when different synchronization protocols are
used. The first protocol to which we compare the CGLP is the C-
RNLP. The C-RNLP is the only existing protocol that solves the
Transitive Blocking Chain Problem for nested write requests. There
are two variants of the C-RNLP: the Uniform C-RNLP (U-C-RNLP)
assumes uniform critical-section lengths and allows enqueuing
based on this, while the General C-RNLP (G-C-RNLP) makes no
such assumptions. We also compare the CGLP to the RNLP and to
a simple group lock.? The blocking bounds and overhead of each
protocol are summarized in Table 1.

We conducted our experiments using SchedCAT [1], an open-
source real-time schedulability test toolkit. We used SchedCAT to
randomly generate task systems, compute blocking bounds, and
determine schedulability on a 16-core platform using G-EDF sched-
uling by Baruah’s test [4]; we inflate the execution time of tasks
based on the locking protocol overhead and blocking their requests
may incur as described in [5]. In our experiments, we explored a
broad space of task-system parameters, varying the individual task
utilization, period, critical-section length, the percentage of tasks
that issue requests, the probability that a given request is nested,
and the number of resources requested for a nested request; named
value sets are listed in Table 2, and the set of parameters used for

3We use a single MCS lock [15] to protect all resources for the group lock. Due to the
scale of this study and the complexity of computing blocking bounds [26], we do not
compare to a set of resource-ordered locks.
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Category Name [ Value
Task Utilization Medium-Light | [0.01,0.1]
Medium [0.1,0.4]
Heavy [0.5,0.9]
Critical-Section Moderate [15,100]
Length (us) Bimodal [15,500] or [500,1000]
Weighted [15,500] (prob: 0.7) or
Bimodal [500,1000] (prob: 0.3)
Long [100,1000]
Period (ms) Short [3.33]
Long [50,250]

Table 2: Named parameter distributions. From each, a value is se-
lected uniformly at random.

Category Options
Task Utilization Medium, Heavy
Period Short, Long

Percentage Issuing Requests 50%, 80%, 100%
Moderate, Bimodal,

Weighted Bimodal, Long

Critical-Section Length

Number of Resources

64

Nested Probability

0.1,0.2,0.5,0.8

Nesting Depth

2,4

Table 3: Schedulability study parameter choices. Critical-section
lengths are assigned with one of two methods: randomly for each
request or within a range of the random length assigned to a group.

our schedulability study are in Table 3. We define a scenario to be
a setting of each of these parameters. Our study considered 384
scenarios; common trends are discussed here, and the full set of
plots is available online along with the code [18]. For each scenario,
at least 1,000 task systems were generated for every value of system
utilization; we plot the percentage of these that are schedulable
when no synchronization is required (NOLOCK) and when syn-
chronization is provided by one of the five algorithms we compare.
This evaluation took over 15 CPU-days of computation.

General results. For our initial schedulability study, we sought to
separate the analysis of the CGLP from the process of determining
the number of groups necessary for a single task system. To achieve
this, we first compute the minimum number of groups necessary
given the number of nested and non-nested requests in a given
task system. For each request, we randomly choose a group and
then selected the required number of resources from the group
without replacement. If the distribution of requests is such that no
group has sufficient resources when assigning resources to the next
request, a new group is added. This method of request generation
allows us to analyze the CGLP when the number of groups is small
relative to the number of requests. We evaluate the average number
of concurrency groups required for a given scenario in Sec. 5.2.

Fig. 11 shows the schedulability of task sets with varying uti-
lizations in which 100% of the tasks issue requests. We chose these
plots to represent some key trends we observed.
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Figure 11: For these scenarios, the nesting depth was 4, critical-
section lengths were moderate, periods were short and 100% of tasks
issued requests.

Obs. 1. When many tasks issue requests and the nested probability
is high, the CGLP tends to result in equal or higher schedulability
than existing protocols.

This observation is reflected for both medium (Fig. 11a) and
heavy (Fig. 11b) task utilizations. In general, when 80% or 100% of
tasks issue requests and those requests have probability of 0.5 or 0.8
of being nested for 4 resources, the CGLP is as good or better than
existing approaches in 64.1% of scenarios. (The CGLP is always as
good as or better than the RNLP or a group MCS lock.) When the
probability of a request being nested is low, the G-C-RNLP tends to
outperform all other protocols. This trend is reflected for medium
utilization tasks with a lower nested request probability in Fig. 11c.

Critical-section length considerations. In Sec. 4.1, we explored
the benefits of creating concurrency groups with requests of similar
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Figure 12: For this scenario, task utilizations were medium, the
nesting depth was 4, periods were long, critical sections were
weighted bimodal, nested probability was 0.5, and 100% of tasks is-
sued requests. Critical-section lengths were uniformly chosen from
[0.9, 1.1] times the group’s value.

critical-section lengths. To simulate this scenario in the context of
our schedulability study, we assign a critical-section length for each
group we generate. The requests generated that belong to a given
concurrency group are assigned a critical-section length randomly
chosen from a uniform distribution of [0.9, 1.1] times the group’s
pre-assigned critical-section length. The benefits of grouping tasks
by critical-section length are captured in Fig. 12.

Obs. 2. When the tasks are grouped by critical-section length, the
schedulability of the CGLP increases.

This trend is shown in Fig. 12a and Fig. 12b and is as expected for
the CGLP; the bounds in Sec. 3.4 capture the benefit of grouping re-
quests by similar critical-section length. In the online appendix [18],
we discuss analogous methods by which we tightened the computed
bounds for the C-RNLP variants.

Obs. 3. The change in the distribution of critical-section lengths
significantly impacts the schedualability of existing protocols.

This is illustrated in Fig. 12b, which shows an inflection point on
each of these curves. One method by which we tightened bounds
accounts for the largest critical-section lengths; changing this dis-
tribution has a significant impact on the computed blocking, in
general increasing schedulability for existing protocols.

Importance of few concurrency groups. The blocking bounds
of the CGLP presented in Sec. 3.4 depend heavily on the number of
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Figure 13: For this scenario, task utilizations were medium, the
nesting depth was 4, periods were long, critical sections were long,
nested probability was 80%, and 100% of tasks issued requests.

concurrency groups. For some task sets the distribution of requests
over the set of resources may result only a few groups relative to
the number of requests. When this is not the case, a method like
that described in Sec. 4.3 must be explored.

For this next component of our study, we modify how we choose
the number of groups. Here, we specify the number of groups from
which requests may be chosen. No modifications are made after
the requests are chosen, so this selection determines the number
of concurrency groups. The impact of the number of concurrency
groups is depicted in Fig. 13.

Obs. 4. Schedulability under the CGLP decreases as the number of
groups increases.

This is depicted in Fig. 13, as expected; based on the bound given
in Sec. 3.4, adding a group adds an additional critical-section to the
computation of worst-case blocking. This decrease in schedulabil-
ity emphasizes the importance of using the minimum number of
concurrency groups.

5.2 Determining the Concurrency Groups

In Sec. 3.1, we described how the offline partitioning of requests
into concurrency groups can be cast as a Vertex Coloring Problem.
We encode this problem as an Integer Linear Program (ILP) by using
binary variables to indicate a color assignment for each vertex [19].

To test how long it takes to determine concurrency groups for a
given task set, we generated random requests for a task set in which
tasks had long periods, every task issued a request, and nested re-
quests required four resources. We then used an ILP solver [11]
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Figure 14: Average time to compute the minimum coloring per
nested probability. Error bars indicate minimum and maximum val-
ues. Each data point represents 50 random task sets.

Task Average Number | Average | Time to Find k,

Utilization of Requests k Assign Groups
Heavy 234 3.7 0.026 s
Medium 64.7 6.7 0.227 s
Medium-Light 291.6 19.8 10.59 s

Table 4: Average time required to find minimum group number
(and an assignment of requests to groups).

to determine the minimum number of groups required for vary-
ing probabilities of nested requests, as shown in Fig. 14. For each
scenario, we generated 50 task sets.

Obs. 5. While the connection of the problem of determining groups
to the NP-complete Vertex Coloring Problem may seem like a serious
liability, the ILP solver was almost always able to quickly find such
groups across a wide spectrum of scenarios.

The average time in which the ILP solver determined the min-
imum number of groups and assigned these groups is shown in
Fig. 14 and Table 4.

6 CONCLUSION

In this paper, we have presented the CGLP, a nested real-time
locking protocol that solves both the Transitive Blocking Chain
Problem and the Request Timing Problem. The CGLP determines
concurrency groups offline to reduce the blocking experienced by
requests. We provided the worst-case acquisition delay and showed
how the CGLP can be improved by considering critical-section
lengths. Additionally, we presented an extension that allows worst-
case blocking to be tuned based on task parameters.

We evaluated the CGLP on the basis of schedulability and showed
that for task system with mostly nested write requests, it tends
to outperform existing protocols. We also showed that, for many
tasks systems, the minimum number of concurrency groups can be
computed by an ILP solver very quickly.

As future work, we plan to implement a mechanism that sorts
requests into groups based on how much blocking a given request
can incur and remain schedulable. Additionally, we will explore the
benefits of handling mixed-type requests. Finally, we will incorpo-
rate this as a component of a larger protocol by merging work that
handles non-nested requests and read requests efficiently with the
CGLP, which efficiently manages nested write requests.
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