
Concurrency Groups: A NewWay to Look at Real-Time
Multiprocessor Lock Nesting

Catherine E. Nemitz, Tanya Amert, Manish Goyal, and James H. Anderson

The University of North Carolina at Chapel Hill

{nemitz,tamert,manishg,anderson}@cs.unc.edu

ABSTRACT
When designing a real-time multiprocessor locking protocol, the

allowance of lock nesting creates complications that can kill par-

allelism. Such protocols are typically designed by focusing on the

arbitration of resource requests that should be prohibited from exe-

cuting concurrently. This paper proposes “concurrency groups,” a

new concept that reflects an alternative point of view that focuses

instead on requests that can be allowed to execute concurrently. A

concurrency group is simply a group of lock requests, determined

offline, that can safely execute together. This paper’s main contribu-

tion is the CGLP, a new real-time multiprocessor locking protocol

that supports lock nesting through the use of concurrency groups.

The CGLP is able to reap runtime parallelism benefits that have

eluded prior protocols by investing effort offline in the construction

of concurrency groups. A schedulability study is presented to quan-

tify such benefits, as well as an efficient approach to determining

such groups using an Integer Linear Program (ILP) solver.

CCS CONCEPTS
• Computer systems organization→ Real-time systems; Em-
bedded and cyber-physical systems; • Software and its engineer-
ing → Mutual exclusion; Real-time systems software; Syn-
chronization; Process synchronization.

KEYWORDS
multiprocess locking protocols, nested locks, priority-inversion

blocking, real-time locking protocols

ACM Reference Format:
Catherine E. Nemitz, Tanya Amert, Manish Goyal, and James H. Anderson.

2019. Concurrency Groups: ANewWay to Look at Real-TimeMultiprocessor

Lock Nesting. In 27th International Conference on Real-Time Networks and
Systems, November 06–08, 2019, Toulouse, France. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Work supported by NSF grants CNS 1409175, CNS 1563845, CNS 1717589, and CPS

1837337, ARO grant W911NF-17-1-0294, and funding from General Motors. This

material is based upon work supported by the National Science Foundation Graduate

Research Fellowship Program under Grant No. DGS-1650116. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the National Science Foundation.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

RTNS ’19, November 06–08, 2019, Toulouse, France
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
While real-time multiprocessor locking protocols have been studied

for over thirty years [20], the issue of enabling unrestricted lock nest-
ing—i.e., a task holding locks on several resources simultaneously—

in an efficient manner was considered only relatively recently [23].

The desire to support nesting is motivated by practical concerns: use

cases are common in practice in which a task must access multiple

resources at once without interference from other tasks. However,

unrestricted lock nesting causes complications in real-time systems.

Many of these complications are rooted in the fact that it is diffi-

cult to avoid negating the parallelism that the underlying hardware

platform affords. This difficulty is due, at least in part, to two fun-

damental problems. The first is a problem we call the Transitive
Blocking Chain Problem: when lock nesting is allowed, chains of

requests can form that prevent resource requests from being satis-

fied even though the requested resources are free. The second is

a problem we call the Request Timing Problem: even in protocols

designed to reap gains in parallelism, such gains can be negated by

even small variations in resource request durations or other timing

details. All existing real-time multiprocessor locking protocols that

allow nesting are subject to one or both of these problems.

In this paper, we present the CGLP, the first ever protocol de-

signed to address both problems. The design of the CGLP reflects a

fundamentally different approach compared to prior work: rather
than viewing a locking protocol as merely preventing resources from
being accessed concurrently, we instead view it as a mechanism that
safely allows concurrency with respect to shared resources. Doing
so allows us to take advantage of the timing information provided

in real-time systems to gain parallelism; this is reflected in the

determination of per-request blocking bounds (which are used in

schedulability analysis). The CGLP is designed around a new notion:

groups of tasks called concurrency groups that may safely execute

concurrently.

Before describing the CGLP further, we first describe the two

fundamental problems noted above in more detail.

Transitive blocking chain problem.Most approaches to coor-

dinating resource accesses order requests using a pre-determined

scheme such as first-in-first-out (FIFO), which we assume here.

Any such scheme can result in chains of requests all blocked on a

single request. Such a transitive blocking chain can cause a request

to be blocked by another request with no resources in common.

This problem can affect both nested and non-nested requests. We

illustrate it via an example involving only nested requests.

Example 1.1. Consider a scenario with six tasks and seven re-

sources, ℓa through ℓд . Each task τi issues a single request, ℛi , for

two resources for some duration. In Fig. 1, resources are shown

along the horizontal axis, and requests have enqueued in task-index

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

RTNS ’19, November 06–08, 2019, Toulouse, France C. E. Nemitz, T. Amert, M. Goyal, J. H. Anderson

R1

R3

R2

R4

resources

la lb lc ld le

tim
e

Figure 1: FIFO-ordering.

R1 R3

R2 R4

tim
e

resources

la lb lc ld le

Group 1

Group 2

Figure 2: Optimized offline ordering.

order. The maximum duration of each request is illustrated by a

box of that height numbered with the corresponding task’s index.

In Fig. 1,ℛ1 holds ℓa and ℓb . This prevents ℛ2 from acquiring ℓb
and ℓc . Thus,ℛ2 is blocked byℛ1. A transitive blocking chain may

form, as shown in Fig. 1. Such a chain causes ℛ4 to experience

blocking for up to the duration of three critical-section lengths.

When determining schedulability, wemust account for the worst-

case ordering of request execution to calculate the worst-case block-

ing of each task. The ordering in Fig. 1 illustrates the chain that

causes the worst-case blocking for ℛ4.

Example 1.1 (continued). To solve the Transitive Blocking Chain

Problem, the CGLP partitions the requests in Fig. 1 into two groups

wherein concurrent execution is allowed, as shown in Fig. 2. At

runtime, resource access is provided on a per-group basis. As seen

in Fig. 2, doing so prevents transitive blocking chains from forming.

We call groups of tasks as just described concurrency groups. Such
groups are determined offline based on task-system characteristics.

Request timing problem. Although existing approaches have

addressed the Transitive Blocking Chain Problem [13, 17], worst-

case blocking under these approaches is heavily dependent on the

timing of request issuances and differences in request durations.

Such timing-related variations can cause “gaps” in the underlying

queues utilized by a protocol. Such gaps inhibit parallel execution.

Example 1.2. Consider requests ℛ1–ℛ4, shown in Fig. 3, issued

in numerical order and enqueued.ℛ5 is then issued. By any protocol

known to us, ℛ5 will be enqueued after ℛ4. Another “slot” that

could have been considered is shown in Fig. 3, but ℛ5 cannot

be inserted here, as this would further delay ℛ4. (Such delays

are problematic because the number of later-arriving requests is

generally unbounded.) Observe how the timing of the issuance of

ℛ2 caused a gap just after time 30 into which no conflicting request

can fit.

The CGLP obviates such gaps by using task-system characteris-

tics to pre-determine the “slots” into which requests are inserted.

Because this determination is made offline, it is not subject to run-

time timing variations.

{lc, le}
S2

S3 {lb, ld}R2 R1

tim
e

resources

la lb lc ld le lf
0

30

60

90

R3

R4

R5

Figure 3: An illustration of the Request Timing Problem.ℛ5

may not be inserted in the earlier slot marked by an ‘X’, as
this would delay an already issued request.

In many protocols, having to deal with requests of different

durations can also cause “gaps” similar to that in Ex. 1.2. Thus, such

differences are also a source of the Request Timing Problem. The

concurrency groups of the CGLP are constructed so as to minimize

such differences and thus eliminate these gaps.

Contributions. We introduce a new real-time multiprocessor lock-

ing protocol, the CGLP, that allows lock nesting and that results

in lower blocking and overhead than prior protocols for many sys-

tems. We gain analytical advantages by focusing on which tasks

may execute requests concurrently.

The CGLP has an offline component for determining concur-

rency groups that simplifies the arbitration of requests at runtime.

This component examines various optimizations to the request or-

dering that would be impractical to explore at runtime. We begin

by framing the construction of concurrency groups as a graph-

coloring problem and then explore approaches for determining

groups that improve worst-case blocking bounds. To assess the

CGLP, we conducted a schedulability study, the results of which are

presented herein. We also present a fast approach for determining

concurrency groups using an Integer Linear Program (ILP) solver.

Organization.We begin with necessary background in Sec. 2. In

Sec. 3, we introduce the CGLP by first presenting a basic variant of it

and an analysis of its blocking complexity.We then consider various

extensions to the protocol in Sec. 4. We present the aforementioned

schedulability study in Sec. 5 and conclude in Sec. 6.

2 BACKGROUND
Before summarizing prior work on real-time locking protocols for

multiprocessor systems, we provide necessary details of our task

and resource models.

System model.We focus on a sporadic task set Γ comprised of

n tasks {τ1..τn} on a multiprocessor platform withm processors.

We assume these tasks are scheduled with a job-level fixed-priority

scheduler such as Global Earliest Deadline First (G-EDF).

Resource model.When a task requires access to one or more

resources, it issues a request. We denote an arbitrary request as ℛi
and an arbitrary resource as ℓa . We say a request ℛi is satisfied
when it holds all of its required resources, denotedDi .

1 ℛi executes

its critical section for at most Li time units before it completes and
1
We assume the use of dynamic group locks [23], which coalesce all resources a task

may require concurrently under a single request. For example, if a task requires access

Concurrency Groups: A New Way to Look at Lock Nesting RTNS ’19, November 06–08, 2019, Toulouse, France

releases all of its held resources. A request is active from the time

it is issued to the time it completes. The maximum critical-section

length of any request is denoted Lmax . We call a request ℛi a

write request if it requires mutually exclusive access to Di or a read
request if other requests may access Di concurrently.

A particular challenge is allowing nested resource access, in

which a task holds multiple resources concurrently. We focus pri-

marily on providing efficient synchronization for nested write re-

quests; other work has presented methods for efficiently handling

read requests and non-nested requests in the presence of write re-

quests and nested requests [17]. We also consider how our protocol

can be extended to accommodate read requests.

We measure efficiency with regard to reducing the delays lower-

priority tasks cause for higher-priority tasks. Specifically, we look

at priority-inversion blocking (pi-blocking), the delay a task incurs

due to waiting for access to one or more resources held by a lower-

priority task. Achieving a reduction in pi-blocking ought to be done

with minimal introduction of additional overhead. In this paper, we

focus on locking protocols that are spin-based; a task busy-waits

until its request is satisfied.

Prior work. There is a large body of work aimed at locking proto-

cols for multiprocessor systems. However, few of these approaches

allow for nesting. We focus on those that do. One synchronization

approach that allows nested access to resources is themultiprocessor
bandwidth inheritance protocol (M-BWI) [8, 9]. Another approach

is MrsP [6, 10, 27]. Rather than using dynamic group locks, both

the M-BWI and MrsP require an ordering on nested resource ac-

quisition to prevent deadlock.
2
A straightforward bound on the

blocking a request may experience when deadlock is prevented by

resource ordering is exponential in the number of resources [21].

Computing a tight bound on worst-case blocking is NP-hard when

nesting is allowed [26].

The real-time nested locking protocol (RNLP) [13, 16, 17, 22–25]
family of protocols also supports nested requests, and each protocol

uses dynamic group locks. Of the protocols mentioned, most do

not handle the Transitive Blocking Chain Problem. Those that do

are the fast RW-RNLP [17] and the C-RNLP [13]. The fast RW-

RNLP eliminates transitive blocking chains for non-nested requests

(and read requests) by ensuring that they are enqueued in separate

data structures from nested requests. (Non-nested requests can also

experience increased blocking due to transitive blocking chains.

For example, a request for {ℓe} issued afterℛ4 in Ex. 1.1 would be

blocked for up to 4 · Lmax time units.) Only once requests are at

the head of their respective queue(s) do they compete for resources;

it is not possible for a chain of blocking to impact a non-nested (or

read) request. Nested write requests, however, may still suffer from

transitive blocking chains under the fast RW-RNLP.

To our knowledge, the C-RNLP is the only protocol that breaks

transitive blocking chains for nested write requests. To do so, when

any request ℛi is issued, all other active requests must be evalu-

ated to determine the earliest spot in the queues corresponding to

Di in whichℛi may cut ahead without increasing blocking times

to ℓa and then conditionally requires access to either ℓb or ℓc , it issues a single request
for {ℓa, ℓb , ℓc}.
2
This ordering refers to the order in which resources must be acquired by a given task,

not the order in which requests are satisfied [12].

for other requests. This requires the maintenance of a significant

amount of state, which can be detrimental to the protocol’s perfor-

mance. Existing implementations require a mutex to ensure safe,

atomic insertion into all the maintained queues that are required.

We present the CGLP, which builds on the notion of a reader-

reader locking protocol (a synchronization mechanism that man-

ages resource access between groups of read requests [16]). The

CGLP can be implemented without the use of a mutex and allows

one group of requests access at a time; any requests from another

group must wait until the satisfied requests complete. In this sense,

the protocol alternates between phases in which different groups of

requests are satisfied. This reader-reader paradigm is an extension

of the R
3
LP [17], which coordinates three groups of read requests.

Existing work [16, 17] has also explored layering synchronization

mechanisms to first establish that some group of requests does

not overlap, and thus could be viewed as a group of read requests

relative to each other.

The CGLP is motivated by the current lack of a solution to the

Request Timing Problem. Existing protocols miss opportunities for

concurrent execution because of these timing issues. This occurs

based on the design of these protocols, which is based on the notion

of which requests must be prevented from executing concurrently.

Our new approach groups requests that are allowed to execute con-

currently. These groups are established by using a graph coloring

approach. Such an approach has been used to solve a variety of

other resource allocation problems [2, 3, 7, 14].

3 CONCURRENCY GROUPS
We develop the Concurrency Group Locking Protocol (CGLP) to

address both the Transitive Blocking Chain Problem and the Re-

quest Timing Problem. Recall the pathological case of transitive

blocking presented in Sec. 1. Although each nested request required

only two resources, a FIFO-ordered synchronization protocol could

cause a long chain of transitive blocking, as illustrated in Fig. 1. The

blocking chain in this example could be eliminated by partitioning

the requests into the two groups shown in Fig. 2 and allowing only

one group to execute at any given time. This captures the basic

intuition of the CGLP; the protocol is described in detail below.

In this section, we begin by discussing how to generate concur-

rency groups for an arbitrary set of write requests. Then we show

how phase-based access to resources can be achieved by generaliz-

ing a phase-based protocol. We finish this section by showing how

the CGLP can address the Request Timing Problem.

3.1 Offline Group Creation via Graph Coloring
The Vertex Coloring Problem entails finding the minimum number

of colors, k , with which the vertices of a graph can be colored such

that no adjacent vertices have the same color. A graph that requires

atmostk colors is said to bek-colorable. Given a set of write requests,
we seek to create concurrency groups. All requests in a single group

must not share any resources. Our goal is to create the minimum

number of groups, as this maximizes the possible concurrency. We

transform our problem to the Vertex Coloring Problem in two steps.

First, for each request ℛi , we create a corresponding vertex 𝒮i .
Once we have added all vertices to the graph, we add edges. An

edge is added between 𝒮i and 𝒮j , where i , j, if Di ∩ D j , ∅.

RTNS ’19, November 06–08, 2019, Toulouse, France C. E. Nemitz, T. Amert, M. Goyal, J. H. Anderson

{lc, le}

{la, le}S1

S2

S3S4

S5

{lb, ld}

{ld, le}

{la, lb}

Figure 4: An example coloring.

Example 3.3. Consider a task set that produces five requests:ℛ1

for D1 = {ℓa , ℓe}, ℛ2 for D2 = {ℓc , ℓe}, ℛ3 for D3 = {ℓb , ℓd},
ℛ4 for D4 = {ℓa , ℓb}, andℛ5 for D5 = {ℓd , ℓe}. The graph repre-

sentation of these requests is shown in Fig. 4. For example, 𝒮4 is
connected to𝒮1 and𝒮3 becauseD4∩D1 = {ℓa} andD4∩D3 = {ℓb}.
𝒮4 does not have an edge to either 𝒮2 or 𝒮5, as D4 ∩ D2 = ∅ and

D4 ∩ D5 = ∅.

To determine the minimum number of concurrency groups, we

find the minimum k such that the graph can be colored with k
colors. This results in k groups, 𝒢1 through 𝒢k . A specific coloring

informs which requests belong in which group; if a vertex 𝒮i is
assigned color д,ℛi ∈ 𝒢д.

Example 3.3 (continued). This graph is 3-colorable, so only three

concurrency groups are required. In particular, we can color the

vertices as shown in Fig. 4, which results in 𝒢1 = {ℛ1,ℛ3}, 𝒢2 =
{ℛ2,ℛ4}, and 𝒢3 = {ℛ5}.

By our construction of the graph and the constraints on a so-

lution to the Vertex Coloring Problem, none of the requests in a

given concurrency group require any overlapping resources. As

is standard for the analysis of real-time systems, we assume that

all possible requests are known a priori. Thus, we can run a k-
colorability analysis offline to determine the number of groups

required for a given system and add each request to a group based

on its assigned color. Though the Vertex Coloring Problem is NP-

hard, we shown in Sec. 5 that, for many systems, groups can be

determined in a reasonable amount of time. What remains is to

coordinate access to these groups of requests during runtime.

3.2 Group Arbitration
Arbitration among concurrency groups must occur online. At most

one group may be allowed to be satisfied at a time. All requests in

a given group may run concurrently with each other, but requests

from different groups must not be allowed to execute together.

In this way, requests within the same groupmay be considered to

be read requests relative to each other. Thus, we must provide syn-

chronization between k groups of readers. We do so with a protocol

called the R
k
LP, which we present as a k-phased extension to the

2-phased [16] and 3-phased [17] reader-reader locking protocols.

Example 3.3 (continued). ℛ1 andℛ3, both in 𝒢1, do not share re-
sources, so no synchronization protection is required between them.

However, 𝒢1 and 𝒢2 cannot be allowed to execute concurrently.

tim
e

2

0

4

6

8

R1 R3 R2 R4 R5

G2 G3G1

request issuance request satisfaction

12

10

14

16

18

20

Figure 5: Trace of executions of requests.

To refine how we reason about the R
k
LP, we present a series of

rules that encapsulate how this protocol functions. We call the time

during which a group is active a phase.
G1 Each group is either active, waiting, or inactive, and at most

one group is active at any time.

G2 If a request belonging to an inactive group is issued, then

the group becomes active if no group is active, or waiting if

there is an active group.

G3 A waiting group becomes active once all groups that were

active or waiting when this group entered the waiting state

have completed a single phase of execution.

G4 All active requests in a group that becomes active are satis-

fied immediately.

Example 3.3 (continued). As depicted in Fig. 5, ℛ1 is issued at

time t = 1. Because no other groups are active at t = 1, 𝒢1 be-

comes active immediately, by Rule G2. By Rule G4, ℛ1 is satisfied

immediately. At t = 1.5, ℛ5 is issued. At most one group can be

active at any time and 𝒢1 is still active, so 𝒢3 is now waiting, by

Rules G1 and G2. By Rules G3 and G4, ℛ5 will be satisfied when

𝒢1 has completed a phase of execution. This occurs at time t = 6.

G5 All requests satisfied in a phase finish by the end of that

phase.

G6 When all satisfied requests of a phase finish, the group

enters the waiting state if there are any active requests in

the group. Otherwise it enters the inactive state.

G7 When all satisfied requests of a phase finish, the completion

of the last request and the transition to a new active phase,

if there was a waiting group, happen atomically.

Example 3.3 (continued). 𝒢3 is active from t = 6 to t = 11. ℛ5

completes by the end of that phase, by Rule G5.Whenℛ5 completes,

𝒢3 becomes inactive, by Rule G6. At that time, 𝒢2 becomes active,

by Rules G3 and G7.

G8 If a request belonging to the active group is issued while

the group is active, it becomes satisfied immediately as part

of the current phase only if there are no waiting groups. (If

there is a waiting group, it will be satisfied in the next active

phase of its group.)

Concurrency Groups: A New Way to Look at Lock Nesting RTNS ’19, November 06–08, 2019, Toulouse, France

Example 3.3 (continued). ℛ3 is issued at time t = 2.5, while 𝒢1 is
active and there are waiting groups, so ℛ3 must wait for the next

active phase of 𝒢1, by Rule G8.

The above rules capture how the k concurrency groups alternate

between active phases. We discuss our spin-based implementation

of the R
k
LP in an online appendix [18].

3.3 Bounding Blocking
The essential component to determining schedulability given a

locking protocol is the bound on worst-case pi-blocking. With

the R
k
LP, the bound depends on the time it takes each of the k

groups to execute. Intuitively, each phase may execute for up to the

maximum critical-section length, Lmax . Below, we show a bound

on the worst-case acquisition delay.

Lemma 3.1. When there is at least one waiting group, the current
phase of the active group ends within Lmax time units.

Proof. When there is at least one waiting group, newly issued

requests belonging to the active group are not immediately satisfied,

by Rule G8. Therefore, only the currently satisfied requests must

complete before the active group enters the waiting state. Any

satisfied request executes for at most Lmax time units. Thus, the

current phase of the active group will end within Lmax time units,

and the active group will become waiting or inactive. □

Theorem 3.1. In a system with k concurrency groups, a request
ℛi has a maximum acquisition delay of k · Lmax .

Proof. Upon being issued, if request ℛi belonging to 𝒢д is not

satisfied immediately, then at least one group is waiting, by Rules G2

and G8. Furthermore, 𝒢д is either waiting or active.

Suppose 𝒢д is waiting. Some other group must be active, by

Rule G2. Because there is a waiting group (𝒢д), the active group
will complete within Lmax time units, by Lemma 3.1. By Rule G3,

𝒢д will become active once all groups that were active or waiting

when 𝒢д entered the waiting state have completed a single phase

of execution. Because there are at most k concurrency groups, at

most k − 1 other groups could have been active or waiting when

𝒢д entered the waiting state. Thus, at most k−1 other groups must

complete a phase, and each phase will last for at most Lmax time

units. Hence, the maximum acquisition delay forℛi is k− 1 ·Lmax
in this case. (By Rule G4, as soon as 𝒢д becomes active, ℛi will be

satisfied.)

Suppose instead that 𝒢д is active. Because ℛi is not satisfied

immediately, there must be a waiting group (preventingℛi from

being satisfied immediately due to Rule G8). 𝒢д will complete its

active phase within Lmax time units. Its group will then transition

to the waiting state by Rule G6. As reasoned above, the waiting 𝒢д
will become active, and thusℛi be satisfied, within k − 1 · Lmax
time units. Thus, in total, the worst-case acquisition delay forℛi
is k · Lmax time units. □

We revisit our example to see that this blocking bound is tight.

Example 3.3 (continued). When ℛ3 is issued at t = 2.5 in Fig. 5,

it cannot be satisfied immediately, by Rule G8. Its maximum acqui-

sition delay is 3 · Lmax , corresponding to a phase of each of 𝒢1, 𝒢3,
and 𝒢2, as illustrated in Fig. 5.

tim
e

10

0

20

30

40

R1 R3 R2 R4 R5

G2 G3G1

60

50

70

80

90

100

110

120

130

140

150

request issuance request satisfaction

Figure 6: An illustration of the maximum blocking for ℛ1.

3.4 Refining the Blocking Bound
Up to this point, we have not specified the critical-section lengths,

so we treated each as Lmax . In this section, we focus on the ben-

efits of allowing critical-section lengths to factor into the group

assignments. When requests have varying critical-section lengths,

the bound in Theorem 3.1 may be overly pessimistic. When analyz-

ing the impact of each concurrency group on the blocking a given

request may experience, we define the maximum critical-section

length of a group 𝒢д to be L
𝒢д
max .

Example 3.3 (continued). Let the critical-section lengths of the

five requests be L1 = 10, L2 = 55, L3 = 60, L4 = 25, and L5 = 30

time units. Then, L𝒢1

max = 60, L𝒢2

max = 55, and L𝒢3

max = 30.

Lemma 3.2. When there is at least one waiting group, the current
phase of the active group 𝒢д ends within L

𝒢д
max time units.

Proof. As in Lemma 3.1, when at least one group is waiting,

no new requests belonging to 𝒢д may be satisfied. Thus, the cur-

rent phase of 𝒢д will end once all satisfied requests complete, the

maximum duration of which is L
𝒢д
max . □

Theorem 3.2. The acquisition delay a requestℛi may experience
is at most

∑k
c=1 L

𝒢c
max time units.

Proof. As in Theorem 3.1, ℛi may need to wait for the com-

pletion of at most one phase of each of the k groups, including its

own, before being satisfied. Thus, the maximum acquisition delay

of ℛi is
∑k
c=1 L

𝒢c
max . □

Example 3.3 (continued). Consider the execution trace shown in

Fig. 6. In this trace, ℛ1 is released at t = 45 and satisfied at time

t = 145, so it is blocked for 100 time units. By Theorem 3.2, the

worst-case blocking of ℛ1 is 60 + 55 + 30 = 145 time units. Note

that this is far less time than the 3 · 60 = 180 time units given as a

bound by Theorem 3.1.

RTNS ’19, November 06–08, 2019, Toulouse, France C. E. Nemitz, T. Amert, M. Goyal, J. H. Anderson

{lc, le}

{la, le}S1

S2

S3S4

S5

{lb, ld}

{ld, le}

{la, lb}

Figure 7: An alternate coloring.

4 EXTENSIONS
Now that we have explained the fundamental components to the

CGLP, we discuss several extensions to the protocol, such as per-

formance improvements and the handling of both read and write

requests. For a given set of requests, it can also be beneficial to

explore alternate concurrency groupings or optimizations based on

the number of requests per resource.

4.1 Alternate Coloring Choices
In the basic version of the CGLP, we picked an arbitrary coloring of

the vertices that required the minimum number of colors. However,

there can be multiple ways to color a set of vertices with k colors,

resulting in different concurrency groups.

Example 4.3 (continued). Continuing the running example from

the prior section, there are multiple ways of forming three concur-

rency groups for this set of requests. For example, instead of the

coloring shown in Fig. 4, the coloring shown in Fig. 7 would yield

𝒢1 = {ℛ1}, 𝒢2 = {ℛ2,ℛ3}, and 𝒢3 = {ℛ4,ℛ5}.

As an extension to the basic CGLP, the concurrency groups

should be chosen in a manner that minimizes blocking. This can

be done by considering the critical-section lengths in light of the

blocking bound given in Theorem 3.2 when assigning groups.

Example 4.3 (continued). By Theorem 3.2, the worst-case block-

ing of any of the requests under the grouping shown in Fig. 4 is

60 + 55 + 30 = 145 time units. In contrast, the blocking under the

grouping of Fig. 7 is at most 10+60+30 = 100 time units. Therefore,

the grouping shown in Fig. 7 should be used instead of that in Fig. 4.

Ex. 3.3 highlights the improvements in worst-case blocking that

can be achieved by creating concurrency groups based on the

critical-section lengths of the requests.

4.2 Mixed-Type Requests
A mixed-type request is one in which the task requires write access

for one or more resources and only requires read access for some

resources. Such a request may occur when a task must read one

or more values from various buffers or sensors before writing a

resulting computation to some other region of shared memory. We

capture these different synchronization requirements in a manner

that allows us to exploit the relaxed resource sharing assumptions

for read requests. We do so by modifying how we generate the

graph corresponding to the requests.

{la , lb }
r w

{la , lc }
r w

{lc , ld }
w w

{la , ld }
w w

S1

S2

S3

S4

Figure 8: Graph of mixed-type requests.

A vertex is created for each request, as before. However, the ad-

dition of edges is changed to reflect this different sharing paradigm.

When listing the set of resources Di required by a request ℛi , we

denote the type of access required (read or write) with a superscript.

For example, Di = {ℓra , ℓwb } indicates that ℛi requires read access

to ℓa and write access to ℓb .

Example 4.4. Consider a set of requestsℛ1 throughℛ4, which

require resources D1 = {ℓra , ℓwb }, D2 = {ℓra , ℓwc }, D3 = {ℓwc , ℓwd },
and D4 = {ℓwa , ℓwd }. Here,ℛ1 andℛ2 are mixed-type requests and

ℛ3 and ℛ4 are write requests.

We define Dw
i = {ℓy |ℓwy ∈ Di} as the set of resources to which

ℛi requires write access. An edge is added between two vertices

corresponding to requests ℛi and ℛj ifℛi , ℛj and D
w
i ∩ D j ,

∅ ∨ Di ∩ Dw
j , ∅.

Example 4.4 (continued). The graph corresponding to this set of

requests is shown in Fig. 8. Here,Dw
1
= {ℓb}. Although bothℛ1 and

ℛ2 require ℓa , both read ℓa : when comparingℛ1 andℛ2, we check

{ℓb} ∩ {ℓa , ℓc} = ∅ and {ℓc} ∩ {ℓa , ℓb} = ∅, so no edge is added

between 𝒮1 and 𝒮2. This fits the intuition that ℛ1 and ℛ2 could

be satisfied concurrently. For ℛ1 and ℛ4, {ℓa , ℓb} ∩ {ℓa , ℓd} =
{ℓa} , ∅, so an edge is added between 𝒮1 and 𝒮4.

Given graphs created in this manner, the graph coloring and

blocking analysis approaches presented in Sec. 3.1 and Sec. 3.4 can

be applied.

4.3 Hierarchical Organization
Our initial approach to determining concurrency groups required

constructing a graph with one vertex per request. Here we explore

adding a layer of hierarchy to the request management scheme. We

begin by considering a group of six requests: the five requests from

Ex. 3.3 and one additional request.

Example 4.5. Consider the task set with the requests from Ex. 3.3

and a sixth request, ℛ6, for D6 = {ℓa , ℓe} with a critical-section

length of at most L6 = 55 time units. Using the graph coloring

approach described in Sec. 3.1, we can determine that four concur-

rency groups are required. One such grouping is shown in Fig. 9.

This grouping results in worst-case blocking for all requests of

10 + 60 + 30 + 55 = 155 time units.

This example highlights the impact a single request may have

on the task system as a whole. Instead of the worst-case acquisition

delay of 100 time units from Ex. 3.3, each request in this set may

experience 155 time units of blocking.

Concurrency Groups: A New Way to Look at Lock Nesting RTNS ’19, November 06–08, 2019, Toulouse, France

{la, lc, le}

{la, le}S1

S2

S3

S4

S5

{lb, ld}

{la, lb}

S6

{lc, le}

{ld, le}

Figure 9: Four concurrency groups for requests ℛ1 to ℛ6.

{la, lc, le}

{la, le}S1

S2

S3S4

S5

{lb, ld}

{ld, le}

{la, lb}

R2, R6

Figure 10: Three scheduling groups with one layer of hierar-
chy for ℛ2 and ℛ6.

We propose a slight modification to the creation of concurrency

groups that will lower the worst-case blocking for most requests at

the cost of increasing the worst-case blocking for a few requests.

This modification allows a vertex to represent multiple requests

and requires additional synchronization between those requests.

Example 4.5 (continued). For the purpose of this example, we

chooseℛ2 andℛ6 to be represented by a single vertex. (This choice

reduces the required number of concurrency groups from four to

three.) We construct a new graph with five vertices. We let each of

𝒮1, 𝒮3, 𝒮4, and 𝒮5 represent the request with the same index. 𝒮2
represents both ℛ2 and ℛ6.

When constructing a graph, edges are added between vertices

based on all requests the vertices represent. Then, the graph color-

ing approach can be used as described in Sec. 3.1.

Example 4.5 (continued). When creating the graph shown in

Fig. 10, edges from 𝒮2 are added based on requests that conflict

with either ℛ2 or ℛ6.

To ease the discussion of when requests are satisfied under this

scheme, instead of referring to the requests in a group, we will refer

to their corresponding slots. Each vertex corresponds to exactly

one slot, and multiple requests may compete to occupy the slot

in the active phase of its group. The request that occupies its slot

is satisfied according to the rules for requests above, and at most

one request can occupy a slot at a time. To ensure this, additional

coordination among requests that share a slot is required. Therefore,

we require such requests to first acquire a mutex corresponding

to the slot. This introduces an additional layer of hierarchy and

additional blocking for these requests; a request must now wait

until it acquires the mutex to occupy its slot and thus be eligible

to be satisfied when its concurrency group becomes active. (Note

that the use of a mutex in this context shifts the blocking a request

experiences from one lock structure to another; this modification

can be implemented without the use of a mutex for updating the

overall lock state [18].)

The necessary coordination can be expressed as two additional

rules:

G9 When multiple active requests compete for a slot, at most

one request can occupy the slot at a time. Only requests

occupying slots are considered in Rules G1 throug G8.

G10 When a request completes, it no longer occupies its slot. If

another active request for the slot exists when a request

completes, the transition between requests occupying the

slot is atomic.

Theorem 4.3. The worst-case acquisition delay a requestℛi com-
peting with s other requests to enter the concurrency group 𝒢д is(
s + 1

) ∑
c L

𝒢c
max if a FIFO-ordered mutex is used.

Proof. If ℛi is at the head of the queue for its slot, then it

experiences acquisition delay of at most

∑
c L

𝒢c
max time units (The-

orem 3.2).

Otherwise, ifℛi is not at the head of the queue, there is a differ-

ent request,ℛj , that occupiesℛi ’s slot.ℛj experiences acquisition

delay of up to

∑
c L

𝒢c
max time units (Theorem 3.2). It then executes

during 𝒢д ’s active phase, which lasts for up to L
𝒢д
max .

By Rule G10, when ℛj completes, the subsequent request in

the queue immediately occupies the slot in 𝒢д . Call this request
ℛx . If another group is waiting, ℛx is not satisfied immediately.

Instead 𝒢д transitions from the active state to the waiting state.

Then, as in Theorems 3.1 and 3.2, ℛx must wait for up to k − 1

active phases of other groups incurring a delay of up to

∑
c,д L

𝒢c
max

time units before being satisfied. If ℛi , ℛx , another active phase

of L
𝒢д
max (during whichℛx is satisfied) of duration up to L

𝒢д
max time

units contributes to the acquisition delay experienced by ℛi . In

this manner, for each of the s − 1 requests betweenℛi andℛj ,ℛi

is delayed for an additional

(∑
c,д L

𝒢c
max

)
+ L

𝒢д
max =

∑
c L

𝒢c
max .

Finally, once ℛi occupies its slot, it is delayed up to

∑
c,д L

𝒢c
max

time units. Therefore, ℛi experiences worst-case acquisition delay

of

∑
c L

𝒢c
max + L

𝒢д
max +

(
s − 1

) ∑
c L

𝒢c
max +

∑
c,д L

𝒢c
max =(

s + 1
) ∑

c L
𝒢c
max time units. □

Example 4.5 (continued). When the concurrency groups depicted

in Fig. 10 are used, ℛ2 and ℛ6 have a maximum acquisition delay

of 2·10+60+30 = 200 time units. All other requests have maximum

acquisition delay of 100 time units.

In essence, we can leverage additional knowledge about the tasks

to increase blocking for some requests in order to lower blocking

for other requests. The decision of which requests to map to the

same vertex can depend on multiple factors. The resources that

the requests require must be considered; for each request mapped

to a slot, multiple edges may need to be added to the vertex. In

general, to see the benefits of the tighter blocking bounds from

RTNS ’19, November 06–08, 2019, Toulouse, France C. E. Nemitz, T. Amert, M. Goyal, J. H. Anderson

Protocol

Worst-Case

Acquisition Delay

Total

Overhead (µs)

CGLP

∑
д L

𝒢д
max 3.1

U-C-RNLP Ci + 1 · Lmax 13.0

G-C-RNLP Ci · Lmax +Ci · Li 15.1

RNLP m · Li 13.5

MCS m · Li 0.7

Table 1: Blocking bounds and overhead of each protocol. In the
bounds of C-RNLP,Ci is the number of requests which conflict with
ℛi . (The reported overhead of the CGLP is the maximum of that
measuredwith between two and ten concurrency groups.) Overhead
values were measured on a dual-socket 8-cores-per-socket machine
with 32 GB of DRAM, running Ubuntu 16.04.

Sec. 3.4, a vertex should represent requests with similar critical-

section lengths. Furthermore, some tasks may be able to incur a

higher amount of blocking and still meet their deadlines; this will

depend on the execution time and period of each task.

An additional consideration is that in some applications it may

be reasonable to expect requests for the same set of requests to

have similar properties, such as critical-section length or ability to

incur blocking. Grouping requests in this manner has the added

benefit that a large number of identical requests only impacts the

blocking of those requests and not other requests in the system.

5 EVALUATION
To evaluate the effectiveness of the CGLP, we compared it to prior

real-time locking protocols in a schedulability study. Additionally,

we explored how long it takes to determine concurrency groups.

5.1 Schedulability Study
Our primary method of evaluation is comparing schedulability of a

variety of task sets when different synchronization protocols are

used. The first protocol to which we compare the CGLP is the C-

RNLP. The C-RNLP is the only existing protocol that solves the

Transitive Blocking Chain Problem for nested write requests. There

are two variants of the C-RNLP: the Uniform C-RNLP (U-C-RNLP)

assumes uniform critical-section lengths and allows enqueuing

based on this, while the General C-RNLP (G-C-RNLP) makes no

such assumptions. We also compare the CGLP to the RNLP and to

a simple group lock.
3
The blocking bounds and overhead of each

protocol are summarized in Table 1.

We conducted our experiments using SchedCAT [1], an open-

source real-time schedulability test toolkit. We used SchedCAT to

randomly generate task systems, compute blocking bounds, and

determine schedulability on a 16-core platform using G-EDF sched-

uling by Baruah’s test [4]; we inflate the execution time of tasks

based on the locking protocol overhead and blocking their requests

may incur as described in [5]. In our experiments, we explored a

broad space of task-system parameters, varying the individual task

utilization, period, critical-section length, the percentage of tasks

that issue requests, the probability that a given request is nested,

and the number of resources requested for a nested request; named

value sets are listed in Table 2, and the set of parameters used for

3
We use a single MCS lock [15] to protect all resources for the group lock. Due to the

scale of this study and the complexity of computing blocking bounds [26], we do not

compare to a set of resource-ordered locks.

Category Name Value

Task Utilization Medium-Light [0.01,0.1]

Medium [0.1,0.4]

Heavy [0.5,0.9]

Critical-Section Moderate [15,100]

Length (µs) Bimodal [15,500] or [500,1000]

Weighted

Bimodal

[15,500] (prob: 0.7) or

[500,1000] (prob: 0.3)

Long [100,1000]

Period (ms) Short [3,33]

Long [50,250]

Table 2: Named parameter distributions. From each, a value is se-
lected uniformly at random.

Category Options

Task Utilization Medium, Heavy

Period Short, Long

Percentage Issuing Requests 50%, 80%, 100%

Critical-Section Length

Moderate, Bimodal,

Weighted Bimodal, Long

Number of Resources 64

Nested Probability 0.1, 0.2, 0.5, 0.8

Nesting Depth 2, 4

Table 3: Schedulability study parameter choices. Critical-section
lengths are assigned with one of two methods: randomly for each
request or within a range of the random length assigned to a group.

our schedulability study are in Table 3. We define a scenario to be

a setting of each of these parameters. Our study considered 384

scenarios; common trends are discussed here, and the full set of

plots is available online along with the code [18]. For each scenario,

at least 1,000 task systems were generated for every value of system

utilization; we plot the percentage of these that are schedulable

when no synchronization is required (NOLOCK) and when syn-

chronization is provided by one of the five algorithms we compare.

This evaluation took over 15 CPU-days of computation.

General results. For our initial schedulability study, we sought to

separate the analysis of the CGLP from the process of determining

the number of groups necessary for a single task system. To achieve

this, we first compute the minimum number of groups necessary

given the number of nested and non-nested requests in a given

task system. For each request, we randomly choose a group and

then selected the required number of resources from the group

without replacement. If the distribution of requests is such that no

group has sufficient resources when assigning resources to the next

request, a new group is added. This method of request generation

allows us to analyze the CGLP when the number of groups is small

relative to the number of requests. We evaluate the average number

of concurrency groups required for a given scenario in Sec. 5.2.

Fig. 11 shows the schedulability of task sets with varying uti-

lizations in which 100% of the tasks issue requests. We chose these

plots to represent some key trends we observed.

Concurrency Groups: A New Way to Look at Lock Nesting RTNS ’19, November 06–08, 2019, Toulouse, France

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
MCS
RNLP
U-C-RNLP
G-C-RNLP
CGLP

(a) Medium per-task utilization, nested probability 0.5

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
MCS
RNLP
U-C-RNLP
G-C-RNLP
CGLP

(b) Heavy per-task utilization, nested probability 0.5

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
MCS
RNLP
U-C-RNLP
G-C-RNLP
CGLP

(c) Medium per-task utilization, nested probability 0.1

Figure 11: For these scenarios, the nesting depth was 4, critical-
section lengthsweremoderate, periodswere short and 100% of tasks
issued requests.

Obs. 1. When many tasks issue requests and the nested probability
is high, the CGLP tends to result in equal or higher schedulability
than existing protocols.

This observation is reflected for both medium (Fig. 11a) and

heavy (Fig. 11b) task utilizations. In general, when 80% or 100% of

tasks issue requests and those requests have probability of 0.5 or 0.8

of being nested for 4 resources, the CGLP is as good or better than

existing approaches in 64.1% of scenarios. (The CGLP is always as

good as or better than the RNLP or a group MCS lock.) When the

probability of a request being nested is low, the G-C-RNLP tends to

outperform all other protocols. This trend is reflected for medium

utilization tasks with a lower nested request probability in Fig. 11c.

Critical-section length considerations. In Sec. 4.1, we explored

the benefits of creating concurrency groups with requests of similar

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
MCS
RNLP
U-C-RNLP
G-C-RNLP
CGLP

(a) Randomly-chosen critical-section lengths

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
MCS
RNLP
U-C-RNLP
G-C-RNLP
CGLP

(b) Per-group critical-section lengths

Figure 12: For this scenario, task utilizations were medium, the
nesting depth was 4, periods were long, critical sections were
weighted bimodal, nested probability was 0.5, and 100% of tasks is-
sued requests. Critical-section lengths were uniformly chosen from[
0.9, 1.1

]
times the group’s value.

critical-section lengths. To simulate this scenario in the context of

our schedulability study, we assign a critical-section length for each

group we generate. The requests generated that belong to a given

concurrency group are assigned a critical-section length randomly

chosen from a uniform distribution of

[
0.9, 1.1

]
times the group’s

pre-assigned critical-section length. The benefits of grouping tasks

by critical-section length are captured in Fig. 12.

Obs. 2. When the tasks are grouped by critical-section length, the
schedulability of the CGLP increases.

This trend is shown in Fig. 12a and Fig. 12b and is as expected for

the CGLP; the bounds in Sec. 3.4 capture the benefit of grouping re-

quests by similar critical-section length. In the online appendix [18],

we discuss analogous methods by which we tightened the computed

bounds for the C-RNLP variants.

Obs. 3. The change in the distribution of critical-section lengths
significantly impacts the schedualability of existing protocols.

This is illustrated in Fig. 12b, which shows an inflection point on

each of these curves. One method by which we tightened bounds

accounts for the largest critical-section lengths; changing this dis-

tribution has a significant impact on the computed blocking, in

general increasing schedulability for existing protocols.

Importance of few concurrency groups. The blocking bounds
of the CGLP presented in Sec. 3.4 depend heavily on the number of

RTNS ’19, November 06–08, 2019, Toulouse, France C. E. Nemitz, T. Amert, M. Goyal, J. H. Anderson

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
MCS
RNLP
U-C-RNLP
G-C-RNLP
CGLP

(a) Minimum of 4 groups

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
MCS
RNLP
U-C-RNLP
G-C-RNLP
CGLP

(b) Minimum of 10 groups

Figure 13: For this scenario, task utilizations were medium, the
nesting depth was 4, periods were long, critical sections were long,
nested probability was 80%, and 100% of tasks issued requests.

concurrency groups. For some task sets the distribution of requests

over the set of resources may result only a few groups relative to

the number of requests. When this is not the case, a method like

that described in Sec. 4.3 must be explored.

For this next component of our study, we modify how we choose

the number of groups. Here, we specify the number of groups from

which requests may be chosen. No modifications are made after

the requests are chosen, so this selection determines the number

of concurrency groups. The impact of the number of concurrency

groups is depicted in Fig. 13.

Obs. 4. Schedulability under the CGLP decreases as the number of
groups increases.

This is depicted in Fig. 13, as expected; based on the bound given

in Sec. 3.4, adding a group adds an additional critical-section to the

computation of worst-case blocking. This decrease in schedulabil-

ity emphasizes the importance of using the minimum number of

concurrency groups.

5.2 Determining the Concurrency Groups
In Sec. 3.1, we described how the offline partitioning of requests

into concurrency groups can be cast as a Vertex Coloring Problem.

We encode this problem as an Integer Linear Program (ILP) by using

binary variables to indicate a color assignment for each vertex [19].

To test how long it takes to determine concurrency groups for a

given task set, we generated random requests for a task set in which

tasks had long periods, every task issued a request, and nested re-

quests required four resources. We then used an ILP solver [11]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Nested Probability

0

5

10

15

20

25

30

35

Ti
m

e
to

 F
in

d
k

an
d

As
sig

n
Gr

ou
ps

Medium-Light
Medium
Heavy

Figure 14: Average time to compute the minimum coloring per
nested probability. Error bars indicateminimumandmaximumval-
ues. Each data point represents 50 random task sets.

Task

Utilization

Average Number

of Requests

Average

k
Time to Find k ,
Assign Groups

Heavy 23.4 3.7 0.026 s

Medium 64.7 6.7 0.227 s

Medium-Light 291.6 19.8 10.59 s

Table 4: Average time required to find minimum group number
(and an assignment of requests to groups).

to determine the minimum number of groups required for vary-

ing probabilities of nested requests, as shown in Fig. 14. For each

scenario, we generated 50 task sets.

Obs. 5. While the connection of the problem of determining groups
to the NP-complete Vertex Coloring Problem may seem like a serious
liability, the ILP solver was almost always able to quickly find such
groups across a wide spectrum of scenarios.

The average time in which the ILP solver determined the min-

imum number of groups and assigned these groups is shown in

Fig. 14 and Table 4.

6 CONCLUSION
In this paper, we have presented the CGLP, a nested real-time

locking protocol that solves both the Transitive Blocking Chain

Problem and the Request Timing Problem. The CGLP determines

concurrency groups offline to reduce the blocking experienced by

requests. We provided the worst-case acquisition delay and showed

how the CGLP can be improved by considering critical-section

lengths. Additionally, we presented an extension that allows worst-

case blocking to be tuned based on task parameters.

We evaluated the CGLP on the basis of schedulability and showed

that for task system with mostly nested write requests, it tends

to outperform existing protocols. We also showed that, for many

tasks systems, the minimum number of concurrency groups can be

computed by an ILP solver very quickly.

As future work, we plan to implement a mechanism that sorts

requests into groups based on how much blocking a given request

can incur and remain schedulable. Additionally, we will explore the

benefits of handling mixed-type requests. Finally, we will incorpo-

rate this as a component of a larger protocol by merging work that

handles non-nested requests and read requests efficiently with the

CGLP, which efficiently manages nested write requests.

Concurrency Groups: A New Way to Look at Lock Nesting RTNS ’19, November 06–08, 2019, Toulouse, France

REFERENCES
[1] 2019. SchedCAT: Schedulability test collection and toolkit. https://github.com/

brandenburg/schedcat. Accessed: 2019-02-07.

[2] Tobias Bandh, Georg Carle, and Henning Sanneck. 2009. Graph coloring based

physical-cell-ID assignment for LTE networks. In IWCMC ’09.
[3] N. Barnier and P. Brisset. 2004. Graph coloring for air traffic flow management.

Annals of operations research 130, 1-4 (2004).

[4] S. Baruah. 2007. Techniques for multiprocessor global schedulability analysis. In

RTSS ’07.
[5] B. Brandenburg. 2011. Scheduling and Locking in Multiprocessor Real-Time Op-

erating Systems. Ph.D. Dissertation. University of North Carolina, Chapel Hill,

NC.

[6] A. Burns and A. Wellings. 2013. A schedulability compatible multiprocessor

resource sharing protocol - MrsP. In ECRTS ’13.
[7] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and P. Markstein.

1981. Register allocation via coloring. Computer languages 6, 1 (1981).
[8] D. Faggioli, G. Lipari, and T. Cucinotta. 2010. The multiprocessor bandwidth

inheritance protocol. In ECRTS ’10.
[9] D. Faggioli, G. Lipari, and T. Cucinotta. 2012. Analysis and implementation of the

multiprocessor bandwidth inheritance protocol. Real-Time Systems 48, 6 (2012).
[10] J. Garrido, S. Zhao, A. Burns, and A. Wellings. 2017. Supporting nested resources

in MrsP. In Ada-Europe International Conference on Reliable Software Technologies
’17.

[11] LLC Gurobi Optimization. 2018. Gurobi Optimizer Reference Manual. http:

//www.gurobi.com

[12] J. Havender. 1968. Avoiding deadlock in multitasking systems. IBM systems
journal 7, 2 (1968).

[13] C. Jarrett, B. Ward, and J. Anderson. 2015. A Contention-Sensitive Fine-Grained

Locking Protocol for Multiprocessor Real-Time Systems. In RTNS ’15.
[14] D. Marx. 2004. Graph colouring problems and their applications in scheduling.

Periodica Polytechnica Electrical Engineering 48, 1-2 (2004).

[15] J. Mellor-Crummey and M. Scott. 1991. Algorithms for scalable synchronization

of shared-memory multiprocessors. Transactions on Computer Systems 9, 1 (1991).
[16] C. Nemitz, T. Amert, and J. Anderson. 2018. Using Lock Servers to Scale Real-Time

Locking Protocols: Chasing Ever-Increasing Core Counts. In ECRTS ’18.
[17] C. Nemitz, T. Amert, and J. Anderson. 2019. Real-time multiprocessor locks with

nesting: optimizing the common case. Real-Time Systems 55, 2 (2019).
[18] C. Nemitz, T. Amert, M. Goyal, and J. Anderson. 2019. Concurrency Groups: A

New Way to Look at Real-Time Multiprocessor Lock Nesting (extended version).

http://www.cs.unc.edu/Ëœanderson/papers.html

[19] S. Palladino. 2010. Modelling graph coloring with inte-

ger linear programming. https://manas.tech/blog/2010/09/16/

modelling-graph-coloring-with-integer-linear-programming.html.

[20] R. Rajkumar, L. Sha, and J. Lehoczky. 1988. Real-Time Synchronization Protocols

for Multiprocessors. In RTSS ’88.
[21] H. Takada and K. Sakamura. 1995. Real-time scalability of nested spin locks. In

RTCSA ’95.
[22] B. Ward. 2016. Sharing Non-Processor Resources in Multiprocessor Real-Time

Systems. Ph.D. Dissertation. University of North Carolina, Chapel Hill, NC.

[23] B. Ward and J. Anderson. 2012. Supporting nested locking in multiprocessor

real-time systems. In ECRTS ’12.
[24] B. Ward and J. Anderson. 2013. Fine-grained multiprocessor real-time locking

with improved blocking. In RTNS ’13.
[25] B. Ward and J. Anderson. 2014. Multi-resource real-time reader/writer locks for

multiprocessors. In IPDPS ’14.
[26] A. Wieder and B. Brandenburg. 2014. On the complexity of worst-case blocking

analysis of nested critical sections. In RTSS ’14.
[27] S. Zhao, J. Garrido, A. Burns, and A. Wellings. 2017. New schedulability analysis

for MrsP. In RTCSA ’17.

https://github.com/brandenburg/schedcat
https://github.com/brandenburg/schedcat
http://www.gurobi.com
http://www.gurobi.com
http://www.cs.unc.edu/˜anderson/papers.html
https://manas.tech/blog/2010/09/16/modelling-graph-coloring-with-integer-linear-programming.html
https://manas.tech/blog/2010/09/16/modelling-graph-coloring-with-integer-linear-programming.html

	Abstract
	1 Introduction
	2 Background
	3 Concurrency Groups
	3.1 Offline Group Creation via Graph Coloring
	3.2 Group Arbitration
	3.3 Bounding Blocking
	3.4 Refining the Blocking Bound

	4 Extensions
	4.1 Alternate Coloring Choices
	4.2 Mixed-Type Requests
	4.3 Hierarchical Organization

	5 Evaluation
	5.1 Schedulability Study
	5.2 Determining the Concurrency Groups

	6 Conclusion
	References

