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ABSTRACT. This work is concerned with special regularity properties of solu-
tions to the k-generalized Korteweg-de Vries equation. In [Comm. Partial Dif-
ferential Equations 40 (2015), 1336-1364] it was established that if the initial
datum is ug € H'((b,00)) for some I € Z+ and b € R, then the corresponding
solution wu(-,t) belongs to H!((8,00)) for any 3 € R and any t € (0,7). Our
goal here is to extend this result to the case where [ > 3/4.

1. INTRODUCTION

In this note we study the regularity of solutions to the initial value problem
(IVP) associated to the k-generalized Korteweg-de Vries equation

Ou+ OB3u+u*0,u=0, z,teR, keZt,
u(z,0) = up(x).

The starting point is a property found by Isaza, Linares, and Ponce [4] concerning
the propagation of smoothness in solutions of the IVP (1.1). To state it we first
recall the following well-posedness (WP) result for the IVP (1.1):

Theorem Al. If ug € H3/4" (R), then there exist T = T(||u0|\%+72;k) >0 and a
unique solution u = u(x,t) of the IVP (1.1) such that

i)  weO(-T.7): H¥" (R)),

(ii) Opu € L*([-T,T) : L=(R)) (Strichartz),

(1.1)

T
(1.2) (iif) Sup/ T 0pu(z,t)2dt < 0o for 1 e[0,3/47],
x -T
(iv) / sup |u(z,t)]* dr < oo,
—oo —T<t<T

with J = (1 — 02)Y/2. Moreover, the map data-solution wy — u(x,t) is locally
continuous (smooth) from H3/**(R) into the class X%/4+ defined in (1.2).
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If k > 2, then the result holds in H3/*(R). If k = 1,2,3, then T can be taken
arbitrarily large.

For the proof of Theorem A1l we refer to [6], [1], and [3]. The proof of our main
result, Theorem 1.1, is based on an energy estimate argument for which the estimate
(ii) in (1.2) (i.e., the time integrability of ||0,u(-,t)|loo) is essential. However, we
remark that from the WP point of view it is not optimal. For a detailed discussion
on the WP of the IVP (1.1) we refer to [7, Chapters 7-8].

Now we enunciate the result obtained in [4] regarding propagation of regularities
which motivates our study here:

Theorem A2 ([4]). Let ug € H¥*" (R). If for some | € Z+ and for some zy € R,

(13 I gy = | 10bun(a) Pz <
o

then the solution u = u(x,t) of the IVP (1.1) provided by Theorem A1 satisfies that
for any v >0 and € > 0,

oo
(1.4) sup / (0 u)?(z,t) dr < c,
0<t<T Jzxg+e—vt
for j=0,1,....0 with ¢ = c(; |[uoll 34+ o5 || Okuo]| L2 (a0,
In particular, for all t € (0,T], the restriction of u(-,t) to any interval of the
form (a,00) belongs to H'((a, o0)).
Moreover, for any v >0, € >0, and R > 0,

T zo+R—vt
(1.5) / / (O )2 (x,t) dadt < c,
0 T

o+e—vt

o)) 036 T).

with ¢ = ¢(l; Hu0||3/4+,2; | OLwol| L2 ((wg,00)); Vs € Ry T).

Theorem A2 tells us that the H'-regularity (I € Z*) on the right hand side of
the data travels forward in time with infinite speed. Notice that since the equation
is reversible in time a gain of regularity in H*(R) cannot occur at t > 0, so u(-,t)

fails to be in H'(R) due to its decay at —oo. In this regard, it was also shown in
[4] that for any 6 >0 and ¢t € (0,T) and j =1,...,1,

> 1 . c
7 1,)2 < Z
[ e ass

with ¢ = C(||U0||3/4+,2;||357;U0||L2((z0,oo)); xo; 0), *— = max{0;—z}, and (z) =
(1+22)1/2,

The aim of this note is to extend Theorem A2 to the case where the local
regularity of the datum wg in (1.3) is measure with a fractional exponent. Thus,
our main result is:

Theorem 1.1. Let ug € H34* (R). If for some s € R, s > 3/4, and for some
zo € R,

oo

(1.6) 1750122 (a0 00 :/ | Touo(z) 2 < oo,

[¢]
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REGULARITY OF SOLUTIONS 3761

then the solution w = u(x,t) of the IVP (1.1) provided by Theorem Al satisfies
that for any v > 0, and € > 0,

(1.7) sup / (J™u)?(z,t) dx < c,
0<t<T Jzxote—vt

for 1 € (3/4, 5] with ¢ = o(l: ol a+ 23 | 700 |2 (oo v € T).
Moreover, for any v >0, € >0, and R > 0,

T ro+R—vt
(1.8) / / (J* )% (2, t) dedt < c,
0 zro+e—vt

with ¢ = ¢(l; Hu0|\3/4+‘2; | Jouoll 22 ((z,00)); Vs € B3 T').

From the results in section 2 it will be clear that we need only consider the case
s€(3/4,00) —ZT.

The rest of this paper is organized as follows: section 2 contains some preliminary
estimates required for Theorem 1.1, whose proof will be given in section 3.

2. PRELIMINARY ESTIMATES

Let T, be a pseudo-differential operator with the symbol

(2.1) o(Ty) = a(z,&) € 8", r €R,
so that
(2.2 T.000) = [ ale. (€ e

The following result is the singular integral realization of a pseudo-differential
operator, whose proof can be found in [8, Chapter 4].

Theorem A3. Using the above notation (2.1)-(2.2) one has that

(2.3 Tfw) = [ Hew-n)i@dy. i o ¢ ()

where k € C°(R™ x R™ — {0}) satisfies : Vo, € (ZT)" VN >0,

(2.4) 10202 k(2, 2)| < Aa,pvs 2| ETHIHN, 2| = 6,
if m+m+|B+N>0 uniformly in x € R™.

To simplify the exposition we restrict ourselves to the one-dimensional case z €
R, where in the next section these results will be applied.
As a direct consequence of Theorem A3 one has

Corollary 2.1. Let m € Z* and 1 € R. If g € L?>(R) and f € LP(R), p € [2,],

with
distance(supp(f); supp(g)) > 6 > 0,
then
(2.5) 1 8 T glle < el fllpllgll2-
Next, let 0; € C*(R) — {0} with ¢’ € C§°(R) for j = 1,2 and
(2.6) distance(supp(1l — 61); supp(f2)) > 6 > 0.
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Lemma 2.2. Let f € H*(R), s < 0, and T, be a pseudo-differential operator of
order zero (a € S°). If 01 f € L*(R), then

(2.7) 02T, f € L*(R).
Proof of Lemma 2.2. Since

O2 Tof = 02T, (01f) + 02T, ((1 —61)f),

combining the hypothesis and the continuity of T,, in L?(R) it follows that 62T, (01 f)
€ L*(R). Also

02() Ta((1 = 61) f)(x)

/ fo(w)ale, ) (1~ 07) F)(€)e> e
-/ u/n92 a0+ €2) (T~ 01)(60)e>™7d6y) ) ™" 2 ey
—b(a.)
~ T /92 k(2,2 — 2)(1— 01 () f(2)dz
- /92(1‘)/4;(95, 2= 2)(1 — 00(2)) T2 T2 F(2)d

with —2m < s, m € Z", and k(-,-) as in (2.4), so integration by parts and Theorem
A3 yield the desired result.

Proposition 2.3. Let f € L?(R) and
Jf=01-02)"fel*{z>a}) s>0.
Then for any € > 0 and any r € (0, s],
(2.9) JfeLl*({z>a+e}).
Proof of Proposition 2.3. Define
g=Jf € L*({x > a});

thus J°f € H *(R). Let 6; € C*°(R), j = 1,2, with 61(z) =1 for 2 > a + €/4,
supp 01 C {z > a}, and O2(x) = 1 for z > a+ € and supp 03 C {z > a + €/2};
therefore 6,9 € L?(R). Let T = J**, 3 € R. By Lemma 2.2

02Tg = 077 f € L*(R),
and since f € L*(R),
0,07 f € L*(R).
Hence, by the Three Lines Theorem it follows that
0,J° f € L*(R), z=r+1i8, rel0,s, BER,

which completes the proof.

Remark 2.4. In a similar manner one has: for € > 0 let . € C*°(R) with ¢ (z) =
1, z > €, supp e C {x > ¢/2}, and ¢.(x) > 0. Then:
(I) If meZ* and . J™f € L2(R), then Ve > 2e,

o0l f € L*(R), j=0,1,...,m
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(I1) If m € Z* and .0 f € L2(R), 5 =0,1,...,m, then Ve > 2¢,
poJ"f € L*(R).
(IIT) If s > 0 and J*(¢. f), f € L*(R), then Ve > 2,
poJ*f € L*(R).
(IV) If s >0 and p J5f, f € L*(R), then Ve > 2¢,
Jo(paf) € I3(R).
The same results hold with 6;, 62, as in (2.6), instead of X, x. -
Next, we recall some inequalities obtained in [5].
Theorem A4 ([5]). If s >0 and p € (1,00), then
(2.10) 1Dy < el floe gl + 1% £ lglloe)

and
1175 flgllp = 117°(f9) — fT9llp
< c(10fllooll T gllp + 17° Fllpllgllso)-

Also we shall use the following elementary estimate whose proof is similar to
that found in [2, Chapter 6].

(2.11)

Lemma 2.5. Let ¢ € C®(R) with ¢' € C§°(R). If s € R, then for any | >
|ls —1]4+1/2,

(2.12) 1158 fll2 + 1175 @l0ufll2 < el ' 2 1757 ]2
3. PROOF OF THEOREM 1.1

Without loss of generality xg = 0. For € > 0 and b > 5¢ define the families of
functions

Xews ¢e,b7 &;a ?/15 S COO(R)v
with X:,b >0, X.,() =0, <€ x,,(x)=1, 2>b:

1
X;b(@ > 00— o) Li2e,p—2 (),

Supp(de), supp(des) C [e/4,b],

Pep(z) = dep(@) = 1, x € [¢/2,€],

(3.1)
Supp(iﬁe) - (—OO, G/Z]a
Xep(T) + ¢e,b(x) +be(z) =1, z €R,
Xg,b(x) + &;Jbz(ﬂ?) + Ye(x) =1, x €R.
Hence,

distance(supp(x. , ); supp(¥e)) > €/2.
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Formally, we apply the operator J® to the equation in (1.1) and multiply by
Joux?(x + vt) to obtain after integration by parts the identity

Ld 5,,\2 2

5 7 (Jou)*(x, t)x*(x + vt) dz

—v/(Jsu)z(x,t)XX/(x—f—vt) dx
Ay

+ g /(895 Jou)?(z,t)x X' (z 4 vt) d

(3.2)

L w0 s
As

+ / J* (u0pu) Ju(z, t)x*(x + vt) do = 0,

Az

where in y the indexes €, b were omitted. We shall do that from now on.
Case. s € (3/4,1).

First, we observe that combining (1.2) and the results in section 2 yields that
for any R > 0,

T (R
(3.3) / / |J u(z, t)]* dedt < oo Vre[0,7/47].
o J-r

Thus, after integration in time the terms A; and As in (3.2) are bounded. So it
only remains to handle As.
Thus,

J?(udpu)x = J° (udpux) — [J7; x| (udzu)
= uxJ°Opu + [J%;ux]0ru — [J%; x](ud,u)
= uxJ*Ozu + [J*;ux|0:(u(x + ¢ +9)) — [J°; xJ(udzu)
— B, + By + Bs + By + Bs.

(3.4)

Inserting B; in (3.2) one obtains a term which can be estimated by integration
by parts, Gronwall’s inequality, and (1.2). Using (2.11) it follows that

(3.5) [ B2ll2 < ¢l 0z (wx) oo | (ux) |2

and

(3.6) 1Bsllz < (102 (ux)loo |7° (u) 2 + (|02 (ud) [l oo |7 (ux)]|2)-

To bound By and Bj we apply Corollary 2.1 and (2.12), respectively, to get
(3.7) [Ball2 = lluxJ* 0z (uh)l2 < cllulloc|ull2

and

(3.8) 1Bsll2 < cf| Oxtll oo [[ul]2-
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Collecting the above information (3.4)-(3.8) in (3.2) we obtain (1.7) for any
r € (3/4,1), v >0, and € > 0, and that for any v > 0, € > 0,

R—ut
/ / (J50,u) dadt < oo,

from which using the results and Remark 2.4, one obtains (1.8).
Case. s € (m,m+1), me Z™.

We assume (1.7) and (1.8) with s < m. Hence, from the results in section 2 it
follows that for any € > 0, R > 0, and r € [0,m],

R—vt
(3.9) / / (J"0pu) dxdt < oco.

Again the starting point is the energy estimate identity (3.2). After integrating
in time, the terms A; and A; can be easily bounded using (3.9). So it suffices to
consider As. Thus, using the notation introduced in (3.1) we have

T () = T (uxen) — 5 [7% X))

= uxJ*Opu + [J%; ux]Opu — %[JS X}ax(uz)

(3.10) = uxJ Oyu + [Js;ux]am(U(x+¢+¢))
— S0 08 + (32 + )
=F +FEs+FEs+ FEy+ Fs + Eg + Er.

Inserting E; in (3.2) one obtains a term which can be estimated by integration
by parts, Gronwall’s inequality, and (1.2). From (2.11) we see that

(3.11) 1E2l2 < cf| 0z (ux)lloo |7 (ux)|2

and

(3.12) [1E5ll2 < e(l|0z(ux) o | (ud) |2 + 1|0z (ud) oo [|]* (ux) [ 2)-
For E, it follows from Corollary 2.1 that

(3.13) [ Eall2 = lluxJ*0z(uh)|l2 < cllulloc [[ull2-

For Es and Eg a combination of (2.10) and (2.12) yields the estimates
1Bsl2 < 1177 x]0 ((ux)?) |12

3.14
o < el 7 ()2 < ellullooll 7 (@)l
and

s. u~2 )< s u~2 )
(3.15) [Esll2 < 11775 X102 ((ug) ) [[2<[T° ((ue)”) |

< cllullooll7* (ug) |2-
Finally, using Corollary 2.1 we write
(3.16) 1Bz < (11775 X10: (w?) |2 = IXT* 0 (u®)l|2 < ellulloo Jull2-
To complete the estimates in (3.11), (3.12), (3.14), and (3.15) we observe that
2 (ux) = Jrux + [T x](u(x + ¢+ ¢)) = Gy + G,
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where G is the term whose L?-norm we are estimating and G is of lower order
(hence bounded by assumption), and ||J?(u®)||2 is bounded by (1.8) (assumption).
Collecting the above information in (3.2) we obtain the desired result.
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