
Open access to the Proceedings of the

2019 USENIX Annual Technical Conference

is sponsored by USENIX.

Detecting Asymmetric Application-layer
Denial-of-Service Attacks In-Flight with FINELAME

Henri Maxime Demoulin, Isaac Pedisich, Nikos Vasilakis, Vincent Liu,

Boon Thau Loo, and Linh Thi Xuan Phan, University of Pennsylvania

https://www.usenix.org/conference/atc19/presentation/demoulin

This paper is included in the Proceedings of the

2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Detecting Asymmetric Application-layer Denial-of-Service Attacks In-Flight with

FINELAME

Henri Maxime Demoulin Isaac Pedisich Nikos Vasilakis

Vincent Liu Boon Thau Loo Linh Thi Xuan Phan

University of Pennsylvania

Abstract

Denial of service (DoS) attacks increasingly exploit algo-

rithmic, semantic, or implementation characteristics dormant

in victim applications, often with minimal attacker resources.

Practical and efficient detection of these asymmetric DoS

attacks requires us to (i) catch offending requests in-flight, be-

fore they consume a critical amount of resources, (ii) remain

agnostic to the application internals, such as the programming

language or runtime system, and (iii) introduce low overhead

in terms of both performance and programmer effort.

This paper introduces FINELAME, a language-independent

framework for detecting asymmetric DoS attacks. FINELAME

leverages operating system visibility across the entire soft-

ware stack to instrument key resource allocation and negotia-

tion points. It leverages recent advances in the Linux extended

Berkeley Packet Filter virtual machine to attach application-

level interposition probes to key request processing func-

tions, and lightweight resource monitors—user/kernel-level

probes—to key resource allocation functions. The data col-

lected is used to train a model of resource utilization that

occurs throughout the lifetime of individual requests. The

model parameters are then shared with the resource monitors,

which use them to catch offending requests in-flight, inline

with resource allocation. We demonstrate that FINELAME

can be integrated with legacy applications with minimal ef-

fort, and that it is able to detect resource abuse attacks much

earlier than their intended completion time while posing low

performance overheads.

1 Introduction

Denial-of-Service (DoS) attacks aim to hinder the availability

of a service from its legitimate users. They work by over-

whelming one or more of the resources of the service (e.g., ,

CPU, network, memory, or disk), causing the service to be-

come slow or, in the limit, entirely unavailable.

Classic DoS attacks are simple in structure: attackers, in

large-scale, brute-force volumetric attacks, send many re-

quests that far exceed the service’s available resources. Al-

though potentially crippling—sometimes reaching aggregate

volumes of terabits per second [24, 43]—many effective mit-

igation techniques have been developed over the years, in-

cluding commercial services like CloudFlare, Akamai, or the

intrusion detection systems of Arbor Networks.

In response to these defenses, recent attacks have be-

come much more sophisticated in nature: rather than rely-

ing on the sheer volume, they take the form of highly spe-

cialized, application-specific asymmetric DoS (ADoS) at-

tacks [11, 12, 36, 48]. These attacks contain carefully-crafted,

pathological payloads that target algorithmic, semantic, or

implementation characteristics of the application’s internals.

They require significantly lower volumes of traffic and at-

tacker resources to compromise resource availability. With

the prevalence of third-part libraries, broad swaths of appli-

cations can be vulnerable to a given attack. For instance, the

Regular-Expression DoS (ReDoS) attack [12, 13, 51] affects

many programs that use regular expressions by leveraging

algorithmic complexity to craft a single payload of a few

characters that can occupy a service for several hours.

Due to this increase in sophistication, existing defenses are

becoming inadequate [10, 26–28, 31, 40, 54, 60–62]. Network-

based defenses are generally ineffective against ADoS attacks

because these attacks lack identifiable problematic patterns at

the network level. To be successful, network tools would not

only need to perform deep packet inspection, but would also

need to be able to predict which requests will hog resources a

priori—a challenge analogous to solving the halting problem.

Similarly, existing application-level defenses are limited in

their efficacy: since these attacks can target arbitrary resources

and arbitrary components of the service, which may be written

in different programming languages and contain multiple

binary third-party packages whose source code is not available

or with complex dependencies, manual instrumentation of

the application is prohibitively difficult, expensive, and time-

consuming.

This paper presents the design and implementation of

FINELAME (Fin-Lahm), a practical framework for detect-

USENIX Association 2019 USENIX Annual Technical Conference 693

any resource within the system. ADoS vulnerabilities are

widespread and often affect entire software ecosystems [41].

We detail a few of them below.

Regular-expression DoS (ReDoS) [12, 13, 51]. ReDoS at-

tacks target programs that use regular expressions. Attackers

craft patterns that result in worst-case asymptotic behavior of

a matching algorithm. An example pattern is (a+)+, which

does not match any string of the form a*X, but requires the

system to check 2N decomposition of the pattern to reach that

conclusion, where N is the length of the target string.

XML Bomb [3]. An XML bomb (or Billion-Laughs attack) is

a malicious XML document that contains layers of recursive

data definitions3, resulting in quadratic resource consump-

tion: a 10-line XML document can easily expand to a multi-

gigabyte memory representation and consume an inordinate

amount of CPU time and memory on the server. Fig. 1 illus-

trates the impact of XML bombs on the latency of requests

on a susceptible server. Under normal operation, a load of

500 legitimate requests per second are served in less than 10

milliseconds each; under a low-volume attack of 10 XML

bombs per second, the latency jumps up to more than two

seconds. An XML bomb affects any serialization format that

can encode references (e.g., YAML, but not JSON).

Improper (de-)serialization [47, 52, 53]. This class of at-

tacks encompasses those where malicious code can be in-

jected into running services. These vulnerabilities are, unfor-

tunately, common in practice, and they allow malicious users

to, for instance, inject a for (;;) {} loop to stall a process

indefinitely.

Event-handler Poisoning (EHP) [14]. Attacks like the pre-

ceding can be additionally amplified in an event-driven frame-

work. In event-handler poisoning, attackers exploit the block-

ing properties of event-driven frameworks so that, when a

request unfairly dominates the time spent by an event han-

dler, other clients are further blocked from proceeding. Any

slowdown, whether it is in the service itself or in its recursive

layers of third-party libraries can contribute to this head-of-

line blocking.

2.2 Design Goals

The attacks in the previous section highlight several goals that

drive FINELAME’s design (§4) and implementation (§5).

In-flight Detection. Actions often need to be taken while the

offending requests are “in the work”—for example, when a

single request can bring the system down (e.g., cooperative

scheduling) or when subsequent defenses cannot be deployed

(e.g., IP spoofing). DoS detection needs to catch such re-

quests before they leave the system, by monitoring resource

consumption at a very fine temporal and spatial granularity.

3 For example, the first layer consists of 10 elements of the second layer,

each of which consists of 10 elements of the third layer, and so on.

Resource Independence. ADoS attacks may target arbitrary

system-level resources (CPU, memory, storage, or network-

ing), and may even target multiple resources (i.e., multi-vector

attacks). A desirable solution needs to be agnostic to the re-

source and able to handle any instance of inordinate consump-

tion.

Cross-component Tracking. Given the complex structure of

modern applications, ADoS attacks can also cross the bound-

aries of the application’s internal components or processing

phases. For instance, if a request causes the triggering of a

timeout to an event queue, resources consumed by the initial

request parsing and the timeout should both be attributed to

the same request.

Language Independence. Applications today combine sev-

eral ready-made libraries, which are written in multiple pro-

gramming languages and often available only as compiled

binaries. Thus, DoS detection should remain agnostic to the

application details such as the programming language, lan-

guage runtime, and broader ecosystem (e.g., packages, mod-

ules).

Minimal Developer Effort. Detection needs to impose min-

imal burden to developers and devops, who should benefit

from DoS mitigation without having to study the application

internals. Rather than presenting developers with an overabun-

dance of configuration knobs, a DoS detection system should

direct precious human labor at sprinkling applications with

key semantic information utilized at runtime.

3 Threat Model

To be more concrete, FINELAME assumes the following about

the attacker and the broader environment.

Threats. We consider a powerful remote attacker that (i) can

send arbitrary requests to a service hosting a vulnerable appli-

cation, (ii) has control over potentially all of the application’s

legitimate clients, and (iii) is aware of the application’s struc-

ture and vulnerabilities, including exploits in its dependency

tree. We do not distinguish between legitimate and malicious

clients who intersperse harmful requests that attack resources

with one or more benign requests. Specifically, any subset of

hosts can send any number of requests that may or may not

attack any subset of resources. We do not limit resources of

interest to CPU; attackers can target memory, file descriptors,

or any other limited resource in the host system. That means

that attacks can take the form of a single client attempting to

consume 100% of the CPU indefinitely, or of multiple attacks

from multiple clients over many of the system’s resources.

Assumptions. We assume (i) vulnerable but not actively mali-

cious code, and (ii) that FINELAME sees at least some benign

traffic. If all traffic is malicious from the beginning, in-flight

detection and mitigation become less urgent, as anomalies

become the norm, and the application owners should first

USENIX Association 2019 USENIX Annual Technical Conference 695

revise their deployment pipeline. We also assume that the

resource utilization of request processing can be attributed

to a single request by the end of each processing phase, even

if the processing phases is split into multiple phases across

different application components. As keeping a reference to

the originating request is a natural design pattern, in all of the

services we tested, a unique identifier was already available;

in cases where there is no such identifier, one must be added,

and we detail how to do so in section 4.

4 FINELAME Design

Figure 2 depicts the overall design of FINELAME. Conceptu-

ally, FINELAME consists of three main components:

• Programmer annotations that mark when a request is

being processed. FINELAME requires only a few annota-

tions, even for complex applications, to properly attribute

resource utilization to requests.

• Fine-grained resource monitors that track the resource

utilization of in-flight requests at the granularity of con-

text switches, mallocs, page faults.

• A cross-layer anomaly detection model that learns the

legitimate behavior and detects attacks as soon as they

deviate from such behavior.

Programmers can use FINELAME by annotating their appli-

cation with what we call request-mappers. These annotations

delineate, for each component and processing phase, the start

and end of processing, as well as the request to which re-

source utilization should be attributed. For example, in an

event-driven framework, the beginning and the end of each

iteration of the event handler loop should be marked as the

start and the end of a request’s processing, respectively.

At runtime, when FINELAME is installed on the host

environment, FINELAME attaches small, low-overhead re-

source monitors to particular points in the application or

operating system. The aforementioned request-mappers en-

able FINELAME to determine the request to which the re-

source consumed by a thread or process should be credited.

In section 5, we detail our out-of-the-box FINELAME library

of request-mappers and resource monitors for several popu-

lar cloud frameworks. Our library tracks the utilization of a

range of key OS-level resources; however, programmers can

further extend it with user-level resource monitors to track

application-specific resources (e.g., the occupancy of a hash

table).

Finally, FINELAME’s monitoring data is used to perform

lightweight, inline anomaly detection. Resource monitors first

feed data to a machine learning model training framework

that computes a fingerprint of legitimate behavior. Parameters

of the trained model are installed directly into the resource

monitors, which evaluate an approximation of the model to au-

tomatically detect anomalous behavior on-the-fly. The end re-

sult of FINELAME is a system for high-accuracy, fine-grained,

and general ADoS attack detection.

4.1 Request-mapping in FINELAME

Conceptually, there are three operations in request mapping:

• startProcessing(): This annotation denotes the start

of a processing phase. Any resource utilization or allo-

cations after this point are attributed to a new unique

request.

• attributeRequest(reqId): As soon as we can de-

termine a unique and consistent request identifier, we

map the current processing phase to that request. For

instance, when reading packets from a queue, if the best

consistent identifier for a packet is its 5-tuple, resource

tracking would start as soon as the packet is dequeued,

but would only be attributed to a consistent request ID

after Layer-3 and Layer-4 processing are completed. In

general, attributeRequest(reqId) is called directly

after startProcessing(), and depending on the spe-

cific of the application, the two can sometimes be merged

(§ 5).

• endProcessing(): Finally, this operation denotes the

completion of processing, indicating that subsequent uti-

lization should not be attributed to the current request.

In order for the resource monitors to properly attribute

utilization to a request, FINELAME requires programmers

to annotate their applications using the above three request

mapping operations. Ideally, the annotations should cover as

much of the code base as possible; however, not all resource

utilization can be attributed to a single request. In such cases,

programmers have flexibility in how they perform mapping:

for true application overhead—rather than request process-

ing overhead—utilization can remain unattributed, and for

shared overhead (e.g., garbage collection), utilization can be

partitioned or otherwise assigned stochastically.

Every request is given an identifier that must be both unique

and consistent across application components and processing

phases. This identifier is used to maintain an internal mapping

between OS entity (process or thread) and the request. Exam-

ple identifiers include the address of the object representing

the request in the application, a request ID generated by some

application-level tracing solution [7, 20, 29, 34, 45, 49, 55],

or a location in memory if the request is only processed

once. From the moment a startProcessing annotation is

called to the moment the endProcessing annotation is called,

FINELAME will associate all the resources consumed by the

OS entity to the request.

An optimization of this technique can be implemented

when the application lends itself naturally to such mapping

696 2019 USENIX Annual Technical Conference USENIX Association

Name Description Event Type

tcp_idle_time Inactivity time on a TCP connection tcp_cleanup_rbuf kernel probe

tcp_sent Bytes sent through TCP connections tcp_sendmsg kernel probe

tcp_rcvd Bytes received through TCP connections tcp_cleanup_rbuf kernel probe

cputime Amount of CPU time consumed scheduler_tick, finish_task_switch kernel probe

malloc_memory Bytes allocated through the malloc function glibc_malloc user probe

page_faults Number of page faults events exceptions:page_fault_user kernel tracepoint

Tab. 1: Default resource monitors in FINELAME.

of a request, we monitor the glibc malloc function. Applica-

tions where memory management is partly handled by the

runtime (such as in Python) can be monitored in a similar

fashion. Likewise, the model can be generalized to garbage

collected languages. Finally, we monitor the page fault events

in the application by attaching a resource monitor to the ex-

ception: page_fault_user kernel tracepoint. We observed in

our evaluation that CPU time was the best discriminant for

CPU based attacks, while connection idle time the best for

slow attacks (such as Slowloris and RUDY).

The above default, general-purpose resource monitors in

FINELAME are sufficient for a large set of existing applica-

tions; however, it can be extended to all the kernel events

available for tracing and probing, as well as user-level func-

tions (to monitor application-level metrics). If any application-

level metrics are required (such as data structure occupancy,

counters, and so on), programmers can augment our resource

monitors with custom eBPF programs attached to arbitrary

probe points in either kernel- or user-space.

4.3 Attack Detection in FINELAME

Detection algorithm. For fast detection, FINELAME is de-

signed to enable anomaly detection as close as possible to

the resource allocation mechanism. Without a method for

in-flight anomaly detection in addition to mechanisms for

in-flight resource tracing, detection and mitigation of in-flight

requests would not be possible.

This detection problem can be reduced to quantizing the

abnormality of a vector in n-dimensional space. Once a suf-

ficient amount of data has been gathered to compute a fin-

gerprint of the legitimate requests’ behavior, we can train an

anomaly detection model. The model can span all the metrics

collected by the resource monitors, allowing us to detect abuse

on any of the resources of the system as well as cross-resource

(multi-vector) attacks.

For the unsupervised version of this problem, the most pop-

ular methods take one of two approaches: distance-based or

prediction-based. The former family of models aims to cluster

known, legitimate data points and compute the distance of

new data points to those clusters—distance that is used to

quantify the anomaly. The latter family assumes the existence

of a set of input data points that are correct, and learns a func-

Required

data

structures

Is there a

mapping?

Update

request

profile

If anomaly

detection

parameters

are available,

scale and

standardize

the data in

the FPA

space

Update

distance to

clusters

Perform

anomaly

detection

FPAS # FPA scaling factor

pid_to_rid # OS carrier to request

req_points # Request profiles

model_params # K-means parameters

dp_dists # Distances to centroids

thresholds # Alerts cut-off bar

fun resource_monitor(context):

pid = bpf_get_current_pid()

rid = pid_to_rid.get(pid)

if (rid):

ts = get_timestamp()

metric = context.get_arguments()

dp = req_points.get(rid)

if (dp):

dp.update(metric , ts)

else:

dp = init_dp(rid, metric , ts)

req_points.insert(dp)

µ, σ = model_params.get()

if (µ && σ):

metric_scaled = metric << FPAS

metric_scaled -= µ

if metric_scaled < 0:

metric_scaled *= -1

metric_scaled /= σ

metric_scaled *= -1

else:

metric_scaled /= σ

min_dist , closest_k

#pragma loop unroll

for k in K:

current_dist =

dp_dists.get(dp, k)

new_dist =

metric_scaled+current_dist

dp_dists.update(dp, new_dist)

if (new_dist < min_dist):

min_dist = new_dist

closest_k = k

t = thresholds.get(closest_k)

if new_dist > t:

report(rid, dp, s)

Fig. 3: FINELAME anomaly detection. Pseudocode for FINELAME’s inline

anomaly detection.

tion representing those points. When a new point enters the

system, the model computes the value of the learned function;

the prediction error is then used to quantify the degree of

698 2019 USENIX Annual Technical Conference USENIX Association

anomaly.

Because of the training complexity, prediction complexity,

and required training data, many existing solutions in both

distance-based and prediction-based categories are imprac-

tical to execute at fine granularity. For instance, the popular

algorithm DBSCAN [18] is not suitable for FINELAME, as it

requires us to evaluate the distance of new data points to all

the possible “core” data points in the model. The amount of

data points considered (and therefore the size of the model)

is usually linearly proportional to the size of the training set.

Some accurate approximations of DBSCAN have been pro-

posed [22], but even with a small number of clusters, almost

all of the training dataset still needs to be part of the model.

Likewise, the performance of prediction-based models made

on neural networks, such as Kitsune [38], is highly dependent

on the depth and width of the model. The amount of parame-

ters of such networks grows exponentially with the number

and size of the hidden layers.

Given the above concerns, we chose to implement anomaly

detection in FINELAME with K-means, a technique that al-

lows us to summarize the fingerprint of legitimate requests

with a small amount of data. In K-means, the objective func-

tion seeks to minimize the distance between points in each

cluster. The model parameters are then the centroids and dis-

tribution of the trained clusters. In a typical use-case scenario,

FINELAME is configured to perform only request monitoring

for a certain amount of time, after which it trains k-means on

the monitoring data gathered in user-space from the resource

monitors shared maps. In practice, we found that a K value

equal to the number of request types in the application yields

a reasonable estimation of the different behaviors adopted by

legitimate requests, while being a number low enough such

as to contain FINELAME’s overhead.

Model training and deployment. Gathering the training

data is done by a simple look-up from the user-space agent

to the shared eBPF maps holding the requests resource con-

sumption data. Using those profiles, the user-space agent

standardizes the data (center to 0 and cast to unit standard

deviation). Subsequently, the agent trains K-means to gener-

ate a set of centroids representing the fingerprint of the good

traffic. The parameters of the model, to be shared with the

performance monitors, are then the cluster centroids, as well

as the mean µ and standard deviation σ of each feature in the

dataset, and a threshold value τ statistically determined for

each cluster.

As described above, the performance monitors have lim-

ited computing abilities and do not have access to floating

point instructions. Thus, they are designed to perform fixed

point arithmetic in a configurable shifted space, and require

FINELAME’s to shift the model parameters in this space be-

fore sharing them. Using two precision parameters a and b,

each datapoint is transposed in a higher space 10a, and normal-

ized such that the resulting value lies in an intermediate space

10a−b, retaining a precision of a−b digits. This means that

Application Request mapping probes SLOC

Apache 5 41

Node.js 9 64

DeDoS 2 21

Tab. 2: Intrusiveness of FINELAME, quantified.

during the normalization operation each parameter value x un-

dergoes the following transformation: x = (x ∗ 10a)− (µ ∗ 10a)

σ ∗ 10b .

Once standardized, the clusters’ centroids as well as each

feature’s mean and standard deviation are shared with the

resource monitors through eBPF maps. Upon availability

of those parameters, the resource monitors update not only

the resource consumption of existing requests, but also their

outlier scores, a measure we use to quantify the degree of

anomaly of a request. Due to the constraints imposed on eBPF

programs—specifically, taking a square root is complex as

we do not have access to loops—we choose the normalized

L1 distance to the closest cluster as the outlier score. While

being a crude measure, the L1 is equivalent to more complex

norms as resource vectors are of finite dimension. It preserves

information about which resource is abused, and it lets us

set statistical thresholds to determine cut-off points used for

flagging abnormal requests. The algorithm for this entire

process is shown in Figure 3.

Finally, we note that because FINELAME is primarily de-

signed toward the detection of resource exhaustion attacks,

we allow the anomaly detection engine to maintain signed

values for outlier scores. This means that requests that have

not reached their expected legitimate amounts of resource con-

sumption, and that would look abnormal in an absolute value

setting, are not flagged as such. This is important because

it highlights the fact that FINELAME is not geared toward

volumetric attacks that aim to bring the system down with a

vast amount of low consumption requests.

5 Use Cases and Implementation

To demonstrate the generality of FINELAME and the mini-

mal developer effort required to use it, we apply FINELAME

to three web platforms: Apache [1], which is estimated to

serve ∼40% of all active webpages; Node.js [4] a popular

server-side JavaScript-based web server; and DeDoS [15]

an open source component-based framework for building

web services. Our prototype of FINELAME is available on

https://github.com/maxdml/Finelame. Table 2 quanti-

fies the programming effort required to write request-mappers

for those three applications to use FINELAME.

Apache web server. Primarily written in C, Apache’s re-

quest processing is implemented by Multi-Processing Mod-

ules (MPM). In the latest versions of Apache (2.x), requests

are served by multiple processes which can have multiple

USENIX Association 2019 USENIX Annual Technical Conference 699

worker threads themselves; each thread handles one connec-

tion at a time.

When a request enters the system, an application-level

(conn) object is created by the core_create_conn func-

tion to contain it before the request is dispatched to

a worker thread. Subsequently, the request is processed

by either the ap_process_http_sync_connection or the

ap_process_http_async_connection functions, which

take the conn object as argument. From FINELAME, we

attach one request-mapper to core_create_conn, and two

requests-mappers to the http processing functions, one over

a uprobe called upon entering the function, the other over a

uretprobe called when returning from it. We exploit the conn

object to generate a unique identifier for each request and map

it to the underlying thread worker, so that resource monitors

can later gather resource consumption data on the request’s

behalf. The mapping is undone when the function returns and

the request exits the system. When a worker thread executes

a new request, the request-mapper updates the mapping with

the new request’s ID. This solution requires no modification

to the Apache source code, and 41 lines of eBPF code over 5

probes.

Node.js required more slightly more instrumentation due to

its asynchronous model, which offloads work to a worker

pool (implemented with libuv [30]). The instrumentation re-

quired eBPF probes to be attached to seven user-space func-

tions within the libuv library. As in Apache, we found a data

structure—struct uv_stream_t—that could (i) be used to

generate a unique identifier, and (ii) was carried consistently

across the disparate components of the framework.

Request-mappers were applied to the seven libuv functions

as follows:

• uv_accept: a new request is initialized, and is associ-

ated with the uv_stream_t structure that handled com-

munication with the client.

• uv__read and uv__write: the request associated with

the client’s stream is assigned to the current thread for

the duration of the function.

• uv__work_submit: the request assigned to the current

thread is associated with a work-request submitted to the

worker pool.

• uv__fs_work, and uv__fs_done: the request associ-

ated with the work-request is assigned to the current

(worker) thread.

• uv_async_send: the request is unassigned from the cur-

rent thread.

Again, this solution requires no changes in Node.js source

code, only knowledge of which functions are processing re-

quests. The request-mappers totalized 64 lines of eBPF code.

DeDoS is an event-driven framework where programmers

write and deploy their application as software components

that are automatically allocated and deallocated based on

demand. Each of those components monitor a local event-

queue from which new requests are consumed. Unifying the

disparate components is a generic event-handling function

(receive()). Programmers implement their component’s

functionality inside this event-handling function.

DeDOS provides request tracing and explicitly tracks the

passing of requests between components. We chose DeDoS

as a proof-of-concept proxy for micro-service, event-driven

applications providing request tracing capability. In these

types of applications, annotation is simple as FINELAME

can maintain a direct mapping between the application-level

unique request identifier and the event handler’s thread PID

in order to track resource consumption across component

boundaries. FINELAME traces only the receive() function

class with request mappers, and does not require modifications

to the framework. The request-mappers require 21 lines of

eBPF code.

6 Evaluation

In this section, we present our evaluation results of

FINELAME. Our evaluation is centered around the follow-

ing aspects of the system:

• Overhead. The overhead of FINELAME compared to no

monitoring, or in-application instrumentation

• Accuracy. The ability of FINELAME to accurately detect

real attacks never seen yet by the application

6.1 Experimental setup

We present the setup on which we evaluate both the overhead

and accuracy aspects of FINELAME. In all cases, the server

applications are running on a 12 cores Xeon Silver 4114 at

2.20GHz , while our legitimate and attack clients are running

on an Intel Xeon E5-2630L v3 at 1.80GHz. Both server and

client machines have a total of 62G of RAM, and have hyper-

threading and DVFS disabled.

We use version 2.4.38 of Apache, and configure it to use

50 worker threads. We use version 12.0.0− pre of Node.js

with the default configuration of 4 worker threads for libuv.

Both Apache and Node.js are configured to serve a set of

Wikipedia [59] pages. Node.js parses a regular expression pro-

vided in the request’s URI to find the path of the file to serve.

It’s parser, liburi, is vulnerable to the ReDoS attack. All the

applications impose a timeout of 20 seconds on connections.

We deploy a simple webserver in DeDoS which can process

three types of requests: serve a Wikipedia article, process a

randomly generated XML file uploaded in a POST request,

and parse a regular expression. The server is decomposed into

700 2019 USENIX Annual Technical Conference USENIX Association

several software components: socket reading, HTTP parsing,

file serving, XML parsing, regular expression parsing, and re-

sponse writing. The XML parser is implemented with libxml2,

which is vulnerable to the Billion Laughs attack.

Our good traffic is generated by Tsung [6] and explores

evenly all the servers’ exposed endpoints; bad traffic is gener-

ated by an in-house C client for the ReDoS and Billion Laughs

attacks, and pylorys [23] for the Slowloris attack. Tsung gen-

erates load under an exponential distribution centered on a

configurable mean, while our attack client is configured to

send a fixed load.

6.2 Overhead of FINELAME

Figures 4 presents the overheads incurred by FINELAME’s

instrumentation on Apache, Node.js and DeDoS. In all of

our experimental setups, we evaluate the legitimate client

latency experienced when the server is not instrumented, when

it is instrumented by FINELAME, and when FINELAME’s

resource monitors are also performing anomaly detection

(FINELAME +). The load is as described earlier in sec 6.1, and

explore all the instrumented paths in the applications. We also

evaluate the cost of instrumenting the DeDoS framework itself

to evaluate FINELAME overheads compared to a traditional

user-space solution. The bars plot the median of the clients

latency, and all our experiments are run thrice for a period

of 100 seconds. In the case of Node.js the instrumentation

cost adds 8.55% overheads and adding anomaly detection

9.21%. In the case of Apache, FINELAME adds 11.38% and

11.72% overheads respectively. In the case of DeDoS, the

baseline latency is higher than with the two previous services,

due to the fact that the application is not only serving files

but also parsing POST requests, and also the framework is

less optimized than the two battle-tested Apache and Node.js.

Instrumenting directly the framework comes with an overhead

of 2.9%, while FINELAME comes with 4.23% overheads,

6.3% if also performing anomaly detection.

In general we observe that the overheads incurred by

FINELAME are higher when the baseline processing time

of the service is low, and does not grow linearly with the

complexity of the application. In addition, we found that per-

forming anomaly detection in addition to monitoring resource

consumption almost comes for free.

6.3 Performance of FINELAME

https://www.overleaf.com/project/5c22751775031d099f528e64

Our performance evaluation of FINELAME is centered

around its ability to detect attacks requests before they exit

the system, while providing accuracy competitive with

non-approximated user-level algorithms.

6.3.1 Attacks

Our experiments aim to quantify the impact of attacks on qual-

ity of service. Consequently, we tune attacks strength such

that they will not bring down the server but rather degrade the

quality of service provided to legitimate users.

ReDoS: This attack consist of specially crafted regular ex-

pressions which are sent to the server for processing. The

strength of the attack grows exponentially with the number of

malicious characters present in the expression. Because the

application processing units are busy handling those requests,

legitimate requests get queued for a longer period of time, and

ends-up being responded to more slowly.

Billion Laughs: The attack consists of XML files filled with

several levels of nested entities. The parsing cost is exponen-

tially proportional to the depth of the document. The impact

is similar to the ReDoS attack.

SlowLoris: The attack consists in maintaining open connec-

tions to the server, keeping them alive by sending individual

HTTP headers at a regular interval smaller than the server’s

timeout, but never completing the request—we assume that

the attacker is able to probe the service and discover this time-

out. As a result, the server’s connection pool gets exhausted,

and it can’t answer new requests. This technique can also

implement a dormant attack which cripples the ability of the

server to handle surges of legitimate traffic, by denying a

fraction of the total connection pool.

6.3.2 Anomaly Detection Performance

Evaluation metrics As is common with anomaly detectors,

the output of FINELAME is a score which quantifies the ab-

normality of a request. This score is then either used as a

raw metric for mitigation algorithms, or compared against a

threshold τ to be transformed into a binary variable where 0

means negative (no anomaly), and 1 means positive (attack).

With τ set, and using our knowledge of the ground truth, we

can determine the accuracy of each of the detector’s outputs

as true/false positive/negative. The choice of τ is crucial, as

too low a value can result in a large amount of false positive,

while too high a value can induce a large amount of false

negative. For our experiments, we set τ to be the outermost

point for each cluster in the training set, i.e., the most consum-

ing legitimate request we’ve seen so far for the cluster. The

challenge associated with deriving a large τ from the train-

ing traffic is that attacks can now take longer to detect—and

might not be detected at all if they are too weak. This latter

case does not concern us, because to bring down the system

with weaker attacks, an attacker would be forced to change

its method from asymmetric to volumetric. The benefit of a

higher τ is that it helps decreasing the False Positive Rate

(FPR, FP
FP+T N

), a desirable behavior for operators using the

system. For our experiments, we present the True Positive

USENIX Association 2019 USENIX Annual Technical Conference 701

Attack Strength TPR TNR F1 DS

FL K-means L2 FL K-means L2 FL K-means L2 median 75th max

ReDoS
28.7× 100% 100% 99.995% 99.999% 99.88% 99.98% 80.9% 81.2% 83.2%

57× 100% 100% 99.993% 99.994% 99.81% 99.83% 90.4% 90.5% 91.0%

113.7× 100% 100% 99.997% 99.999% 99.29% 99.76% 90.9% 95.1% 95.3%

Billion Laughs
4.7× 100% 100% 100% 100% 100% 100% 83.1% 85.5% 87.7%

34.8× 100% 100% 99.998% 99.998% 99.53% 99.76% 97.0% 97.1% 98.2%

SlowLoris 5 sockets 100% 100% 100% 100% 100% 100% 75% n/a n/a

Tab. 3: FINELAME TPR, and detection Speedup for Apache, Node.js and DeDoS.

in load compared to legitimate requests in normal conditions.

For the weaker attack, FINELAME is able to detect malicious

requests 78.83% faster than the user-space solution, at least

50% of the time, and up to and 97% faster for the strongest

attack.

SlowLoris: In this experiment, we configure Apache to han-

dle requests with 25 worker threads, and timeout on read-

ing HTTP headers after 20 seconds. We configure the attack

client to maintain 5 connections to the server opened at all

times, refreshing it every 5 seconds. Effectively, this drives

the tcp_idle_time of the malicious request high and makes

them standout from the legitimate ones. This attack is “all or

nothing”, in the sense that it will not impact the legitimate re-

quests until the connection pool gets exhausted. FINELAME’s

is able to detect the abnormal idle time about 75% faster than

the application (1− 5
20
∗100), which would have otherwise to

experience the timeout before reporting the request.

7 Related Work

Volumetric Attack Detection There is a large body of work

addressing volumetric DoS attacks [10, 26, 31, 40, 60–62],

including attacks that target the network [27, 28, 54]. As de-

scribed earlier (§1), these systems do not protect against asym-

metric DoS attacks, a concern shared by both industry [32,50]

and academia [13, 14, 51].

Application-based Detection Prior works on application-

layer DoS detection either depend heavily on repeated outliers,

or are often deeply tied to a specific application. Techniques

include comparing the entropy of offending and legitimate

traffic [39, 63], sampling traffic flows [25], and sketch-based

feature-dimensionality reduction [58]. While these techniques

work well for volumetric attacks, they have self-assumed lim-

itations when the attack traffic is low—the primary focus of

this paper.

DSHIELD [44] is a system that assigns “suspicion scores”

to user sessions based on their distance from legitimate ses-

sion. While similar in nature to FINELAME’s anomaly detec-

tion technique, it relies on the operator knowing all the possi-

ble classes of requests that the server can process. FINELAME

anomaly detection engine learns on legitimate requests so that

it does not depend on a priori knowledge of execution paths

or vulnerabilities.

BreakApp [57] is a module-level compartmentalization

system that attempts to defend against DoS attacks, among

other threats stemming from third-party modules. While

BreakApp’s capabilities increase with more and smaller mod-

ules, FINELAME works even with monolithic applications

entirely developed as a single module. BreakApp’s mitigation

uses simple queue metrics (i.e., queue length at the module

boundary vs. replica budget), whose cut-off parameters are

statically provided by the programmer; FINELAME uses a

more advanced learning model, which parameters are adjusted

at runtime.

Rampart [36] focuses on asymmetric application-level CPU

attacks in the context of PHP. It estimates the distribution of

a PHP application function’s CPU consumption, and peri-

odically evaluates running requests to assess the likelihood

they are malicious. It then builds filters to probabilistically

drop offenders—repeated offenders increase their probability

of being filtered out. While FINELAME profiles legitimate

requests resource consumption, it is not limited to CPU-based

attacks. It also works with applications with components built

with many different languages.

In-kernel Detection Recent work has shown good results

for mitigating ADoS attacks by exploiting low level system

metrics. Radmin [16] and its successor Cogo [17] train Proba-

bilistic Finite Automatas (PFAs) offline for each resource of a

process they want to monitor, then perform anomaly detection

by evaluating how likely the process’ transition in the resource

space is. Training the PFAs requires days in Radmin, and min-

utes in Cogo, while FINELAME can train accurate models in

seconds or hundreds of microseconds. We expect this capabil-

ity to be helpful in production systems where the model has

to be updated, e.g., to account for changes in an application’s

component. In addition, Cogo reports detection time in the or-

der of seconds, while FINELAME’s inline detection operates

at the scale of the request’s complexity—milliseconds in our

experiments. Lastly, Radmin/Cogo operate at the granularity

of processes/connections. FINELAME assumes a worst-case

threat model where malicious requests are sent sporadically

USENIX Association 2019 USENIX Annual Technical Conference 703

by compromised clients, and thus operate at this granularity.

Per-request detection has the added benefit to enable pre-

cise root cause analysis, further enhancing the practicality of

FINELAME.

Programmer Annotations Prior work proposes an annota-

tion toolkit that programmers can use in their code to specify

resource consumption requirements [42]. The framework de-

tects connections that violate the provided specification (and

then attempts to mitigate by rate limiting or dropping them).

Unfortunately, it requires knowledge of the application in-

ternals. Worse even, it expects developers to understand the

program’s expected resource consumption quite accurately.

Moreover, such a hard cut does not distinguish between oc-

casional consumption that is slightly above limits and true

attackers.

Prevention-as-a-Service A recent vein of work proposed “At-

tack prevention as a Service”, where security appliances are

automatically provisioned at strategic locations in the net-

work [19, 37]. Those techniques are largely dependent on

attack detection (to which they do not provide a solution), and

thus are orthogonal to our platform, which operates directly

at the victim’s endpoint.

Performance anomaly detection ADoS attacks are a sub-

set of the broader topic of performance degradation, a topic

that has been extensively studied. Magpie [9] instruments

an application to collect events from the entire stack and

obtain request profiles post-mortem. X-trace [21] is a trac-

ing framework that preserves causal relationship between

events, and allow the offline reconstruction of request trees.

X-ray [8] builds on taint-tracking to provide record and replay

system to summarize the performance of application events

offline. One of FINELAME’s key difference with those sys-

tems is its lightweight in-flight profiling technique, which

allows us to perform anomaly detection while the request is

still in the system. Retro [33] provides a tracing architecture

for multi-tenant systems that enables the implementation of

resource management policies. While its architecture is simi-

lar to FINELAME’s, its focus is on performance degradation

caused by competing workloads, rather than the detection of

degradation within a single application.

While the impact can be similar, we note that for ADoS

attacks, in-flight request tracking is critical to timely detection

and mitigation.

8 Conclusion

In this paper, we describe and evaluate FINELAME, a

novel fine-grained application-level DoS detection frame-

work. FINELAME is designed for interaction with modern

distributed applications, operates orders of magnitude faster

than previous techniques, and is able to detect yet-unseen

attacks on an application. FINELAME is enabled by recent

advances in the Linux kernel, and bridges the gap between

application-layer semantic and low-level resource allocation

sub-systems. It is a first step toward deploying complex ma-

chine learning applications for fine grained services, in an era

where the size of services is shrinking (micro/pico-services).

9 Acknowledgments

We would like to thank our shepherd, Mike Reiter, and the

anonymous ATC reviewers for their useful feedback. This

material is based upon work supported in parts by the De-

fense Advanced Research Projects Agency (DARPA) under

Contracts No. HR0011-16-C-0056 and No. HR001117C0047,

and NSF grants CNS-1513687, CNS-1513679, CNS-1563873,

CNS-1703936 and CNS-1750158. Any opinions, findings and

conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the

views of DARPA or NSF.

References

[1] Apache HTTP server project. https://httpd.

apache.org/.

[2] bcc on GitHub. https://github.com/iovisor/bcc.

[3] Common vulnerabilities and exposures (see cve-2003-

1564). http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2003-1564.

[4] Node.js server project. https://nodejs.org/en/.

[5] Regular expression denial of service - ReDoS.

https://www.owasp.org/index.php/Regular_

expression_Denial_of_Service_-_ReDoS.

[6] Tsung. http://tsung.erlang-projects.org/.

[7] OpenTracing API. Consistent, expressive, vendor-

neutral apis for distributed tracing and context prop-

agation.

[8] Mona Attariyan, Michael Chow, and Jason Flinn. X-

ray: Automating root-cause diagnosis of performance

anomalies in production software. In Proceedings of

the 10th USENIX Conference on Operating Systems

Design and Implementation, OSDI’12, pages 307–320,

Berkeley, CA, USA, 2012. USENIX Association.

[9] Paul Barham, Rebecca Isaacs, Richard Mortier, and

Dushyanth Narayanan. Magpie: Online modelling and

performance-aware systems. In Proceedings of the 9th

Conference on Hot Topics in Operating Systems - Vol-

ume 9, HOTOS’03, pages 15–15, Berkeley, CA, USA,

2003. USENIX Association.

704 2019 USENIX Annual Technical Conference USENIX Association

[10] Cristina Basescu, Raphael M Reischuk, Pawel Szala-

chowski, Adrian Perrig, Yao Zhang, Hsu-Chun Hsiao,

Ayumu Kubota, and Jumpei Urakawa. Sibra: Scalable in-

ternet bandwidth reservation architecture. arXiv preprint

arXiv:1510.02696, 2015.

[11] Ang Chen, Akshay Sriraman, Tavish Vaidya, Yuankai

Zhang, Andreas Haeberlen, Boon Thau Loo, Linh

Thi Xuan Phan, Micah Sherr, Clay Shields, and Wen-

chao Zhou. Dispersing asymmetric ddos attacks with

splitstack. In Proceedings of the 15th ACM Workshop

on Hot Topics in Networks, HotNets ’16, pages 197–203,

New York, NY, USA, 2016. ACM.

[12] Scott A. Crosby and Dan S. Wallach. Denial of service

via algorithmic complexity attacks. In Proceedings of

the 12th Conference on USENIX Security Symposium -

Volume 12, SSYM’03, pages 3–3, Berkeley, CA, USA,

2003. USENIX Association.

[13] James C. Davis, Christy A. Coghlan, Francisco Servant,

and Dongyoon Lee. The impact of regular expression

denial of service (redos) in practice: An empirical study

at the ecosystem scale. In Proceedings of the 2018 26th

ACM Joint Meeting on European Software Engineer-

ing Conference and Symposium on the Foundations of

Software Engineering, ESEC/FSE 2018, pages 246–256,

New York, NY, USA, 2018. ACM.

[14] James C. Davis, Eric R. Williamson, and Dongyoon

Lee. A sense of time for javascript and node.js: First-

class timeouts as a cure for event handler poisoning. In

Proceedings of the 27th USENIX Conference on Secu-

rity Symposium, SEC’18, pages 343–359, Berkeley, CA,

USA, 2018. USENIX Association.

[15] Henri Maxime Demoulin, Tavish Vaidya, Isaac Pedisich,

Bob DiMaiolo, Jingyu Qian, Chirag Shah, Yuankai

Zhang, Ang Chen, Andreas Haeberlen, Boon Thau Loo,

Linh Thi Xuan Phan, Micah Sherr, Clay Shields, and

Wenchao Zhou. Dedos: Defusing dos with dispersion

oriented software. In Proceedings of the 34th Annual

Computer Security Applications Conference, ACSAC

’18, pages 712–722, New York, NY, USA, 2018. ACM.

[16] Mohamed Elsabagh, Daniel Barbará, Dan Fleck, and An-

gelos Stavrou. Radmin: Early detection of application-

level resource exhaustion and starvation attacks. In

Proceedings of the 18th International Symposium on

Research in Attacks, Intrusions, and Defenses - Volume

9404, RAID 2015, pages 515–537, New York, NY, USA,

2015. Springer-Verlag New York, Inc.

[17] Mohamed Elsabagh, Dan Fleck, Angelos Stavrou,

Michael Kaplan, and Thomas Bowen. Practical and ac-

curate runtime application protection against dos attacks.

In International Symposium on Research in Attacks, In-

trusions, and Defenses, pages 450–471. Springer, 2017.

[18] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xi-

aowei Xu. A density-based algorithm for discovering

clusters a density-based algorithm for discovering clus-

ters in large spatial databases with noise. In Proceedings

of the Second International Conference on Knowledge

Discovery and Data Mining, KDD’96, pages 226–231.

AAAI Press, 1996.

[19] Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and

Michael Bailey. Bohatei: Flexible and elastic ddos de-

fense. In Proceedings of the 24th USENIX Conference

on Security Symposium, SEC’15, pages 817–832, Berke-

ley, CA, USA, 2015. USENIX Association.

[20] Rodrigo Fonseca, George Porter, Randy H Katz, Scott

Shenker, and Ion Stoica. X-trace: A pervasive network

tracing framework. In Proceedings of the 4th USENIX

conference on Networked systems design & implemen-

tation, pages 20–20. USENIX Association, 2007.

[21] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott

Shenker, and Ion Stoica. X-trace: A pervasive network

tracing framework. In Proceedings of the 4th USENIX

Conference on Networked Systems Design & Imple-

mentation, NSDI’07, pages 20–20, Berkeley, CA, USA,

2007. USENIX Association.

[22] Junhao Gan and Yufei Tao. Dbscan revisited: Mis-claim,

un-fixability, and approximation. In Proceedings of

the 2015 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’15, pages 519–530,

New York, NY, USA, 2015. ACM.

[23] Gkbrk. SlowLoris attack tool. https://github.com/

gkbrk/slowloris.

[24] Dan Goodin. US service provider survives the biggest

recorded ddos in history, 2018.

[25] Hossein Hadian Jazi, Hugo Gonzalez, Natalia

Stakhanova, and Ali A. Ghorbani. Detecting http-based

application layer dos attacks on web servers in the

presence of sampling. Comput. Netw., 121(C):25–36,

July 2017.

[26] Srikanth Kandula, Dina Katabi, Matthias Jacob, and

Arthur Berger. Botz-4-sale: Surviving organized ddos

attacks that mimic flash crowds. In Proceedings of the

2Nd Conference on Symposium on Networked Systems

Design & Implementation - Volume 2, NSDI’05, pages

287–300, Berkeley, CA, USA, 2005. USENIX Associa-

tion.

USENIX Association 2019 USENIX Annual Technical Conference 705

[27] Min Suk Kang and Virgil D. Gligor. Routing bottlenecks

in the internet: Causes, exploits, and countermeasures.

In Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security, CCS ’14,

pages 321–333, New York, NY, USA, 2014. ACM.

[28] Min Suk Kang, Soo Bum Lee, and Virgil D. Gligor. The

crossfire attack. In Proceedings of the 2013 IEEE Sym-

posium on Security and Privacy, SP ’13, pages 127–141,

Washington, DC, USA, 2013. IEEE Computer Society.

[29] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Ker-

sten, Jeffrey Palm, and William G. Griswold. An

overview of aspectj. In Proceedings of the 15th Eu-

ropean Conference on Object-Oriented Programming,

ECOOP ’01, pages 327–353, London, UK, UK, 2001.

Springer-Verlag.

[30] libuv. A multi-platform support library with a focus on

asynchronous i/o.

[31] Xin Liu, Xiaowei Yang, and Yong Xia. Netfence: pre-

venting internet denial of service from inside out. SIG-

COMM Comput. Commun. Rev., 41(4):–, August 2010.

[32] SS Jeremy Long. Owasp dependency check, 2015. Ac-

cessed: 2017-06-11.

[33] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and

Madanlal Musuvathi. Retro: Targeted resource manage-

ment in multi-tenant distributed systems. In Proceedings

of the 12th USENIX Conference on Networked Systems

Design and Implementation, NSDI’15, pages 589–603,

Berkeley, CA, USA, 2015. USENIX Association.

[34] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.

Pivot tracing: Dynamic causal monitoring for distributed

systems. ACM Trans. Comput. Syst., 35(4):11:1–11:28,

December 2018.

[35] Steven McCanne and Van Jacobson. The bsd packet

filter: A new architecture for user-level packet capture.

In Proceedings of the USENIX Winter 1993 Conference

Proceedings on USENIX Winter 1993 Conference Pro-

ceedings, USENIX’93, pages 2–2, Berkeley, CA, USA,

1993. USENIX Association.

[36] Wei Meng, Chenxiong Qian, Shuang Hao, Kevin Bor-

golte, Giovanni Vigna, Christopher Kruegel, and Wenke

Lee. Rampart: Protecting web applications from cpu-

exhaustion denial-of-service attacks. In Proceedings of

the 27th USENIX Conference on Security Symposium,

SEC’18, pages 393–410, Berkeley, CA, USA, 2018.

USENIX Association.

[37] Rui Miao, Minlan Yu, and Navendu Jain. Nimbus:

Cloud-scale attack detection and mitigation. SIGCOMM

Comput. Commun. Rev., 44(4):121–122, August 2014.

[38] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and

Asaf Shabtai. Kitsune: An ensemble of autoencoders

for online network intrusion detection. arXiv preprint

arXiv:1802.09089, 2018.

[39] Tongguang Ni, Xiaoqing Gu, Hongyuan Wang, and

Yu Li. Real-time detection of application-layer ddos

attack using time series analysis. J. Control Sci. Eng.,

2013:4:4–4:4, January 2013.

[40] Tao Peng, Christopher Leckie, and Kotagiri Ramamo-

hanarao. Survey of network-based defense mechanisms

countering the dos and ddos problems. ACM Comput.

Surv., 39(1), April 2007.

[41] Open Web Application Security Project. Owasp top ten

project’17, 2018. Accessed: 2018-09-27.

[42] Xiaohu Qie, Ruoming Pang, and Larry Peterson. De-

fensive programming: Using an annotation toolkit to

build dos-resistant software. SIGOPS Oper. Syst. Rev.,

36(SI):45–60, December 2002.

[43] Steve Ranger. Github hit with the largest ddos attack

ever seen, 2018.

[44] Supranamaya Ranjan, Ram Swaminathan, Mustafa

Uysal, Antonio Nucci, and Edward Knightly. Ddos-

shield: Ddos-resilient scheduling to counter application

layer attacks. IEEE/ACM Trans. Netw., 17(1):26–39,

February 2009.

[45] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jef-

frey C. Mogul, Mehul A. Shah, and Amin Vahdat. Pip:

Detecting the unexpected in distributed systems. In Pro-

ceedings of the 3rd Conference on Networked Systems

Design & Implementation - Volume 3, NSDI’06, pages

9–9, Berkeley, CA, USA, 2006. USENIX Association.

[46] David Senecal. Slow DoS on the rise.

https://blogs.akamai.com/2013/09/

slow-dos-on-the-rise.html.

[47] N. Seriot. http://seriot.ch/parsing_json.php,

2016.

[48] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing

Ma, and Jian Lu. Rescue: Crafting regular expression

dos attacks. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software En-

gineering, ASE 2018, pages 225–235, New York, NY,

USA, 2018. ACM.

[49] Benjamin H Sigelman, Luiz Andre Barroso, Mike Bur-

rows, Pat Stephenson, Manoj Plakal, Donald Beaver,

Saul Jaspan, and Chandan Shanbhag. Dapper, a large-

scale distributed systems tracing infrastructure. Techni-

cal report, Technical report, Google, Inc, 2010.

706 2019 USENIX Annual Technical Conference USENIX Association

[50] Snyk. Find, fix and monitor for known vulnerabilities

in node.js and ruby packages, 2016.

[51] Cristian-Alexandru Staicu and Michael Pradel. Freezing

the web: A study of redos vulnerabilities in javascript-

based web servers. In Proceedings of the 27th USENIX

Conference on Security Symposium, SEC’18, pages 361–

376, Berkeley, CA, USA, 2018. USENIX Association.

[52] Cristian-Alexandru Staicu, Michael Pradel, and Ben-

jamin Livshits. Synode: Understanding and automati-

cally preventing injection attacks on node.js. In Net-

worked and Distributed Systems Security, NDSS’18,

2018.

[53] Michael Stepankin. [demo.paypal.com] node.js code

injection (rce), 2016. Accessed: 2018-10-05.

[54] Ahren Studer and Adrian Perrig. The coremelt attack.

In Proceedings of the 14th European Conference on

Research in Computer Security, ESORICS’09, pages

37–52, Berlin, Heidelberg, 2009. Springer-Verlag.

[55] Eno Thereska, Brandon Salmon, John Strunk, Matthew

Wachs, Michael Abd-El-Malek, Julio Lopez, and Gre-

gory R Ganger. Stardust: tracking activity in a dis-

tributed storage system. In ACM SIGMETRICS Per-

formance Evaluation Review, volume 34, pages 3–14.

ACM, 2006.

[56] Vern Paxson Steven McCanne Van Jacobson,

Sally Floyd. Tcpdump, a command-line packet

analyzer.

[57] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan

Dautenhahn, André DeHon, and Jonathan M. Smith.

Breakapp: Automated, flexible application compart-

mentalization. In Proceedings of the 25th Networked

and Distributed Systems Security Symposium, NDSS’18,

2018.

[58] Chenxu Wang, Tony TN Miu, Xiapu Luo, and Jinhe

Wang. Skyshield: A sketch-based defense system

against application layer ddos attacks. IEEE Transac-

tions on Information Forensics and Security, 13(3):559–

573, 2018.

[59] wikipedia. Wikipedia, the free encyclopedia.

[60] Yang Xu and Yong Liu. Ddos attack detection under sdn

context. In INFOCOM 2016-The 35th Annual IEEE In-

ternational Conference on Computer Communications,

IEEE, pages 1–9. IEEE, 2016.

[61] Xiaowei Yang, David Wetherall, and Thomas Anderson.

A dos-limiting network architecture. In Proceedings

of the 2005 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communica-

tions, SIGCOMM ’05, pages 241–252, New York, NY,

USA, 2005. ACM.

[62] Saman Taghavi Zargar, James Joshi, and David Tipper.

A survey of defense mechanisms against distributed

denial of service (ddos) flooding attacks. IEEE commu-

nications surveys & tutorials, 15(4):2046–2069, 2013.

[63] Wei Zhou, Weijia Jia, Sheng Wen, Yang Xiang, and

Wanlei Zhou. Detection and defense of application-layer

ddos attacks in backbone web traffic. Future Generation

Computer Systems, 38:36–46, 2014.

USENIX Association 2019 USENIX Annual Technical Conference 707

	Introduction
	Motivation
	Background on ADoS Attacks
	Design Goals

	Threat Model
	FineLame Design
	Request-mapping in FineLame
	Resource Monitoring in FineLame
	Background on eBPF
	Resource Monitor Architecture

	Attack Detection in FineLame

	Use Cases and Implementation
	Evaluation
	Experimental setup
	Overhead of FineLame
	Performance of FineLame
	Attacks
	Anomaly Detection Performance

	Related Work
	Conclusion
	Acknowledgments

