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6962 T. Duyckaerts et al.
1 Introduction

We consider the Cauchy problem for wave map u from R**! with Minkowski metric to
the standard 2-sphere S? C R®:

au — Au = (|Vul* — 19,ul®>)u, in R* xR (1.1)

with initial data @ (0) := (u, 8,u)(0) = (uo, u;). We shall only consider initial data (ug, u;)
that satisfies the “compatibility condition” that |ug| = 1 and ug - u; = 0. For simplicity,
we also assume that the initial data U (0) is smooth, u, is compactly supported, and that
u equals a fixed constant u., for large x. We call such wave maps classical, following
the usual convention. Wave maps from the Minkowski space to a general Riemannian
manifold M arise naturally as the hyperbolic counterpart of harmonic maps, and are

given as critical points of the Lagrangian
L(u) := / IVul? — |9, u|?>dxdt
R3

for u : R® — M. It is sometimes more convenient to adopt the more geometric notation:
set fora =0,1,2 that 9, = 9, if ¢ =0, 9, = 9y, if « = 1, 2, and that 9* = -9, if « = 0,
9% = 9, if « = 1, 2. This is of course just using the Minkowski metric to lower or upper
the index. We adopt the Einstein summation convention with repeated indices and view
u as a column vector. We also use the standard notation that x° = x, = t, ¥’ = x; for

Jj =1, 2. Then equation (1.1) can be written as
— 9,0°U = ud*u'd,u, (1.2)

where u' is the transpose of u.

The wave map equation has been intensively studied, as a natural geometric
wave equation and as models from physics—including general relativity and gauge the-
ories. The study of the Cauchy problem and the dynamics of solutions was initiated in
the works of Shatah and Tahvildar-Zadeh [45, 46], Christodoulou and Tahvildar-Zadeh
[4, 5], and Struwe [49], in the equivariant setting. In these works, many deep and inter-
esting regularity and dynamical properties of equivariant wave maps were revealed. In
general, the wave map can develop a singularity in finite time by concentrating energy
in a small region. Indeed, singular solutions in the form of a shrinking soliton plus a
residue term have been constructed for the 2 + 1 dimensional equivariant wave map
equation by Krieger et al. [? ] with prescribed rate, by Rodnianski and Sterbenz [41] in

a stable regime for high equivariance wave maps, and by Raphaél and Rodnianski [40]
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for co-rotational wave maps. We also refer to the recent survey [43] for further discus-
sion. The Cauchy problem for the wave maps without equivariant symmetry is more

complicated. Recall that equation (1.1) is invariant under the natural scaling
u— u(x,t) = ulx, At), (Uo, U1) = (Uon(X), Ui (X)) = (Uo(AX), AU (AX)) (1.3)

and the conserved energy

&) :=f (M + M) (x,t)dx (1.4)
R2 2 2

is invariant under the scaling (1.3). Scale invariance of the equation plays an essential
role in both the Cauchy problem and the dynamics of solutions. We note that for equation
(1.1), the natural initial data space invariant under the scaling (1.3) is the energy space
H' x L?, and hence the equation is called energy critical. The works of Klainerman and
Machedon [32-34], and subsequently Klainerman and Selberg [35, 36], and Selberg [44]
established wellposedness in the subcritical space H~! x H*"! with s > 1, and introduced
important ideas on the bilinear and null form estimates that also played an important
role in the critical theory. The Cauchy problem for the wave map equation in the critical
space H' x L? is more difficult, and was addressed in the breakthrough work of Tao
[51], using the important null frame spaces introduced by Tataru [57] (In this work,
Tataru established small data global wellposedness in a critical space that is slightly
stronger than the energy space.) and Tao’s idea of gauge transform [50]. The global
wellposedness for the energy critical wave maps has been solved, independently in the
works of Krieger and Schlag [37], Sterbenz and Tataru [47, 48], and Tao [52-55]. We will
mainly rely on the Sterbenz-Tataru approach to the large data theory. [47, 48] proves that
if a wave map blows up in finite time or is global and does not scatter, then after suitable
transformation using symmetry, it must converge locally, along a sequence of times, to
a harmonic map. This is a first step in the proof of the so-called “soliton resolution
conjecture”, predicting that the solution asymptotically decouples into a finite sum of
harmonic maps (modulated by the transformations of the equation) plus a regular part
in the finite time blow up case or a linear wave in the global existence case.

Many recent progresses were made on this conjecture in the equivariant set-
ting. It was proved by Cote [7] for co-rotational wave maps and by the second and
third authors [26] for all equivariant wave maps that the decomposition holds along a
sequence of times. If one imposes certain energy constraint that effectively rules out

multi-soliton configuration, then the restriction to a sequence of times can be removed,
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6964 T. Duyckaerts et al.

and the full soliton resolution holds, as proved in [9, 10] (see also [29, 31] for the wave
maps equation outside a ball ). Note that even in this equivariant setting, the question
of proving the full resolution remains open for general solutions. To answer this ques-
tion, it seems that one needs to understand the interaction of solitons that are separated
by scales, which appears to be a challenging task. We refer to [24] for the existence of
solutions decoupling into more than one bubble.

The new ingredient in [9, 10, 29, 31] is the channel of energy method first intro-
duced in [15, 16] in the context of the energy-critical semilinear wave equation, which
provides strong decoupling mechanism between the dispersion and solitary waves. This
method consists in proving that the energy of any solution that is dispersive (in a weak
sense that has to be made precise) can be bounded from below outside the wave cone
in at least one time direction. For the energy critical wave equation, this channel of
energy inequality was proved by the first, third and fourth authors for small solutions,
in odd space dimensions [16] and for any radial, nonstationary solution in three space
dimensions [17]. See [8, 18, 27, 28, 42] for other applications to semilinear energy criti-
cal wave equations. Note that this channel of energy inequality is very sensitive to the
dimensions (see [12, 30]) and (at least for large solutions) depend crucially on the radial
assumption.

Going back to equation (1.1), one can ask what happens if we remove the equi-
variance assumption. Recently, Grinis [21] proved that along a well-chosen sequence of
times, all the energy concentration strictly inside the lightcone (That is, in the region
{|Ix| < a|Ty — t|} for any a < 1, where T, is the blow up time, for a solution blowing-up
at x = 0.) must be in the form of traveling waves, by showing that there is no energy in
the so called “neck region”. (The region strictly inside the lightcone and away from the
solitons.) It is natural to ask if one can prove the soliton resolution conjecture along a
sequence of times, as in the equivariant case. However, a new difficulty appears that
is not present in the equivariant setting, where a classical result of Christodoulou and
Tahvildar-Zadeh (see [4, 5]) asserts that there is asymptotically no energy accumulation
in the so called “self similar” region. In particular, in the equivariant case there cannot
be any energy concentration near the boundary of the singularity lightcone |x| < T, — ¢
as t — T, assuming that the solution blows up at time T, . As far as the authors know,
it is an open question how to rule out energy concentration in this region in the general
case. Another question that is left open in the work of Grinis is to obtain a complete
characterization for general times t — T, and not only for a sequence of times.

Our work addresses both questions, in the restricted case where the energy is

only slightly higher than the energy of the degree one co-rotational harmonic maps. We
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believe that the methods used here apply to wave maps into more general targets without
any size restrictions. However it appears that one has to overcome some nontrivial
obstacles in the current perturbative setup to achieve this goal. We also believe that the
case T, = oo, when the solution does not scatter, can also be addressed by the methods
developed here. We plan to address these questions in future work.

Let us briefly summarize our main results.

Our first main goal is to introduce the channel of energy argument to the study
of wave map equations. We use a new point of view, developed in our recent work
[14] on the energy critical wave equation, namely that the channel of energy inequality
holds for well-prepared initial data that satisfy an outgoing condition. Unlike previously
known channel of energy inequalities, the version for outgoing waves turns out to be
rather robust in that it works for nonradial solutions in all dimensions, and we think
it is applicable to a wide range of problems. The outgoing condition is natural. For
instance, any linear wave at large time will satisfy such outgoing conditions. More
interestingly, the dispersed energy that might concentrate near the boundary of the
singularity lightcone of a blow up solution also satisfies the outgoing condition (for
both energy-critical wave maps and semilinear wave equation).

In [14], the proof of the channel of energy inequality for the energy-focusing
semilinear wave equation relies on the corresponding inequality for the linear equation
and a straightforward perturbation argument. However, the Cauchy problem for the
wave map equations is much more complicated and the current perturbation results are
not as precise as in the case of the energy critical wave equation. At this time we can
only extend the results from [14] partially, and prove the channel of energy inequality

for small data.

Theorem 1.1. Fix 8 € (0,1). There exists a small § = §(8) > 0 and sufficiently small

€0 = €0(B) > 0, such that if u is a classical wave map with energy £(U) < ¢, satisfying
Wor Ul (o, my_y) * Wtoliz + 13,0 + w2 < 8l o, unlinszz,— (15)
then for all ¢t > 0, we have

f Ve eul(x, dx = B | (uo, )l o (1.6)
|x|> B+t
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As an application for the channel of energy inequality (1.6), we obtain the

following classification of finite time blow up wave maps u with energy
E(U) < £(Q,0) + €, (1.7)

where Q is the harmonic map with the least energy (which is equal to 47), and ¢y > 0 is
small. Denote M; as the space of degree one harmonic maps, (These harmonic maps are

all co-rotational with respect to certain axis of symmetry.) and let
My :={Q,: Q e M},

where

£+

CleET T I

is the Lorentz transformation of the harmonic map Q. Then we have

(1.8)

C-x ottt
Q(x,t)=Q(x

Theorem 1.2. Let u be a classical wave map with energy £(W) < £(Q, 0) +€2, that blows
up at a finite time T, and at the origin. Assume that ¢, is sufficiently small. Then there
exists £ € R? with |[¢| « 1, x(t) € R?, A(t) > 0 with

. x(t)
lim
-7+ T, —t

=, AMt)=0(T, — 1)

and (vo, v;) € H' x L? N C*(R?\{0}) with (vy — U, v;) being compactly supported, such
that

() inf{ [T @) — (vo, vi) = (Qu, 3:Q0)| 1,12+ Qe € Me,l} — 0, as t —> T

(i) | W (&) — (vo, v1)

—0ast—>T,,
H1xL2(R2\B) (1 (x(1)))

where B, (x(t)) = {x € R? : |x — x(t)| < A(D)}. O

Heuristically speaking, the above theorem says that at blow up time, the wave
map essentially consists of two parts, one regular part outside the lightcone |x| > T, — ¢,
and a traveling wave with small velocity ¢ that concentrates in a small region (in com-
parison with the size of the cone) near the point ¢(T, — t). In addition, there are no

other types of energy concentration. It is an interesting question to ask about the finer
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dynamics of the traveling wave in the region |x — x(¢)| < A(t), such as how the axis
of rotation of the wave map evolves. It is not clear to us at this moment if the axis of
rotation could fail to stabilize. We believe though that it is impossible, at the level of
energy regularity, to say more about the finer dynamics of the scale A(t) and the center
x(t), due to the symmetries of the equation.

Let us very briefly explain the strategy of the proof. The proof of the channel
of energy inequality in Theorem 1.1 uses the extension of the linear channel of energy
inequality for outgoing waves from [14] to two dimensions. For the wave maps how-
ever, we need to also show that these outgoing conditions are in some sense stable (for
most frequencies) with respect to frequency projections, in order to use the perturbative
results for wave maps which deal with each frequency piece of the map separately. In
addition, it is well known from Tao’s work [51] that the nonlinearity cannot be treated
as small perturbations directly even in the small energy case, and one has to perform
a gauge transform to treat the nonlinearity. The key point here is that the gauge trans-
form, which although changes the wave map quite significantly, does not significantly
change the energy distribution.

To prove Theorem 1.2, let us take a wave map as in Theorem 1.2. Then by the
result of Tataru and Sterbenz [48], along a sequence of times, we can extract a traveling
wave from the wave map. A little more effort also shows that there is no other possible
energy concentration strictly inside the lightcone except in the neck region, thanks to the
energy constraint (1.7). By Grinis’ result [21] there is no energy in the neck region either.
Thus all residue energy has to concentrate near the boundary of the singularity lightcone
|x| < T, —t. In addition, such residue energy has to be small, again thanks to the energy
constraint. We apply the channel of energy inequality to rule out this residue energy.
This is a crucial step and the main new point of our article. Hence inside the lightcone
(not only strictly inside the lightcone) the amount of energy is asymptotically just the
energy of the traveling wave. Then by the coercivity of energy near the traveling wave,
we conclude that in fact the wave map is trapped in smaller and smaller neighborhoods
of the traveling wave, and thus has to stay close to the traveling wave for all times ¢t < T,
not just along a sequence of times. This completes the proof of the main Theorem 1.2.

Our article is organized as follows:

» InSection 2, we recall the necessary subcritical and critical regularity results
for the wave equation;
» In Section 3, we prove the channel of energy inequality for small wave maps;

e In Section 4, we recall the Morawetz estimates;
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¢ InSection 5, we prove the decomposition into regular part and traveling wave
along a sequence of times; and
¢ InSection 6, we prove certain coercive property of energy in the neighborhood

of the traveling wave and establish the decomposition for all times.

Throughout the article, we shall use the notation

”f”Hl(E) = ”vf”LZ(E)

for any measurable set E. If s > 1, we will write

If llgs := NIDPS 22,

where |D|* is the Fourier multiplier with symbol |£|°, and say that a distribution f is in

H’ when f € H; (R?) and the above seminorm is finite.

2 Preliminaries

In this section, we briefly review the subcritical and critical regularity results for the

two-dimensional wave maps into the sphere, that will be needed below.

2.1 Local wellposedness in H® for s > 1

It is well known from the works of Klainerman and Machedon [32-34], Klainerman and
Selberg [35, 36], and Selberg [44], that the wave map equation (1.2) is locally wellposed
in H® x H5"! for s > 1. In this subsection we recall the necessary regularity results from
these works without giving proofs and refer the reader to the above cited works, and
especially the survey [36] for details.

Since the spaces in which one can prove existence and uniqueness involves
spacetime Fourier transforms even when one only considers local in time solutions,
we have to be more precise on the Banach spaces which are used to hold the solutions
and the nonlinearities.

We shall denote F(u) as the spacetime Fourier transform of u. For s, b € R, and

tempered distribution u € S'(R?%), define

1

2
Iwllxsb@s) = (/3(1 163 A+ 115 = [2ID® IF(U)(é,f)IZdeT> (2.1)
R
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and set
XPR) :={u e SR : |ulysbgs < oo} (2.2)

We record the following wellposedness result for equation (1.2) in the subcritical
space H* x H5"'. We shall always assume that the initial data (uo, u;) for (1.2) satisfies

the “admissibility condition” that |ue| = 1 and u} u; = 0.

Theorem 2.1. Fors > 1 and% <b< min{s—%, 1}. Suppose that (ug, u;) € H* x H*! and
that u, equals a constant u,, € S% for large x. Then for T = T (||(Uo — Uso, U1)|lgsyps—1) > 0
sufficiently small, there exists a unique solution u to equation (1.2) with initial data
(uo, u1) on R? x (=T, T) in the sense of distributions, which satisfies the following

properties

(1) u—ux e CU,H x H™Y);

(2) there exists U € L*(R®) with Ulzz,; = U — U and V, U € X512,
whereI = (—T, T). O

Remark. The above theorem provides a rigorous definition of solutions to equation
(1.2). (2) is important, as (1) by itself is not sufficient to guarantee uniqueness when s is
close to 1. One could of course choose to work directly with smooth wave maps, instead
of these low-regularity wave maps. However, below we shall need to extend a locally
(in space) defined map to a global one, and it is much more convenient to have such

extensions in the framework of H® solutions, rather than smooth solutions. O

Solutions from Theorem 2.1 can be extended to a maximal interval of existence,

more precisely, we have

Corollary 2.1. Fors > 1. Suppose that (uo, u;) € H* x H*"! and that u, equals a constant
U, € S? for large x. Then there exists T, € (0,00], T- € [—00,0), such that for any
T_<T, <T, <T,, uis adistributional solution to equation (1.2), satisfying (1) and (2)
onI = (T,, T;), and that if T, < oo, then

lim || T () | gs egs—1 = 0. (2.3)
t—>T4

Similar conclusion holds for T_. Such u is unique. In addition, if (uo, u;) € H! x Hs1"!

for some s; > s, then u satisfies (2.3) and (2.3) with s being replaced by s; on any
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I =(T,T,) € (T_, Ty). T, and T_ are called the maximal time of existence for the

solution u. O

2.2 Critical wellposedness results

Perhaps not surprisingly, our work depends crucially on the regularity results of Tao
[50, 51], Tataru [57], and Sterbenz-Tataru [47, 48]. See also the work of Krieger and Schlag
[37]. In this section, we recall some important results for wave maps in the energy space
from [47, 51, 57], that will be needed below.

In order to control the solution at the H' x L? level of regularity, we need to use
more sophisticated spaces. The precise definitions of these spaces are not very important
for us, but we shall need the following properties that we briefly review below.

Fix a radial function ® € C*(R?) with ®|z = 1 and supp ® € B,. Let ¥(x) :=
®(x) — ®(2x), and Wi (x) = ¥(x/2¥) for each k € Z. Then supp ¥ € B,\B,, and

> we=1, for & #0.
keZ

Recall that the Littlewood-Paley projection P; and P_; are defined as

Pf (&) = W (6) F(E)

and

P<kf = ZPk/f.

k' <k
We will also use the notations u; := Pyu and u_x = P_ u. Then

Y Bf=f

kez
for all f € L?(R?). We use the same definitions as in [51] for the spaces S[k], N[k], which
are translation invariant Banach spaces of distributions on R2 x R, containing Schwartz
functions whose partial Fourier transform in the x variable is supported in {22 < |£| <
2k+3) (2k=% < |£| < 2K*%}, respectively. For each k, we shall use the space S[k] to hold
the frequency localized piece P.u of the solution u, and use the space N[k] to hold the

frequency localized piece Pf of the nonlinearity f := u d,u'9%u. Define the S(1) norm as
IF sy = If e + sup IPef Ml st (2.4)

The spaces S[k] and N[k] satisfy the following properties.
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Theorem 2.2. There exists a small universal constant « > 0, such that

(1)

Remark.

(Algebra property) For Schwartz functions ¢, ¢ with ¥ € S[k,], we have
I1P(@W¥) st < 277116 llsa) 1V sty (2.5)
(Product property) For Schwartz functions f, ¥ with f € N[k,], we have

1P (F W) v S 27 204 19 sy 1 llwikg s (2.6)

(Null form estimate) For Schwartz functions ¢, ¢ with ¢ € S[k;], ¥ € S[k],

we have

P8¢ o V) lwprg S 2@kl =04 16 1| oo 19 L sty (2.7)

(Trilinear estimate) For Schwartz functions ¢, ¢, ¥ with ¢ € S[k1], ¢ € S[k;]
and v € S[ks], we have

| Px(¢p 0% 0, ) Il vixy

S 27etammintta fal gemaxta B2 80416 spey @ s 1 lstos1 - (2:8)
(Linear wave estimate) For solution u” to the linear wave equation
dul — AUt =f
with initial data (uq, u;), we have
||PkuL||S[k] S 1Pe(uo, w)llz w2 + I1Pef llvi- (2.9)
(S[k] controls energy) For u € S[k], we have
IVxitllperz S ltellsi- (2.10)
O

These estimates were proved in [51], and some of them are slightly more gen-

eral than those stated in the main summary of the properties of S[k], N[k] in Theorem 3

from [51]. However, they can be found elsewhere in that paper. More precisely, the alge-

bra estimate (2.5) is a consequence of equation (125) and (126) at page 516; the product
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estimate (2.6) is a consequence of (119) at page 510; the null form estimate (2.7) is (134) at
page 523; the trilinear estimate (2.8) is taken from the first formula at page 529. We also
note that Py is bounded from S[k] to S[k], by the translation invariance of the Banach
space S[k]. (6) implies that |[ullz~ < ||ulsix- Another useful property of S[k] is the weak
stability of S[k]: if u; — u in the sense of distributions and u; € S[k] with |u;llsx < 1,
then |ullsi < 1. See a similar statement in (vii) of page 323 in [58]. We will use these

estimates extensively below. O

Tao [51] introduced a very useful notation to keep track of multilinear expres-
sions. More precisely, for scalar functions ¢,,...,¢;, we use L(¢,...,¢;) to denote

multilinear expression of the form

L(¢y,....¢0) 3=/K(Yll---,Yz)clh(X—Y1)"'¢1(X—Yl)dY1"'le

with a measure K of bounded mass. In many cases, ¢y, ..., ¢ could also be expressions
involving components ¢j1, ... ,¢>{’ and in such cases, we also assume that K depends
on ji,...,J;, but for the ease of notations, we shall suppress this dependence. By the
translation invariance of the spaces S[k], N[k], the estimates in Theorem 2.2 extend to
expressions of the form L(¢, v), L(3%¢, 3,¥) instead of just ¢ ¥ and 9%¢ 3, .

Let us record here the following useful Lemma from [51].
Lemma 2.1. For Schwartz functions f, g, we have

P(fg) —Pif -g=2"L(f, Vg). (2.11)
0

Proof. This Lemma is taken from [51], we include the short proof for the convenience

of readers. We have

P.(f 9)(x) — Pif (x) g(x)
= / 49 2 ) f (x — y)g(x — y)dy — / 49 (2 f (x — y)g(x)dy

1
=/ /2 —4k\il(2ky)f(x—y)yjajg(x_ty)dtdy
o JR

1
=2t [ [ #@yb@nse-p dgu - dedy
0 JR?

=27*L(f, Vg).

The proof is complete. |
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Let us recall the definition of frequency envelop introduced in [51]. Fix positive

¥ such that ¢ < o5+ where « is as in Theorem 2.2.
Definition 2.1. (c¢x) € ¢? is called a frequency envelop if ¢, > 0 and ¢, < 2"F~*2lg,,. O
For any frequency envelop ¢ = (cx), define the norm S(c) as
Plls) := ll@llize + Slgp C; I1Ped lsiy (2.12)
and the space S(c) as

S©) :={f € L% : |flse < o). (2.13)

Note that 1 € S(c). The main property of the space S(c) that we shall use below is that
S(c) a Banach algebra.

Lemma 2.2. S(c) is a Banach algebra. O

Proof. This was proved in [51]. We include the short proof for the convenience of

readers. We need to prove

¢ ¥lise S D llse 1Y s (2.14)

We note that [¢llsq) Sc @llse and ll¢llse) S l@llse). We can normalize [¢llse =
¥ ]ls =1. For each k € Z, we have

1P (DY) I spxy

= [P (@-r-10) + Pic (b=ic-10 ¥-k-10) + Pic ($=k-10¥/<k-10) ”s[k] .
Note that
Py (‘psk—lowsk—lo) = 0.

We get that

||Pk(¢‘ﬁ)||s[k]§ Z ”Pk(Pkl‘ﬁw)“S[k]"' Z ”P’C((ﬁik*lopkzw)”sm]

k1>k—10 ko>k—10

S Y 27 P8 g 11l

k1>k—10
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N Z o—rlkp—h)y ”szllf“S[kzl lp<k—10lls)
ko>k—10

< Z 2—K(k1—k)ck1+ Z 2—K(kz—k)ck2

k1>k—10 ko>k—10

C Y g <
k'>k—10

and this finishes the proof. |

Let us recall the following global wellposedness theorem for wave maps from
Tao [51].

Theorem 2.3. There exists an ¢ > 0 sufficiently small such that the following is true.
Suppose that (ug, u,) is smooth, uo—u, u; are compactly supported, and that u]-u, = 0.
Assume that (||Pk(u0, uy) g XLz) lies under a frequency envelop ¢ = (ci) (Fornon-negative

sequences (ax) and (by), we say that (ay) lies below (by) if ax < by for each k.) with
lcklle < €.
Then the wave map u with initial data (uo, u;) is global, and moreover
1Peullsie + P 1P U (D)l 12 < Ce (2.15)
for some universal C. O

Remark. By approximations by smooth maps, and the wellposedness for equation (1.2)
in H* x H*! for s > 1, we can relax the smoothness requirement for the initial data in
the above theorem to (uo, u;) € H® x H* .

Fix €, > 0 be sufficiently small, so that classical wave maps with energy smaller
than Ce, exists globally for a sufficiently large universal C > 1. In later sections, we shall
need the following local-in-space smoothness result, when the initial data are locally

but not globally smooth. O

Lemma 2.3. Let (ug, u;) € H* x H"! for some s > 1 and that (uo — U, U1) is compactly
supported, with |ug| = 1 and up - u; = 0. Assume that (ug, u;) is smooth in B, and that

|[(wo, U1)llzg1yz2 < €. Then the global solution u is smooth in {(x,?) : |x| <1 — |t|}. O
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By the small energy global existence result and the subcritical Cauchy theory,

we get that

sup [u(®)llgs < C (o — Uoor Un) s as—)- (2.16)

0<t<l1
Denote 1 := C (|[(Uo — Uoo, U1)llgsxgs—1). Fix 7 > 0 small, and take Bx(X) C B;. Set

_ 1
Ug = — u.
TTr JBrRx)

Then by Sobolev inequality, we obtain that
luo — uo”po(B?@) S [ (2.17)

Take a smooth cutoff function 5 such that n =1 in B;_;1+:(X) with some § € (0, 2(s — 1)),

and n = 0 outside B-(X). In addition, we can require that
IVl S 70 (2.18)
Define
(o, Uy) = (P[0 (uo — o) + o], nu1),

where for each vector v # 0

Then Uy, U; are smooth, and
(ﬁo, al) = (uO, ul), ln B7771+5 ()_() (219)
Moreover, we can verify by direct computation thanks to (2.17) and (2.18) that

||(l~L0, izl)”HleZ 5 (SO

if 7 is chosen sufficiently small. Hence the solution % to the wave map equation with
the initial data (o, ;) is smooth and global. By (2.19), u = & for |x — X| <7 — 7" — |t],
and is thus smooth for |x — X| < 7 — 7'** — |t|. By moving around X and finite speed of
propagation, we conclude that u is smooth in {(x,t) : x| < 1 —2F " — |¢t], [t| < T}. We

can apply the same technique at |t| = 7, 27 and so on, and conclude recursively that u
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is smooth in {(x,t) : |x| — 2k7'" — |t|, |t| < kF} for k = 1, 2, ... with (k + 2)F < 1. Hence,
u is smooth in {(x,t) : |x| <1 —C7, |t| < 1 — 37}. Since 7 can be taken arbitrarily small,
the lemma follows.

Since the global regularity result for small energy requires that the initial data
belongs to a subcritical space H¥ x H5"! for some s > 1, (See however Tataru [58] where
a notion of finite energy solution was introduced.) we shall need the following lemma
when we deal with some initial data which is C*(R?\{0}) but may fail to be in H® x H*™!

globally for any s > 1.

Lemma 2.4. Suppose that (uo, u;) € C*°(R?\{0}), and that (uy — U, u;) is compactly

supported. Assume that
(o, u)llgiwze < €. (2.20)

Then there exists a unique smooth u € C*((x,t) : |x| > |t|}) such that u solves the wave

map equation in {(x,t) : |x| > |t|}. Moreover
lti_r)rol ||T4)(', t) — (uo, w1l xL2(|x|>]t) = 0. (2.21)

Similar results hold if we assume instead that (uo, u,) € HJ ; X Hfo_cl(Rz\{O}), and in this

case, U € H x H'(1x| > [t]). g

Proof. We shall prove only the first part of the lemma. The proof of the second part
is clear from the same argument. Let us firstly prove the existence of u claimed in the

lemma. For any r > 0, since

/ IVuol* + |ug|* dx < €2,
Br\By

we can find 7 € (3, r) with

€

* N

S|

/ Fuoldo <
|x|=r

=r
Denote

_ 1
U = ——
27T Jos,

Then by Sobolev inequality, we get that

luo — Uollo s, < s
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Thus from the fact that |uy| = 1, we see that [ty| = 1. Take smooth cutoff function 5 such
that n =1 for |x| > ¥ and n = 0 for |x| < g with |Vy| < (7)~!. Define

~ o~ (uo, uy) in BS;
(uOI ul) = _ _ _ .
(Pn(r)(uo(rd) — Up) + Uo], 0) in Br.

Then
(To — Uno, Uy) € HS x H*!
fors < %, and direct computation shows that
||(ﬁ0, ﬁ1)||Hle2 5 €y

Note also that (g, U;) is smooth for |x| > 7. Hence by small data theory and Lemma 2.3
the solution @ to the wave map equation with initial data (4, ;) is global, and is smooth
in |x| > 7 + |t|. By taking r — 0+ and the finite speed of propagation, we see that
u=limu
r—0+

exists in |x| > |t| and is smooth. We now turn to the proof of (2.21). Let U be the solution

as before, corresponding to 7, then
u=u, for x| >7+|t], (2.22)

and % is continuous in H' x L? for t € (0, 1]. For any € > 0, we can choose 7 sufficiently

small, such that

(o, U llgtcr2,,) <€

Then by energy flux identity (say for ¢ > 0 and any € > 0),

Vul?  |3:ul?
/ (l |+|t|>(X,t)dX
t+e<|x|<4r—t 2 2
1 [t Vul?  |0ul?
+_// (ﬂﬂt“' —£~Vu8tu)dads
V2 Jo Jixjmar—t 2 2 x|
1 [t vul?  |9ul?
+—// (' | +u+£-Vu8tu>dads
\/E 0 Jix|=t+e 2 2 |X|

Vul? o, ul?
zf (' ul +ﬂ) (x,0)dx,
By7\Be 2 2
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we see that
% —
I u ()l L2 (Byr\Bjg) = | (wo, wy)llm xI2(Bgz) < € for |t| < 7. (2.23)

. ~ . . . = _
Since u is continuous in the energy space and u (x,0) = (uo, u;)(x) for |x| > 7, we see

that for sufficiently small ¢, € (0, 7) and |t| < t;,

=

| u(t) — (uo, Uz xr2x-m < €- (2.24)
Combining (2.23), (2.24), and (2.22), we conclude that for |t| < t;

%
| u () — (o, Wi)llg xr2 =1t
— —
< U @) = (Wo, U llgrwp2qx=2m + 1 U () — (Wor W) |10 %2281 <|x1<27)
=
< llu @ — (uo, U)llgrwr2qx-27 + 2€

< 3e.
Since € > 0 is arbitrary, the lemma is proved. |

By finite speed of propagation and small data global existence, understanding
the energy concentration is important for studying the dynamics of the wave maps.
To measure the energy concentration, let us define for a wave map u the “energy

concentration radius”

r(e, t) =

IVul®  |9;ul®
2 2

inf {r > 0: there exists X such that / ( ) (x,t)dx > e*}. (2.25)
Br(®)
We adopt the convention that if the set is empty, then the infimum is infinity. The small
energy global existence result, Theorem 2.3, and the finite speed of propagation imply
that if wave map u blows up at a finite time T, then r(e,, t) - 0+ as t — T,. Thisis a
very important piece of information that allows us to zoom in a small region near the
blow up point and study the details of the blow up there. Unfortunately, knowing only
that the energy concentrates in the small scales does not in itself allow one to “extract”
a nontrivial blow up profile in the limit, as we zooms in more and more. This is because
a priori the energy can be concentrated in quite an arbitrary way, given that we do not
(and it is probably not possible) to obtain control any higher order regularity beyond

the energy when the time is close to the blow up time. To obtain a nontrivial blow up
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profile, the following result due to Sterbenz-Tataru [47] plays an essential role. (More
precisely, this result is used to rule out the situation that all energy near the blow up
point concentrates near the boundary of lightcone. The control inside the lightcone turns

out to be quite favorable.)

Theorem 2.4. There exists a function €(E) with 0 < €(E) <« 1 of the energy E such that

if u is a classical solution to (1.2) in I x R? = [a, b] x R?, with energy E and

sup sup || (Peu, 2 *Ped,uw) (@)
tel k

< e(E), (2.26)

L xL>®
then the energy concentration radius r(e,, t) has a uniform lower bound on I:

inlf r(e,, t) >ry > 0. (2.27)
te

3 Channel of Energy Inequality for Wave Maps with Small Energy

In this section, we prove the channel of energy inequality for small wave maps. Let
us begin with the following linear channel of energy inequality for outgoing waves,
which is a slightly more quantitative two-dimensional version of the channel of energy

inequality that played a decisive role in [14].

Lemma 3.1. Fix y € (0,1). There exists u = u(y) > 0 sufficiently small such that the

following statement is true. Let v be a finite energy solution to the linear wave equation
94V — Av = 0, in R? x [0, 00)
with initial data (vo, v;) € H! x L? satisfying
l(vo, vi)llgn xL2(BS, ,UB1 ) + 19vollzz + 10, vo + villzz < wll(Vo, V) llg1z2- (3.1)

We also assume that vy = v, for some constant v,, for large x. Then for all ¢t > 0, we

have

/ Vi v [*(x, )dx > y Vo, v, 2 (3.2)
|x|>y+t
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We can normalize the initial data so that |(vo, vi)llgig2 = 1. Let « =

Jisnzixi=214p0) Vo(X)dx. By Poincaré inequality

/ [vo(x) — af’dx < / |Vvo(x)?dx, (3.3)
1+p<|x|<2(1+un)

1+p<|x[<2(1+p)

where the implicit constant is independent of u < 1.
Take a non-negative radial n € C°(R?) with n = 1 on By, and suppn € By, 12
satisfying |Vn| < u~V2. Define

Vo, V1) = n(x) (Vo(x) — o, V1 ().

Using (3.3), the bound |Vy| < «~Y% and (3.1), we obtain:

~ ~ 1
uww—mmrmm@msﬁf

[x[=1+p

WWF+/ < (3.4)
[x[>1+u

By Sobolev and Holder inequalities

coj—

1o ~ ~ 1 ~
11DI2Vollz2 < ||VV0||L% < IVVollrzqxi<i—pp T HENIVVollz2a—pzixi<1411/2)) Sk

ool—

2Tl < < 8 <
D72V 2 S ||V1||L4§ S IVillzzqe<i—pp + #8 IVl 21— peixi<11ul/zy S KB

By conservation of the H'/2 x H~'/? norm for the linear wave equation, we obtain the for
allt e R,

Vvt(x,tﬁ(x, t)dx‘ S IDIMAY| L 1DV 2 S A (3.5)

2 N

Let vV be the solution to the linear wave equation with initial data (v, v;). By

direct computation, we see that

d

~ ~ 1 ~
En .LZ -V, (X -VV + EV) x,Hdx = EW) 1= &,. (3.6)

Hence, by (3.5) and the outgoing condition (3.1), we get that

~ ~ ~ ~ 1.
/ V. x-VV(x, t)dx =&t +/ -7 (X - Vv + —Vo> (x)dx
R2 R2 2
+0u'*)

=& (t4+ 1)+ 0.
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On the other hand, by the finite speed of propagation, supp v(-, t) € B, ,1/2,, forall ¢t > 0,
and thus

N N ~ 2 V~ 2
/ —V,x - V¥(x, t)dx 5/ A4+ u?2+0 (ﬂ + Vvl )(x, t)dx
R2 |X|>y+t 2 2
~ 2 ~2
v Vv
+ (r+10 (|2t| 4! 2')(X,t)dx
|x|<y+t
~ 2 ~2
\% Vv
=+ —(y+1) vil” , Vv (x, t)dx +
|x|>y+t 2 2
~ 2 ~ 2
\Y
+ A+ u?+0) <|th Vv )(X,t)dX.
|x|>y+t 2 2
Combining this and the above, we see that
~ 2 V2
|x|>y+t 2 2

> (1= )&+ 0u'').

By choosing u sufficiently small, we obtain the channel of energy inequality for v, and
consequently also for v, by (3.4).

As mentioned in the introduction, one of the main goals of this article is to extend
the channel of energy arguments to the wave map setting. As a first step towards under-
standing the implications of the channel of energy property of linear wave equations on
the wave maps, we prove the following result for small energy wave maps. The exten-
sion to large energy case seems to require nontrivial improvement in the perturbative

techniques for the wave maps.

Theorem 3.1. Fix 8 € (0,1). There exist a small § = §(8) > 0 and sufficiently small

€0 = €o(B) > 0, such that if u is a classical wave map with energy £(%) < €2 satisfying
l(wo, wll <12 (BS , 5UB15) + 1§uoll2 + 119, Uo + Urllz2 < Sl (Uo, Ui)llgg1 2, (3.7)
then for all ¢t > 0, we have

/ Ve (x, 0dx = B (o, w300 3.8)
|x|>p+t
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Proof. Denotee := ||(Ug, U1)lg1s2 < €. To apply Theorem 2.3, let us define the following

frequency envelop

ci := sup 27KV (Pug, Piu) |l 2. (3.9)
Jez

Then one can verify that ¢ = (¢;) is a frequency envelop and that (||Pk(u0, uy) g XLz) lies

below it. In addition,

el S €.

By Theorem 2.3, if ¢y is chosen sufficiently small, then the wave map u is globally defined,
and satisfies (2.15).

Since the proof is a bit lengthy, we divide the arguments in several steps. |

Step 1 : Reduction to proving channel of energy inequality for frequency pieces. In this

step, our main goal is to show that there exists a set K of good frequencies, such that

1
D IPm(uo, )3, 2 = (1= C812) || (uo, un)|%n, 2 (3.10)

mekC

and that for any m € I, 2™ is “high frequency”, and that it suffices to prove the channel

of energy inequality for each m € K.

Substep (1): Control of the low frequency component.
Fix ko large, whose precise value is to be determined below. We shall show that
the total energy with frequency < 2% is small in a suitable sense. Assume firstly that

27% > C$. Let us bound the low frequency energy of (uo, u,), that is

[Pato (Wor wn) g2

We can write

Vuo = (VuO)XB§+6UBl_5 + (VuO)XBl+5\Bl_5!

Uy = U1 XBS, ;0B _s T U1 XBy 5\By_s-

By the assumption on (ug, u;),

l (VUO)XBf+6uBl,5 lz2 + ||U1XB§+EUBI,5 ll.2

S S8l (o, 1) llgyz2-
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Thus,

Py, (VuOXB§+5UBl_3)

2

+]

Pog (watagom4) |, S 801 o, wd)lgnre:
Denote f = (Vuo) xs,,5\8,_s- Then f is compactly supported in B, \B;_;, and
£z < Il (wo, wi)llgtsz2-
By Bernstein’s inequality, then Cauchy-Schwarz
1 1
1Pk fllzz S 2%l S 25082 (|f [,z < 25082 || (w0, wr) it wz2-
Choosing 2% ~ §5, then [|P_,fll;2 S 83 (o, ur)llz1,.2, that is,
1
”Psko [(VUO)XB1+3\31_5] HLZ S 83 [(uo, ur)llgrwze-

We can prove similarly that

1

Hpgko [U1XBH5\BI,5] ”Lz < 83| (wo, Un)llg sp2-
Combining (3.11)—(3.13), we conclude that
1
|1P<ky (o, wi) [ 1,2 S 8311 (to, w1z

Thus the low frequency energy is small.

Substep (2): persistence of condition (3.7) for most high frequencies.

(3.11)

(3.12)

(3.13)

(3.14)

Let us now consider Py (Vug, u;) for high frequency 2¢ > 2% Fix small 1 > 1086 ~

27% whose value is to be determined below. Let us firstly bound

1Pe(Vio, willpz(ae g, )

We can decompose as before

Vuy = (VuO)XB‘fMUBl,a + (VUo) X814 5\B1_5+

Ui = U1 XBS, ;uB_5 T U1XBy 5\By s
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Denote

Ok = ”Pk [(Vuo, ul)XBi_H;UBl—S]

12x12

then it follows from (3.7) that

2 2 2
Y ot S8 (Vg un)liZ, o
k

Now let us consider Py [(Vuo, U1)Xs,,,\8, , | for x with [|x] — 1| > A. Denote

fi= (VuO)XBH_,g\Bl_{; ’
then

Pf(x) = 4* / B - yf (.

R
Since f is supportedin 1 — 68 < |y| <1434, and ||x| — 1| > 2 > §, we get that

k

1
@ gy 1o )itz

IPef )] S

Hence

1

\X\71|Z)L (x| — 1)2M

||Pkf||§2<B ) S 42K (uo, un) I3, 42 [|

11:-¢—AUBI—'A
< 4R (ug, uy) |

Hlx12*

Fix M = 3. Then we conclude

IPif 2o

—k 1 -3 4
+AUBI—A) = 275620 ”(U'Or ul)“HlXLZ.

Take A = Sﬁ, then
kol )
”P"’f”LZ(BfHuBl_Q S 27584 |[(wo, u) g ez,
that is,

| P [(Vuo) Xz, 4518, | ||L2(Bf+AUBl—A) S 27ks4 (o, w)llgraxz2-

(3.15)

(3.16)

(3.17)
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Similarly, we can prove that
|Pe [w1 x5y 5181 5 250 < 27587 || (o, un)llg w2 (3.18)
1+6\B1—s | Il . (BlJrAUBl,;L) ~ x
Now let us control
10rPxtio + Prurll 2z, .08, _,) T 1#PrUoll2s, .08, _,)

for k > ko with 27% ~ §&. We have

ar/ 4 (25 )uo(x — y) dy = / 49 (25p) X . Vg (x — p)dy
R2 R2 |x]|

X_
Y Vuex - y)dy
|x — vyl

- / 4k (2Fy)
RZ

+/ 45§ (2ky) [i— X_y]Vuo(X—y)dy
R2 x| |x—yl

= I + II.
Note that
Iy + Pyuy = /RZ 450 (2%y) (8,uo + un) (x — y)dy.
Thus
Ik + Petrllz2 S 1Pe(3ruo + Ur)llz2. (3.19)

Note also that, for x € B;,;\B;_;,

'vi <1,
x|
thus,
|Hk|§/ 4k|\if|(2ky>‘i— 4 "|VUO(X—Y)|dY
2 x| x—yl

lyl<2” 2 lyl>2"2

_k v
5/ L 272450 (2Fy) - [Vue(x — y)|dy
lyl<2 2

+/ , 4% 257 [V (x — y)ldy.
2

lyl>2
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6986 T. Duyckaerts et al.

Then simple computation shows that

”IIk ||L2(BI+A\B1—)L)

_k v M
5] 2 24k|‘~1’|(2kY)'||Vu0||L2dY+/ A 2%y T IVuell2dy
lyl<2 2 lyl>2 2
k
< 272 (uo, U llgn e (3.20)
Thus combining (3.17)—(3.20), we get that

_k
0-Pruo + P2, ,,\5_,) S 272 [ (wo, un)llgnwrz + I1Pe(druo + ur) 2. (3.21)

The bound

_k
”aPkuO”LZ(BlJrA\Bl,;) S 272 ][ (wo, U llgisge + 1Pe Puoll 2 (3.22)

follows similarly from the previous arguments.

Substep (3): Summary of estimates from substep (1) and substep (2) and the definition
of good frequencies.
From (3.14),(3.17),(3.18),(3.21), and (3.22), we have, for 6% ~ 27 ko

1
(1) ||P<k0 (VuO! ul)”szL2 5 8§ ”(uOr ul)"Hl ><L2; (323)
2 2 2
@ Y B[ Vuo, widsg,om ]|, L, S 0 Ui (3.24)
kaQ
3 Z ”Pk [(VUOI ul)XBHa\Bks]”L2xL2(Bf+AuBl_A)
kzko
1
S 8% || (wo, ur) gt p2; (3.25)
D10, Peuo + Petnr ll 28,0\, ;) + 1#PcUollL2, 05, _;)
_k
< 272 (wo, un)llgt g2 + I1Px(3r o + w2 + IPx Juoll 2. (3.26)
By (3.23), we can focus on the high frequencies 2¢ > 2k, Indeed, we have
1
[Plco(Ttto, )2, = (1= €84 ) llutor wlgn i (3.27)

By (3.24) and (3.25), we see that

D IPe(Vuo, up)|?

12x12 (BC UBI,;\>
Pl 142
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+ Py [(Vum ul)XB1+5\B1_5]

LZxL2(BS, , UB_y)

143
2
< Z HPk I:(VUO, u1)XB§+5UBl—5]
kzko

12x12
+ Z ”Pk [(Vuo, ul)XBl+6\Bl—5] ||22XL2(Bf+AUBl,;L)
kao

1
< 02 (uo, ul)”f‘{lez-

Then by the above calculation and (3.26), we get that

> 18, Petto + Pews |12, + 117 Pectio|2 ]
kzko

2
S D 1PV, )%z, 12
kzko

+ 3 [10Peo + Pans By, s+ 19PUOE G5, )]
kzko

" 2 —k 2
< 02| (uo, Uz, 2 + E 27 [ (uo, u)llgn, 2 +
k>kqo

+ Y (IPe(@ruo + w2 + IPjuoll2,)
kao

C
1+AU314>

L 2
<66 [(wo, Ul g2

Hence, if we define the set

1 ><L2(B€+)LUBI,)») + ||arPku0 + Pkul ||L2

K= {k > ko @ [|(Pruo, Pruy)|l
1
+ [|#Pruollzz < 8700 || Pe(uo, Ui)llgrvz2 ¢y
we can estimate that

2
> IPeuo, Peun)liZ
k>kg, k¢

1
< 5750 Z I:”(PkuO,Pkul)”ileLz(Bc UB, )
k>kg, kéK o -
+ 19-Petio + Peus |17, + IlaPkuo”fz}

1 1 2 L 2
S 875088 [[(wo, ullz, 2 S 812 1o, Ul 2-

6102 1snBny GO U0 Jasn oBeolyD Jo Ausieaiun Aq 6956Z8E/1L969/22/810Z/0BISqe-9]o1E/UIW/WOd dNO"dlWapEdE//:Sd)y Wolj papeojumoq



6988 T. Duyckaerts et al.

Hence the total energy at frequencies ~ 2¥ with k > ko, k ¢ K is negligible, and we will

focus on the high frequency pieces Py (uo, u;) with 2% > 2% and k € K below.

Substep (4): Reduction to channel of energy inequality for frequencies in K.

Fix m € K, then

[(PmUo, P ul)”Hlez( + 10-Prnto + Pty llz2 + [|#PmUoll 2

3 UB1— )»)

< 8700 || Py (o, )|tz (3.28)

We claim that if we can show for each m € K that

14+
/ |V, Prul®(x,t) dx > P | P (U, ul)llﬁllez — Cé*c}, (3.29)
IX\>M+t 2
for all t > 0, then we will be done. Indeed, write for each ¢t > 0,

vax,tu = Pm [(Vx,tu)X\x|>ﬂ+t] + Pm [(Vx,tu)X\X\§ﬂ+t]-

We can estimate, for |x| > % + t, that

’Pm [(Vxltu)x\ylsﬁﬂ] (X)|
s [ @[V lay
|x—y|=<p+t

< 4'”[ |\If(2'"y>||vxtu<x v, 0)ldy
lyl>

<am / |2'"y| Vaeu(x — v, 0)ldy.
lyl>
Thus,

HPm [lvxrtu|X\X\§ﬁ+t] ”LZ |X\>ﬂ+l+t)
san [y ay e, w
\YI>—

S CB) 27 M 2™ (ug, wr) g yg2-
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Consequently, we get that

2 P Vaaul s

m>k0

< (1 + 3%0) 3 1P [(Veew xigimpee] |2 +

mzko

+ 28_% Z ||Pm [(VX:tu)X\YEﬁth]||i2(‘x‘>ﬂ+l +t)

mzko

< (1 + 351*0)/ IV, ul?(x, £)dx+

|x|>p+t

1
+ C(BYs Y 277MM (g, wy)% o

mZkO

< (1+5%) / |Vieul? (x, )dx + C(B)5 904~ M50 o, un) 1, 12
|x|>pB+t
1
= (1 +m)/ IV eul?(x, dx + C(B)SS | (uo, w2,
|x|>pB+t

if we choose M = 4. Therefore if (3.29) holds, then by the choice of K, (3.27), || (ck) |2 < €,

and the above calculation, we see that

+/3

(1-0Cs 12 — Ce %) [l (uo, ul)”élez

<> (—qu(uo, uDll, e — czech,,)

mekC

< D WP Varttly s

mekC

= (1 +6%)/ [Vieul? G, )dx + CBYS3 | (o, un) I, -
|x|>p+t

The channel of energy inequality (3.8) follows if § = §(8) and € = ¢,(B) are taken
sufficiently small. Our goal is thus reduced to proving (3.29).

Step 2: Control of the perturbative part of the nonlinearity. It is proved in [14] that (3.29)
holds for solution to the linear wave equation with this type of outgoing initial data for
dimension > 3, although the results we need here are more quantitative, see Lemma 3.1
above. Ideally one would like to say that the nonlinearity is negligible as we have small
solutions. However, as is now well known, even in small energy case, the nonlinearity
for the wave map equation cannot be treated entirely perturbatively. Rather, we need to

perform a gauge transform to modify the nonlinearity so that it becomes perturbative.
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6990 T. Duyckaerts et al.

Thus it is important to understand how the Gauge transform affects the channel of
energy inequality. The arguments we use here are mostly from Tao [51] and Tataru [58].
We shall present the details of the proof below, partly for the convenience of the reader,
and partly as those works did not explicitly quantify the nonlinear effects (which are
implicit in the proofs). In this step however, we shall firstly control the part of the

nonlinearity that is perturbative.

Let
V= Ppu
Then ¢ verifies
{anw “AY = P (ud“u'd,u) 3,30
Y (0) = (Pnuo, Pnu).

Let us rewrite the nonlinearity P, (u %u'a, u) as

Pm (u aauTaau)
= Pm (uzm—lo aauT aau)
+ Py, (u<m—10 8aulm+loaau)
t

o
U<m-10 d um_10545m+108a uzm—l())

o, T
u<m—108 um,10§4§m+108au<m—10)

o, t
m (U<m-109 u<m7103aum710§-§m+10)

t

+ Py (
+ Py (
+ Pp (Uem-100°UL,,_1000Usmr10)
+ P (
+ Py (Uem-100°Ul,,_100aUcm—10)

=h+L+L+L+L++1.
Denote
€ 1= |[(uo, Ullg1.z2 < €o-
We firstly peel off the perturbative part of the nonlinearity. We shall call h disposable if

sup ”Pm’h”N[m’] ,S €Cnm.
m/=m+0(1)
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Here the O(1) term is a number of size ~ 10. The main use of this term is to deal with
some technical “frequency leakage” issues. (On a technical level, to apply the estimates
from Theorem 2.2, we need the right-hand sides to carry the frequency localization
operator P;.) We shall call h disposable in the generalized sense if there exists a sequence
of disposable hj with hy — h in the sense of distributions. Note that the notion of being
disposable and that of being disposable in the generalized sense are not the same, due
to the technical issue with the space N[m], see for example, page 324 of [58] for more
discussions.

Note that I, = Is. Furthermore, analysing the support of the trilinear expressions

in frequencies, we obtain that Iy = I; = 0. We claim that I,, I, I, are disposable, that is,

Claim 3.1. Forj =1, 2, 3 we have

sup | P HN[m,] < ecp. (3.31)
m/=m+0(1) 0
We also claim that
Claim 3.2. Form' =m + 0(1),

[P [P (U cm10 9“ Uy 10— 100 hem—10) = Um10 0“ Y daUcm10] ||y S €Cmr (3.32)

where ¢ is defined in (3.30); similarly,
| P [P (80 tem—10 Uy 10 9% Um—10<-<m+10) — Bulam—10 ULpy_10 0% Y] ||N[m,] <ecn. (3.33)
]

We postpone the proof of Claims 3.1 and 3.2 to the end of this section.

Hence, by (3.32) we can rewrite the equation for ¢ as
8tt¢ - AW :f + 2u<m—10 8au1<m_108“w, (334)
where

sup HPm/fH < ecp.
m'=m+0(1) N{m/]

Let us note the relation

u'o,u=0.
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6992 T. Duyckaerts et al.

It follows that

0 =Py (0°Um-10u' d,1)

T T
= Pm (aau<m—10u2m_1oaau) + Pm (aau<m—10u<m_10aaum—10§»§m+10)

=I+1.

We can estimate the I term, by using the trilinear estimate, as for m’ = m + O(1)

Lno100l) “N[m’]

5 Z HPm/ (8auk1 u,zz Bauks) H

k1<m—10,m—10<kg<m+10,k3<m+0(1)

+ Z HPmr (B“uk1 Uy, Ba uk3) H

ky <m—10, kg >m+10, kz=ko+0(1)

S Z 2—K(m—min{k1 ,kg])ckl Cka3 +
k1 <m—10,k3<m+0(1)

+ 2 27!((762*m)sz(kz*’n)Ck1 ng
k1<m—10,kg>m+10

||Pm’ (aau<m—10u

N[m/]

N[m/]

< ecp.
Consequently, by the boundedness of P, in S[m’], we see that

sup  ||Pp Il llypm) S €*Cn
m/=m+0(1)

and thus II is disposable. Thus by (3.33) we can rewrite the equation for v as
attw - A¢ :f + 2 (u<m—10 aauim—lo - aau<m_10 ulm—lO) 30(1#,
where f satisfies

sup  |fllvmg S €Cm.
m/=m+0(1)

(3.35)

(3.36)

Step 3 : Construction of the micro-local gauge. To deal with the non-perturbative part

of the nonlinearity, we need to use the idea of Tao [51].
We have

3n‘ﬂ - Alﬁ :f + 2 (u<m—10 8au1m_10 - aOlu<m—10 uT<m—10) aal,[/:

(3.37)
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where f satisfies

sup  |If vy S €Cm. (3.38)

m/=m+0(1)
Let w = U_,,_10¢¥ for some matrix U_,,_;o to be determined below, then (3.37) implies
that
— 090, W = =00, Ucm—10 ¥ — 20U 1002 Y
+ Uimeto [f + 2 (Uemo10 09Ul 19 — 0“Umoro UL, 10) Bu V]
= OUn10) ¥ + Uimrof +

+ 2 [U<m710 (u<m710 aaulm710 - actu'<rr1710 uimflo) - aa U<m710] aal/f
Then

W — Aw = (DU<m710) ¥+ U<m—1(1f (3.39)

+ 2 [U<m—10 (u<m—10 3aulm_10 —0%Um-10 uT<m—10) - 8DtU<m—10] 0.

Ideally we would like to choose U_,,_1 so that

t

+
0" U<m—10 = U<m—10 (u<m—108au<m,10 - 8Dtu<m—10 u )

<m—10

for all «, then the term on the right-hand side of (3.39) containing d,% would be elim-
inated, and we would be in a truly semilinear case. However, this is impossible due
to compatibility issues, see the discussions in [51]. Instead we will follow Tataru's
modification of Tao's idea in [58] to construct a micro-local approximate solution.

Fix large N > 1. Define inductively

N __ N 1 T
Ue = Ul 10 (u<k*10uk - uku<k710)'

where UY, o= > UY+Iifk > —N+11and U% _,, =1 otherwise. In the end we
—N<j<k—10
will pass N — oo, but we need to obtain uniform in N estimates for U,’Cv in order to do

that. We claim the following properties for Uy and UY, with —N < k < N:

Claim 3.3. For € sufficiently small,

UY has frequency support 2572 < |&| < 2K2; (3.40)

6102 1snBny GO U0 Jasn oBeolyD Jo Ausieaiun Aq 6956Z8E/1L969/22/810Z/0BISqe-9]o1E/UIW/WOd dNO"dlWapEdE//:Sd)y Wolj papeojumoq



6994 T. Duyckaerts et al.

sup ”Pk’ Ullcv ”s[k/] 5 Cs (3.41)

K =k+0(1)
|os )" -1], < Ve (3.42
g

We shall prove the claim inductively. For k = —N + 1, the claim follows from the
property that by Theorem 2.3

lullse S 1.

Suppose the claim is true up to k — 1, let us prove it holds also for k. A crucial point is

the following important algebraic identity:

Uy (Uﬂrkflo)T + U 10U (3.43)
= U 1o (Uakr0Uy — uettly_yo) (Ul<kalo)T + (3.44)

+ UY 1o (wately 1o — uck—10uy) (U1<vk,10)Jr (3.45)
=0. (3.46)

We also note that U]N is anti-symmetric if —N < j < —N + 11, which is an easy
consequence of the definition of U]?" .
. N .
Thus by the anti-symmetry of U;" for —-N <j < —N + 11, we get that

vh () = X v X @)

—N<j<k —N<j<k

= X wE)e X ow()

—N<j<j'—10<j'<k —N<j'<j—10<j<k

SD DR (7 I D (GO MR v B

j—j'1<10,-N<j,j' <k —N<j<—N+10

.
= X Ufj,flo(UjY) + > U (UY) + It

—N+10<j'<k —N+10<j<k
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oY ()

i—j’1<10,-N<j,j’ <k

:
— N N
=1+ Y ur(o).

—N<j,j' <k, |j—j'|<10

Simplifying the above, we get that

N
UZ (Uivk)'f —I= Z []]N (UJIY) :
~N<j,j' <k, [i-j/|<10

Hence by (3.41) from induction,
T
CAGAEN

SEED DI 1 W 771

—N<j,j' <k, |j=j'I<10

< - yN Uy
< Y > By, B,
—N<j,j' <k, [j—j'1<10 j1=j+0(1),j2=j"+0(1)
< 2 < ¢?
<Y gse
—N<j<k
In the second inequality above, we used the fact that U}’ = 2 ji=irom Bi

6995

. UJN which fol-

lows from the frequency support property of UJN . We shall use this trick often, as a

replacement of bound on | U}"||s; which we do not have. Below we will omit the routine

details when we use the same trick. In particular, combining the above with the induc-

tion bound (3.41), we see that |UY, |lsq) < C for some universal constant (by choosing ¢

small).

Similarly, for each k¥’ < k + O(1), by the property of S[k] spaces and induction,

e [, (U")']

‘S[k’]

N
< N N
S AN
—N<j,j' <k, [j—j'|<10 S[k']
—k(—k)+ A2
S Z 2 G

O(1)+k <j<k

-
Z 2~ ke=G-k )+CjCk/ 5 €Cy .
O()+k' <j<k

A

Combining the above two estimates, (3.42) follows.
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The estimate for supy_i oq |Pw Uy | gy, then follows from the definition and

| s
the fact that [[u-k_10lls), IUY_0llsa) are universally bounded. The support property is
obvious.

Using these uniform estimates, we can pass N — oo, and obtain a limit along a

subsequence of N, so that

. N; . N;
Uy := lim U,", U, := lim U}
k Niaoo L <k Niaoo <k

exist in the sense of distributions, for each k. Since U} are frequency localized and have

bounded overlap in frequency support, we can conclude that

U = Z Uy +1, and U, = U<k,10(u<k,10u,: — ukUkalo). (3.47)
kK <k

In addition, Uy, U. satisfies the same estimates claimed for UY, U’<"k above. As a

consequence, we have

sup [|PuUklls S ¢k and [[Uskllse S 1. (3.48)
k'=k+0(1)

This is a direct consequence of the property of S[k] under weak convergence, see the

remark below Theorem 2.2.

Step 4 : Control of the nonlinearity after applying the gauge transform. We shall show
that the terms on the right-hand size of (3.39) are all disposable.

Substep (1): the terms involving (Uy.
To control the terms (OU-,,_10) ¥, we need to control OUY |, uniformly for all

large N. By definition,

N _ N t '
OUy = (OUY,_10) (ter—10uy — wrttl; o)
N T T
— 20°UY, _ 00 (Uak—r0uy, — Uil o)
N T ! ! !
+ Ul 10 (Du<k—10uk + Ug-r0Uuy —Dug Ul — ukDu<k—10)

+ 20", (0%wkduuly o — 80Uk 1000u) = + 1T + 1T +IV.

L

We claim that for v = ,

and uniformly for all large N.
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Claim 3.4.
sup [Py (BUF®) [y S 27 il sy (3.49)
J'=i+0)
for all ¢ with frequency support in 2/-%2 <. < 27*%2 and k < j — 7. O

Assuming this claim for a moment, then we can estimate for m’ = m + O(1)

[P [0,

<m—10 ] HN[m’]

S 2 1w [OU ¥ ]y,

k<m—10

< Z 27 < €cm,
k<m—10

and thus the first term on the right-hand side of (3.39) is disposable in the generalized
sense.

We shall prove (3.49) inductively. It is clear that (3.49) holds for k = —N. Suppose
(3.49) holds for k' < k, let us prove that it holds for k. The bound for I term:

1Py [OUY 1o (wakr0uy — ux uly ) 6] HN[;'/]

< Z Hij [OUY P {(uak—10u; — ux uly o) ¢}] HN[)'/]
k'<k-10, [j—j"|<3

—v(—k'
< E 27 )Ck’ck||¢”5[j]
k' <k—10

-k
<27 Pe el llsi

follows from the inductive hypothesis and the property of S[k] spaces. The projection
P;» was used to deal with the frequency leakage, which is a minor technical issue.
Let us consider the IT term 9°U%, | 0, (u<k—10u} — uxu’,_,,) ¢. By (3.48) and the

trilinear estimate, we have

1Py [0 UN 100 (Uer—r0uy — uruily o) @] HN[;‘/]

< Z 1Py [0 U 9 (wak—r0up — urtaly ) ¢] “N[j’]
k'<k—10

Gk
S E 270 el pllsy
k' <k—10

—k(—k
< 270 P 1@l s
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6998 T. Duyckaerts et al.

Let us now consider the term
Py [(UY 109 Uk-1000Uz) @]

from term IV. We have, by (3.48) and the trilinear estimate,

” Py [(UY 109" Uck—1000Uz) @] ”NU']

ek ek
S E 27 eepliglisy S 27 Ve crlldllsy
k'<k—10

forj' =j + 0(1).

The term

Py [(UY 100 udoul o) 9]

can be controlled similarly.
It remains to control term III. For this, we need to use the equation for u. Since

u satisfies the wave map equation, we see that
Oup = Pr (ud*u'd,u), for each k' < k. (3.50)
It suffices to show that, for any ¢ with Fourier support 2/-% < |£| < 2*3 and k' <j — 6,

1B [P (uo°u',u) o] |y < 2702 cp el (3.51)

forj’ =j + O(1). Indeed, from (3.51), it follows that

|By [UY-1oDuck-10uzd] “N[j’]

S Z ”PJ" [Uﬂ,kflODuk’ulz(b]”N[j’]
k’ <k—10

—v(j—k
S Y 20 cualgllsy

k'<k—10
Cu(i—k
Sea2” gy

and that

||Pj/ [Uivk_wDuk uik_w‘ﬁ] “NU’J

. 1
<270 P e gllsyr

6102 1snBny GO U0 Jasn oBeolyD Jo Ausieaiun Aq 6956Z8E/1L969/22/810Z/0BISqe-9]o1E/UIW/WOd dNO"dlWapEdE//:Sd)y Wolj papeojumoq



Universality of Blow up Profile 6999

These estimates are sufficient for the completion of the induction, due to the presence
of the extra €2 factor, which can be used to absorb various constants in the inequalities.

To prove (3.51), let us decompose Py (ud*u'd,u) ¢ as

Py (ud“u'd,u) ¢ = Py (u>,-+k/ 8“u‘8au) 7

2

+ Py (u<j+k/ BauTaau) @ = I +1,.
=2

For I, by the trilinear estimates and symmetry, we can estimate as follows

T t
HP]/ [Pk’ <u>j+2k’ 9%u Bau> (p] HNU/] = E Pj’ [Pk’ (uk1 3auk2 3aUk3) (,0]
2 /
kg, k3, k> 4K -
- i3 ki—k') o—ic(ky —min{ky, k
< lellsy) § : 9 (max) <;<3 ki—k') 9 —« (ky —min{k 3))+Cklckgck3

k=I5 kg =ky +0(1), kg=ka+0(1)

+ Z 9~k (max) <icg ki—k’)z—;((kl —min{ky, k3})+ Ciey Ciy Ciy

: /
ky > ey <ka—C, ka=ky +0(1)

2 —i (k1 -k —k (k1 —k'
Selelsy | D 2 @4 N g2t

j+k j+k
k> ]T = ]T

2 o—5G-k
S 227207 glsyicr

Now let us deal with the term I, = Py (u<]-+k/ 8“u*8au> ¢. In this case, we can insert
=2

P< HTk/ e in front of 9*u' d,u, use symmetry, and obtain that

[ (s an) o]
=7 N[j]

o, T
HP]/ [Pk/ (uSHTk/ P<HTk/+C (3 u &ﬂl)) (p] HN[]"]

A

Y B[R (i P (ulaan))o]|

2
k1<kp, kp=k1+0(1) NI

i DO L CRTE T CUR T

ki<ky—C NI
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7000 T. Duyckaerts et al.

which can be estimated as

.
= X w P (e P o (k) ) o
5 /
k15k2:k2:k1+0(1)rk1># NI
.
fE A )]
3j+k’
k1 <kg, ko=k1 +0(1), k1 <5< N
—k(—k
+ > 2707 |l 5171k, Ck,
klgkz—c,k2§#+c
which is
: /
_"(kl_HTk> 2 2 o—k(—k
S Y 2 lollsyr - ¢z, + D ¢ - 27 gl
L ik
k1>3]1-k kISSJZk
—x(i—k
+ > 2707 |l sy, Cr,

: !
ky <ky—C k<l 4 ¢

<2780 8¢ e llgllgy-

Combining the above estimates for I, II, III, IV terms, the claim follows.

Substep (2): Control of the term containing 0.
Now we address the main term in the nonlinearity that forced us to use the gauge

transform

~

h = [U<m—10 (u<m7108mu1m,10 - aOtu<m710uT<mf1o) —0* U<m710] 3a1/f'

Note that by (3.47), we have

—h= [0°Um-10 = Usm-10 (Uam-100"UL 10 = 8" Usm-10ULy_10)]
= Z [a“Uk —U_-m-10 (u<m—103au]£ - aaukulm—lo)] 0o Y/

k<m-10
= Z [09Uk — Uck—r0 (Uek-100"uy — 0“wguuly o)) duty

k<m-10

T T
- E Uk-10<.<m-10 (u<m—103auk —0%ug u<m_1o) 0o Y
k<m—10

T T
- Z Usk-10 (uk—10§»<m—103auk — 0%y uk—105»<m710) 3
k<m—10
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Z [0“Uskr0 (k10U — Urtlly o)

k<m—10

— U0 (0°Usorou), — ud*uly_1o)] 0¥ + R.

To estimate the R term, let us firstly bound for m’ = m + O(1),

”Pm’ [Uk—10§~<m—10u<m—103au;aaw] HN[m’]

< Z 1P [U thcim—100% Uy 82| HN[m’]

k—10<k’<m—10

< 3 sup [P [Ur 8 ugde ¥ ]| vy

k—10<k/'<m—10 ™ '=m+0(1)
/ /
< 2 : 9—«(k —k)Ck/ CkCm < 2 : 9~ (=) (K k) C;me
k—10<k’<m—10 k—10<k’<m—10

< ctem.

Other terms in R can be treated similarly. Thus

Sup P [Rlllwpmy S D ChCm S €%Cm, (3.52)
m’'=m+0(1) X

and consequently R is disposable.

We can estimate for m' = m + 0(1)

[P [0 Uk 10 (war—r0ut — kil 1) 3] i

S_, Z ”Pm’ [8aUk’ (u<k—10u]T¢ - ukuik_lo) 3a¢] ||N[m’]

k' <k—10
—k(k—k'
S Y 2 a1y lsim
k' <k—10
— (k=) (k—k') A2 2
S Y 2 G Y s S G lstm
k' <k—10

1P (Ut 109" 1008060 ] |

< Z ||Pm/ [U<k—108auk/ultcaaw]”N[m’]
k' <k—10

—k(k—k
S Y 2 oy s

k'<k—10

2
S Y llsim)-
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7002 T. Duyckaerts et al.

Thus in summary, we can estimate

7 2 2
sup Nhllymy S D IV llsim < €%Cm
m’'=m+0(1) k<m—10

and consequently his disposable.

Substep (3): U_nm_10f term is disposable.
This follows directly as f is disposable.

Step 5 : Proof of the channel of energy inequality for the good frequency piece. Take

m € K. By the estimates from Step 4, we can write the equation for w in Step 3 as

with h being disposable in the generalized sense, that is, h = lim h; in the sense of

k—o0
distributions and sup ||Pwhkllvimg S €Cm uniformly in k. Let us now study how the
m/=m+0(1)
outgoing condition (3.28) on the initial data of ¢ has been transformed. Recall that

w = U<m710¢-
Hence
VX,tW = Vx,tU<m710¢ + U<m—lovx,tw'

Thus at time ¢t = 0, by (3.48) and the outgoing condition for v,

”Vx,tW(O) ||L)2<(B§+AUBI—A)

S Vet Uam-10(0) 121 (O)llzge + 1U<m-10(0)llz2 Vit ¥ (O) 228, g, ;)

1

2
1
5( > ||vx,tUk<0)||§§) 1P (tho, Un) i1 z2 + 8700 | Pon (tho, 1) 11 2
k<m—10
1

2
1
5( > c,i) 1P (U0, )l gz + 8T00 [Py (tho, Un) iz

k<m—10
1
< (e + 8100> |1Pr (o, Uil p2-

Similar calculations show that

1
1#wollzz + 13 wo + willyz S (€ +87) 1P (uo, )l
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and

[(wo, wllgrxzz = (1 = y (€ [[Pm (o, Un) Iz xz2

with a suitable y — 0 as ¢ — 0.If § and ¢ are chosen sufficiently small, then by the chan-
nel of energy inequality for the linear wave equation and the bound on k, we conclude
using (2.9) and (2.10) that for all ¢ > 0,

3+ 8
4

‘ 1P (w0, U131, .2 — Ce?cl. (3.54)

/ Ve w|*(x, t)dx >
x1= 23l 4

Since Vy:U_m_10 ¥ is small in L? (smaller than Cec,,) and U_,,_,o is almost orthogonal
by (3.42), the channel of energy inequality (3.29) for i follows (again by choosing ¢, §
sufficiently small depending on S).

This finishes the proof of the theorem.

It remains to prove Claims 3.1 and 3.2.

Proof of Claim 3.1. We need to control I, I, Is.

For I, by the trilinear estimate and symmetry, we get that for m' = m + 0(1)

[P (1090 00|y,

Z P, (uk1 3” u,*€2 O uk3)

k1>m—10,ky, k3

N[m']
Z 2—K(max[k1,k2,k3]—m)+z—x(kl—min{kz,kg))+ x

kl >m-—10, kz Zkg

A

X gy Nstreyy 1ty llstieg) 1ty Nl sia)
Z 2*K(max{k1:k2}*m)+27K(k17k3)+ Ch, €2
k1>m—10,ky>k3

< €2 Cm Z 27(K719)(max{k1,kz}fm)+27K(k17k3)+ < €2 Cp-

k1>m—10,ky>k3

A

For I,, by the product property and null form estimate, we get that for m’ = m + O(1)

”Pm’ (u<m7108aulm+108au) “N[m/]

'
S X i)
N[m/']
k1>m+10,kg=k;+0(1)
— k —
< Z 27F g ey 111ty Nl stiy)

k1>m+10,kgo=k;+0(1)
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S Z 27k ¢y,
k1>m+10,kg=k;+0(1)

Secn Z 2-(e=nl=m < e
k1>m+10,ky=k; +0(1)

For I3, by the product property and null form estimate, we get that for m' = m + 0(1)

”Pm’ (u<m,108°‘ urTnflossmHOaa uszlo) ”N[m’]

S Z HPm’ (u<m—108au:n—105-5m+108auk)”N[m’]
k>m—10

< Z 27k e < ecp.
k>m—10

Thus the terms I, I, I are all disposable. The claim is proved. [ |
Proof of Claim 3.2. Noting that
Py, (um—105~§m+10) =Ppu=1vy

by Lemma 2.1, we get that

t +
Py, (u<m—108au<m_103aum—10545m+10) - u<m_108au<m_108“w
-m T
=2""L (V (u<m—103au<m—1o)r 8aum—mssrnﬂo)
=2""L(Vu du’ *u +
<m—10Y% YW1, _107 m—10<-<m+10

+ 27"L (u<m—108avulm,1o: ac(um710<<<m+10)-
Thus, noting that
IVurllsim S 25 lwkllsi

by the trilinear estimate for the first term in the above and the product estimate and

null form estimate for the second, we get that for m' = m + 0(1)

”Pm’ [Pm (u<m—103auim_loaaum—10<»<m+10) - u<m—108auim_1oaaw] ”N[m’]

s Y 2w [E(Vun e, % 0emino )|

HN[m/]
k1<m—10,kg<m—10
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+ Z 27”1 ”Pm’ [L (u<m—108avu£r aaum710<'<m+10)] HN[m/]

k<m—10

5 9-m Z 2k12ﬂ((k17k2)+cm62 + Z 27m2k6 Cm 5 €Crm.

k1<m—10,ky<m—10 k<m—10

The first part of the claim is proved. The proof of the second part is similar. |

4 Morawetz Estimates and Applications

In the previous sections, the main tools we use are all perturbative in nature. In order
to understand the dynamics of large wave maps, we need some global control on the
solution. Such global control is often achieved with help of suitable monotonicity for-
mulae. The most important monotonicity formula here are the energy flux identity and
the Morawetz estimate (see for example [20]). This section follows similar arguments in
Sterbenz-Tataru [48].

For notational convenience, we shall work with a classical wave map u defined
on R? x (0, 1], that equals u,, € S? for large x. Let us firstly look at the energy flux identity

for u. We thus have
dau — Au = (|Vul® — |u./»u, in R? x (0,1].
Noting that u" - u; = 0, we have the identity
(0¢u" — Au') - u, =0, in R* x (0,1]. (4.1)

Take 0 < t; < t, < 1, and integrate the identity (4.1) in the truncated lightcone {(x,t) :

|x| <t, t; <t < ty}, we obtain that

Vul? 9, ul? vul>  |dul?
/ <| | +|t|>(x,t2)dx—/ <| |+|t|)(x,t1)dx
|x| <ty 2 2 lx|<ty 2 2

1 [ Vul?  |oul?
——/ / Vul —i—ﬂ%—)—{-VuTatu dodt = 0.
V2 iy Jixi= 2 2 t

Denote

1 [P [Vul?  |oul> x
Flux(t;, t,) == — Z.vu'du)dodt
(t1,t2) ﬁ/; /XI—t( 5 + 5 + t ¢ ) o

1
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as the “energy flux” through the lateral boundary of the lightcone. We see that

Vul?  |9.ul?
Flux(t;, t) = / <|_u| + ﬂ) (x,tz)dx
Ix|<ty 2 2

Vul?  |o,ul?
—f <| L |)(X,t1)dx.
|x|<ty 2 2

Since Flux(t;, tp) > 0, it follows that

|Vul? |8tu|2>
+ (x,t)dx
/X<t ( 2 2

is nondecreasing, and has a limit as t — 0+. Thus Flux(t;, t;) — 0+ as t;, t; — 0+.

The control of energy flux plays an essential role in the following Morawetz

estimate.

Theorem 4.1. Let u be a classical wave map with energy E on R? x (0,1] and € € (0, 1).
For each 0 < t < 1, if Flux(0, t) < €E, then

i _ Vul?  |ugl? -
/ / pfz(X“BD,u)dedt—l-/ t,oet(| 2' + | 2t| +%(.VuT ut> (x,)dx <E, (4.2
et Jx|<t |x|<t

_ 1 _
where we set p; 1= ((t + €t)* — [x|?) ? and X“ =x“ ifa =1,2, X% =t + €t. O

Proof. By rescaling, we can assume without loss of generality that ¢ = 1. (Then u is

rescaled to R” x (0, 1]) Let us integrate the identity
3*d,u' p. XP9su =0

on{(x,t): |x|] <t € <t <1}. We have

1
0= / / 3“0,u’ pXPdgudxdt
€ |x|<t

1 B Taa
= f f 0. XPo* (,u' aﬂu)—pgxﬁaﬂ%dxdt,
€ |x|<t

=B+1,
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where the boundary term B and the interior term I are

! *utd,u
Z/ / peXﬂn“ 8auT Bﬁu—,ogXﬂnﬂTdadt
|x|=t

“u'to,u
— / pe XP du' dpu(x, 1)dx — (1 +€)p. T(X,l)dx
lx|<1 |x]<1
Qv Taa
+ / 0 XP 3, u" dpu(x, e)dx + f 2¢€ p. %(x,e)dx;
Ix|<e |x|<e

and

1 aq,t
—/ / 8% (pe X" 8,u’ 85w — 0 (p X*) %dxdt.
|x|<t

In the above we use the notation n = % (; ) =n; = f\x\ forj = 1,2 and
n’=-nyg= JLE Hence X/-"n,g = —% on |x| =t. We can compute

djpe = Xip2, dpe = —tp. —€pl.

Hence

Xﬂaﬁpe = —Pe-

We also note that e p < 1 when |x| < t, and record the following simple bound when

x| =1

—

lpl = (2et+€%) 2 <€

NI—
NI—

-
We can simplify the B, I terms as

1 ! (x%9,u) 0°u’ d,u
= e (XPo,u)  —— + € p.————dodt
ﬁ/ /|x|_zp (X pu) - — pe—>

vVul>  |3:ul?
—/ Pe (%+%+x-w* Btu> (x,1)dx + O(E)
|x|<1
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and

1
—1=/ / [Xﬂaﬂu* 3pe duu + pe (IVUI® — |9,ul?)
€ |x|<t

3 %u' 9,
— E,OE (8“uT 8(111,) —Xﬁaﬂpé %} dxdt
! 2
€ |x|<t
We can estimate
1 /1/ (x*3, 1) *u’ d,u
— pe (XPasu)  ——= + € p. dodt
'«/E € |x|=t ( g ) t

X 2
hu+ Vu) dodt +

1
§ff pet
€ |x|=t

! vVul?  |8ul* x
+// 6,0€<| | +|t | —i——-VuTatu)dodt
€ |x|=t

2 2 t

< e 2Flux(0,1) < €ZE.

~

Hence, combining the B and I terms, we conclude that

vul?  |8,ul? !
/ Pe (' 2' 4! ‘2| +x-vu' 8tu) (X,l)dX+/ / P2 |XPd,u|* dxdt
|x]<1 € |x|<1

<E.
The theorem is proved. |
Theorem 4.1 has the following corollary.

Corollary 4.1. Let u be as above. For any 1, — 0+, y, — 1— as n — oo, we have that

vul?  |3:ul?
/ [Vul® + 19:ul? + X . vu'su (%, 1)dx = 0,(1). (4.3)
Bfn\BVnTn 2 2 ¢ |:|

Proof. Let ¢, := 2Flux(0,t,)/E, then ¢, — 0 as n — oo. Theorem 4.1 implies that

vul? |qul? x
/ rn,ogn,n(| 2| +%+?-Vu"8tu)(x,rn)dX§E.
Br,
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Note that

_1
Tn Pentn Z ((1 +6n)2 - yr?) 2= 00

for t = 1,, |x| € (YuTn, Tn), We conclude that (4.3) holds. |

5 Universal Blow up Profile Along a Sequence of Times

Our goal in this section is to prove Theorem 1.2 along a sequence of times. Again for the
ease of notations, we shall consider classical wave map u defined on R? x (0, 1] that blows
up at time ¢ = 0. Recall from (2.25), the definition of r(e,, t). By the small data theory
and finite speed of propagation, we have tl_i)r(& r(e., t) = 0. That is, energy concentrates
in smaller and smaller regions as t — 0+. By the definition of r(e,, t), we can find x,(t)
such that

— €x
U @)l xL2 (Bor(ey, 1y (1)) = 5

2 (5.1)

for t close to 0. Again by small data global existence and finite speed of propagation,
x,(t) remains in a bounded region for ¢t € (0, 1]. Assume without loss of generality that

x,(t,) — 0 as t, — 0 along a sequence of times t,. Since r(e,, t) — 0, we see that for any

r>ao,
. . — €
hrtnjonf ” u () ”Hl xI2(By) ~ 9 (5.2)
In general, we call a point X singular if for any r > 0
. — €y
lim SOUP U Dllgrwr2m@) > TR
t—

By finite speed of propagation and energy flux identity, this is equivalent to requiring
that for any r > 0,

Hltnjonf 1% @)l sz ) > 62_*
As the energy is conserved and finite, there can only be finitely many singular points,
and in particular the singular points are isolated.

For the singular point x, = 0, since singular points are isolated, there exists
r; > 0 such that for any X € B, \{0}, X is not a singular point. Hence we can find 7 > 0

with

—
't (tn) I xL2(B;(®) < €x (5.3)
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along a sequence of times 7, — 0. In particular, we have

g, Tn)||L2(B;(§)) < €.
Hence there exists 7, € (%, 7) with

2
€

[ purende s &

3Br, @ r

n
Denoting u, as the average of u(z,) over dBr,(X), that is

_ 1
Uy, = — U(Tn)dO'.
27Ty Bz, (%)

By Sobolev inequality, we get that

lu(tn) — Unllpoox—si=rm) S €x- (5.4)

Take smooth cutoff function 5, € C° (Bar, (X)) with 0,5, & = 1and [Vn,| < (7,) . Recall
that for any v € R2 with v # 0,

Define

(W, 9u)(t) in By, ®);

(ton: thin) = {(P[nnw(ne,m ST+, 0) in (B (D)

By (5.3) and (5.4), direct computation shows that

||(u0nr uln)”Hle2 ,S €. (5.5)

Hence by small energy global existence theory and finite speed of propagation, we see
that the solution u, to the wave map equation with T/,)n(rn) = (Uon, U1n) is global and
that

r
u, =u for |x — x| < Z” and t € (0, 1,] (5.6)

for sufficiently large n. Since u, € C([O, 7,], H! xLz) and (5.6) holds, we conclude
that u can be extended to t = 0 so that u € C ([0, 7], H' x L?(B;/3(X))). Since X €
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B, \{0} is arbitrary, we conclude that u can be extended to t = 0 in B, with u ¢
c ([0, 11, H' x L*(B,,\B,)) for each 0 < r < .

In addition, by the regularity of u,, we also have the additional (qualitative)
regularity condition that u € C* (B,1 x [0, 11\{(O, O)}). One can of course apply the same
argument to other singular points. As a result, we see that u € C*(R? x [0, 1]\{(x;, 0)})
where x; are the singular points.

On the other hand, since T (¢) is bounded in H! x L? and |u| = 1, we can extract
a weak limit (vo, v;) € H' x L? along a sequence of times t, — 0+. This limit is in fact
a strong limit outside an arbitrarily small neighborhood of the finitely many singular

points. From the above analysis, (v, v;) € C*(R?\{x;}). Let
v=u

forinf |x — x;| > t. Thenv € C* [ R? x [0, 1\ Uflx — xj| < t, t € [0, 1]}), and by the same
J J

arguments as in the proof of Lemma 2.4,

V(. t) = (Vo, V1) —0. (5.7)

lim
t—0+ Hlx12 (m(\X—Xj\>t}>
J

We shall call v the regular part of the wave map u. The main issue is to understand the

behavior of the wave map u inside singularity lightcones | J{|x — xj| <, t € [0, 1]}.
J
We shall prove

Theorem 5.1. Let u be a classical wave map with energy
E(U) < £(Q,0) + €, (5.8)

where Q is a harmonic map with degree 1, defined on R? x (0, 1] that blows up at time
t = 0 with the origin being a singular point. Assume that ¢, is sufficiently small. Then

there exists a sequence of times t, — 0+, £ € R?> with |¢| < 1, x, € R?, A,, > 0 with

lim X% = ¢, 2, =o(t,)

and (vo, v1) € H! x L2 N C®(R?\{0}), such that

X—Xx, t—t,
A Ag

U (ty) = (vo, vi) + (Qp, 2,79,Q) < ) + 041,52(1), (5.9)

as n — oo. O
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Remark. As we discussed in the introduction, the main new point in Theorem 5.1 is
that we eliminate any possible energy concentration near the boundary of singularity
lightcone |x| < t. By the energy constraint (5.8) and the proof below, there is only one sin-
gularity point. Hence u is regular outside {(x, t) : |x| < t}. The main task is to understand
the behavior of u inside {(x,t) : |x| < t}. O

Proof. Our starting point is the work of Grinis [21], which completely characterized
the concentration of energy in {(x, t,) : |x| < at,} for any a € (0, 1) as traveling waves,
for a suitable time sequence t, — 0+. See Theorem 1.1 and Theorem 1.2 in [21]. In our
case, due to the energy constraint (5.8), there can only be one traveling wave. Hence,
as a particular consequence of a rescaled version of the asymptotic decomposition in

Theorem 1.2 of [21], we have for |x| < 1,,

U (1) o= (og (X;X", o>, r,'Vo,Q, (X;X”, 0>> + (Won, Win) + 0g1,52(1),  (5.10)

n n

as n — oo, where |[£| < 1, r, = o(z,,), £ = lim ’T‘—: and

n—oo
/ |VWon|* + [Win|*dx — 0, (5.11)
|x|<atn
as n — oo for any a € (0, 1). Our main task is to show that
/ IV Wonl? + [WinlPdx — 0
|x|<n

as n — oo. By (5.11), we have to prove that that for any y, — 1—,

Vul?  [3ul?
lim sup/ (' ul + ﬂ) (x,7,)dx =0 (5.12)
n— 00 Bty \Bynn 2 2
assuming that
lim sup/ |[VWon|? + Wi |?dx = 0. (5.13)
n—oo Byn.[n
We now apply the channel of energy inequality and prove (5.12). ]

Suppose that (5.12) is not true. Then there exists €, > 0, such that, by passing to

a subsequence if necessary, we have for all sufficiently large n,

vul?  |9ul?
&2 ;=/ (' ul” |, 19eul )(x,rn)dxzeg. (5.14)
Bin \Byntn

2 2
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By the energy constraint, we must also have

Vul?  |9ul?
f <| | + [0:ul )(X,‘L’n)dX,Ség' (5.15)
BS,, MBry, 2 2
2
Corollary 4.1 implies that
vVul?  |d:ul?

/ (' A P aru> (%, T)dx = 0, (1). (5.16)

Bty \Byntn

Since u is regular for |x| > t, we have for any r > 0,

vul?  |ul?
lim sup (' E 1ol >(X,t)dX§8(r)—>0, asr— 0+. (5.17)
t~0+ Jpym \ 2 2

Fix a small r > 0 whose value is to be determined below. We can find r,, € (Z r),

2’
ran € (2, 21,), such that

[ w57, and [ jui)de = 20
Bryy, r r.

in "Brzn 2n

Let

1 1
ﬁ:l = / u(t,)do, and ﬂi = / u(ty)do.
2711n Josy,, 27Ton Josy,,

Fix radial n,, € C*(Ba,,) with Mnls,, = 1, and radial 1 — 1, € CX(B,,) with
1 —n2nlpr, =1. Define
'
(P [nln (u(rlner Ty) — a,ll) +ﬁ:,'] ’ 0) in B(r:ln"
(Uon, Uin) = | U (Tn) in B,, \B,,,; (5.18)
(P [n2n (u(rznf, @) —Ty) + Ty ], 0) in B,,, .

Then for sufficiently large n, in view of (5.13) and (5.17),
1 Wons win) 12288, Umgnyn) S 8(7)
and
€0 2 1 (Uon, Urn)llgrerz > En + 0(3(r)) = €2+ O(S(1)).
In addition, by (5.16), for sufficiently large n

ltin + 0rtonllz2 + IPUonllz2 < 8(1).
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Let u, be the solution to the wave map equation with U (t,) = (Uon, U1y). Then if r is
taken sufficiently small so that §(r) is much smaller than ¢, by (a rescaled and time

translated version of) Theorem 3.1 we conclude that fort > 7,
/ IVx,tun}z (x, t)dx > E2. (5.19)
\X\>t—%‘
Take t = ¢ in (5.19), we get that for all sufficiently large n,

r
/| - |vx,tun|2(x,§)dx35,§. (5.20)

8 8

By the energy inequality, (5.17) and the definition of u,, we see that for ¢ < ¢,
/ |Veittn|” (x, t)dx < 8(r). (5.21)
|x|>t

By finite speed of propagation, we also have u = u, fort — 2 < |[x| < ; and t < 3.

Combining with (5.20), we conclude that

r
f |VX,tu|2 (x, g)dx >E*>¢€2 >0, (5.22)
grlxl>g-F

if we choose r sufficiently small, so that §(r) is much smaller than 622. However, (5.22)
contradicts with the fact that @ (%) € H' x L? for sufficiently large n.
Therefore, combining the above with the regular part outside the singularity

lightcone, we get that along the sequence t,,

X — X,

TI(Tn) = (vo, V1) +(Qq, T,Zlatae) < , 0) + 0g1,52(1), as n — oo. (5.23)

n

The theorem is proved.

6 Coercivity and Universal Profile for All Times

Our next task is to use a rigidity property of the energy to extend the decomposition we
obtained from the last section to all times. One important tool is the following coercivity

property of the energy functional near traveling waves.

Theorem 6.1. Let M, be the space of harmonic maps from R? to S? with topological

degree 1. Fix ¢ € R? with |¢| < 1 and for any Q € M, let Q, be the Lorentz transform of
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Q with velocity ¢, that is,

(6.1)

t-x gttt
Qx,t)=Q(x .

- C+
|2 J1—e?

Denote M, , as the space of Q, with Q € M;. For 0 < € < ¢, and ¢, sufficiently small,

suppose that (vo, v;) € H' x L?, with |vo(x)| = 1 and v{ - v, = 0, satisfies

deg(vp) = 1; (6.2)
/ 3XJ,V5 VldX—/ BXJ.O} 9,0,dx| < €; (6.3)
R? R2
Vo2 v / 10:Q,1*  |VQ,*
dx < dx ; 6.4
/Rz ( 2 T2 =) \T2 T3 te 6.4)
oiel}\gl I(vo, V1) — (Q¢, 3:Qp) |1 412 < €o- (6.5)

Then there exists §(¢) > 0 with §(¢) — 0 as € — 0, such that

inf [[(vo, v1) — (Qr, 9:Q) 12 < 8(€). (6.6)
QeM;

Remark. As we will see in the proof

/ Va,* | 18.Q* .,  4n
R 2 2 V1=
47'[6]'

NI

for any Q € M,;. The conditions (6.3) and (6.4) are thus independent of the choice of
Q e M,. O

—/ 3,Q! 3, Q,dx =
R2 /

The definition of degree deg(f) for mappings between manifolds is classical.
For the definition with f : R? — S? c R® and f € H' used here, we refer to [3], see in
particular (1) in page 205 of [3]. We also remark that the harmonic maps in M; have
been completely characterized as degree 1 rational functions (Mobius transforms), see
[19] and a more recent discussion in [39]. By elementary geometric properties of Mobius
transforms, it is easy to see that degree one harmonic maps from R? to S? C R® are
unique up to the symmetries of R? and S?. More precisely in an appropriate coordinate

system, the harmonic maps in M, are co-rotational.
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Proof. Without loss of generality, let us assume that ¢ = le; = (I, 0). Suppose that
(6.6) is false, then for each n = 1,2,..., by symmetry, we can assume that there exist

(Von, Vin) € H' x L? with |vo,| = 1 and v{, v, = 0, such that

deg(von) = 1; (6.7)
1
/R2 BvagnvlndX — /R2 BXJ,O} 3,0,dx| < i (6.8)
2 2 2 2
/ |V Vonl n [Vinl de/ 10:Q,| n [VQ,| dX—l—l; (6.9)
R2 2 2 R2 2 2 n
aieljl\fll | (Von, Vin) — (Q¢, 3:Q0) llgr1z2 < €o. (6.10)
In addition,
inf [[(Von, Vin) — (Q¢, 3:Q0) |1 ,z2 > 80 > 0. (6.11)
QeM;
For fixed (vo, v;) € H' x L?, with |vy(x)| = 1 and v - v, = 0, assume without loss of

generality that vy is positively oriented, that is,
1 T
deg(Vo) = —— (O (BIVO X 82V0). (612)
4:7T R2
Consider the following algebraic identity
v 2 2
/ <| Vol +|V1| )dX
R2 2 2
1 ) 1 2
= — |V1+l31V0| dx + — \/I—ZZBIVO—V0X32V0‘ dx
2 R2 4 R2
1 2
+Z/ 82V0+\/1—ZZV0X81V0 dX—\/l—ZZ/ VOT'(81V0 X82V0)dX
R2 R2

— l/ 81VS VldX. (613)
R2

(6.13) is a modified form of the remarkable decomposition of energy in [1], see also the
illuminating discussion in page 3 of [41]. The modification here is necessary in order to
take into account the momentum part.

Direct calculations show that

0,Q.12  IVQ,) 1 4nl
/ <| t €| +| fl )dX: T and _/ atOT 810[dX= T . (614)
¢
R2 2 2 1-12 R2 11

We can assume, after rotation, that (vy,, vi,) has the same momentum as (Q,,, 9;:Qy,)

with ¢, =1, e;. Then |, — | < % Applying (6.13) to (vo,, v1,) and using the assumptions
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on (Von, Vin), We get that

V VL2 n.z
/<| Von! +|V1|>dx
R2 2 2
1 1
== 1,0 2dx + -
Z/RZ |V1n+ n 1V0n| +4/R2

vq
4R2

— ln/ vy, Vindx
R2
1 1
== n + 101V, |? dx —/
2/};2|V1+ 1Von| +4 -

vq
4R2

In the above we used the expression for degree and momentum. From (6.9) and (6.14),

2

dx

1-— l)2181V0n — Von X 82V0n

2
—J1=12 vl (81Von Von
dx lnLZ on * (01Von X 02Vg,) dx

82V0n +.,/1— lrle()n X 81V0n

2

dx

V1 —120,Von — Vo X 02Von

2 4 1
dx 4+ —2 +0(—).
-F n

82V0n + 1-— l2V0n X 81V0n

we conclude that

1 1
E/Rz [Vin + 18:Von|* dx + L_L/R2
.y
4 RZ
1
_ 0(—). 6.15)
n

By (6.10), applying suitable symmetry transformation to (vy,, vi,) if necessary, we can

2

dx

vV 1-— l281V0n — Von X anOn

2
dx

82V0n + 1-— ZZVQn X 81V0n

assume that for suitable 55 € My,
(Von, Vin) = (Qy, 8,Q,)(x,0) + (Fon, T1n) (6.16)
with
| (o, 1)l xr2 < 2€0.
Passing to a subsequence, we can assume that (vo,, vi,) — (vo, V1) as n — oo with

| Vo, v1) = (Q:, 3,Q0)(x,0)| 1> < 260

Hence by the continuity of topological degree (This is a direct consequence of the defi-
nition (6.12) of degree, and can be proved by noting that /., d,u x d,udxdy = 0 for any

H' mapping from R?> — S?, and the dominated convergence theorem.) in H' and the fact
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that degree only takes value in integers (see [3]), we see that if ¢, is taken small enough,
then

deg(vp) = 1.

(6.15) implies that (vy, v;) satisfies the first order “Bogomol’'nyi equations” (see [2]):

v, + l81V0 = 0,
vV 1-— l281V0 — Vo X 82V0 =0;
82V0 —+ v 1-— l2V0 X 81V0 =0. (617)

Equations (6.17) can be reduced by an obvious change of variable to the case [ = 0, in
which case they can be explicitly solved as harmonic maps. Hence we see that there
exists Q € M, such that

(vo, V1) = (ae, 3taz> (x,0).
Thus we can write
(Von, Vin) = (5z, 3tae) (x,0) + (Ton, T1n)

with (7,, 71n) — 0 as n — oo. Then the energy expansion for (vo,, vi,) around
(5@, 8t(~25) (x,0) gives

1 Vvonl?  |Vinl?
5<ae,ataz)+—z/ VVoul” | Wnl”) 4,
n R2 2 2

.
2 R2
~t ~t __
+/ VQ, Vo + 8,Q, Findx
R2

Vil | [Fil?
dx
+ /};2 2 + 2

=4 V> [Finl?
=5(0l>+f VFl® | Pl g o 0y,
RZ 2 2

2
+

2

vaQ, 3,Q,| dx
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= —
By (6.9) and the fact that £ (O/j) = £(Q,), we see that
(Fon, T1n) — 0, in H' x L2,
This is a contradiction to (6.11). The theorem is proved. |
Now we turn to the proof of the second main theorem in the article.

Theorem 6.2. Let u be a classical wave map defined on R? x (0, 1] with energy &) <
£(Q,0) + €2, where Q is a harmonic map of degree 1, that blows up at time 0 and at
the origin. Assume that ¢, is sufficiently small. Then there exist £ € R? with || « 1,
x(t) € R?, A(t) > 0 with

t
lim & =4¢, AMt)=o0()
t—-0 ¢
and (v, v;) € H' x L? N C®(R?\{0}) with (Vo — U, V1) being compactly supported, such
that

Hlx12

(6)) inf{ I (@) — (vo, v1) — (Qu, 3,Q0)|, 1 Q€ M“} — 0, ast — 0;

—0ast— 0. ]
H1 L2 (R2\By () (x()))

U (t) — (vo, V1)

(ii)

Proof. We have already proved that along a sequence of times t, — 0+,

— 1 —
T (t,) = (Oe (X . X”,O), — 00, (X . X”,o)> + (Vo, 1) + 0gg1,52(1), 6.18)

where (vo, v1) € H! x L? N C*(R?\{0}) and

X
lim =2 =¢, and A, = o(t,), as n — oo.

n—oo n

Since

Vul?  |0ul?
€y 1= / (' ul + ﬂ) (x,t,)dx — 0, as n — oo, (6.19)
B2ty \Btp, 2 2

we can find r, € (¢,, 2t,) such that

2
/ WUl ot )do < &
9By 2 T

n
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Let
_ 1
U, = / u(t,)do. [ ]
27Trrl 9Bry,
Take a smooth cutoff function #, with n, = 1 on B,,, supp n, € Ba,,, and |Vn,| <
r,'. Define
U (X, ty) for |x| < ry;
(uOn/ uln) = — —
(P [na(r)(u(ryf, tp,) —Uy) +uyl, 0) for |x| > 1.

One can check that (uon, U1y) € HS x HS ! fors < % and uq, = P(u,) for large x. Moreover,

”(uOn/ uln)”Iz:Il ><L2(Bg ) 5 €n. (620)
n

Let u, be the solution to the wave map equation with U n(tn) = (Uon, Uip). (The local
existence of u, follows from subcritical wellposedness theory.) Then by finite speed of
propagation, u, = u for |x| < t and t € (0, t,], assuming that u, is defined in [¢, t,]. In
addition, by (6.20) and energy flux identity, since the energy flux of u, is equal to that

of uon |x|=t, t € (0, t,] which decays to zero as n — oo, we get that
/ Vi tUn (X, )dx S €, + 0n(1) (6.21)
|x|>t

for t < t,, again assuming that u, is defined in [t, t,]. As u, is identical to u in the
singularity light cone |x| < t, 0 < t < t, and u, has small energy for |x| > ¢, 0 < t < t,,

we conclude that u, is defined for t € (0, t,]. From (6.18), it is easy to verify that

deg(un(tn)) = 1;
E(Un) < £(Q)) + 0n(1);

(M(T ) = M(G)| = 0a(D),

where M (W) denotes the momentum of u. Hence by Theorem 6.1, U () stays in a §(e,)
neighborhood of M, ; for t < t, with §(¢,) — 0 as n — oo. It follows that

lim inf{ I (®) — (vo, vi) — (Qe, 3,Q0) | 1,0 : Q¢ € Mz,1} =0. (6.22)

Part (i) of the theorem is proved. The fact that all degree 1 harmonic maps are

co-rotational implies that M, ; is a compact set in the energy space, modulo translations
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and dilations. Hence, by the regularity of u outside the singularity lightcone, we can find
x(t) and A(t) with A(t) = o(t) and

|x(®)]

limsup —— < 1.
t—0+

The main remaining task is to show that

lim —= = ¢. (6.23)

t—>0+ ¢
Without loss of generality, let us assume that ¢ = le; By (6.22), it follows that

al
lim | —8udy,ux, t)dx = 1—” (6.24)

-0 |x|<t - l2

Direct computation shows

d/ X |Vu|2+|8tu|2 (x,t)dx
dt Juoe '\ 2 2 '

Vul? o, ul? X
:/ X1(| | +| vl )(X,t)do+/ x— - Vu' d,udo
Ix|=t 2 2 =t |X]

— / Oy, U dsu(x, t)dx.
|x|<t

Integrating the above identity from ¢ = 0 to t, we get that

Vul? 2
/ x <| ;| n |3t2u| ) (x,t)dx = O (Flux(0, t)) t +
|x|<t

At o (6.25)
VI—T? ' '
As Flux(0,t) — 0 as t — 0, by (6.25) and (6.22), (6.23) follows straightforwardly. The

theorem is proved.
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