
T. Duyckaerts et al. (2017) “Universality of Blow up Profile for Small Blow up
Solutions to the Energy Critical Wave Map Equation,”

Universality of Blow up Profile for Small Blow up Solutions to the

Energy Critical Wave Map Equation

Thomas Duyckaerts1∗, Hao Jia2, Carlos Kenig3, and Frank Merle4

1LAGA, Institut Galilée, Université Paris 13, Université Sorbonne Paris

Cité, 99, avenue Jean-Baptiste Clément, Villetaneuse, 93430, FR and

Institut Universitaire de France, 2School of Mathematics, Institute for

Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA,
3Department of Mathematics, University of Chicago, 5734 University

Avenue, Chicago, IL 60637-1514, USA, and 4Laboratoire AGM, UFR

sciences et techniques, 2 av. Adolphe Chauvin, 95302 Cergy-Pontoise

Cedex, France

∗Correspondence to be sent to: e-mail: duyckaer@math.univ-paris13.fr

We show that an energy-critical wave map into the sphere that has energy just above

the degree one harmonic maps and that blows up in finite time asymptotically decouples

into a regular part plus a traveling wave with small momentum, in the energy space. In
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6962 T. Duyckaerts et al.

1 Introduction

We consider the Cauchy problem for wave map u from R2+1 with Minkowski metric to

the standard 2-sphere S2 ⊂ R3:

∂ttu− �u = (|∇u|2 − |∂tu|2)u, in R2 × R (1.1)

with initial data−→u (0) := (u, ∂tu)(0) = (u0, u1).We shall only consider initial data (u0, u1)

that satisfies the “compatibility condition” that |u0| ≡ 1 and u0 · u1 ≡ 0. For simplicity,

we also assume that the initial data −→u (0) is smooth, u1 is compactly supported, and that

u equals a fixed constant u∞ for large x. We call such wave maps classical, following

the usual convention. Wave maps from the Minkowski space to a general Riemannian

manifold M arise naturally as the hyperbolic counterpart of harmonic maps, and are

given as critical points of the Lagrangian

L(u) :=
∫

R3
|∇u|2 − |∂tu|2dxdt

for u : R3 → M. It is sometimes more convenient to adopt the more geometric notation:

set for α = 0, 1, 2 that ∂α = ∂t if α = 0, ∂α = ∂xα if α = 1, 2, and that ∂α = −∂α if α = 0,

∂α = ∂α if α = 1, 2. This is of course just using the Minkowski metric to lower or upper

the index. We adopt the Einstein summation convention with repeated indices and view

u as a column vector. We also use the standard notation that x0 = x0 = t, xj = xj for

j = 1, 2. Then equation (1.1) can be written as

− ∂α∂
αu = u ∂αu†∂αu, (1.2)

where u† is the transpose of u.

The wave map equation has been intensively studied, as a natural geometric

wave equation and as models from physics—including general relativity and gauge the-

ories. The study of the Cauchy problem and the dynamics of solutions was initiated in

the works of Shatah and Tahvildar-Zadeh [45, 46], Christodoulou and Tahvildar-Zadeh

[4, 5], and Struwe [49], in the equivariant setting. In these works, many deep and inter-

esting regularity and dynamical properties of equivariant wave maps were revealed. In

general, the wave map can develop a singularity in finite time by concentrating energy

in a small region. Indeed, singular solutions in the form of a shrinking soliton plus a

residue term have been constructed for the 2 + 1 dimensional equivariant wave map

equation by Krieger et al. [? ] with prescribed rate, by Rodnianski and Sterbenz [41] in

a stable regime for high equivariance wave maps, and by Raphaël and Rodnianski [40]
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Universality of Blow up Profile 6963

for co-rotational wave maps. We also refer to the recent survey [43] for further discus-

sion. The Cauchy problem for the wave maps without equivariant symmetry is more

complicated. Recall that equation (1.1) is invariant under the natural scaling

u → uλ(x, t) = u(λx, λt), (u0, u1) → (u0λ(x), u1λ(x)) = (u0(λx), λu1(λx)) (1.3)

and the conserved energy

E(
−→u ) :=

∫

R2

( |∇u|2
2

+ |∂tu|2
2

)
(x, t)dx (1.4)

is invariant under the scaling (1.3). Scale invariance of the equation plays an essential

role in both the Cauchy problemand the dynamics of solutions.Wenote that for equation

(1.1), the natural initial data space invariant under the scaling (1.3) is the energy space

Ḣ1 × L2, and hence the equation is called energy critical. The works of Klainerman and

Machedon [32–34], and subsequently Klainerman and Selberg [35, 36], and Selberg [44]

establishedwellposedness in the subcritical space Ḣ s−1×H s−1 with s > 1, and introduced

important ideas on the bilinear and null form estimates that also played an important

role in the critical theory. The Cauchy problem for the wave map equation in the critical

space Ḣ1 × L2 is more difficult, and was addressed in the breakthrough work of Tao

[51], using the important null frame spaces introduced by Tataru [57] (In this work,

Tataru established small data global wellposedness in a critical space that is slightly

stronger than the energy space.) and Tao’s idea of gauge transform [50]. The global

wellposedness for the energy critical wave maps has been solved, independently in the

works of Krieger and Schlag [37], Sterbenz and Tataru [47, 48], and Tao [52–55]. We will

mainly rely on the Sterbenz–Tataru approach to the large data theory. [47, 48] proves that

if a wavemap blows up in finite time or is global and does not scatter, then after suitable

transformation using symmetry, it must converge locally, along a sequence of times, to

a harmonic map. This is a first step in the proof of the so-called “soliton resolution

conjecture”, predicting that the solution asymptotically decouples into a finite sum of

harmonic maps (modulated by the transformations of the equation) plus a regular part

in the finite time blow up case or a linear wave in the global existence case.

Many recent progresses were made on this conjecture in the equivariant set-

ting. It was proved by Côte [7] for co-rotational wave maps and by the second and

third authors [26] for all equivariant wave maps that the decomposition holds along a

sequence of times. If one imposes certain energy constraint that effectively rules out

multi-soliton configuration, then the restriction to a sequence of times can be removed,
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6964 T. Duyckaerts et al.

and the full soliton resolution holds, as proved in [9, 10] (see also [29, 31] for the wave

maps equation outside a ball ). Note that even in this equivariant setting, the question

of proving the full resolution remains open for general solutions. To answer this ques-

tion, it seems that one needs to understand the interaction of solitons that are separated

by scales, which appears to be a challenging task. We refer to [24] for the existence of

solutions decoupling into more than one bubble.

The new ingredient in [9, 10, 29, 31] is the channel of energy method first intro-

duced in [15, 16] in the context of the energy-critical semilinear wave equation, which

provides strong decouplingmechanism between the dispersion and solitary waves. This

method consists in proving that the energy of any solution that is dispersive (in a weak

sense that has to be made precise) can be bounded from below outside the wave cone

in at least one time direction. For the energy critical wave equation, this channel of

energy inequality was proved by the first, third and fourth authors for small solutions,

in odd space dimensions [16] and for any radial, nonstationary solution in three space

dimensions [17]. See [8, 18, 27, 28, 42] for other applications to semilinear energy criti-

cal wave equations. Note that this channel of energy inequality is very sensitive to the

dimensions (see [12, 30]) and (at least for large solutions) depend crucially on the radial

assumption.

Going back to equation (1.1), one can ask what happens if we remove the equi-

variance assumption. Recently, Grinis [21] proved that along a well-chosen sequence of

times, all the energy concentration strictly inside the lightcone (That is, in the region

{|x| < a|T+ − t|} for any a < 1, where T+ is the blow up time, for a solution blowing-up

at x = 0.) must be in the form of traveling waves, by showing that there is no energy in

the so called “neck region”. (The region strictly inside the lightcone and away from the

solitons.) It is natural to ask if one can prove the soliton resolution conjecture along a

sequence of times, as in the equivariant case. However, a new difficulty appears that

is not present in the equivariant setting, where a classical result of Christodoulou and

Tahvildar-Zadeh (see [4, 5]) asserts that there is asymptotically no energy accumulation

in the so called “self similar” region. In particular, in the equivariant case there cannot

be any energy concentration near the boundary of the singularity lightcone |x| < T+ − t

as t → T+, assuming that the solution blows up at time T+. As far as the authors know,

it is an open question how to rule out energy concentration in this region in the general

case. Another question that is left open in the work of Grinis is to obtain a complete

characterization for general times t → T+, and not only for a sequence of times.

Our work addresses both questions, in the restricted case where the energy is

only slightly higher than the energy of the degree one co-rotational harmonic maps. We
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Universality of Blow up Profile 6965

believe that themethods used here apply towavemaps intomore general targetswithout

any size restrictions. However it appears that one has to overcome some nontrivial

obstacles in the current perturbative setup to achieve this goal. We also believe that the

case T+ = ∞, when the solution does not scatter, can also be addressed by the methods

developed here. We plan to address these questions in future work.

Let us briefly summarize our main results.

Our first main goal is to introduce the channel of energy argument to the study

of wave map equations. We use a new point of view, developed in our recent work

[14] on the energy critical wave equation, namely that the channel of energy inequality

holds forwell-prepared initial data that satisfy an outgoing condition. Unlike previously

known channel of energy inequalities, the version for outgoing waves turns out to be

rather robust in that it works for nonradial solutions in all dimensions, and we think

it is applicable to a wide range of problems. The outgoing condition is natural. For

instance, any linear wave at large time will satisfy such outgoing conditions. More

interestingly, the dispersed energy that might concentrate near the boundary of the

singularity lightcone of a blow up solution also satisfies the outgoing condition (for

both energy-critical wave maps and semilinear wave equation).

In [14], the proof of the channel of energy inequality for the energy-focusing

semilinear wave equation relies on the corresponding inequality for the linear equation

and a straightforward perturbation argument. However, the Cauchy problem for the

wave map equations is much more complicated and the current perturbation results are

not as precise as in the case of the energy critical wave equation. At this time we can

only extend the results from [14] partially, and prove the channel of energy inequality

for small data.

Theorem 1.1. Fix β ∈ (0, 1). There exists a small δ = δ(β) > 0 and sufficiently small

ǫ0 = ǫ0(β) > 0, such that if u is a classical wave map with energy E(
−→u ) < ǫ0 satisfying

‖(u0, u1)‖Ḣ1×L2
(
Bc1+δ

∪B1−δ

) + ‖/∂u0‖L2 + ‖∂ru0 + u1‖L2 ≤ δ‖(u0, u1)‖Ḣ1×L2 , (1.5)

then for all t ≥ 0, we have

∫

|x|>β+t
|∇x,tu|2(x, t)dx ≥ β ‖(u0, u1)‖2

Ḣ1×L2 . (1.6)

�
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6966 T. Duyckaerts et al.

As an application for the channel of energy inequality (1.6), we obtain the

following classification of finite time blow up wave maps u with energy

E(
−→u ) < E(Q, 0) + ǫ2

0 , (1.7)

where Q is the harmonic map with the least energy (which is equal to 4π ), and ǫ0 > 0 is

small. Denote M1 as the space of degree one harmonic maps, (These harmonic maps are

all co-rotational with respect to certain axis of symmetry.) and let

Mℓ,1 := {Qℓ : Q ∈ M},

where

Qℓ(x, t) = Q

(
x − ℓ · x

|ℓ|2 ℓ +
ℓ·x
|ℓ|2 ℓ − ℓt
√
1 − |ℓ|2

)
(1.8)

is the Lorentz transformation of the harmonic map Q. Then we have

Theorem 1.2. Letu be a classical wavemapwith energy E(
−→u ) < E(Q, 0)+ǫ2

0 , that blows

up at a finite time T+ and at the origin. Assume that ǫ0 is sufficiently small. Then there

exists ℓ ∈ R2 with |ℓ| ≪ 1, x(t) ∈ R2, λ(t) > 0 with

lim
t→T+

x(t)

T+ − t
= ℓ, λ(t) = o (T+ − t)

and (v0, v1) ∈ Ḣ1 × L2 ∩ C∞(R2\{0}) with (v0 − u∞, v1) being compactly supported, such

that

(i) inf

{∥∥−→u (t) − (v0, v1) − (Qℓ, ∂tQℓ)
∥∥
Ḣ1×L2 : Qℓ ∈ Mℓ,1

}
→ 0, as t → T+;

(ii)

∥∥∥∥
−→u (t) − (v0, v1)

∥∥∥∥
Ḣ1×L2(R2\Bλ(t)(x(t)))

→ 0 as t → T+,

where Bλ(t)(x(t)) =
{
x ∈ R2 : |x − x(t)| < λ(t)

}
. �

Heuristically speaking, the above theorem says that at blow up time, the wave

map essentially consists of two parts, one regular part outside the lightcone |x| > T+ − t,

and a traveling wave with small velocity ℓ that concentrates in a small region (in com-

parison with the size of the cone) near the point ℓ(T+ − t). In addition, there are no

other types of energy concentration. It is an interesting question to ask about the finer
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Universality of Blow up Profile 6967

dynamics of the traveling wave in the region |x − x(t)| < λ(t), such as how the axis

of rotation of the wave map evolves. It is not clear to us at this moment if the axis of

rotation could fail to stabilize. We believe though that it is impossible, at the level of

energy regularity, to say more about the finer dynamics of the scale λ(t) and the center

x(t), due to the symmetries of the equation.

Let us very briefly explain the strategy of the proof. The proof of the channel

of energy inequality in Theorem 1.1 uses the extension of the linear channel of energy

inequality for outgoing waves from [14] to two dimensions. For the wave maps how-

ever, we need to also show that these outgoing conditions are in some sense stable (for

most frequencies) with respect to frequency projections, in order to use the perturbative

results for wave maps which deal with each frequency piece of the map separately. In

addition, it is well known from Tao’s work [51] that the nonlinearity cannot be treated

as small perturbations directly even in the small energy case, and one has to perform

a gauge transform to treat the nonlinearity. The key point here is that the gauge trans-

form, which although changes the wave map quite significantly, does not significantly

change the energy distribution.

To prove Theorem 1.2, let us take a wave map as in Theorem 1.2. Then by the

result of Tataru and Sterbenz [48], along a sequence of times, we can extract a traveling

wave from the wave map. A little more effort also shows that there is no other possible

energy concentration strictly inside the lightcone except in the neck region, thanks to the

energy constraint (1.7). By Grinis’ result [21] there is no energy in the neck region either.

Thus all residue energy has to concentrate near the boundary of the singularity lightcone

|x| < T+ − t. In addition, such residue energy has to be small, again thanks to the energy

constraint. We apply the channel of energy inequality to rule out this residue energy.

This is a crucial step and the main new point of our article. Hence inside the lightcone

(not only strictly inside the lightcone) the amount of energy is asymptotically just the

energy of the traveling wave. Then by the coercivity of energy near the traveling wave,

we conclude that in fact the wave map is trapped in smaller and smaller neighborhoods

of the travelingwave, and thus has to stay close to the travelingwave for all times t < T+,

not just along a sequence of times. This completes the proof of the main Theorem 1.2.

Our article is organized as follows:

• In Section 2, we recall the necessary subcritical and critical regularity results

for the wave equation;

• In Section 3, we prove the channel of energy inequality for small wave maps;

• In Section 4, we recall the Morawetz estimates;
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6968 T. Duyckaerts et al.

• In Section 5, we prove the decomposition into regular part and travelingwave

along a sequence of times; and

• In Section 6,we prove certain coercive property of energy in the neighborhood

of the traveling wave and establish the decomposition for all times.

Throughout the article, we shall use the notation

‖f ‖Ḣ1(E) := ‖∇f ‖L2(E)

for any measurable set E. If s > 1, we will write

‖f ‖Ḣs := ‖|D|sf ‖L2(R2) ,

where |D|s is the Fourier multiplier with symbol |ξ |s, and say that a distribution f is in

Ḣ s when f ∈ H s
loc(R

2) and the above seminorm is finite.

2 Preliminaries

In this section, we briefly review the subcritical and critical regularity results for the

two-dimensional wave maps into the sphere, that will be needed below.

2.1 Local wellposedness in H s for s > 1

It is well known from the works of Klainerman and Machedon [32–34], Klainerman and

Selberg [35, 36], and Selberg [44], that the wave map equation (1.2) is locally wellposed

in H s ×H s−1 for s > 1. In this subsection we recall the necessary regularity results from

these works without giving proofs and refer the reader to the above cited works, and

especially the survey [36] for details.

Since the spaces in which one can prove existence and uniqueness involves

spacetime Fourier transforms even when one only considers local in time solutions,

we have to be more precise on the Banach spaces which are used to hold the solutions

and the nonlinearities.

We shall denote F(u) as the spacetime Fourier transform of u. For s, b ∈ R, and

tempered distribution u ∈ S ′(R3), define

‖u‖Xs,b(R3) :=
(∫

R3
(1 + |ξ |2)s (1 + ||ξ | − |τ ||)2b |F(u)(ξ , τ)|2dξdτ

) 1
2

(2.1)
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Universality of Blow up Profile 6969

and set

X s,b(R3) :=
{
u ∈ S

′(R3) : ‖u‖Xs,b(R3) < ∞
}
. (2.2)

We record the followingwellposedness result for equation (1.2) in the subcritical

space Ḣ s × H s−1. We shall always assume that the initial data (u0, u1) for (1.2) satisfies

the “admissibility condition” that |u0| ≡ 1 and u†
0 u1 ≡ 0.

Theorem 2.1. For s > 1 and 1
2

< b < min{s− 1
2
, 1}. Suppose that (u0, u1) ∈ Ḣ s×H s−1 and

that u0 equals a constant u∞ ∈ S2 for large x. Then for T = T(‖(u0 −u∞, u1)‖Hs×Hs−1) > 0

sufficiently small, there exists a unique solution u to equation (1.2) with initial data

(u0, u1) on R2 × (−T ,T) in the sense of distributions, which satisfies the following

properties

(1) u− u∞ ∈ C(I ,H s × H s−1);

(2) there exists u ∈ L2(R3) with u|R2×I ≡ u− u∞ and ∇x,tu ∈ X s−1,b,

where I = (−T , T). �

Remark. The above theorem provides a rigorous definition of solutions to equation

(1.2). (2) is important, as (1) by itself is not sufficient to guarantee uniqueness when s is

close to 1. One could of course choose to work directly with smooth wave maps, instead

of these low-regularity wave maps. However, below we shall need to extend a locally

(in space) defined map to a global one, and it is much more convenient to have such

extensions in the framework of H s solutions, rather than smooth solutions. �

Solutions from Theorem 2.1 can be extended to a maximal interval of existence,

more precisely, we have

Corollary 2.1. For s > 1. Suppose that (u0, u1) ∈ Ḣ s×H s−1 and that u0 equals a constant

u∞ ∈ S2 for large x. Then there exists T+ ∈ (0,∞], T− ∈ [−∞, 0), such that for any

T− < T1 < T2 < T+, u is a distributional solution to equation (1.2), satisfying (1) and (2)

on I = (T1, T2), and that if T+ < ∞, then

lim
t→T+

‖−→u (t)‖Ḣs×Hs−1 = ∞. (2.3)

Similar conclusion holds for T−. Such u is unique. In addition, if (u0, u1) ∈ Ḣ s1 × H s1−1

for some s1 > s, then u satisfies (2.3) and (2.3) with s being replaced by s1 on any
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6970 T. Duyckaerts et al.

I = (T1, T2) ⋐ (T−, T+). T+ and T− are called the maximal time of existence for the

solution u. �

2.2 Critical wellposedness results

Perhaps not surprisingly, our work depends crucially on the regularity results of Tao

[50, 51], Tataru [57], and Sterbenz-Tataru [47, 48]. See also the work of Krieger and Schlag

[37]. In this section, we recall some important results for wave maps in the energy space

from [47, 51, 57], that will be needed below.

In order to control the solution at the Ḣ1 × L2 level of regularity, we need to use

more sophisticated spaces. The precise definitions of these spaces are not very important

for us, but we shall need the following properties that we briefly review below.

Fix a radial function 
 ∈ C∞
c (R2) with 
|B1 ≡ 1 and supp
 ⋐ B2. Let �(x) :=


(x) − 
(2x), and �k(x) = �(x/2k) for each k ∈ Z. Then supp� ⋐ B2\B1/2, and

∑

k∈Z

�k ≡ 1, for |ξ | �= 0.

Recall that the Littlewood–Paley projection Pk and P<k are defined as

P̂kf (ξ) = �k(ξ) f̂ (ξ)

and

P<kf =
∑

k′<k

Pk′f .

We will also use the notations uk := Pku and u<k = P<ku. Then

∑

k∈Z

Pkf = f

for all f ∈ L2(R2). We use the same definitions as in [51] for the spaces S[k], N[k], which

are translation invariant Banach spaces of distributions on R
2
x ×Rt containing Schwartz

functions whose partial Fourier transform in the x variable is supported in {2k−3 ≤ |ξ | ≤
2k+3}, {2k−4 ≤ |ξ | ≤ 2k+4}, respectively. For each k, we shall use the space S[k] to hold

the frequency localized piece Pku of the solution u, and use the space N[k] to hold the

frequency localized piece Pkf of the nonlinearity f := u ∂αu†∂αu. Define the S(1) norm as

‖f ‖S(1) := ‖f ‖L∞ + sup
k

‖Pkf ‖S[k]. (2.4)

The spaces S[k] and N[k] satisfy the following properties.
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Universality of Blow up Profile 6971

Theorem 2.2. There exists a small universal constant κ > 0, such that

(1) (Algebra property) For Schwartz functions φ, ψ with ψ ∈ S[k2], we have

‖Pk(φψ)‖S[k] � 2−κ(k2−k)+‖φ‖S(1)‖ψ‖S[k2]; (2.5)

(2) (Product property) For Schwartz functions f , ψ with f ∈ N[k2], we have

‖Pk(fψ)‖N[k] � 2−κ(k2−k)+‖ψ‖S(1)‖f ‖N[k2]; (2.6)

(3) (Null form estimate) For Schwartz functions φ, ψ with φ ∈ S[k1], ψ ∈ S[k2],
we have

‖Pk(∂αφ ∂αψ)‖N[k] � 2−κ(max{k1,k2}−k)+‖φ‖S[k1]‖ψ‖S[k2]; (2.7)

(4) (Trilinear estimate) For Schwartz functions φ, ϕ, ψ with φ ∈ S[k1], ϕ ∈ S[k2]
and ψ ∈ S[k3], we have

‖Pk(φ ∂αϕ∂αψ)‖N[k]

� 2−κ(k1−min{k2,k3})+2−κ(max{k1,k2,k3}−k)+‖φ‖S[k1]‖ϕ‖S[k2]‖ψ‖S[k3]. (2.8)

(5) (Linear wave estimate) For solution uL to the linear wave equation

∂ttu
L − �uL = f

with initial data (u0, u1), we have

‖PkuL‖S[k] � ‖Pk(u0, u1)‖Ḣ1×L2 + ‖Pkf ‖N[k]. (2.9)

(6) (S[k] controls energy) For u ∈ S[k], we have

‖∇x,tu‖L∞
t L2x

� ‖u‖S[k]. (2.10)

�

Remark. These estimates were proved in [51], and some of them are slightly more gen-

eral than those stated in the main summary of the properties of S[k], N[k] in Theorem 3

from [51]. However, they can be found elsewhere in that paper. More precisely, the alge-

bra estimate (2.5) is a consequence of equation (125) and (126) at page 516; the product
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6972 T. Duyckaerts et al.

estimate (2.6) is a consequence of (119) at page 510; the null form estimate (2.7) is (134) at

page 523; the trilinear estimate (2.8) is taken from the first formula at page 529. We also

note that Pk′ is bounded from S[k] to S[k], by the translation invariance of the Banach

space S[k]. (6) implies that ‖u‖L∞ � ‖u‖S[k]. Another useful property of S[k] is the weak

stability of S[k]: if ui → u in the sense of distributions and ui ∈ S[k] with ‖ui‖S[k] ≤ 1,

then ‖u‖S[k] ≤ 1. See a similar statement in (vii) of page 323 in [58]. We will use these

estimates extensively below. �

Tao [51] introduced a very useful notation to keep track of multilinear expres-

sions. More precisely, for scalar functions φ1, . . . ,φl, we use L (φ1, . . . ,φl) to denote

multilinear expression of the form

L (φ1, . . . ,φl) :=
∫
K (y1, . . . ,yl) φ1(x − y1) · · · φl(x − yl)dy1 · · ·dyl

with a measure K of bounded mass. In many cases, φ1, . . . ,φl could also be expressions

involving components φ
j1
1 , . . . ,φ

jl
l and in such cases, we also assume that K depends

on j1, . . . , jl, but for the ease of notations, we shall suppress this dependence. By the

translation invariance of the spaces S[k], N[k], the estimates in Theorem 2.2 extend to

expressions of the form L(φ,ψ), L(∂αφ, ∂αψ) instead of just φ ψ and ∂αφ ∂αψ .

Let us record here the following useful Lemma from [51].

Lemma 2.1. For Schwartz functions f , g, we have

Pk(f g) − Pkf · g = 2−kL (f , ∇g). (2.11)

�

Proof. This Lemma is taken from [51], we include the short proof for the convenience

of readers. We have

Pk(f g)(x) − Pkf (x)g(x)

=
∫

4k�̌(2ky)f (x − y)g(x − y)dy −
∫

4k�̌(2ky)f (x − y)g(x)dy

=
∫ 1

0

∫

R2
−4k�̌(2ky)f (x − y)yj∂

jg(x − ty)dtdy

= −2−k
∫ 1

0

∫

R2
4k(2kyj) �̌(2ky)f (x − y) ∂ jg(x − ty)dtdy

= 2−kL(f , ∇g).

The proof is complete. �
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Universality of Blow up Profile 6973

Let us recall the definition of frequency envelop introduced in [51]. Fix positive

ϑ such that ϑ ≤ κ

100
, where κ is as in Theorem 2.2.

Definition 2.1. (ck) ∈ ℓ2 is called a frequency envelop if ck > 0 and ck1 ≤ 2ϑ |k1−k2|ck2 . �

For any frequency envelop c = (ck), define the norm S(c) as

‖φ‖S(c) := ‖φ‖L∞ + sup
k

c−1
k ‖Pkφ‖S[k] (2.12)

and the space S(c) as

S(c) := {f ∈ L∞ : ‖f ‖S(c) < ∞}. (2.13)

Note that 1 ∈ S(c). The main property of the space S(c) that we shall use below is that

S(c) a Banach algebra.

Lemma 2.2. S(c) is a Banach algebra. �

Proof. This was proved in [51]. We include the short proof for the convenience of

readers. We need to prove

‖φ ψ‖S(c) � ‖φ‖S(c) ‖ψ‖S(c). (2.14)

We note that ‖φ‖S(1) �c ‖φ‖S(c) and ‖φ<k‖S(c) � ‖φ‖S(c). We can normalize ‖φ‖S(c) =
‖ψ‖S(c) =1. For each k ∈ Z, we have

‖Pk(φ ψ)‖S[k]

=
∥∥Pk (φ>k−10ψ) + Pk

(
φ≤k−10 ψ>k−10

)
+ Pk

(
φ≤k−10ψ≤k−10

)∥∥
S[k] .

Note that

Pk
(
φ≤k−10ψ≤k−10

)
≡ 0.

We get that

‖Pk(φ ψ)‖S[k] �
∑

k1>k−10

∥∥Pk
(
Pk1φ ψ

)∥∥
S[k] +

∑

k2>k−10

∥∥Pk
(
φ≤k−10 Pk2ψ

)∥∥
S[k]

�
∑

k1>k−10

2−κ(k1−k)+
∥∥Pk1φ

∥∥
S[k1] ‖ψ‖S(1)
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6974 T. Duyckaerts et al.

+
∑

k2>k−10

2−κ(k2−k)+
∥∥Pk2ψ

∥∥
S[k2] ‖φ≤k−10‖S(1)

�
∑

k1>k−10

2−κ(k1−k)ck1 +
∑

k2>k−10

2−κ(k2−k)ck2

�
∑

k′>k−10

2−(κ−ϑ)(k′−k)ck � ck

and this finishes the proof. �

Let us recall the following global wellposedness theorem for wave maps from

Tao [51].

Theorem 2.3. There exists an ε > 0 sufficiently small such that the following is true.

Suppose that (u0,u1) is smooth, u0−u∞, u1 are compactly supported, and that u†
1 ·u0 ≡ 0.

Assume that
(
‖Pk(u0, u1)‖Ḣ1×L2

)
lies under a frequency envelop c = (ck) (For non-negative

sequences (ak) and (bk), we say that (ak) lies below (bk) if ak ≤ bk for each k.) with

‖ck‖ℓ2 ≤ ε.

Then the wave map u with initial data (u0,u1) is global, and moreover

‖Pku‖S[k] + sup
t∈R

‖Pk−→u (t)‖Ḣ1×L2 ≤ Cck (2.15)

for some universal C. �

Remark. By approximations by smoothmaps, and the wellposedness for equation (1.2)

in Ḣ s × H s−1 for s > 1, we can relax the smoothness requirement for the initial data in

the above theorem to (u0, u1) ∈ Ḣ s × H s−1.

Fix ǫ∗ > 0 be sufficiently small, so that classical wave maps with energy smaller

than Cǫ∗ exists globally for a sufficiently large universal C > 1. In later sections, we shall

need the following local-in-space smoothness result, when the initial data are locally

but not globally smooth. �

Lemma 2.3. Let (u0, u1) ∈ Ḣ s ×H s−1 for some s > 1 and that (u0 −u∞, u1) is compactly

supported, with |u0| ≡ 1 and u0 · u1 ≡ 0. Assume that (u0, u1) is smooth in B1, and that

‖(u0, u1)‖Ḣ1×L2 ≤ ǫ∗. Then the global solution u is smooth in {(x, t) : |x| < 1 − |t|}. �
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Universality of Blow up Profile 6975

By the small energy global existence result and the subcritical Cauchy theory,

we get that

sup
0≤t<1

‖u(t)‖Ḣs ≤ C
(
‖(u0 − u∞, u1)‖Hs×Hs−1

)
. (2.16)

Denote λ := C
(
‖(u0 − u∞, u1)‖Hs×Hs−1

)
. Fix r > 0 small, and take Br(x) ⊂ B1. Set

u0 = 1

πr2

∫

Br (x)

u.

Then by Sobolev inequality, we obtain that

‖u0 − u0‖L∞(Br (x)) �λ r
s−1. (2.17)

Take a smooth cutoff function η such that η ≡ 1 in Br−r1+δ (x) with some δ ∈ (0, 2(s− 1)),

and η ≡ 0 outside Br(x). In addition, we can require that

|∇η| � r−1−δ. (2.18)

Define

(ũ0, ũ1) = (P [η (u0 − u0) + u0] , ηu1),

where for each vector v �= 0

Pv = v

|v| .

Then ũ0, ũ1 are smooth, and

(ũ0, ũ1) ≡ (u0, u1), in Br−r1+δ (x). (2.19)

Moreover, we can verify by direct computation thanks to (2.17) and (2.18) that

‖(ũ0, ũ1)‖Ḣ1×L2 � ǫ∗,

if r is chosen sufficiently small. Hence the solution ũ to the wave map equation with

the initial data (ũ0, ũ1) is smooth and global. By (2.19), u ≡ ũ for |x − x| < r − r1+δ − |t|,
and is thus smooth for |x − x| < r − r1+δ − |t|. By moving around x and finite speed of

propagation, we conclude that u is smooth in {(x, t) : |x| < 1 − 2r1+δ − |t|, |t| < r}. We

can apply the same technique at |t| = r, 2r and so on, and conclude recursively that u
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6976 T. Duyckaerts et al.

is smooth in {(x, t) : |x| − 2kr1+δ − |t|, |t| < kr} for k = 1, 2, . . . with (k + 2)r < 1. Hence,

u is smooth in {(x, t) : |x| < 1− Crδ, |t| < 1− 3r}. Since r can be taken arbitrarily small,

the lemma follows.

Since the global regularity result for small energy requires that the initial data

belongs to a subcritical space H s × H s−1 for some s > 1, (See however Tataru [58] where

a notion of finite energy solution was introduced.) we shall need the following lemma

when we deal with some initial data which is C∞(R2\{0}) but may fail to be in H s ×H s−1

globally for any s > 1.

Lemma 2.4. Suppose that (u0, u1) ∈ C∞(R2\{0}), and that (u0 − u∞, u1) is compactly

supported. Assume that

‖(u0, u1)‖Ḣ1×L2 ≤ ǫ∗. (2.20)

Then there exists a unique smooth u ∈ C∞((x, t) : |x| > |t|}) such that u solves the wave

map equation in {(x, t) : |x| > |t|}. Moreover

lim
t→0

‖−→u (·, t) − (u0, u1)‖Ḣ1×L2(|x|>|t|) = 0. (2.21)

Similar results hold if we assume instead that (u0, u1) ∈ H s
loc × H s−1

loc (R2\{0}), and in this

case, −→u ∈ H s
loc × H s−1

loc (|x| > |t|). �

Proof. We shall prove only the first part of the lemma. The proof of the second part

is clear from the same argument. Let us firstly prove the existence of u claimed in the

lemma. For any r > 0, since

∫

Br\B r
2

|∇u0|2 + |u1|2 dx ≤ ǫ2
∗ ,

we can find r ∈
(
r
2
, r
)
with

∫

|x|=r
|/∂u0|2dσ �

ǫ2
∗
r
.

Denote

u0 = 1

2πr

∫

∂Br

u0.

Then by Sobolev inequality, we get that

‖u0 − u0‖L∞(∂Br )
� ǫ∗.
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Universality of Blow up Profile 6977

Thus from the fact that |u0| ≡ 1, we see that |u0| � 1. Take smooth cutoff function η such

that η ≡ 1 for |x| ≥ r and η ≡ 0 for |x| < r
2
with |∇η| � (r)−1. Define

(ũ0, ũ1) =
{

(u0, u1) in Bcr ;

(P [η(r)(u0(rθ) − u0) + u0], 0) in Br .

Then

(ũ0 − u∞, ũ1) ∈ H s × H s−1

for s < 3
2
, and direct computation shows that

‖(ũ0, ũ1)‖Ḣ1×L2 � ǫ∗.

Note also that (ũ0, ũ1) is smooth for |x| > r. Hence by small data theory and Lemma 2.3

the solution ũ to thewavemap equationwith initial data (ũ0, ũ1) is global, and is smooth

in |x| > r + |t|. By taking r → 0+ and the finite speed of propagation, we see that

u = lim
r→0+

ũ

exists in |x| > |t| and is smooth. We now turn to the proof of (2.21). Let ũ be the solution

as before, corresponding to r, then

ũ ≡ u, for |x| > r + |t|, (2.22)

and ũ is continuous in Ḣ1 × L2 for t ∈ (0, 1]. For any ǫ > 0, we can choose r sufficiently

small, such that

‖(u0, u1)‖Ḣ1×L2(B4r )
< ǫ.

Then by energy flux identity (say for t > 0 and any ǫ > 0),

∫

t+ǫ<|x|<4r−t

( |∇u|2
2

+ |∂tu|2
2

)
(x, t)dx

+ 1√
2

∫ t

0

∫

|x|=4r−t

( |∇u|2
2

+ |∂tu|2
2

− x

|x| · ∇u ∂tu

)
dσds

+ 1√
2

∫ t

0

∫

|x|=t+ǫ

( |∇u|2
2

+ |∂tu|2
2

+ x

|x| · ∇u ∂tu

)
dσds

=
∫

B4r\Bǫ

( |∇u|2
2

+ |∂tu|2
2

)
(x, 0)dx,
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6978 T. Duyckaerts et al.

we see that

‖−→u (t)‖Ḣ1×L2(B2r\B|t|) ≤ ‖(u0, u1)‖Ḣ1×L2(B4r) < ǫ, for |t| < r. (2.23)

Since ũ is continuous in the energy space and
−→̃
u (x, 0) = (u0, u1)(x) for |x| > r, we see

that for sufficiently small t1 ∈ (0, r) and |t| < t1,

‖−→̃u (t) − (u0, u1)‖Ḣ1×L2(|x|>r) < ǫ. (2.24)

Combining (2.23), (2.24), and (2.22), we conclude that for |t| ≤ t1

‖−→u (t) − (u0, u1)‖Ḣ1×L2(|x|>|t|)

≤ ‖−→u (t) − (u0, u1)‖Ḣ1×L2(|x|>2r) + ‖−→u (t) − (u0, u1)‖Ḣ1×L2(|t|<|x|<2r)

≤ ‖−→̃u (t) − (u0, u1)‖Ḣ1×L2(|x|>2r) + 2ǫ

≤ 3ǫ.

Since ǫ > 0 is arbitrary, the lemma is proved. �

By finite speed of propagation and small data global existence, understanding

the energy concentration is important for studying the dynamics of the wave maps.

To measure the energy concentration, let us define for a wave map u the “energy

concentration radius”

r(ǫ∗, t) :=

inf

{
r > 0 : there exists x such that

∫

Br (x)

( |∇u|2
2

+ |∂tu|2
2

)
(x, t)dx > ǫ∗

}
. (2.25)

We adopt the convention that if the set is empty, then the infimum is infinity. The small

energy global existence result, Theorem 2.3, and the finite speed of propagation imply

that if wave map u blows up at a finite time T+, then r(ǫ∗, t) → 0+ as t → T+. This is a

very important piece of information that allows us to zoom in a small region near the

blow up point and study the details of the blow up there. Unfortunately, knowing only

that the energy concentrates in the small scales does not in itself allow one to “extract”

a nontrivial blow up profile in the limit, as we zooms in more and more. This is because

a priori the energy can be concentrated in quite an arbitrary way, given that we do not

(and it is probably not possible) to obtain control any higher order regularity beyond

the energy when the time is close to the blow up time. To obtain a nontrivial blow up
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Universality of Blow up Profile 6979

profile, the following result due to Sterbenz-Tataru [47] plays an essential role. (More

precisely, this result is used to rule out the situation that all energy near the blow up

point concentrates near the boundary of lightcone. The control inside the lightcone turns

out to be quite favorable.)

Theorem 2.4. There exists a function ǫ(E) with 0 < ǫ(E) ≪ 1 of the energy E such that

if u is a classical solution to (1.2) in I × R2 = [a, b] × R2, with energy E and

sup
t∈I

sup
k

∥∥(Pku, 2−kPk∂tu)(t)
∥∥
L∞×L∞ < ǫ(E), (2.26)

then the energy concentration radius r(ǫ∗, t) has a uniform lower bound on I :

inf
t∈I

r(ǫ∗, t) ≥ r0 > 0. (2.27)

�

3 Channel of Energy Inequality for Wave Maps with Small Energy

In this section, we prove the channel of energy inequality for small wave maps. Let

us begin with the following linear channel of energy inequality for outgoing waves,

which is a slightly more quantitative two-dimensional version of the channel of energy

inequality that played a decisive role in [14].

Lemma 3.1. Fix γ ∈ (0, 1). There exists μ = μ(γ ) > 0 sufficiently small such that the

following statement is true. Let v be a finite energy solution to the linear wave equation

∂ttv − �v = 0, in R2 × [0,∞)

with initial data (v0, v1) ∈ Ḣ1 × L2 satisfying

‖(v0, v1)‖Ḣ1×L2(Bc1+μ
∪B1−μ) + ‖/∂v0‖L2 + ‖∂rv0 + v1‖L2 ≤ μ‖(v0, v1)‖Ḣ1×L2 . (3.1)

We also assume that v0 ≡ v∞ for some constant v∞ for large x. Then for all t ≥ 0, we

have

∫

|x|≥γ+t
|∇x,tv|2(x, t)dx ≥ γ ‖(v0, v1)‖2

Ḣ1×L2 . (3.2)

�
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6980 T. Duyckaerts et al.

We can normalize the initial data so that ‖(v0, v1)‖Ḣ1×L2 = 1. Let α =
∫

{1+μ≤|x|≤2(1+μ)} v0(x)dx. By Poincaré inequality

∫

1+μ≤|x|≤2(1+μ)

|v0(x) − α|2dx �

∫

1+μ≤|x|≤2(1+μ)

|∇v0(x)|2dx, (3.3)

where the implicit constant is independent of μ ≤ 1.

Take a non-negative radial η ∈ C∞
c (R2) with η ≡ 1 on B1+μ and supp η ⋐ B1+μ1/2

satisfying |∇η| � μ−1/2. Define

(̃v0, ṽ1) = η(x) (v0(x) − α,v1(x)).

Using (3.3), the bound |∇η| � μ−1/2 and (3.1), we obtain:

‖(∇ (̃v − v0), ṽ1 − v1))‖2
L2×L2 �

1

μ

∫

|x|≥1+μ

|∇v0|2 +
∫

|x|≥1+μ

|u1|2 � μ. (3.4)

By Sobolev and Hölder inequalities

‖|D| 12 ṽ0‖L2 � ‖∇ṽ0‖
L
4
3

� ‖∇ṽ0‖L2({|x|≤1−μ}) + μ
1
8 ‖∇ṽ0‖L2({1−μ≤|x|≤1+μ1/2}) � μ

1
8

‖|D|− 1
2 ṽ1‖L2 � ‖v1‖

L
4
3

� ‖v1‖L2({|x|≤1−μ}) + μ
1
8 ‖v1‖L2({1−μ≤|x|≤1+μ1/2}) � μ

1
8 .

By conservation of the Ḣ1/2 × Ḣ−1/2 norm for the linear wave equation, we obtain the for

all t ∈ R,

∣∣∣∣
∫
ṽt(x, t)̃v(x, t)dx

∣∣∣∣ �
∥∥|D|1/2ṽ

∥∥
L2

∥∥|D|−1/2ṽt
∥∥
L2

� μ1/4. (3.5)

Let ṽ be the solution to the linear wave equation with initial data (̃v0, ṽ1). By

direct computation, we see that

d

dt

∫

R2
−ṽt

(
x · ∇ṽ + 1

2
ṽ

)
(x, t)dx = E (̃v) := E0. (3.6)

Hence, by (3.5) and the outgoing condition (3.1), we get that

∫

R2
−ṽt x · ∇ṽ(x, t)dx = E0 t +

∫

R2
−ṽ1

(
x · ∇ṽ0 + 1

2
ṽ0

)
(x)dx

+ O(μ1/4)

= E0 (t + 1) + O(μ1/4).
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Universality of Blow up Profile 6981

On the other hand, by the finite speed of propagation, supp ṽ(·, t) ⋐ B1+μ1/2+t for all t ≥ 0,

and thus

∫

R2
−ṽt x · ∇ṽ(x, t)dx ≤

∫

|x|>γ+t
(1 + μ1/2 + t)

( |̃vt|2

2
+ |∇ṽ|2

2

)
(x, t)dx

+ (γ + t)

∫

|x|<γ+t

( |̃vt|2

2
+ |∇ṽ|2

2

)
(x, t)dx

= (γ + t)E0 − (γ + t)

∫

|x|>γ+t

( |̃vt|2

2
+ |∇ṽ|2

2

)
(x, t)dx +

+ (1 + μ1/2 + t)

∫

|x|>γ+t

( |̃vt|2

2
+ |∇ṽ|2

2

)
(x, t)dx.

Combining this and the above, we see that

(1 + μ1/2 − γ )

∫

|x|>γ+t

( |̃vt|2

2
+ |∇ṽ|2

2

)
(x, t)dx

≥ (1 − γ )E0 + O(μ1/4).

By choosing μ sufficiently small, we obtain the channel of energy inequality for ṽ, and

consequently also for v, by (3.4).

Asmentioned in the introduction, one of themain goals of this article is to extend

the channel of energy arguments to the wave map setting. As a first step towards under-

standing the implications of the channel of energy property of linear wave equations on

the wave maps, we prove the following result for small energy wave maps. The exten-

sion to large energy case seems to require nontrivial improvement in the perturbative

techniques for the wave maps.

Theorem 3.1. Fix β ∈ (0, 1). There exist a small δ = δ(β) > 0 and sufficiently small

ǫ0 = ǫ0(β) > 0, such that if u is a classical wave map with energy E(
−→u ) < ǫ2

0 satisfying

‖(u0, u1)‖Ḣ1×L2
(
Bc1+δ

∪B1−δ

) + ‖/∂u0‖L2 + ‖∂ru0 + u1‖L2 ≤ δ‖(u0, u1)‖Ḣ1×L2 , (3.7)

then for all t ≥ 0, we have

∫

|x|>β+t
|∇x,tu|2(x, t)dx ≥ β ‖(u0, u1)‖2

Ḣ1×L2 . (3.8)

�
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6982 T. Duyckaerts et al.

Proof. Denote ǫ := ‖(u0, u1)‖Ḣ1×L2 � ǫ0. To applyTheorem2.3, let us define the following

frequency envelop

ck := sup
j∈Z

2−ϑ |k−j|‖(Pju0, Pju1)‖Ḣ1×L2 . (3.9)

Then one can verify that c = (ck) is a frequency envelop and that
(
‖Pk(u0,u1)‖Ḣ1×L2

)
lies

below it. In addition,

‖(ck)‖ℓ2 � ǫ.

By Theorem2.3, if ǫ0 is chosen sufficiently small, then thewavemapu is globally defined,

and satisfies (2.15).

Since the proof is a bit lengthy, we divide the arguments in several steps. �

Step 1 : Reduction to proving channel of energy inequality for frequency pieces. In this

step, our main goal is to show that there exists a set K of good frequencies, such that

∑

m∈K

‖Pm(u0, u1)‖2
Ḣ1×L2 ≥ (1 − Cδ

1
12 )‖(u0, u1)‖2

Ḣ1×L2 (3.10)

and that for anym ∈ K, 2m is “high frequency”, and that it suffices to prove the channel

of energy inequality for each m ∈ K.

Substep (1): Control of the low frequency component.

Fix k0 large, whose precise value is to be determined below. We shall show that

the total energy with frequency ≤ 2k0 is small in a suitable sense. Assume firstly that

2−k0 > Cδ. Let us bound the low frequency energy of (u0, u1), that is

∥∥P≤k0(u0, u1)
∥∥
Ḣ1×L2 .

We can write

∇u0 = (∇u0)χBc1+δ
∪B1−δ

+ (∇u0)χB1+δ\B1−δ
,

u1 = u1χBc1+δ
∪B1−δ

+ u1χB1+δ\B1−δ
.

By the assumption on (u0, u1),

‖(∇u0)χBc1+δ
∪B1−δ

‖L2 + ‖u1χBc1+δ
∪B1−δ

‖L2

� δ‖(u0, u1)‖Ḣ1×L2 .
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Universality of Blow up Profile 6983

Thus,

∥∥∥P<k0

(
∇u0χBc1+δ

∪B1−δ

)∥∥∥
L2

+
∥∥∥P<k0

(
u1χBc1+δ

∪B1−δ

)∥∥∥
L2

� δ‖(u0, u1)‖Ḣ1×L2 . (3.11)

Denote f = (∇u0)χB1+δ\B1−δ
. Then f is compactly supported in B1+δ\B1−δ, and

‖f ‖L2 ≤ ‖(u0, u1)‖Ḣ1×L2 .

By Bernstein’s inequality, then Cauchy–Schwarz

‖P≤k0f ‖L2 � 2k0‖f ‖L1 � 2k0δ
1
2 ‖f ‖L2 � 2k0δ

1
2 ‖(u0, u1)‖Ḣ1×L2 .

Choosing 2−k0 ∼ δ
1
6 , then ‖P≤k0f ‖L2 � δ

1
3 ‖(u0, u1)‖Ḣ1×L2 , that is,

∥∥P≤k0
[
(∇u0)χB1+δ\B1−δ

]∥∥
L2

� δ
1
3 ‖(u0, u1)‖Ḣ1×L2 . (3.12)

We can prove similarly that

∥∥P≤k0
[
u1χB1+δ\B1−δ

]∥∥
L2

� δ
1
3 ‖(u0, u1)‖Ḣ1×L2 . (3.13)

Combining (3.11)–(3.13), we conclude that

∥∥P≤k0(u0, u1)
∥∥
Ḣ1×L2 � δ

1
3 ‖(u0, u1)‖Ḣ1×L2 . (3.14)

Thus the low frequency energy is small.

Substep (2): persistence of condition (3.7) for most high frequencies.

Let us now consider Pk(∇u0, u1) for high frequency 2k ≥ 2k0 . Fix small λ > 10δ
1
6 ∼

2−k0 , whose value is to be determined below. Let us firstly bound

‖Pk(∇u0, u1)‖L2(Bc1+λ
∪B1−λ

).

We can decompose as before

∇u0 = (∇u0)χBc1+δ
∪B1−δ

+ (∇u0)χB1+δ\B1−δ
,

u1 = u1χBc1+δ
∪B1−δ

+ u1χB1+δ\B1−δ
.
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6984 T. Duyckaerts et al.

Denote

σk :=
∥∥∥Pk

[
(∇u0, u1)χBc1+δ

∪B1−δ

]∥∥∥
L2×L2

,

then it follows from (3.7) that

∑

k

σ 2
k � δ2‖(∇u0, u1)‖2

L2×L2 . (3.15)

Now let us consider Pk
[
(∇u0, u1)χB1+δ\B1−δ

]
for x with ||x| − 1| > λ. Denote

f := (∇u0)χB1+δ\B1−δ
,

then

Pkf (x) = 4k
∫

R2
�̌(2k(x − y))f (y)dy.

Since f is supported in 1 − δ ≤ |y| ≤ 1 + δ, and ||x| − 1| > λ ≫ δ, we get that

|Pkf (x)| �
4k

(2k||x| − 1|)M δ
1
2 ‖(u0, u1)‖Ḣ1×L2 .

Hence

‖Pkf ‖2

L2
(
Bc1+λ

∪B1−λ

) � 4(2−M)kδ‖(u0, u1)‖2
Ḣ1×L2

∫
∣∣|x|−1

∣∣≥λ

1

(|x| − 1)2M
dx

� 4(2−M)kδλ−2M‖(u0, u1)‖2
Ḣ1×L2 .

Fix M = 3. Then we conclude

‖Pkf ‖
L2
(
Bc1+λ

∪B1−λ

) ≤ 2−kδ
1
2 λ−3‖(u0, u1)‖Ḣ1×L2 . (3.16)

Take λ = δ
1
12 , then

‖Pkf ‖
L2
(
Bc1+λ

∪B1−λ

) � 2−kδ
1
4 ‖(u0, u1)‖Ḣ1×L2 ,

that is,

∥∥Pk
[
(∇u0)χB1+δ\B1−δ

]∥∥
L2
(
Bc1+λ

∪B1−λ

) � 2−kδ
1
4 ‖(u0, u1)‖Ḣ1×L2 . (3.17)
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Universality of Blow up Profile 6985

Similarly, we can prove that

∥∥Pk
[
u1χB1+δ\B1−δ

]∥∥
L2
(
Bc1+λ

∪B1−λ

) � 2−kδ
1
4 ‖(u0, u1)‖Ḣ1×L2 . (3.18)

Now let us control

‖∂rPku0 + Pku1‖L2(B1+λ\B1−λ) + ‖/∂Pku0‖L2(B1+λ\B1−λ)

for k ≥ k0 with 2−k0 ∼ δ
1
6 . We have

∂r

∫

R2
4k�̌(2ky)u0(x − y)dy =

∫

R2
4k�̌(2ky)

x

|x| · ∇u0(x − y)dy

=
∫

R2
4k�̌(2ky)

x − y

|x − y| · ∇u0(x − y)dy

+
∫

R2
4k�̌(2ky)

[
x

|x| − x − y

|x − y|

]
· ∇u0(x − y)dy

= Ik + IIk.

Note that

Ik + Pku1 =
∫

R2
4k�̌(2ky)(∂ru0 + u1)(x − y)dy.

Thus

‖Ik + Pku1‖L2 � ‖Pk(∂ru0 + u1)‖L2 . (3.19)

Note also that, for x ∈ B1+λ\B1−λ,

∣∣∣∣∇
x

|x|

∣∣∣∣ � 1,

thus,

|IIk| ≤
∫

R2
4k|�̌|(2ky)

∣∣∣∣
x

|x| − x − y

|x − y|

∣∣∣∣ · |∇u0(x − y)|dy

≤
∫

|y|<2
− k
2

+
∫

|y|>2
− k
2

�

∫

|y|<2
− k
2

2− k
2 4k|�̌|(2ky) · |∇u0(x − y)|dy

+
∫

|y|>2
− k
2

4k
∣∣2ky

∣∣−M |∇u0(x − y)|dy.
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6986 T. Duyckaerts et al.

Then simple computation shows that

‖IIk‖L2(B1+λ\B1−λ)

�

∫

|y|<2
− k
2

2− k
2 4k|�̌|(2ky) · ‖∇u0‖L2dy +

∫

|y|>2
− k
2

4k
∣∣2ky

∣∣−M ‖∇u0‖L2dy

� 2− k
2 ‖(u0, u1)‖Ḣ1×L2 . (3.20)

Thus combining (3.17)–(3.20), we get that

‖∂rPku0 + Pku1‖L2(B1+λ\B1−λ) � 2− k
2 ‖(u0, u1)‖Ḣ1×L2 + ‖Pk(∂ru0 + u1)‖L2 . (3.21)

The bound

‖/∂Pku0‖L2(B1+λ\B1−λ) � 2− k
2 ‖(u0, u1)‖Ḣ1×L2 + ‖Pk /∂u0‖L2 (3.22)

follows similarly from the previous arguments.

Substep (3): Summary of estimates from substep (1) and substep (2) and the definition

of good frequencies.

From (3.14),(3.17),(3.18),(3.21), and (3.22), we have, for δ
1
6 ∼ 2−k0

(1) ‖P<k0(∇u0, u1)‖L2×L2 � δ
1
3 ‖(u0, u1)‖Ḣ1×L2 ; (3.23)

(2)
∑

k≥k0

∥∥∥Pk
[
(∇u0, u1)χBc1+δ

∪B1−δ

]∥∥∥
2

L2×L2
� δ2‖(u0, u1)‖2

Ḣ1×L2 ; (3.24)

(3)
∑

k≥k0

∥∥Pk
[
(∇u0, u1)χB1+δ\B1−δ

]∥∥
L2×L2(Bc1+λ

∪B1−λ)

� δ
1
4 ‖(u0, u1)‖Ḣ1×L2 ; (3.25)

(4)‖∂rPku0 + Pku1‖L2(B1+λ\B1−λ) + ‖/∂Pku0‖L2(B1+λ\B1−λ)

� 2− k
2 ‖(u0, u1)‖Ḣ1×L2 + ‖Pk(∂ru0 + u1)‖L2 + ‖Pk /∂u0‖L2 . (3.26)

By (3.23), we can focus on the high frequencies 2k ≥ 2k0 . Indeed, we have

∥∥Pk≥k0(∇u0, u1)
∥∥
L2×L2 ≥

(
1 − Cδ

1
4

)
‖(u0, u1)‖Ḣ1×L2 . (3.27)

By (3.24) and (3.25), we see that

∑

k≥k0

‖Pk(∇u0, u1)‖2

L2×L2
(
Bc1+λ

∪B1−λ

)
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Universality of Blow up Profile 6987

+ Pk
[
(∇u0, u1)χB1+δ\B1−δ

] ∥∥∥∥
2

L2×L2(Bc1+λ
∪B1−λ)

�
∑

k≥k0

∥∥∥Pk
[
(∇u0, u1)χBc1+δ

∪B1−δ

]∥∥∥
2

L2×L2

+
∑

k≥k0

∥∥Pk
[
(∇u0, u1)χB1+δ\B1−δ

]∥∥2
L2×L2

(
Bc1+λ

∪B1−λ

)

� δ
1
2 ‖(u0, u1)‖2

Ḣ1×L2 .

Then by the above calculation and (3.26), we get that

∑

k≥k0

[
‖∂rPku0 + Pku1‖2

L2
+ ‖/∂Pku0‖2

L2

]

�
∑

k≥k0

‖Pk(∇u0, u1)‖2

L2×L2
(
Bc1+λ

∪B1−λ

) +

+
∑

k≥k0

[
‖∂rPku0 + Pku1‖2

L2(B1+λ\B1−λ)
+ ‖/∂Pku0‖2

L2(B1+λ\B1−λ)

]

� δ
1
2 ‖(u0, u1)‖2

Ḣ1×L2 +
∑

k≥k0

2−k‖(u0, u1)‖2
Ḣ1×L2 +

+
∑

k≥k0

(
‖Pk(∂ru0 + u1)‖2

L2
+ ‖Pk/∂u0‖2

L2

)

� δ
1
6 ‖(u0, u1)‖2

Ḣ1×L2 .

Hence, if we define the set

K :=
{
k ≥ k0 : ‖(Pku0, Pku1)‖Ḣ1×L2

(
Bc1+λ

∪B1−λ

) + ‖∂rPku0 + Pku1‖L2

+ ‖/∂Pku0‖L2 ≤ δ
1

100 ‖Pk(u0, u1)‖Ḣ1×L2

}
,

we can estimate that

∑

k≥k0,k �∈K

‖(Pku0, Pku1)‖2
Ḣ1×L2

� δ− 1
50

∑

k≥k0,k �∈K

[
‖(Pku0, Pku1)‖2

Ḣ1×L2
(
Bc1+λ

∪B1−λ

)

+ ‖∂rPku0 + Pku1‖2
L2

+ ‖/∂Pku0‖2
L2

]

� δ− 1
50 δ

1
6 ‖(u0, u1)‖2

Ḣ1×L2 � δ
1
12 ‖(u0, u1)‖2

Ḣ1×L2 .
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6988 T. Duyckaerts et al.

Hence the total energy at frequencies ∼ 2k with k ≥ k0, k �∈ K is negligible, and we will

focus on the high frequency pieces Pk(u0, u1) with 2k ≥ 2k0 and k ∈ K below.

Substep (4): Reduction to channel of energy inequality for frequencies in K.

Fix m ∈ K, then

‖(Pmu0, Pmu1)‖Ḣ1×L2
(
Bc1+λ

∪B1−λ

) + ‖∂rPmu0 + Pmu1‖L2 + ‖/∂Pmu0‖L2

≤ δ
1

100 ‖Pm(u0, u1)‖Ḣ1×L2 . (3.28)

We claim that if we can show for each m ∈ K that

∫

|x|≥ 1+β
2 +t

|∇x,tPmu|2(x, t)dx ≥ 1 + β

2
‖Pm(u0, u1)‖2

Ḣ1×L2 − Cǫ2c2m (3.29)

for all t ≥ 0, then we will be done. Indeed, write for each t ≥ 0,

Pm∇x,tu = Pm
[
(∇x,tu)χ|x|>β+t

]
+ Pm

[
(∇x,tu)χ|x|≤β+t

]
.

We can estimate, for |x| >
β+1

2
+ t, that

∣∣Pm
[
(∇x,tu)χ|y|≤β+t

]
(x)
∣∣

≤ 4m
∫

|x−y|≤β+t

∣∣�̌(2my)
∣∣∣∣∇x,tu(x − y, t)

∣∣dy

≤ 4m
∫

|y|> 1−β
2

∣∣�̌(2my)
∣∣|∇x,tu(x − y, t)|dy

≤ 4m
∫

|y|> 1−β
2

∣∣2my
∣∣−M |∇x,tu(x − y, t)|dy.

Thus,

∥∥Pm
[
|∇x,tu|χ|x|≤β+t

]∥∥
L2
(
|x|> β+1

2 +t
)

� 4m
∫

|y|> 1−β
2

|2my|−M dy ‖(u0, u1)‖Ḣ1×L2

� C(β)2−(M−2)m‖(u0, u1)‖Ḣ1×L2 .
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Universality of Blow up Profile 6989

Consequently, we get that

∑

m≥k0

‖Pm∇x,tu‖2

L2
(
|x|> 1+β

2 +t
)

≤
(
1 + δ

1
50

) ∑

m≥k0

∥∥Pm
[
(∇x,tu)χ|y|≥β+t

]∥∥2
L2

+

+ 2δ− 1
50

∑

m≥k0

∥∥Pm
[
(∇x,tu)χ|y|≤β+t

]∥∥2
L2
(
|x|> β+1

2 +t
)

≤
(
1 + δ

1
50

) ∫

|x|>β+t
|∇x,tu|2(x, t)dx+

+ C(β)δ− 1
50

∑

m≥k0

2−2(M−2)m‖(u0, u1)‖2
Ḣ1×L2

≤
(
1 + δ

1
50

) ∫

|x|>β+t
|∇x,tu|2(x, t)dx + C(β)δ− 1

50 4−(M−2)k0‖(u0, u1)‖2
Ḣ1×L2

≤
(
1 + δ

1
50

) ∫

|x|>β+t
|∇x,tu|2(x, t)dx + C(β)δ

1
3 ‖(u0, u1)‖2

Ḣ1×L2 ,

if we chooseM = 4. Therefore if (3.29) holds, then by the choice of K, (3.27), ‖(ck)‖l2 � ǫ,

and the above calculation, we see that

(1 − Cδ
1
12 − Cǫ2)

1 + β

2
‖(u0, u1)‖2

Ḣ1×L2

≤
∑

m∈K

(
1 + β

2
‖Pm(u0, u1)‖2

Ḣ1×L2 − C2ǫ2c2m

)

≤
∑

m∈K

‖Pm∇x,tu‖2

L2
(
|x|> 1+β

2 +t
)

≤
(
1 + δ

1
50

) ∫

|x|>β+t
|∇x,tu|2(x, t)dx + C(β)δ

1
3 ‖(u0, u1)‖2

Ḣ1×L2 .

The channel of energy inequality (3.8) follows if δ = δ(β) and ǫ = ǫ0(β) are taken

sufficiently small. Our goal is thus reduced to proving (3.29).

Step 2: Control of the perturbative part of the nonlinearity. It is proved in [14] that (3.29)

holds for solution to the linear wave equation with this type of outgoing initial data for

dimension ≥ 3, although the results we need here are more quantitative, see Lemma 3.1

above. Ideally one would like to say that the nonlinearity is negligible as we have small

solutions. However, as is now well known, even in small energy case, the nonlinearity

for the wave map equation cannot be treated entirely perturbatively. Rather, we need to

perform a gauge transform to modify the nonlinearity so that it becomes perturbative.
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6990 T. Duyckaerts et al.

Thus it is important to understand how the Gauge transform affects the channel of

energy inequality. The arguments we use here are mostly from Tao [51] and Tataru [58].

We shall present the details of the proof below, partly for the convenience of the reader,

and partly as those works did not explicitly quantify the nonlinear effects (which are

implicit in the proofs). In this step however, we shall firstly control the part of the

nonlinearity that is perturbative.

Let

ψ := Pmu.

Then ψ verifies

{
∂ttψ − �ψ = Pm

(
u ∂αu†∂αu

)
−→
ψ (0) = (Pmu0, Pmu1).

(3.30)

Let us rewrite the nonlinearity Pm
(
u ∂αu†∂αu

)
as

Pm
(
u ∂αu†∂αu

)

= Pm
(
u≥m−10 ∂αu†∂αu

)

+ Pm
(
u<m−10 ∂αu†

>m+10∂αu
)

+ Pm
(
u<m−10 ∂αu†

m−10≤·≤m+10∂αu≥m−10

)

+ Pm
(
u<m−10 ∂αu†

m−10≤·≤m+10∂αu<m−10

)

+ Pm
(
u<m−10 ∂αu†

<m−10∂αu>m+10

)

+ Pm
(
u<m−10 ∂αu†

<m−10∂αum−10≤·≤m+10

)

+ Pm
(
u<m−10 ∂αu†

<m−10∂αu<m−10

)

= I1 + I2 + I3 + I4 + I5 + I6 + I7.

Denote

ǫ := ‖(u0, u1)‖Ḣ1×L2 ≤ ǫ0.

We firstly peel off the perturbative part of the nonlinearity. We shall call h disposable if

sup
m′=m+O(1)

‖Pm′h‖N[m′] � ǫ cm.
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Universality of Blow up Profile 6991

Here the O(1) term is a number of size ∼ 10. The main use of this term is to deal with

some technical “frequency leakage” issues. (On a technical level, to apply the estimates

from Theorem 2.2, we need the right-hand sides to carry the frequency localization

operator Pk.) We shall call h disposable in the generalized sense if there exists a sequence

of disposable hk with hk → h in the sense of distributions. Note that the notion of being

disposable and that of being disposable in the generalized sense are not the same, due

to the technical issue with the space N[m], see for example, page 324 of [58] for more

discussions.

Note that I4 = I6. Furthermore, analysing the support of the trilinear expressions

in frequencies, we obtain that I5 = I7 = 0. We claim that I1, I2, I3 are disposable, that is,

Claim 3.1. For j = 1, 2, 3 we have

sup
m′=m+O(1)

∥∥Pm′ Ij
∥∥
N[m′] � ǫcm. (3.31)

�

We also claim that

Claim 3.2. For m′ = m+ O(1),

∥∥Pm′
[
Pm
(
u<m−10 ∂αu†

m−10<·<m+10∂αu<m−10

)
− u<m−10 ∂αψ†∂αu<m−10

]∥∥
N[m′] � ǫcm, (3.32)

where ψ is defined in (3.30); similarly,

∥∥Pm′
[
Pm
(
∂αu<m−10 u

†
<m−10 ∂αum−10<·<m+10

)
− ∂αu<m−10 u

†
<m−10 ∂αψ

]∥∥
N[m′] � ǫcm. (3.33)

�

We postpone the proof of Claims 3.1 and 3.2 to the end of this section.

Hence, by (3.32) we can rewrite the equation for ψ as

∂ttψ − �ψ = f̃ + 2u<m−10 ∂αu
†
<m−10∂

αψ , (3.34)

where

sup
m′=m+O(1)

∥∥∥Pm′ f̃
∥∥∥
N[m′]

� ǫcm.

Let us note the relation

u† ∂αu = 0.
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6992 T. Duyckaerts et al.

It follows that

0 = Pm
(
∂αu<m−10u

† ∂αu
)

= Pm
(
∂αu<m−10u

†
≥m−10∂αu

)
+ Pm

(
∂αu<m−10u

†
<m−10∂αum−10≤·≤m+10

)

= I + II .

We can estimate the I term, by using the trilinear estimate, as for m′ = m+ O(1)

∥∥Pm′
(
∂αu<m−10u

†
≥m−10∂αu

)∥∥
N[m′]

�
∑

k1<m−10,m−10≤k2≤m+10,k3≤m+O(1)

∥∥∥Pm′
(
∂αuk1u

†
k2

∂αuk3

)∥∥∥
N[m′]

+

+
∑

k1<m−10,k2>m+10,k3=k2+O(1)

∥∥∥Pm′
(
∂αuk1u

†
k2

∂αuk3

)∥∥∥
N[m′]

�
∑

k1<m−10,k3≤m+O(1)

2−κ(m−min{k1,k3})ck1cmck3 +

+
∑

k1<m−10,k2>m+10

2−κ(k2−m)2−κ(k2−k1)ck1c
2
k2

� ǫ2cm.

Consequently, by the boundedness of Pm in S[m′], we see that

sup
m′=m+O(1)

‖Pm′ II‖N[m′] � ǫ2cm

and thus II is disposable. Thus by (3.33) we can rewrite the equation for ψ as

∂ttψ − �ψ = f + 2
(
u<m−10 ∂αu†

<m−10 − ∂αu<m−10 u
†
<m−10

)
∂αψ , (3.35)

where f satisfies

sup
m′=m+O(1)

‖f ‖N[m′] � ǫcm. (3.36)

Step 3 : Construction of the micro-local gauge. To deal with the non-perturbative part

of the nonlinearity, we need to use the idea of Tao [51].

We have

∂ttψ − �ψ = f + 2
(
u<m−10 ∂αu†

<m−10 − ∂αu<m−10 u
†
<m−10

)
∂αψ , (3.37)
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Universality of Blow up Profile 6993

where f satisfies

sup
m′=m+O(1)

‖f ‖N[m′] � ǫcm. (3.38)

Let w = U<m−10ψ for some matrix U<m−10 to be determined below, then (3.37) implies

that

− ∂α∂αw = −∂α∂αU<m−10 ψ − 2∂αU<m−10∂αψ

+ U<m−10

[
f + 2

(
u<m−10 ∂αu†

<m−10 − ∂αu<m−10 u
†
<m−10

)
∂αψ

]

= (�U<m−10) ψ + U<m−10f +

+ 2
[
U<m−10

(
u<m−10 ∂αu†

<m−10 − ∂αu<m−10 u
†
<m−10

)
− ∂αU<m−10

]
∂αψ .

Then

∂ttw − �w = (�U<m−10) ψ + U<m−10f (3.39)

+ 2
[
U<m−10

(
u<m−10 ∂αu†

<m−10 − ∂αu<m−10 u
†
<m−10

)
− ∂αU<m−10

]
∂αψ .

Ideally we would like to choose U<m−10 so that

∂αU<m−10 = U<m−10

(
u<m−10∂

αu†
<m−10 − ∂αu<m−10 u

†
<m−10

)

for all α, then the term on the right-hand side of (3.39) containing ∂αψ would be elim-

inated, and we would be in a truly semilinear case. However, this is impossible due

to compatibility issues, see the discussions in [51]. Instead we will follow Tataru’s

modification of Tao’s idea in [58] to construct a micro-local approximate solution.

Fix large N > 1. Define inductively

UN
−N = I ;

UN
k = UN

<k−10

(
u<k−10u

†
k − uku

†
<k−10

)
,

where UN
<k−10 =

∑
−N<j<k−10

UN
j + I if k > −N + 11 and UN

<k−10 = I otherwise. In the end we

will pass N → ∞, but we need to obtain uniform in N estimates for UN
k in order to do

that. We claim the following properties for UN
k and UN

<k with −N < k ≤ N :

Claim 3.3. For ǫ sufficiently small,

UN
k has frequency support 2k−2 ≤ |ξ | ≤ 2k+2; (3.40)
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6994 T. Duyckaerts et al.

sup
k′=k+O(1)

∥∥Pk′UN
k

∥∥
S[k′] � ck; (3.41)

∥∥∥UN
<k

(
UN

<k

)† − I
∥∥∥
S(c)

�
√

ǫ. (3.42)

�

We shall prove the claim inductively. For k = −N+1, the claim follows from the

property that by Theorem 2.3

‖u‖S(c) � 1.

Suppose the claim is true up to k − 1, let us prove it holds also for k. A crucial point is

the following important algebraic identity:

UN
k

(
UN

<k−10

)† + UN
<k−10(U

N
k )† (3.43)

= UN
<k−10

(
u<k−10u

†
k − uku

†
<k−10

) (
UN

<k−10

)† + (3.44)

+ UN
<k−10

(
uku

†
<k−10 − u<k−10u

†
k

) (
UN

<k−10

)†
(3.45)

= 0. (3.46)

We also note that UN
j is anti-symmetric if −N < j ≤ −N + 11, which is an easy

consequence of the definition of UN
j .

Thus by the anti-symmetry of UN
j for −N < j ≤ −N + 11, we get that

UN
<k

(
UN

<k

)† =

⎛
⎝ ∑

−N≤j<k

UN
j

⎞
⎠
⎛
⎝ ∑

−N≤j<k

(
UN
j

)†
⎞
⎠

=
∑

−N≤j<j′−10<j′<k

UN
j

(
UN
j′

)†
+

∑

−N≤j′<j−10<j<k

UN
j

(
UN
j′

)†
+

+
∑

|j−j′|≤10,−N<j, j′<k

UN
j

(
UN
j′

)†
+

∑

−N<j≤−N+10

[(
UN
j

)† + UN
j

]
+ I

=
∑

−N+10<j′<k

UN
<j′−10

(
UN
j′

)†
+

∑

−N+10<j<k

UN
j

(
UN

<j−10

)† + I+
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Universality of Blow up Profile 6995

+
∑

|j−j′|≤10,−N<j, j′<k

UN
j

(
UN
j′

)†

= I +
∑

−N<j, j′<k, |j−j′|≤10

UN
j

(
UN
j′

)†
.

Simplifying the above, we get that

UN
<k

(
UN

<k

)† − I =
∑

−N<j, j′<k, |j−j′|≤10

UN
j

(
UN
j′

)†
.

Hence by (3.41) from induction,

∥∥∥UN
<k

(
UN

<k

)† − I
∥∥∥
L∞

�
∑

−N<j, j′<k, |j−j′|≤10

∥∥UN
j

∥∥
L∞

∥∥∥UN
j′

∥∥∥
L∞

�
∑

−N<j, j′<k, |j−j′|≤10

∑

j1=j+O(1), j2=j′+O(1)

∥∥Pj1UN
j

∥∥
S[j1]

∥∥∥Pj2UN
j′

∥∥∥
S[j2]

�
∑

−N<j<k

c2j � ǫ2.

In the second inequality above, we used the fact that UN
j =

∑
j1=j+O(1) Pj1U

N
j which fol-

lows from the frequency support property of UN
j . We shall use this trick often, as a

replacement of bound on ‖UN
j ‖S[j] which we do not have. Below we will omit the routine

details when we use the same trick. In particular, combining the above with the induc-

tion bound (3.41), we see that ‖UN
<k‖S(1) ≤ C for some universal constant (by choosing ǫ

small).

Similarly, for each k′ < k + O(1), by the property of S[k] spaces and induction,

∥∥∥Pk′
[
UN

<k

(
UN

<k

)†]∥∥∥
S[k′]

�
∑

−N<j, j′<k, |j−j′|≤10

∥∥∥∥Pk′

[
UN
j

(
UN
j′

)†]∥∥∥∥
S[k′]

�
∑

O(1)+k′<j<k

2−κ(j−k′)+c2j

�
∑

O(1)+k′<j<k

2−(κ−ϑ)(j−k′)+cjck′ � ǫ ck′ .

Combining the above two estimates, (3.42) follows.
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6996 T. Duyckaerts et al.

The estimate for supk′=k+O(1)

∥∥Pk′UN
k

∥∥
S[k′] then follows from the definition and

the fact that ‖u<k−10‖S(c), ‖UN
<k−10‖S(1) are universally bounded. The support property is

obvious.

Using these uniform estimates, we can pass N → ∞, and obtain a limit along a

subsequence of N , so that

Uk := lim
Ni→∞

U
Ni
k , U<k := lim

Ni→∞
U

Ni
<k

exist in the sense of distributions, for each k. Since UN
k are frequency localized and have

bounded overlap in frequency support, we can conclude that

U<k =
∑

k′<k

Uk′ + I , and Uk = U<k−10(u<k−10u
†
k − uku

†
<k−10). (3.47)

In addition, Uk, U<k satisfies the same estimates claimed for UN
k , U

N
<k above. As a

consequence, we have

sup
k′=k+O(1)

‖Pk′Uk‖S[k′] � ck, and ‖U<k‖S(c) � 1. (3.48)

This is a direct consequence of the property of S[k] under weak convergence, see the

remark below Theorem 2.2.

Step 4 : Control of the nonlinearity after applying the gauge transform.We shall show

that the terms on the right-hand size of (3.39) are all disposable.

Substep (1): the terms involving �Uk.

To control the terms (�U<m−10) ψ , we need to control �UN
<m−10 uniformly for all

large N . By definition,

�UN
k =

(
�UN

<k−10

) (
u<k−10u

†
k − uku

†
<k−10

)

− 2∂αUN
<k−10∂α

(
u<k−10u

†
k − uku

†
<k−10

)

+ UN
<k−10

(
�u<k−10u

†
k + u<k−10�u

†
k − �uk u

†
<k−10 − uk�u

†
<k−10

)

+ 2UN
<k−10

(
∂αuk∂αu

†
<k−10 − ∂αu<k−10∂αu

†
k

)
= I + II + III + IV .

We claim that for ν = κ

32
, and uniformly for all large N .
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Claim 3.4.

sup
j′=j+O(1)

∥∥Pj′
(
�UN

k φ
)∥∥

N[j′] � 2−ν(j−k)ck‖φ‖S[j] (3.49)

for all φ with frequency support in 2j−5/2 ≤ · ≤ 2j+5/2 and k < j − 7. �

Assuming this claim for a moment, then we can estimate for m′ = m+ O(1)

∥∥Pm′
[
�UN

<m−10 ψ
]∥∥

N[m′]

�
∑

k<m−10

∥∥Pm′
[
�UN

k ψ
]∥∥

N[m′]

�
∑

k<m−10

2−ν(m−k)ckcm � ǫ cm,

and thus the first term on the right-hand side of (3.39) is disposable in the generalized

sense.

We shall prove (3.49) inductively. It is clear that (3.49) holds for k = −N . Suppose

(3.49) holds for k′ < k, let us prove that it holds for k. The bound for I term:

∥∥Pj′
[
�UN

<k−10

(
u<k−10u

†
k − uk u

†
<k−10

)
φ
]∥∥

N[j′]

�
∑

k′<k−10, |j−j′′|≤3

∥∥Pj′
[
�UN

k′ Pj′′
{(
u<k−10u

†
k − uk u

†
<k−10

)
φ
}]∥∥

N[j′]

�
∑

k′<k−10

2−ν(j−k′)ck′ck‖φ‖S[j]

� 2−ν(j−k)ǫ ck‖φ‖S[j]

follows from the inductive hypothesis and the property of S[k] spaces. The projection

Pj′′ was used to deal with the frequency leakage, which is a minor technical issue.

Let us consider the II term ∂αUN
<k−10∂α

(
u<k−10u†

k − uku†
<k−10

)
φ. By (3.48) and the

trilinear estimate, we have

∥∥Pj′
[
∂αUN

<k−10∂α

(
u<k−10u

†
k − uku

†
<k−10

)
φ
]∥∥

N[j′]

�
∑

k′<k−10

∥∥Pj′
[
∂αUN

k′∂α

(
u<k−10u

†
k − uku

†
<k−10

)
φ
]∥∥

N[j′]

�
∑

k′<k−10

2−κ(j−k′)ck′ck‖φ‖S[j]

� 2−κ(j−k)ǫ ck‖φ‖S[j].
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6998 T. Duyckaerts et al.

Let us now consider the term

Pj′
[(
UN

<k−10∂
αu<k−10∂αu

†
k

)
φ
]

from term IV . We have, by (3.48) and the trilinear estimate,

∥∥Pj′
[(
UN

<k−10∂
αu<k−10∂αu

†
k

)
φ
]∥∥

N[j′]

�
∑

k′<k−10

2−κ(j−k′)ckck′‖φ‖S[j] � 2−κ(j−k)ǫ ck‖φ‖S[j]

for j′ = j + O(1).

The term

Pj′
[(
UN

<k−10∂
αuk∂αu

†
<k−10

)
φ
]

can be controlled similarly.

It remains to control term III . For this, we need to use the equation for u. Since

u satisfies the wave map equation, we see that

�uk′ = Pk′
(
u ∂αu†∂αu

)
, for each k′ ≤ k. (3.50)

It suffices to show that, for any ϕ with Fourier support 2j−3 ≤ |ξ | ≤ 2j+3 and k′ < j − 6,

∥∥Pj′
[
Pk′
(
u ∂αu†∂αu

)
ϕ
]∥∥

N[j′] � 2−ν(j−k′)ǫ
1
2 ck′‖ϕ‖S[j] (3.51)

for j′ = j + O(1). Indeed, from (3.51), it follows that

∥∥Pj′
[
UN

<k−10�u<k−10u
†
kφ
]∥∥

N[j′]

�
∑

k′<k−10

∥∥Pj′
[
UN

<k−10�uk′u†
kφ
]∥∥

N[j′]

�
∑

k′<k−10

2−ν(j−k′)ck′ck‖φ‖S[j]

� ǫ ck2
−ν(j−k)‖φ‖S[j]

and that

∥∥Pj′
[
UN

<k−10�uk u
†
<k−10φ

]∥∥
N[j′]

� 2−ν(j−k)ck ǫ
1
2 ‖φ‖S[j].
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These estimates are sufficient for the completion of the induction, due to the presence

of the extra ǫ
1
2 factor, which can be used to absorb various constants in the inequalities.

To prove (3.51), let us decompose Pk′
(
u ∂αu†∂αu

)
φ as

Pk′
(
u ∂αu†∂αu

)
ϕ = Pk′

(
u

>
j+k′
2

∂αu†∂αu
)

ϕ

+ Pk′
(
u≤ j+k′

2

∂αu†∂αu
)

ϕ = I1 + I2.

For I1, by the trilinear estimates and symmetry, we can estimate as follows

∥∥∥Pj′
[
Pk′
(
u

>
j+k′
2

∂αu†∂αu
)

ϕ
]∥∥∥

N[j′]
=

∥∥∥∥∥∥∥

∑

k2,k3,k1>
j+k′
2

Pj′
[
Pk′
(
uk1 ∂αu†

k2
∂αuk3

)
ϕ
]
∥∥∥∥∥∥∥
N[j′]

� ‖ϕ‖S[j]

⎛
⎜⎝

∑

k1>
j+k′
2 ,k3≥k1+O(1),k3=k2+O(1)

2−κ(max1≤i≤3 ki−k′)2−κ(k1−min{k2,k3})+ck1ck2ck3

+
∑

k1>
j+k′
2 ,k2<k3−C,k3=k1+O(1)

2−κ(max1≤i≤3 ki−k′)2−κ(k1−min{k2,k3})+ck1ck2ck3

⎞
⎟⎠

� ǫ2 ‖ϕ‖S[j]

⎛
⎜⎝
∑

k1>
j+k′
2

ck12
−κ(k1−k′) +

∑

k1>
j+k′
2

ck12
−κ(k1−k′)

⎞
⎟⎠

� ǫ2 2− κ
2 (j−k′)‖ϕ‖S[j]ck′ .

Now let us deal with the term I2 = Pk′
(
u≤ j+k′

2

∂αu†∂αu
)

ϕ. In this case, we can insert

P
<
j+k′
2 +C in front of ∂αu† ∂αu, use symmetry, and obtain that

∥∥∥Pj′
[
Pk′
(
u≤ j+k′

2

∂αu†∂αu
)

ϕ
]∥∥∥

N[j′]

=
∥∥∥Pj′

[
Pk′
(
u≤ j+k′

2

P
<
j+k′
2 +C

(
∂αu†∂αu

))
ϕ
]∥∥∥

N[j′]

�

∥∥∥∥∥∥
∑

k1≤k2,k2=k1+O(1)

Pj′
[
Pk′
(
u≤ j+k′

2

P
<
j+k′
2 +C

(
∂αu†

k1
∂αuk2

))
ϕ
]
∥∥∥∥∥∥
N[j′]

+

+

∥∥∥∥∥∥
∑

k1≤k2−C

Pj′
[
Pk′
(
u≤ j+k′

2

P
<
j+k′
2 +C

(
∂αu†

k1
∂αuk2

))
ϕ
]
∥∥∥∥∥∥
N[j′]

,
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7000 T. Duyckaerts et al.

which can be estimated as

�

∥∥∥∥∥∥∥

∑

k1≤k2,k2=k1+O(1),k1>
3j+k′

4

Pj′
[
Pk′
(
u≤ j+k′

2

P
<
j+k′
2 +C

(
∂αu†

k1
∂αuk2

))
ϕ
]
∥∥∥∥∥∥∥
N[j′]

+

∥∥∥∥∥∥∥

∑

k1≤k2,k2=k1+O(1),k1≤ 3j+k′
4

Pj′
[
Pk′
(
u≤ j+k′

2

P
<
j+k′
2 +C

(
∂αu†

k1
∂αuk2

))
ϕ
]
∥∥∥∥∥∥∥
N[j′]

+
∑

k1≤k2−C,k2≤ j+k′
2 +C

2−κ(j−k1)‖ϕ‖S[j]ck1ck2

which is

�
∑

k1>
3j+k′

4

2
−κ

(
k1− j+k′

2

)

‖ϕ‖S[j] · c2k1 +
∑

k1≤ 3j+k′
4

c2k1 · 2−κ(j−k1)‖ϕ‖S[j]

+
∑

k1≤k2−C,k2≤ j+k′
2 +C

2−κ(j−k1)‖ϕ‖S[j]ck1ck2

� 2− κ
8 (j−k′)ǫ ck′‖ϕ‖S[j].

Combining the above estimates for I , II , III , IV terms, the claim follows.

Substep (2): Control of the term containing ∂ψ .

Nowwe address themain term in the nonlinearity that forced us to use the gauge

transform

h̃ =
[
U<m−10

(
u<m−10∂

αu†
<m−10 − ∂αu<m−10u

†
<m−10

)
− ∂αU<m−10

]
∂αψ .

Note that by (3.47), we have

− h̃ =
[
∂αU<m−10 − U<m−10

(
u<m−10∂

αu†
<m−10 − ∂αu<m−10u

†
<m−10

)]
∂αψ

=
∑

k<m−10

[
∂αUk − U<m−10

(
u<m−10∂

αu†
k − ∂αuku

†
<m−10

)]
∂αψ

=
∑

k<m−10

[
∂αUk − U<k−10

(
u<k−10∂

αu†
k − ∂αuku

†
<k−10

)]
∂αψ

−
∑

k<m−10

Uk−10≤·<m−10

(
u<m−10∂

αu†
k − ∂αuk u

†
<m−10

)
∂αψ

−
∑

k<m−10

U<k−10

(
uk−10≤·<m−10∂

αu†
k − ∂αuk u

†
k−10≤·<m−10

)
∂αψ
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=
∑

k<m−10

[
∂αU<k−10

(
u<k−10u

†
k − uku

†
<k−10

)

−U<k−10

(
∂αu<k−10u

†
k − uk∂

αu†
<k−10

)]
∂αψ + R.

To estimate the R term, let us firstly bound for m′ = m+ O(1),

∥∥Pm′
[
Uk−10≤·<m−10u<m−10∂

αu†
k∂αψ

]∥∥
N[m′]

�
∑

k−10≤k′<m−10

∥∥Pm′
[
Uk′u<m−10∂

αu†
k∂αψ

]∥∥
N[m′]

�
∑

k−10≤k′<m−10

sup
m′′=m+O(1)

∥∥Pm′′
[
Uk′∂αu†

k∂αψ
]∥∥

N[m′′]

�
∑

k−10≤k′<m−10

2−κ(k′−k)ck′ckcm �
∑

k−10≤k′<m−10

2−(κ−ϑ)(k′−k)c2kcm

� c2kcm.

Other terms in R can be treated similarly. Thus

sup
m′=m+O(1)

‖Pm′ [R]‖N[m′] �
∑

k

c2kcm � ǫ2cm, (3.52)

and consequently R is disposable.

We can estimate for m′ = m+ O(1)

∥∥Pm′
[
∂αU<k−10

(
u<k−10u

†
k − uku

†
<k−10

)
∂αψ

]∥∥
N[m′]

�
∑

k′<k−10

∥∥Pm′
[
∂αUk′

(
u<k−10u

†
k − uku

†
<k−10

)
∂αψ

]∥∥
N[m′]

�
∑

k′<k−10

2−κ(k−k′)ckck′‖ψ‖S[m]

�
∑

k′<k−10

2−(κ−ϑ)(k−k′)c2k‖ψ‖S[m] � c2k‖ψ‖S[m]

and

∥∥Pm′
[
U<k−10∂

αu<k−10u
†
k∂αψ

]∥∥
N[m′]

�
∑

k′<k−10

∥∥Pm′
[
U<k−10∂

αuk′u†
k∂αψ

]∥∥
N[m′]

�
∑

k′<k−10

2−κ(k−k′)ck′ck‖ψ‖S[m]

� c2k‖ψ‖S[m].
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7002 T. Duyckaerts et al.

Thus in summary, we can estimate

sup
m′=m+O(1)

‖h̃‖N[m′] �
∑

k<m−10

c2k‖ψ‖S[m] � ǫ2cm

and consequently h̃ is disposable.

Substep (3): U<m−10f term is disposable.

This follows directly as f is disposable.

Step 5 : Proof of the channel of energy inequality for the good frequency piece. Take

m ∈ K. By the estimates from Step 4, we can write the equation for w in Step 3 as

∂ttw − �w = h (3.53)

with h being disposable in the generalized sense, that is, h = lim
k→∞

hk in the sense of

distributions and sup
m′=m+O(1)

‖Pm′hk‖N[m′] � ǫcm uniformly in k. Let us now study how the

outgoing condition (3.28) on the initial data of ψ has been transformed. Recall that

w = U<m−10ψ .

Hence

∇x,tw = ∇x,tU<m−10ψ + U<m−10∇x,tψ .

Thus at time t = 0, by (3.48) and the outgoing condition for ψ ,

‖∇x,tw(0)‖L2x (Bc1+λ
∪B1−λ)

� ‖∇x,tU<m−10(0)‖L2‖ψ(0)‖L∞
x

+ ‖U<m−10(0)‖L∞
x

‖∇x,tψ(0)‖L2(Bc1+λ
∪B1−λ)

�

( ∑

k<m−10

‖∇x,tUk(0)‖2

L2x

) 1
2

‖Pm(u0, u1)‖Ḣ1×L2 + δ
1

100 ‖Pm(u0, u1)‖Ḣ1×L2

�

( ∑

k<m−10

c2k

) 1
2

‖Pm(u0, u1)‖Ḣ1×L2 + δ
1

100 ‖Pm(u0, u1)‖Ḣ1×L2

�
(
ǫ + δ

1
100

)
‖Pm(u0, u1)‖Ḣ1×L2 .

Similar calculations show that

‖/∂w0‖L2 + ‖∂rw0 +w1‖L2 �
(
ǫ + δ

1
100

)
‖Pm(u0, u1)‖Ḣ1×L2
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Universality of Blow up Profile 7003

and

‖(w0, w1)‖Ḣ1×L2 ≥ (1 − γ (ǫ))‖Pm(u0, u1)‖Ḣ1×L2

with a suitable γ → 0 as ǫ → 0. If δ and ǫ are chosen sufficiently small, then by the chan-

nel of energy inequality for the linear wave equation and the bound on h, we conclude

using (2.9) and (2.10) that for all t ≥ 0,

∫

|x|≥ β+1
2 +t

|∇x,tw|2(x, t)dx ≥
∣∣∣∣
3 + β

4

∣∣∣∣ ‖Pm(u0, u1)‖2
Ḣ1×L2 − Cǫ2c2m. (3.54)

Since ∇x,tU<m−10 ψ is small in L2 (smaller than Cǫcm) and U<m−10 is almost orthogonal

by (3.42), the channel of energy inequality (3.29) for ψ follows (again by choosing ǫ, δ

sufficiently small depending on β).

This finishes the proof of the theorem.

It remains to prove Claims 3.1 and 3.2.

Proof of Claim 3.1. We need to control I1, I2, I3.

For I1, by the trilinear estimate and symmetry, we get that for m′ = m+ O(1)

∥∥Pm′
(
u≥m−10∂

αu†∂αu
)∥∥

N[m′]

=

∥∥∥∥∥∥
∑

k1≥m−10,k2,k3

Pm′
(
uk1∂

αu†
k2

∂αuk3

)
∥∥∥∥∥∥
N[m′]

�
∑

k1≥m−10,k2≥k3

2−κ(max{k1,k2,k3}−m)+2−κ(k1−min{k2,k3})+ ×

× ‖uk1‖S[k1] ‖uk2‖S[k2] ‖uk3‖S[k3]

�
∑

k1≥m−10,k2≥k3

2−κ(max{k1,k2}−m)+2−κ(k1−k3)+ck1ǫ
2

� ǫ2 cm
∑

k1≥m−10,k2≥k3

2−(κ−ϑ)(max{k1,k2}−m)+2−κ(k1−k3)+ � ǫ2 cm.

For I2, by the product property and null form estimate, we get that for m′ = m+ O(1)

∥∥Pm′
(
u<m−10∂

αu†
>m+10∂αu

)∥∥
N[m′]

�
∑

k1>m+10,k2=k1+O(1)

∥∥∥Pm′
(
u<m−10∂

αu†
k1

∂αuk2

)∥∥∥
N[m′]

�
∑

k1>m+10,k2=k1+O(1)

2−κ(k1−m)‖uk1‖S[k1]‖uk2‖S[k2]
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7004 T. Duyckaerts et al.

�
∑

k1>m+10,k2=k1+O(1)

2−κ(k1−m)ck1ck2

� ǫ cm
∑

k1>m+10,k2=k1+O(1)

2−(κ−ϑ)(k1−m) � ǫ cm.

For I3, by the product property and null form estimate, we get that for m′ = m+ O(1)

∥∥Pm′
(
u<m−10∂

αu†
m−10≤·≤m+10∂αu≥m−10

)∥∥
N[m′]

�
∑

k≥m−10

∥∥Pm′
(
u<m−10∂

αu†
m−10≤·≤m+10∂αuk

)∥∥
N[m′]

�
∑

k≥m−10

2−κ(k−m)ǫ cm � ǫ cm.

Thus the terms I1, I2, I3 are all disposable. The claim is proved. �

Proof of Claim 3.2. Noting that

Pm
(
um−10≤·≤m+10

)
= Pmu = ψ

by Lemma 2.1, we get that

Pm
(
u<m−10∂αu

†
<m−10∂

αum−10≤·≤m+10

)
− u<m−10∂αu

†
<m−10∂

αψ

= 2−mL
(
∇
(
u<m−10∂αu

†
<m−10

)
, ∂αum−10≤·≤m+10

)

= 2−mL
(
∇u<m−10∂αu

†
<m−10, ∂αum−10<·<m+10

)
+

+ 2−mL
(
u<m−10∂α∇u†

<m−10, ∂αum−10<·<m+10

)
.

Thus, noting that

‖∇uk‖S[k] � 2k‖uk‖S[k]

by the trilinear estimate for the first term in the above and the product estimate and

null form estimate for the second, we get that for m′ = m+ O(1)

∥∥Pm′
[
Pm
(
u<m−10∂αu

†
<m−10∂

αum−10<·<m+10

)
− u<m−10∂αu

†
<m−10∂

αψ
]∥∥

N[m′]

�
∑

k1<m−10,k2<m−10

2−m
∥∥∥Pm′

[
L
(
∇uk1∂αu

†
k2
, ∂αum−10<·<m+10

)]∥∥∥
N[m′]
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+
∑

k<m−10

2−m ∥∥Pm′
[
L
(
u<m−10∂α∇u†

k, ∂αum−10<·<m+10

)]∥∥
N[m′]

� 2−m
∑

k1<m−10,k2<m−10

2k12−κ(k1−k2)+cmǫ2 +
∑

k<m−10

2−m2kǫ cm � ǫcm.

The first part of the claim is proved. The proof of the second part is similar. �

4 Morawetz Estimates and Applications

In the previous sections, the main tools we use are all perturbative in nature. In order

to understand the dynamics of large wave maps, we need some global control on the

solution. Such global control is often achieved with help of suitable monotonicity for-

mulae. The most important monotonicity formula here are the energy flux identity and

the Morawetz estimate (see for example [20]). This section follows similar arguments in

Sterbenz–Tataru [48].

For notational convenience, we shall work with a classical wave map u defined

onR2×(0, 1], that equals u∞ ∈ S2 for large x. Let us firstly look at the energy flux identity

for u. We thus have

∂ttu− �u = (|∇u|2 − |ut|2)u, in R2 × (0, 1].

Noting that u† · ut ≡ 0, we have the identity

(
∂ttu

† − �u†
)
· ut = 0, in R2 × (0, 1]. (4.1)

Take 0 < t1 < t2 < 1, and integrate the identity (4.1) in the truncated lightcone {(x, t) :

|x| < t, t1 < t < t2}, we obtain that

∫

|x|<t2

( |∇u|2
2

+ |∂tu|2
2

)
(x, t2)dx −

∫

|x|<t1

( |∇u|2
2

+ |∂tu|2
2

)
(x, t1)dx

− 1√
2

∫ t2

t1

∫

|x|=t

( |∇u|2
2

+ |∂tu|2
2

+ x

t
· ∇u† ∂tu

)
dσdt = 0.

Denote

Flux(t1, t2) :=
1√
2

∫ t2

t1

∫

|x|=t

( |∇u|2
2

+ |∂tu|2
2

+ x

t
· ∇u† ∂tu

)
dσdt
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7006 T. Duyckaerts et al.

as the “energy flux” through the lateral boundary of the lightcone. We see that

Flux(t1, t2) =
∫

|x|<t2

( |∇u|2
2

+ |∂tu|2
2

)
(x, t2)dx

−
∫

|x|<t1

( |∇u|2
2

+ |∂tu|2
2

)
(x, t1)dx.

Since Flux(t1, t2) ≥ 0, it follows that

∫

|x|<t

( |∇u|2
2

+ |∂tu|2
2

)
(x, t)dx

is nondecreasing, and has a limit as t → 0+. Thus Flux(t1, t2) → 0+ as t1, t2 → 0+.

The control of energy flux plays an essential role in the following Morawetz

estimate.

Theorem 4.1. Let u be a classical wave map with energy E on R2 × (0, 1] and ǫ ∈ (0, 1).

For each 0 < t < 1, if Flux(0, t) < ǫE, then

∫ t

ǫt

∫

|x|<t
ρ3

ǫt (X
α∂αu)

2 dxdt +
∫

|x|<t
tρǫt

( |∇u|2
2

+ |ut|2
2

+ x

t
· ∇u† ut

)
(x, t)dx � E, (4.2)

where we set ρǫt :=
(
(t + ǫt)2 − |x|2

)− 1
2 and Xα = xα if α = 1, 2, X0 = t + ǫt. �

Proof. By rescaling, we can assume without loss of generality that t = 1. (Then u is

rescaled to R2 ×
(
0, 1

t

]
) Let us integrate the identity

∂α∂αu
† ρǫ X

β∂βu = 0

on {(x, t) : |x| < t, ǫ < t < 1}. We have

0 =
∫ 1

ǫ

∫

|x|<t
∂α∂αu

† ρǫX
β∂βudxdt

=
∫ 1

ǫ

∫

|x|<t
ρǫ X

β∂α(∂αu
† ∂βu) − ρǫ X

β∂β

∂αu†∂αu

2
dxdt,

= B+ I ,
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Universality of Blow up Profile 7007

where the boundary term B and the interior term I are

B =
∫ 1

ǫ

∫

|x|=t
ρǫ X

β nα ∂αu
† ∂βu− ρǫ X

β nβ

∂αu†∂αu

2
dσdt

−
∫

|x|<1

ρǫ X
β ∂tu

† ∂βu(x, 1)dx −
∫

|x|<1

(1 + ǫ)ρǫ

∂αu†∂αu

2
(x, 1)dx

+
∫

|x|<ǫ

ρǫ X
β ∂tu

† ∂βu(x, ǫ)dx +
∫

|x|<ǫ

2ǫ ρǫ

∂αu†∂αu

2
(x, ǫ)dx;

and

I = −
∫ 1

ǫ

∫

|x|<t
∂α
(
ρǫ X

β
)

∂αu
† ∂βu− ∂β

(
ρǫ X

β
) ∂αu†∂αu

2
dx dt.

In the above we use the notation n = 1√
2

(
x
|x| , −1

)
, nj = nj = 1√

2

xj
|x| for j = 1, 2 and

n0 = −n0 = 1√
2
. Hence Xβnβ = − ǫ√

2
on |x| = t. We can compute

∂jρǫ = xjρ
3
ǫ , ∂tρǫ = −tρ3

ǫ − ǫ ρ3
ǫ .

Hence

Xβ∂βρǫ = −ρǫ .

We also note that ǫ ρ ≤ 1 when |x| < t, and record the following simple bound when

|x| = t

|ρǫ| =
(
2ǫ t + ǫ2

)− 1
2 ≤ ǫ− 1

2 t−
1
2 .

We can simplify the B, I terms as

B = 1√
2

∫ 1

ǫ

∫

|x|=t
ρǫ

(
Xβ∂βu

)
· (xα∂αu)

t
+ ǫ ρǫ

∂αu† ∂αu

2
dσdt

−
∫

|x|<1

ρǫ

( |∇u|2
2

+ |∂tu|2
2

+ x · ∇u† ∂tu

)
(x, 1)dx + O(E)
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7008 T. Duyckaerts et al.

and

−I =
∫ 1

ǫ

∫

|x|<t

[
Xβ∂βu

† ∂αρǫ ∂αu+ ρǫ

(
|∇u|2 − |∂tu|2

)

− 3

2
ρǫ

(
∂αu† ∂αu

)
− Xβ∂βρǫ

∂αu† ∂αu

2

]
dxdt

=
∫ 1

ǫ

∫

|x|<t
ρ3

ǫ

∣∣Xβ∂βu
∣∣2 dxdt.

We can estimate

∣∣∣∣
1√
2

∫ 1

ǫ

∫

|x|=t
ρǫ

(
Xβ∂βu

)
· (xα∂αu)

t
+ ǫ ρǫ

∂αu† ∂αu

2
dσdt

∣∣∣∣

�

∫ 1

ǫ

∫

|x|=t
ρǫ t

∣∣∣∂tu+ x

t
· ∇u

∣∣∣
2

dσdt +

+
∫ 1

ǫ

∫

|x|=t
ǫ ρǫ

( |∇u|2
2

+ |∂tu|2
2

+ x

t
· ∇u† ∂tu

)
dσdt

� ǫ− 1
2Flux(0, 1) ≤ ǫ

1
2E.

Hence, combining the B and I terms, we conclude that

∫

|x|<1

ρǫ

( |∇u|2
2

+ |∂tu|2
2

+ x · ∇u† ∂tu

)
(x, 1)dx +

∫ 1

ǫ

∫

|x|<1

ρ3
ǫ

∣∣Xβ∂βu
∣∣2 dxdt

� E.

The theorem is proved. �

Theorem 4.1 has the following corollary.

Corollary 4.1. Let u be as above. For any τn → 0+, γn → 1− as n → ∞, we have that

∫

Bτn \Bγnτn

( |∇u|2
2

+ |∂tu|2
2

+ x

t
· ∇u† ∂tu

)
(x, τn)dx = on(1). (4.3)

�

Proof. Let ǫn := 2Flux(0, τn)/E, then ǫn → 0 as n → ∞. Theorem 4.1 implies that

∫

Bτn

τn ρǫnτn

( |∇u|2
2

+ |∂tu|2
2

+ x

t
· ∇u† ∂tu

)
(x, τn)dx � E.
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Universality of Blow up Profile 7009

Note that

τn ρǫnτn �
(
(1 + ǫn)

2 − γ 2
n

)− 1
2 → ∞

for t = τn, |x| ∈ (γnτn, τn), we conclude that (4.3) holds. �

5 Universal Blow up Profile Along a Sequence of Times

Our goal in this section is to prove Theorem 1.2 along a sequence of times. Again for the

ease of notations, we shall consider classical wavemapu defined onR2×(0, 1] that blows

up at time t = 0. Recall from (2.25), the definition of r(ǫ∗, t). By the small data theory

and finite speed of propagation, we have lim
t→0+

r(ǫ∗, t) = 0. That is, energy concentrates

in smaller and smaller regions as t → 0+. By the definition of r(ǫ∗, t), we can find x∗(t)

such that

‖−→u (t)‖Ḣ1×L2(B2r(ǫ∗, t)(x∗(t))) >
ǫ∗

2
(5.1)

for t close to 0. Again by small data global existence and finite speed of propagation,

x∗(t) remains in a bounded region for t ∈ (0, 1]. Assume without loss of generality that

x∗(tn) → 0 as tn → 0 along a sequence of times tn. Since r(ǫ∗, t) → 0, we see that for any

r > 0,

lim inf
t→0

∥∥−→u (t)
∥∥
Ḣ1×L2(Br )

>
ǫ∗

2
. (5.2)

In general, we call a point x singular if for any r > 0

lim sup
t→0

‖−→u (t)‖Ḣ1×L2(Br (x)) >
ǫ∗

2
.

By finite speed of propagation and energy flux identity, this is equivalent to requiring

that for any r > 0,

lim inf
t→0

‖−→u (t)‖Ḣ1×L2(Br (x)) >
ǫ∗

2
.

As the energy is conserved and finite, there can only be finitely many singular points,

and in particular the singular points are isolated.

For the singular point x∗ = 0, since singular points are isolated, there exists

r1 > 0 such that for any x ∈ Br1\{0}, x is not a singular point. Hence we can find r̃ > 0

with

‖−→u (τn)‖Ḣ1×L2(Br̃ (x)) < ǫ∗ (5.3)
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7010 T. Duyckaerts et al.

along a sequence of times τn → 0. In particular, we have

‖/∂u(·, τn)‖L2(Br̃ (x)) < ǫ∗.

Hence there exists rn ∈
(
r̃
2
, r̃
)
with

∫

∂Brn (x)

|/∂u|2(x, τn)dσ �
ǫ2

∗
rn

.

Denoting un as the average of u(τn) over ∂Brn(x), that is

un = 1

2πrn

∫

∂Brn (x)

u(τn)dσ .

By Sobolev inequality, we get that

‖u(τn) − un‖L∞(|x−x|=rn) � ǫ∗. (5.4)

Take smooth cutoff function ηn ∈ C∞
c

(
B2rn(x)

)
with ηn|Brn (x) ≡ 1 and |∇ηn| � (rn)−1. Recall

that for any v ∈ R2 with v �= 0,

Pv = v

|v| .

Define

(u0n, u1n) =
{

(u, ∂tu)(τn) in Brn(x);

(P[ηn(u(rnθ , τn) − un) + un], 0) in
(
Brn(x)

)c
.

By (5.3) and (5.4), direct computation shows that

‖(u0n, u1n)‖Ḣ1×L2 � ǫ∗. (5.5)

Hence by small energy global existence theory and finite speed of propagation, we see

that the solution un to the wave map equation with −→u n(τn) = (u0n, u1n) is global and

that

un ≡ u for |x − x| <
rn
4

and t ∈ (0, τn] (5.6)

for sufficiently large n. Since un ∈ C
(
[0, τn], Ḣ1 × L2

)
and (5.6) holds, we conclude

that u can be extended to t = 0 so that u ∈ C
(
[0, τn], Ḣ1 × L2(Br̃/8(x))

)
. Since x ∈
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Br1\{0} is arbitrary, we conclude that u can be extended to t = 0 in Br1 with u ∈
C
(
[0, 1], Ḣ1 × L2(Br1\Br)

)
for each 0 < r < r1.

In addition, by the regularity of un, we also have the additional (qualitative)

regularity condition that u ∈ C∞ (Br1 × [0, 1]\{(0, 0)}
)
. One can of course apply the same

argument to other singular points. As a result, we see that u ∈ C∞(R2 × [0, 1]\{(xj, 0)})
where xj are the singular points.

On the other hand, since −→u (t) is bounded in Ḣ1 × L2 and |u| ≡ 1, we can extract

a weak limit (v0, v1) ∈ Ḣ1 × L2 along a sequence of times tn → 0+. This limit is in fact

a strong limit outside an arbitrarily small neighborhood of the finitely many singular

points. From the above analysis, (v0, v1) ∈ C∞(R2\{xj}). Let

v = u

for inf
j

|x − xj| > t. Then v ∈ C∞

(
R2 × [0, 1]\

⋃
j

{|x − xj| ≤ t, t ∈ [0, 1]}
)
, and by the same

arguments as in the proof of Lemma 2.4,

lim
t→0+

∥∥∥∥
−→v (·, t) − (v0, v1)

∥∥∥∥
Ḣ1×L2

(
⋂
j
{|x−xj |>t}

) = 0. (5.7)

We shall call v the regular part of the wave map u. The main issue is to understand the

behavior of the wave map u inside singularity lightcones
⋃
j

{|x − xj| ≤ t, t ∈ [0, 1]}.

We shall prove

Theorem 5.1. Let u be a classical wave map with energy

E(
−→u ) < E(Q, 0) + ǫ2

0 , (5.8)

where Q is a harmonic map with degree 1, defined on R2 × (0, 1] that blows up at time

t = 0 with the origin being a singular point. Assume that ǫ0 is sufficiently small. Then

there exists a sequence of times tn → 0+, ℓ ∈ R2 with |ℓ| ≪ 1, xn ∈ R2, λn > 0 with

lim
n→∞

xn
tn

= ℓ, λn = o(tn)

and (v0, v1) ∈ Ḣ1 × L2 ∩ C∞(R2\{0}), such that

−→u (tn) = (v0, v1) +
(
Qℓ, λ−1

n ∂tQℓ

) (x − xn
λn

,
t − tn

λn

)
+ oḢ1×L2(1), (5.9)

as n → ∞. �
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7012 T. Duyckaerts et al.

Remark. As we discussed in the introduction, the main new point in Theorem 5.1 is

that we eliminate any possible energy concentration near the boundary of singularity

lightcone |x| < t. By the energy constraint (5.8) and the proof below, there is only one sin-

gularity point. Hence u is regular outside {(x, t) : |x| ≤ t}. Themain task is to understand

the behavior of u inside {(x, t) : |x| ≤ t}. �

Proof. Our starting point is the work of Grinis [21], which completely characterized

the concentration of energy in {(x, τn) : |x| < aτn} for any a ∈ (0, 1) as traveling waves,

for a suitable time sequence τn → 0+. See Theorem 1.1 and Theorem 1.2 in [21]. In our

case, due to the energy constraint (5.8), there can only be one traveling wave. Hence,

as a particular consequence of a rescaled version of the asymptotic decomposition in

Theorem 1.2 of [21], we have for |x| < τn,

−→u (τn) :=
(
Qℓ

(
x − xn
rn

, 0

)
, r−1

n ∇∂tQℓ

(
x − xn
rn

, 0

))
+ (w0n, w1n) + oḢ1×L2(1), (5.10)

as n → ∞, where |ℓ| ≪ 1, rn = o(τn), ℓ = lim
n→∞

xn
τn

and

∫

|x|<aτn

|∇w0n|2 + |w1n|2dx → 0, (5.11)

as n → ∞ for any a ∈ (0, 1). Our main task is to show that

∫

|x|<τn

|∇w0n|2 + |w1n|2dx → 0

as n → ∞. By (5.11), we have to prove that that for any γn → 1−,

lim sup
n→∞

∫

Bτn \Bγnτn

( |∇u|2
2

+ |∂tu|2
2

)
(x, τn)dx = 0 (5.12)

assuming that

lim sup
n→∞

∫

Bγnτn

|∇w0n|2 + |w1n|2dx = 0. (5.13)

We now apply the channel of energy inequality and prove (5.12). �

Suppose that (5.12) is not true. Then there exists ǫ2 > 0, such that, by passing to

a subsequence if necessary, we have for all sufficiently large n,

E
2
n :=

∫

Bτn \Bγnτn

( |∇u|2
2

+ |∂tu|2
2

)
(x, τn)dx ≥ ǫ2

2 . (5.14)
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By the energy constraint, we must also have

∫

Bcτn
2

∩Bτn

( |∇u|2
2

+ |∂tu|2
2

)
(x, τn)dx � ǫ2

0 . (5.15)

Corollary 4.1 implies that

∫

Bτn \Bγnτn

( |∇u|2
2

+ |∂tu|2
2

+ ∂tu
† ∂ru

)
(x, τn)dx = on(1). (5.16)

Since u is regular for |x| > t, we have for any r > 0,

lim sup
t→0+

∫

B2r\Bt

( |∇u|2
2

+ |∂tu|2
2

)
(x, t)dx ≤ δ(r) → 0, as r → 0 + . (5.17)

Fix a small r > 0 whose value is to be determined below. We can find r1n ∈
(
r
2
, r
)
,

r2n ∈
(

τn
2
, 3

4
τn
)
, such that

∫

∂Br1n

|/∂u|2(τn)dσ �
δ(r)

r1n
, and

∫

∂Br2n

|/∂u|2(τn)dσ = on(1)

r2n
.

Let

u1
n = 1

2πr1n

∫

∂Br1n

u(τn)dσ , and u2
n = 1

2πr2n

∫

∂Br2n

u(τn)dσ .

Fix radial η1n ∈ C∞
c (B2r1n) with η1n|Br1n ≡ 1, and radial 1 − η2n ∈ C∞

c (Br2n) with

1− η2n|B r2n
2

≡1. Define

(u0n, u1n) =

⎧
⎪⎪⎨
⎪⎪⎩

(
P
[
η1n

(
u(r1nθ , τn) − u1

n

)
+ u1

n

]
, 0
)

in Bcr1n ;−→u (τn) in Br1n\Br2n ;(
P
[
η2n

(
u(r2nθ , τn) − u2

n

)
+ u2

n

]
, 0
)

in Br2n .

(5.18)

Then for sufficiently large n, in view of (5.13) and (5.17),

‖(u0n, u1n)‖Ḣ1×L2(Bcτn
⋃
Bτnγn) � δ(r)

and

ǫ0 � ‖(u0n, u1n)‖Ḣ1×L2 > En + O(δ(r)) ≥ ǫ2 + O(δ(r)).

In addition, by (5.16), for sufficiently large n

‖u1n + ∂ru0n‖L2 + ‖/∂u0n‖L2 � δ(r).
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7014 T. Duyckaerts et al.

Let un be the solution to the wave map equation with −→u (τn) = (u0n, u1n). Then if r is

taken sufficiently small so that δ(r) is much smaller than ǫ2 by (a rescaled and time

translated version of) Theorem 3.1 we conclude that for t ≥ τn

∫

|x|>t− τn
8

∣∣∇x,tun

∣∣2 (x, t)dx � E
2
n. (5.19)

Take t = r
8
in (5.19), we get that for all sufficiently large n,

∫

|x|> r
8− τn

8

∣∣∇x,tun

∣∣2 (x,
r

8
)dx � E

2
n. (5.20)

By the energy inequality, (5.17) and the definition of un, we see that for t ≤ r
8
,

∫

|x|>t

∣∣∇x,tun

∣∣2 (x, t)dx � δ(r). (5.21)

By finite speed of propagation, we also have u ≡ un for t − τn
4

< |x| < r
4
and t ≤ r

8
.

Combining with (5.20), we conclude that

∫

r
8>|x|> r

8− τn
4

∣∣∇x,tu
∣∣2 (x,

r

8
)dx � E

2
n ≥ ǫ2

2 > 0, (5.22)

if we choose r sufficiently small, so that δ(r) is much smaller than ǫ2
2 . However, (5.22)

contradicts with the fact that −→u
(
r
8

)
∈ Ḣ1 × L2 for sufficiently large n.

Therefore, combining the above with the regular part outside the singularity

lightcone, we get that along the sequence τn,

−→u (τn) = (v0, v1) + (Qℓ, r
−1
n ∂tQℓ)

(
x − xn
rn

, 0

)
+ oḢ1×L2(1), as n → ∞. (5.23)

The theorem is proved.

6 Coercivity and Universal Profile for All Times

Our next task is to use a rigidity property of the energy to extend the decomposition we

obtained from the last section to all times. One important tool is the following coercivity

property of the energy functional near traveling waves.

Theorem 6.1. Let M1 be the space of harmonic maps from R2 to S2 with topological

degree 1. Fix ℓ ∈ R2 with |ℓ| < 1 and for any Q ∈ M1, let Qℓ be the Lorentz transform of
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Q with velocity ℓ, that is,

Qℓ(x, t) = Q

(
x − ℓ · x

|ℓ|2 ℓ +
ℓ·x
|ℓ|2 ℓ − ℓt
√
1 − |ℓ|2

)
. (6.1)

Denote M1,ℓ as the space of Qℓ with Q ∈ M1. For 0 < ǫ < ǫ0 and ǫ0 sufficiently small,

suppose that (v0, v1) ∈ Ḣ1 × L2, with |v0(x)| ≡ 1 and v†
0 · v1 ≡ 0, satisfies

deg(v0) = 1; (6.2)
∣∣∣∣
∫

R2
∂xjv

†
0 v1dx −

∫

R2
∂xjQ

†
ℓ ∂tQℓdx

∣∣∣∣ < ǫ; (6.3)

∫

R2

( |∇v0|2
2

+ |v1|2
2

)
dx ≤

∫

R2

( |∂tQℓ|2
2

+ |∇Qℓ|2
2

)
dx + ǫ; (6.4)

inf
Q∈M1

‖(v0, v1) − (Qℓ, ∂tQℓ)‖Ḣ1×L2 < ǫ0. (6.5)

Then there exists δ(ǫ) > 0 with δ(ǫ) → 0 as ǫ → 0, such that

inf
Q∈M1

‖(v0, v1) − (Qℓ, ∂tQℓ)‖Ḣ1×L2 < δ(ǫ). (6.6)

�

Remark. As we will see in the proof

∫

R2

|∇Qℓ|2
2

+ |∂tQℓ|2
2

dx = 4π√
1 − |ℓ|2

,

−
∫

R2
∂tQ

†
ℓ ∂xjQℓdx = 4πℓj√

1 − |ℓ|2

for any Q ∈ M1. The conditions (6.3) and (6.4) are thus independent of the choice of

Q ∈ M1. �

The definition of degree deg(f ) for mappings between manifolds is classical.

For the definition with f : R2 → S2 ⊂ R3 and f ∈ Ḣ1 used here, we refer to [3], see in

particular (1) in page 205 of [3]. We also remark that the harmonic maps in M1 have

been completely characterized as degree 1 rational functions (Möbius transforms), see

[19] and a more recent discussion in [39]. By elementary geometric properties of Möbius

transforms, it is easy to see that degree one harmonic maps from R2 to S2 ⊂ R3 are

unique up to the symmetries of R2 and S2. More precisely in an appropriate coordinate

system, the harmonic maps in M1 are co-rotational.
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Proof. Without loss of generality, let us assume that ℓ = le1 = (l, 0). Suppose that

(6.6) is false, then for each n = 1, 2, . . . , by symmetry, we can assume that there exist

(v0n, v1n) ∈ Ḣ1 × L2 with |v0n| ≡ 1 and v†
0n v1n ≡ 0, such that

deg(v0n) = 1; (6.7)
∣∣∣∣
∫

R2
∂xjv

†
0nv1ndx −

∫

R2
∂xjQ

†
ℓ ∂tQℓdx

∣∣∣∣ <
1

n
; (6.8)

∫

R2

( |∇v0n|2
2

+ |v1n|2
2

)
dx ≤

∫

R2

( |∂tQℓ|2
2

+ |∇Qℓ|2
2

)
dx + 1

n
; (6.9)

inf
Q∈M1

‖(v0n, v1n) − (Qℓ, ∂tQℓ)‖Ḣ1×L2 < ǫ0. (6.10)

In addition,

inf
Q∈M1

‖(v0n, v1n) − (Qℓ, ∂tQℓ)‖Ḣ1×L2 > δ0 > 0. (6.11)

For fixed (v0, v1) ∈ Ḣ1 × L2, with |v0(x)| ≡ 1 and v†
0 · v1 ≡ 0, assume without loss of

generality that v0 is positively oriented, that is,

deg(v0) = − 1

4π

∫

R2
v†
0 · (∂1v0 × ∂2v0). (6.12)

Consider the following algebraic identity

∫

R2

( |∇v0|2
2

+ |v1|2
2

)
dx

= 1

2

∫

R2
|v1 + l∂1v0|2 dx + 1

4

∫

R2

∣∣∣
√
1 − l2∂1v0 − v0 × ∂2v0

∣∣∣
2

dx

+ 1

4

∫

R2

∣∣∣∂2v0 +
√
1 − l2v0 × ∂1v0

∣∣∣
2

dx −
√
1 − l2

∫

R2
v†
0 · (∂1v0 × ∂2v0)dx

− l

∫

R2
∂1v

†
0 v1dx. (6.13)

(6.13) is a modified form of the remarkable decomposition of energy in [1], see also the

illuminating discussion in page 3 of [41]. The modification here is necessary in order to

take into account the momentum part.

Direct calculations show that

∫

R2

( |∂tQℓ|2
2

+ |∇Qℓ|2
2

)
dx = 4π√

1 − l2
and −

∫

R2
∂tQ

†
ℓ ∂1Qℓdx = 4π l√

1 − l2
. (6.14)

We can assume, after rotation, that (v0n, v1n) has the same momentum as (Qℓn , ∂tQℓn)

with ℓn = ln e1. Then |ln − l| � 1
n
. Applying (6.13) to (v0n, v1n) and using the assumptions
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on (v0n, v1n), we get that

∫

R2

( |∇v0n|2
2

+ |v1n|2
2

)
dx

= 1

2

∫

R2
|v1n + ln∂1v0n|2 dx + 1

4

∫

R2

∣∣∣∣
√
1 − l2n∂1v0n − v0n × ∂2v0n

∣∣∣∣
2

dx

+ 1

4

∫

R2

∣∣∣∣∂2v0n +
√
1 − l2nv0n × ∂1v0n

∣∣∣∣
2

dx −
√
1 − l2n

∫

R2
v†
0n · (∂1v0n × ∂2v0n)dx

− ln

∫

R2
∂1v

†
0n v1ndx

= 1

2

∫

R2
|v1n + l∂1v0n|2 dx + 1

4

∫

R2

∣∣∣
√
1 − l2∂1v0n − v0n × ∂2v0n

∣∣∣
2

dx

+ 1

4

∫

R2

∣∣∣∂2v0n +
√
1 − l2v0n × ∂1v0n

∣∣∣
2

dx + 4π√
1 − l2

+ O

(
1

n

)
.

In the above we used the expression for degree and momentum. From (6.9) and (6.14),

we conclude that

1

2

∫

R2
|v1n + l∂1v0n|2 dx + 1

4

∫

R2

∣∣∣
√
1 − l2∂1v0n − v0n × ∂2v0n

∣∣∣
2

dx

+ 1

4

∫

R2

∣∣∣∂2v0n +
√
1 − l2v0n × ∂1v0n

∣∣∣
2

dx

= O

(
1

n

)
. (6.15)

By (6.10), applying suitable symmetry transformation to (v0n, v1n) if necessary, we can

assume that for suitable Q̃ℓ ∈ Mℓ,1,

(v0n, v1n) = (Q̃ℓ, ∂tQ̃ℓ)(x, 0) + (r0n, r1n) (6.16)

with

‖(r0n, r1n)‖Ḣ1×L2 ≤ 2ǫ0.

Passing to a subsequence, we can assume that (v0n, v1n) ⇀ (v0, v1) as n → ∞ with

∥∥(v0, v1) − (Q̃ℓ, ∂tQ̃ℓ)(x, 0)
∥∥
Ḣ1×L2 ≤ 2ǫ0.

Hence by the continuity of topological degree (This is a direct consequence of the defi-

nition (6.12) of degree, and can be proved by noting that
∫
R2 ∂xu × ∂yudxdy = 0 for any

Ḣ1 mapping from R2 → S2, and the dominated convergence theorem.) in Ḣ1 and the fact
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7018 T. Duyckaerts et al.

that degree only takes value in integers (see [3]), we see that if ǫ0 is taken small enough,

then

deg(v0) = 1.

(6.15) implies that (v0, v1) satisfies the first order “Bogomol’nyi equations” (see [2]):

v1 + l∂1v0 = 0;
√
1 − l2∂1v0 − v0 × ∂2v0 = 0;

∂2v0 +
√
1 − l2v0 × ∂1v0 = 0. (6.17)

Equations (6.17) can be reduced by an obvious change of variable to the case l = 0, in

which case they can be explicitly solved as harmonic maps. Hence we see that there

exists ˜̃Q ∈ M1 such that

(v0, v1) =
(˜̃Qℓ, ∂t

˜̃Qℓ

)
(x, 0).

Thus we can write

(v0n, v1n) =
(˜̃Qℓ, ∂t

˜̃Qℓ

)
(x, 0) + (̃r0n, r̃1n)

with (̃r0n, r̃1n) ⇀ 0 as n → ∞. Then the energy expansion for (v0n, v1n) around(˜̃Qℓ, ∂t
˜̃Qℓ

)
(x, 0) gives

E(Qℓ, ∂tQℓ) + 1

n
≥
∫

R2

( |∇v0n|2
2

+ |v1n|2
2

)
dx

= 1

2

∫

R2

∣∣∣∇˜̃Qℓ

∣∣∣
2

+
∣∣∣∂t˜̃Qℓ

∣∣∣
2

dx

+
∫

R2
∇˜̃Q

†

ℓ ∇ r̃0n + ∂t
˜̃Q

†

ℓ r̃1ndx

+
∫

R2

|∇ r̃1n|2
2

+ |̃r1n|2
2

dx

= E

(−→̃
Q̃ℓ

)
+
∫

R2

|∇ r̃1n|2
2

+ |̃r1n|2
2

dx + on(1).
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By (6.9) and the fact that E

(−→̃
Q̃ ℓ

)
= E(

−→
Qℓ), we see that

(̃r0n, r̃1n) → 0, in Ḣ1 × L2.

This is a contradiction to (6.11). The theorem is proved. �

Now we turn to the proof of the second main theorem in the article.

Theorem 6.2. Let u be a classical wave map defined on R2 × (0, 1] with energy E(
−→u ) <

E(Q, 0) + ǫ2
0 , where Q is a harmonic map of degree 1, that blows up at time 0 and at

the origin. Assume that ǫ0 is sufficiently small. Then there exist ℓ ∈ R2 with |ℓ| ≪ 1,

x(t) ∈ R2, λ(t) > 0 with

lim
t→0

x(t)

t
= ℓ, λ(t) = o (t)

and (v0, v1) ∈ Ḣ1 × L2 ∩ C∞(R2\{0}) with (v0 − u∞, v1) being compactly supported, such

that

(i) inf

{∥∥−→u (t) − (v0, v1) − (Qℓ, ∂tQℓ)
∥∥
Ḣ1×L2 : Qℓ ∈ Mℓ,1

}
→ 0, as t → 0;

(ii)

∥∥∥∥
−→u (t) − (v0, v1)

∥∥∥∥
Ḣ1×L2(R2\Bλ(t)(x(t)))

→ 0 as t → 0. �

Proof. We have already proved that along a sequence of times tn → 0+,

−→u (tn) =
(
Qℓ

(
x − xn

λn
, 0

)
,
1

λn
∂tQℓ

(
x − xn

λn
, 0

))
+ (v0, v1) + oḢ1×L2(1), (6.18)

where (v0, v1) ∈ Ḣ1 × L2 ∩ C∞(R2\{0}) and

lim
n→∞

xn
tn

= ℓ, and λn = o(tn), as n → ∞.

Since

ǫn :=
∫

B2tn \Btn

( |∇u|2
2

+ |∂tu|2
2

)
(x, tn)dx → 0, as n → ∞, (6.19)

we can find rn ∈ (tn, 2tn) such that

∫

∂Brn

|/∂u|2
2

(x, tn)dσ �
ǫn

rn
.
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7020 T. Duyckaerts et al.

Let

un = 1

2πrn

∫

∂Brn

u(tn)dσ . �

Take a smooth cutoff function ηn with ηn ≡ 1 on Brn , supp ηn ⋐ B2rn and |∇ηn| �

r−1
n . Define

(u0n, u1n) =
{−→u (x, tn) for |x| < rn;

(P [ηn(r)(u(rnθ , tn) − un) + un] , 0) for |x| > rn.

One can check that (u0n, u1n) ∈ Ḣ s×H s−1 for s < 3
2
, and u0n ≡ P(un) for large x. Moreover,

‖(u0n, u1n)‖2
Ḣ1×L2(Bctn

)
� ǫn. (6.20)

Let un be the solution to the wave map equation with −→u n(tn) = (u0n, u1n). (The local

existence of un follows from subcritical wellposedness theory.) Then by finite speed of

propagation, un ≡ u for |x| < t and t ∈ (0, tn], assuming that un is defined in [t, tn]. In
addition, by (6.20) and energy flux identity, since the energy flux of un is equal to that

of u on |x| = t, t ∈ (0, tn] which decays to zero as n → ∞, we get that

∫

|x|>t
|∇x,tun|2(x, t)dx � ǫn + on(1) (6.21)

for t ≤ tn, again assuming that un is defined in [t, tn]. As un is identical to u in the

singularity light cone |x| < t, 0 < t ≤ tn and un has small energy for |x| ≥ t, 0 < t ≤ tn,

we conclude that un is defined for t ∈ (0, tn]. From (6.18), it is easy to verify that

deg(un(tn)) = 1;

E(
−→u n) ≤ E(

−→
Q ℓ) + on(1);

∣∣∣M(
−→u n) − M(

−→
Q ℓ)

∣∣∣ = on(1),

where M(
−→u ) denotes the momentum of u. Hence by Theorem 6.1, −→u n(t) stays in a δ(ǫn)

neighborhood of Mℓ,1 for t ≤ tn with δ(ǫn) → 0 as n → ∞. It follows that

lim
t→0

inf

{∥∥−→u (t) − (v0, v1) − (Qℓ, ∂tQℓ)
∥∥
Ḣ1×L2 : Qℓ ∈ Mℓ,1

}
= 0. (6.22)

Part (i) of the theorem is proved. The fact that all degree 1 harmonic maps are

co-rotational implies that Mℓ,1 is a compact set in the energy space, modulo translations
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and dilations. Hence, by the regularity of u outside the singularity lightcone, we can find

x(t) and λ(t) with λ(t) = o(t) and

lim sup
t→0+

|x(t)|
t

≤ 1.

The main remaining task is to show that

lim
t→0+

x(t)

t
= ℓ. (6.23)

Without loss of generality, let us assume that ℓ = l e1 By (6.22), it follows that

lim
t→0

∫

|x|<t
−∂tu ∂x1u(x, t)dx = 4lπ√

1 − l2
. (6.24)

Direct computation shows

d

dt

∫

|x|<t
x1

( |∇u|2
2

+ |∂tu|2
2

)
(x, t)dx

=
∫

|x|=t
x1

( |∇u|2
2

+ |∂tu|2
2

)
(x, t)dσ +

∫

|x|=t
x1

x

|x| · ∇u† ∂tudσ

−
∫

|x|<t
∂x1u ∂tu(x, t)dx.

Integrating the above identity from t = 0 to t, we get that

∫

|x|<t
x1

( |∇u|2
2

+ |∂tu|2
2

)
(x, t)dx = O (Flux(0, t)) t + 4lπ t√

1 − l2
+ o(t). (6.25)

As Flux(0, t) → 0 as t → 0, by (6.25) and (6.22), (6.23) follows straightforwardly. The

theorem is proved.
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