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Abstract—In recent years, researchers have developed tech-
nology to analyze human facial expressions and other affective
data at very high time resolution. This technology is enabling
researchers to develop and study interactive robots that are
increasingly sensitive to their human interaction partners’ af-
fective states. However, typical interaction planning models and
algorithms operate on timescales that are frequently orders of
magnitude larger than the timescales at which real-time affect
data is sensed. To bridge this gap between the scales of sensor
data collection and interaction modeling, affective data must be
aggregated and interpreted over longer timescales.

In this paper we clarify and formalize the computational task
of affect interpretation in the context of an interactive educational
game played by a human and a robot, during which facial
expression data is sensed, interpreted, and used to predict the
interaction partner’s gameplay behavior. We compare different
techniques for affect interpretation, used to generate sets of
affective labels for an interactive modeling and inference task,
and evaluate how the labels generated by each interpretation
technique impact model training and inference.

We show that incorporating a simple method of personalization
into the affect interpretation process — dynamically calculating
and applying a personalized threshold for determining affect
feature labels over time — leads to a significant improvement
in the quality of inference, comparable to performance gains
from other data pre-processing steps such as smoothing data
via median filter. We discuss the implications of these findings
for future development of affect-aware interactive robots and
propose guidelines for the use of affect interpretation methods
in interactive scenarios.

I. INTRODUCTION

Leading roboticists have highlighted perceptual demands
as a key challenge for the field of social robotics, in part
because modeling and understanding human social signals
requires analyzing “extremely detailed, rapid, and nuanced
signals...embedded within other activity” [29]. Advances in
core pattern recognition technologies continue to improve our
ability to analyze the signals with greater detail and speed;
this paper focuses on developing tools to better understand and
model affective signals within the context of complex social
interaction between a human and a social robot.

Common families of models and algorithms for autonomous
social interaction (e.g., Dynamic Bayesian Networks and
Markov Decision Processes) operate on discrete timesteps or
interactive ‘turns’ that can encompass several seconds of clock
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time. These models tend to treat affect as a sequence of
discrete states, yet the rise of technology for high-frequency
detection means that affect is sensed as a stream of continuous
values. Robots and other interactive agents that rely on these
models and sense real-time affective data can observe several
hundred or thousand measurements of sensor data during each
model timestep. There are many possible ways to interpret and
summarize real-time affect data, but the most common meth-
ods typically result in either a scalar summary of an affective
metric (commonly valence or engagement, e.g., when affect
is used as a real-valued reward signal [14]), or a classification
label (e.g. “High/Medium/Low valence”) associated with each
time window of relevance [25].

In this paper, we outline an information processing pipeline
for integrating real-time, autonomously sensed affect data into
higher-level interactive models. The pipeline is comprised of
three distinct phases and associated computational tasks: af-
fect detection, affect interpretation, and affective inference.
Roughly speaking, affect detection involves extracting salient
affective metrics from sensor data (e.g. video frames or sound
waveforms), affect interpretation involves summarizing and
synthesizing these extracted metrics over some relevant win-
dow of time into affect feature labels, and affective inference
involves using these derived affect feature labels to train a
model to predict some relevant aspect of a user’s interactive
behavior.

Though researchers have tended to focus more on study-
ing affect detection and affective inference, understanding
affect interpretation is of significant practical importance.
Researchers of affective computing and interactive educational
media have noted that “fine-grained temporal resolution af-
fords a process-level account of engagement, disengagement,
and re-engagement [...] estimates obtained [...] could be ag-
gregated across longer periods to construct time series that
reflect moments when interest was first captured, periods of
maintained interest, when interest appears to diminish, etc”
[7]. For interactive educational agents, this aggregation across
longer time periods is critical to properly interpreting user’s
affective data and, consequently, providing emotionally appro-
priate feedback, curricular sequencing, or emotional support.

In this paper, we present results from an investigation
of different techniques for affect interpretation, using data
collected during a human-robot tutoring interaction, explor-
ing the impact of smoothing and thresholding methods for



personalization. We evaluated several candidate techniques
and compared their performance on a representative affective
inference task — using affect feature labels to train predictive
models of children’s pronunciation — to determine which
methods of affect interpretation provide the best such feature
labels for the inference task by evaluating the resultant models’
classification performance.

A. A Frustratingly Easy Method for Personalized Affect Inter-
pretation

Over a decade ago, Daumé III introduced a ‘frustratingly
easy’ feature-augmentation method for domain adaptation [6];
More recently, Sun, Feng, and Saenko presented a similarly
easy pre-processing method for reducing covariate shift [26]
in a computer vision domain adaptation scenario. In this spirit,
we detail an equally straightforward method for personalizing
the affect interpretation process. In our interactive scenario,
an affective metric’s feature label for a given interaction
window is represented as a binary indicator variable, whose
value is determined by whether the maximum measurement of
that metric exceeded a threshold value during the interaction
window (see Sec. V-B for details on conditions). Typically
these threshold values are chosen somewhat arbitrarily; in prior
work researchers have selected thresholds to divide the range
of metric measurements into equal bins ( [9], [14]), or have
chosen a threshold empirically based on validation data [18].

We dynamically calculate the mean value and standard
deviation of each metric based on the detected affect data from
all previously analyzed interaction windows. The threshold is
set at the mean value plus twice the standard deviation of
the previously sensed metric values. In the non-personalized
approaches to affect interpretation, this mean and standard
deviation is derived from the metric measurements from the
entire participant population. In the personalized approaches,
we instead derive this mean and standard deviation from just
the metric measurements of the currently detected individual.

First we validate our implementation of a complete in-
teractive system for detecting, interpreting, and performing
inference on affective data by showing that a wide variety
of machine learning models trained on non-personalized affect
feature labels can predict a human player’s word pronunciation
performance significantly better than chance. We then show
that dynamically calculating and using a personalized thresh-
old yields affect feature labels that further improve the resul-
tant models’ classification performance. This improvement is
approximately equal to the performance gain from other pre-
processing methods for high-frequency affect data, such as
applying a median smoothing filter.

II. RELATED WORK
Here we review work related to socially interactive, affect-
aware robots and personalized approaches to modeling affect.

A. Affect-aware interactive robots

Developing interactive robots that can detect, interpret, and
make inferences from affective signals has been an active
research topic for many years. However, as the ability to detect

affect has improved dramatically, the core challenges have
moved from detection to interpretation and interactive infer-
ence [17]. The two are often treated as a single challenge, with
interpretation taking a backseat to development and evaluation
of richer computational models of interaction that incorporate
affective signals. With recent advances in sensor quality and
computational resources, we have seen more examples of
complete affect-aware interactive robot systems.

Castellano et al. [4] were able to label children’s affect
with a system that combined both sensed (smile detection)
and annotated features. Their smile detector ran in real-
time, and the probability of smile was averaged over the
previous 6s window. The average probability of a smile, in
combination with annotated gaze features and 10 contextual
game features, was used as input to a classification system that
could successfully label turns as having either High, Neutral
or Low valence, engagement, and interest.

Gordon et al. used high-frequency, median-smoothed es-
timates of engagement and valence from facial expressions
as a reward signal for a reinforcement learning agent that
personalized its supportive responses to students during a
long-term tutoring interaction [9]. Park et al. developed a
successor system using a similar approach [10]. Both systems
incorporated (though did not highlight as a distinct step)
an affective interpretation process, applying a median-filter
to each detected metric vector and subsequently computing
the mean metric value over the time-window (each approxi-
mately dozens of seconds). The final smoothed-average values
for valence and engagement were used as input to the RL
agent’s reward function, and a binned version of the same
measures (into High/Medium/Low measurements) were used
to determine the state of the user. This smooth-and-average
method has the benefit of filtering out artifacts or dropped
frames in the data, but may also prevent genuine but subtle
facial expressions from being detected [25]. Both systems are
examples of integrated interactive systems that personalize at
the level of affective inference, rather than affect interpretation.

These types of interactive social affect systems (among
others) are important predecessors to our current work. They
highlight how affect interpretation itself is not typically eval-
uated as a distinct step with respect to the overall inferential
goal of an affect-aware agent. Instead the evaluative focus is
frequently on the system as a whole, or only on the final step:
how well the system performs affective inference, i.e., uses
affective data in a model to facilitate interactive goals.

B. Personalized affect

Personalized approaches to affect detection and interpre-
tation have been gaining prominence in recent years. In a
recent survey of efforts to build ‘emotionally sentient agents’,
McDuff and Czerwinski write “Incorporating context and
personalization into assessment of the emotional state of
an individual is arguably the next big technical and design
challenge for [...] systems that wish to recognize the emotion
of a user” [19].



Researchers have repeatedly demonstrated the benefits of
a personalized approach to affect detection. In 2015, Jaques
et al. trained a population level-classifier that achieved 70%
accuracy in predicting student mood (happy/sad) based on
affective time-series data [12]. Two years later, the authors
reduced errors by 13-22% by applying a personalized multi-
task learning approach to the same problem [13].

Chu, de la Torre, and Cohn introduced a personalized
variant of a Support Vector Machine for facial expression
analysis called a ‘Selective Transfer Machine’, that more
heavily weighted population training samples ‘close’ to a
new individual to learn a classifier for facial expressions [5].
Rudovic et al. demonstrated that a personalized approach to
feature sharing and layer-training in a deep neural network
can improve estimates of valence, engagement, and arousal
during an interactive autism therapy session between a child
and a robot [23]. These results and many others demonstrate
the importance of personalization in affect analysis, though
most focus on personalized models of affect detection.

Our work builds upon prior research in two ways. First,
we specifically focus on personalization techniques for af-
fect interpretation, rather than for affect detection or affec-
tive inference. Second, our evaluation centers on how the
interpreted labels can be used in an interactive inference
task: predicting children’s word pronunciation from affective
data only during an educational game. Most evaluations of
personalized affect models interpretation focus on inter-class
correlation with human-coder ratings. Although human coding
is a useful benchmark for evaluating affect detection and
interpretation modules, expressions in an interactive context
play a deeper role than merely signaling internal affective state,
they communicate information that is intricately tied to the
interaction (i.e., information that establishes affective ground
[15]), which even trained human coders may not fully pick up
on without being an active participant. Our ultimate research
goal is to develop affective interpretation methods for the
purpose of modeling and generating interactive behavior, thus
our evaluation focuses on validating how useful the interpreted
affect labels are to interactive agent algorithms and models that
predict or estimate the probability of user actions.

III. AN INFORMATION-PROCESSING PIPELINE FOR
SITUATED, INTERACTIVE AFFECT DATA

Emotional and affective displays are a key channel for
social communication. Yet due to challenges in sensing, in-
terpreting, and modeling these signals, this channel remains
underutilized in human-robot interactions compared to human-
human interactions. Recent advances in pattern recognition
and multimodal sensing, largely fueled by the impressive
performance of deep neural networks, have helped tools for
high-frequency affect sensing to become more widely used in
research and commercial settings.

The high time-resolution nature of modern tools for analyz-
ing facial expression data enables researchers to detect very
subtle changes in expression (e.g., facial ‘microexpressions’
[21]), but simultaneously suggests an additional challenge:

how best to summarize the large amount of high-frequency
expression data over an order-of-magnitude difference in time
scale? Recent projects have generally accomplished this task
by summary statistic heuristics, such as the mean value of a
metric over the relevant window [14], whether the mean value
of a metric over the relevant window exceeded a threshold
value [1], or whether at any point in the window the value of
a metric exceeded some threshold [30].

A priori, each of these heuristics appears to be a reasonable
way to determine if an interaction partner displayed some
expression during an interaction time window. However, there
has not yet been any systematic investigation or comparison
of how these heuristic methods for affect interpretation impact
the interaction models and algorithms that they feed into.
We introduce a pipeline for affect detection, interpretation,
and inference used to examine the effect of smoothing and
personalized thresholding on affect interpretation.

Much of our pipeline and terminology overlaps with the
approach detailed by D’Mello, Kappas, and Gratch [8]. Their
approach outlines a process for computing machine-sensed af-
fect estimates or annotations, binary classifications of whether
complex affective states (e.g. boredom, confusion, delight,
etc) were present over some window of time, with ground-
truth typically determined by human annotations. These affect
annotations are analogous to the affect feature labels that are
the output of the affect interpretation step in our pipeline.

However, our implemented approach differs in a few key
respects. Partly due to the difficulty of obtaining reliable hu-
man annotations for complex affective states [11], we restrict
our evaluation of affect interpretation to methods that do not
require outside human expertise. Therefore, rather than use
the detected and interpreted features to predict a discrete
emotion label (such as ‘confused’ or ‘cogitating’), then use
the discrete label to predict behavior, we consider the inter-
preted affect feature labels a latent representation of emotion,
and attempt to predict behavior directly from the affective
features themselves. Consequently, rather than evaluating the
interpreted affect feature labels by how well they correspond
to human-annotated labels, we evaluate the interpreted affect
feature labels by how well various models trained on the
feature labels predict interaction behavior. This design choice
is further intended to highlight the evaluation requirements of
interactive agents, for which interpreted affective feature labels
are useful insofar as they can be used to make inferences about
an interaction partner or about what action the agent should
take. The recognition of affective interpretation as a distinct
computational task within the pipeline and the evaluation of
that task with respect to the quality of affective inference are
key principles of our analysis.

A. Definitions and Terminology

Affect interpretation is the process by which high-frequency
sensed affective data over a given time period is aggregated
and summarized for some further purpose. In this paper, we
consider the domain of facial expression analysis, in which
modern detection algorithms can produce estimates of the



degree to which multiple facial descriptors of affective states
(joy, sadness, frustration) are expressed in a single frame. We
restrict our analysis to the interpretation of facial expression
data, but emphasize that many of the salient issues are relevant
to other modalities, such as nonverbal body posture, in which
high-frequency analysis is enabled by pose-detection tools
such as OpenPose [3], or analysis of affect from speech or
physiological signals.

The full data pipeline, with relevant terminology highlighted
is as follows: Raw data, D = d,,dy, ...d,, is sensed over an
interaction time window W (in seconds), where |D| >> W.
The data, D, is analyzed by an affect detector (e.g. Affdex
or Openpose), which outputs real-valued feature vectors of
higher-level metrics, M = mgy, mq,...m,, (e.g., the degree to
which ‘smile’ ‘surprise’, ‘brow furrow’ etc. are expressed), for
each data point (in this case, a single video frame). The affect
interpreter analyzes this set of metric vectors over the window,
and the interpreter outputs a vector-valued feature label, [, for
that window. This affect feature label is then used to train a
predictive model for affective inference, an inferential task in
which affective data is used to make predictions about some
aspect of an individual or interaction.

With these definitions in place, we now state our research
contributions more concretely. We developed an interactive
social robot system that implements this pipeline, specifically
focused on detecting, interpreting, and using facial affect
to infer students’ pronunciation ability during an interactive
game with a robot (Fig. 3). We used Affdex [20] as the
affect detector, different affect interpretation methods to derive
interpreted affect feature labels, and evaluated these interpreted
affect feature labels based on how well they predict correct
word pronunciation.

We studied 3 different methods for affect interpretation (see
Sec. V-B), and trained 5 common machine learning models on
the affect feature labels produced by each method to evaluate
the impact of personalization on affect interpretation. We show
our pipeline can successfully predict children’s pronunciation
ability from affective features at above-chance rates, and that
even simple methods of personalization significantly improve
the quality of the interpreted labels with respect to their use
as training data for an interactive inference task.

IV. TASK AND DATASET COLLECTION

In this section we describe the data collection process,
experimental task, and other details. 6 (5 Male, 1 Female, Age:
6=£1.1) of the participants completed the experiment in the lab,
and another 9 (5 Male, 4 Female, Age: 5+£0) completed the
same experiment at a local school approximately 6 weeks later.
10 of the 15 children spoke another language in addition to
English. Other than the location, the experimental protocol,
game system, and experimental setup were identical.

A. Game Interaction Overview

The facial expression dataset was derived from video
footage during an interactive game called WordRacer, intended
to assess children’s pronunciation skills. Children sat across
from a small-sized expressive social robot with a tablet in

between them. At the start of each round of gameplay, a
printed word and a corresponding picture of that word (e.g., a
picture of a goat if the word were ‘GOAT’) would appear in
the center of the tablet.

At the top and bottom of the tablet screen were two buttons,
which children were told were the “buzzers” they and the robot
would use to signal their knowledge of the word. Whichever
player rang in first would get a chance to read the word on the
screen, and a pronunciation that was deemed correct would be
awarded a point. Each child played the game until they had
given 20 responses or until they indicated their desire to stop
playing. The robot was framed as a co-playing peer to the
child and played the game, ringing in, pronouncing words, and
accumulating points, according to an active learning protocol.
For more detailed information on the game task and data
collection protocol, see Spaulding et al. (2018) [24].

V. PROCESSING PIPELINE AND MODELS
A. Affect Detection

During the game, facial expressions were sensed from a
front-facing USB camera stream at 30fps during the interac-
tion. We used a stationary camera, so some frames did not
contain a detectable face, a common drawback of fixed-sensor
methods. We calculated exactly when each round of the game
started (i.e. when a new word graphic was shown on screen)
and kept sensing until either the child or robot rang in to give
their answer. Thus, we expect the detected affect from each
round to be in direct response to the presented content of the
current round, not the larger context of game results. Finally,
we only analyzed rounds in which the child rang in first, and
therefore was expected to pronounce a word. We processed
frames from each round via the Affdex Auto-SDK, which
detected 12 relevant metrics at approximately 30fps: ‘smile’,
‘anger’, ‘valence’, ‘browFurrow’, ‘noseWrinkle’, ‘joy’,
‘surprise’, ‘browRaise’, ‘upperLipRaise’, ‘mouthOpen’,
‘eyeClosure’, ‘cheekRaise’.

B. Affect Interpretation: Smoothing and Personalization

One of the biggest challenges of developing models of
affect is the diversity and idiosyncrasy of affective expressions.
Individuals’ levels of emotional expression are highly varied
based on personality, culture, situation, and countless other
details. The complexity and variety of this challenge is one of
the strongest reasons we advocate for a personalized approach
to affect interpretation.

As described in Section III, we use the term affect interpre-
tation to denote the process by which high-frequency sensed
affective data from a particular time window is collected and
converted into a label or feature vector suitable for further use
by an interactive agent for higher-level modeling or inference.
In this paper we interpret each detected metric separately, and
the output of each interpreted metric is a binary indicator
variable with a value determined by different smoothing and
thresholding techniques.

We analyzed 3 different methods for affect interpretation
to examine the impact of two affect interpretation techniques:
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Fig. 1. A pipeline for integrating affective data with interaction models. Affective data is sensed at high-frequency and a Detector extracts metrics from each
data point. An Affect Interpreter summarizes the metrics within a given window of time, producing a higher-level label for each timestep. Those labels are
used as data for Affective Inference, using interpreted affect features to infer something about the user or interaction, such as cognitive state or skill mastery.
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Fig. 2. Two camera angles showing experimental setup. Right image shows
camera stream used to analyze facial affect

median-filter smoothing of detected metric values and the use
of a personalized threshold for interpretation. The 3 conditions,
plus a baseline condition of randomly generated labels are de-
noted: Unsmoothed, NPSmoothed, PSmoothed, and Random.
E.g., in the PSmoothed condition, if the maximum value of the
median-smoothed detected metrics exceeds the personalized
threshold, that metric’s interpreted value is 1. For each time
window, the final interpreted affect feature vector is a multi-
hot vector composed of each metric indicator variable, which
is then used as training input to a variety of standard machine
learning models during the affective inference stage. The
threshold value for a given metric is set at the mean value of
that metric plus two standard deviations. For non-personalized
methods, the mean and standard deviations are based on the
detected values from all participants (i.e. the sample mean and
variance); the mean and variance for personalized thresholds
are computed from only that specific individual’s detected
metric values. Despite this simple change, we find that labels
generated through a personalized threshold can help train
significantly better models for affective inference.

C. Affective Inference task: predicting children’s pronuncia-
tion from facial affect

We evaluated the quality of the interpreted affect feature la-
bels by using them as input to predict children’s pronunciation
ability during successive rounds of an interactive pronunciation
game with a robot. In each turn, children had an opportunity

to pronounce a presented word. We recorded their speech and
analyzed it via a third party pronunciation analysis software
provided by Soapbox Labs, which takes in the expected word
and a speech sample and provides a score for how well
that word was pronounced. Each child played until they had
pronounced 20 words. For each round, the input vector was a
binary vector of the indicator variables, the output of the affect
interpretation step, and the supervised label was whether or not
the child pronounced the word correctly (operationalized as a
pronunciation score above 70; 100 is the maximum).

We conducted a leave-one-out cross-fold validation with
5 common machine learning models: Logistic Regression,
Random Forest, Naive Bayes, SVM (with an RBF kernel) and
K-Nearest Neighbors (k=4), and report the per-fold average
area under the ROC curve (AUC-ROC) alongside the standard
error of the mean for each class of model and each method of
affect interpretation.

VI. MODEL EVALUATION AND RESULTS

These results come from a relatively small, complex,
dataset, largely collected from untrained subjects in a real
classroom. As a result it features many artifacts common to
such scenarios, including periodic occlusion of the face by the
child’s hands, dropped frames from rapid head movements and
orientation change, and unpredictable one-time occurrences,
such as lights turning on or off. Despite these challenges, we
are able to learn an affective inference model that meets the
standard described by D’Mello et al. “that a model is above-
chance accurate” [8]. Having met that initial bar to validate the
overall pipeline, we now look at the impact of personalization
and smoothing on the quality of the interpreted labels.

Models trained on unsmoothed, non-personalized labels
perform slightly better than random labels, with an all-
model average absolute improvement of 2.3% (4.7% rel-
ative) and higher absolute performance on 3 of 5 tested
models. Smoothed, non-personalized models perform much
better, matching or outperforming both non-smoothed and
random methods on all 5 models, with an average absolute
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TABLE I
AREA UNDER ROC CURVE (MEAN 4 SEM) FOR MODELS TRAINED ON
SETS OF AFFECTIVE FEATURE LABELS DERIVED FROM PERSONALIZED
(P), NONPERSONALIZED SMOOTHED (NPS), UNSMOOTHED (US), AND
RANDOM METHODS FOR AFFECT INTERPRETATION

Naive
Bayes

Condition| LogReg Random | Naive SVM KNN
Forest Bayes (RBF (k=4)
kernel)
PS 0.6+£0.03 | 0.62+0.03 | 0.584+0.03 | 0.62+0.03 | 0.62£0.03
NPS 0.53+0.03| 0.57£0.03 | 0.5640.03 | 0.55+0.03 | 0.56£0.04
US 0.53+£0.03| 0.5£0.03 | 0.514+0.02| 0.51£0.03| 0.52£0.04
Random | 0.46£0.04| 0.484+0.04 | 0.45+0.04| 0.52£0.01| 0.5540.03

improvement of 4.0% (7.8% relative) over the unsmoothed
interpretation condition. Personalized, smoothed interpretation
improves even further, outperforming every other interpre-
tation method on all 5 tested models and showing a 5.3%
absolute improvement (9.6% relative) over non-personalized,
smoothed condition, exceeding both the absolute and relative
performance increase from median smoothing.

VII. DISCUSSION AND CONCLUSIONS

Based on these results, we suggest that this approach to per-
sonalization can and should be incorporated by any researchers
who face a choice of affective interpretation techniques when
analyzing high-frequency affect data. Our framing of per-
sonalization refers to the affective interpretation (i.e., label
generation) process; during affective inference the interpreted
features are used to learn a general (i.e., non-personalized)
model. This is an inversion of the approach of multi-task
learning with deep neural networks, in which early layers,
typically associated with feature extraction and representation,
are shared, and later layers are ‘personalized’ or ‘fine-tuned’
separately to be task-specific. This and other methods of
personalization rely on weighting of selectively including
personalized data in the training of a model (e.g, group-level
information such as demographic features or personal data
collected from an individual). In contrast, the personalized
thresholding method we describe does not preclude other
methods of personalization, and is incredibly simple, easy to

mmm Personalized/Smoothed Max
Smoothed Max

B NonSmoothed Max

= Random

KNN
(k=4)

SVM w/
RBF kernel

run in real-time, and does not require re-training a complex
model as new data is sensed.

Interestingly, this method for affect interpretation with a
personalized threshold can be viewed as a form of within-
participant z-normalization, a pre-processing technique for
time-series data. Z-normalization has been used to improve
affect interpretation on speech signals ( [16], [27]) and be-
havioral data (e.g. mouse trajectories [28]), but has not been
closely studied for analysis of facial expression. While normal-
ization of structural facial features is a common pre-processing
step for affect detection, we show that z-normalization can be
an easily and beneficial method for personalization of facial
expression interpretation.

In this paper, we have presented results from one of
the first systematic investigations of techniques for affect
interpretation. By naming and outlining a process that many
have worked on implicitly, we hope to help identify common
patterns and techniques (e.g. median smoothing of facial met-
rics) to standardize and improve results in the field. We also
demonstrated a ‘frustratingly easy’ technique for personalized
affect interpretation that is simple to implement and improves
the quality of interpreted affect labels for subsequent inference.

The pitfalls of a ‘one-size-fits-all” approach to human data
analysis are especially pronounced when analyzing human
faces [2], [22]. Our results suggest a method that can be easily
adopted during affect interpretation to improve system perfor-
mance for individual users. Diverse human interactions with
affect-aware systems are becoming more common; careful
study of how affective data is treated in each step of a complex
system is critical to avoid biased or inaccurate conclusions,
and personalization of affect-aware technology to individuals
or groups may be one path towards ensuring their benefits will
be equitably shared.

ACKNOWLEDGMENT

The authors would like to thank Affectiva for providing
tools for affect detection, to Soapbox Labs for providing us
an accurate tool for children’s pronunciation assessment, and
to the reviewers for their helpful comments and suggestions.



[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

A. Bernin, L. Miiller, S. Ghose, K. von Luck, C. Grecos, Q. Wang, and
F. Vogt. Towards more robust automatic facial expression recognition in
smart environments. In Proceedings of the 10th International Conference
on PErvasive Technologies Related to Assistive Environments, pages 37—
44. ACM, 2017.

J. Buolamwini and T. Gebru. Gender shades: Intersectional accuracy
disparities in commercial gender classification. In Conference on
Fairness, Accountability and Transparency, pages 77-91, 2018.

Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-person 2d
pose estimation using part affinity fields. In CVPR, 2017.

G. Castellano, I. Leite, A. Pereira, C. Martinho, A. Paiva, and P. W.
Mcowan. Context-Sensitive Affect Recognition for a Robotic Game
Companion. ACM Transactions on Interactive Intelligent Systems,
4(2):1-25, 2014.

W.-S. Chu, F. De la Torre, and J. F. Cohn. Selective transfer machine for
personalized facial expression analysis. IEEE transactions on pattern
analysis and machine intelligence, 39(3):529-545, 2017.

H. Daume III. Frustratingly easy domain adaptation. In Proceedings of
the 45th Annual Meeting of the Association of Computational Linguis-
tics, pages 256-263, 2007.

S. D’Mello, E. Dieterle, and A. Duckworth. Advanced, analytic, auto-
mated (aaa) measurement of engagement during learning. Educational
psychologist, 52(2):104-123, 2017.

S. D’Mello, A. Kappas, and J. Gratch. The Affective Computing
Approach to Affect Measurement. Emotion Review, 10(2):174-183,
2018.

G. Gordon, S. Spaulding, J. K. Westlund, J. J. Lee, L. Plummer,
M. Martinez, M. Das, and C. Breazeal. Affective personalization of
a social robot tutor for children’s second language skills. In Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

S. S. L. G. Hae Won Park, Ishaan Grover and C. Breazeal. A model-
free affective reinforcement learning approach to personalization of an
autonomous social robot companion for early literacy education. In
Thirty-Third AAAI Conference on Artificial Intelligence, 2019.

M. Jaiswal, Z. Aldeneh, C.-P. Bara, Y. Luo, M. Burzo, R. Mihalcea,
and E. M. Provost. Muse-ing on the impact of utterance ordering on
crowdsourced emotion annotations. arXiv preprint arXiv:1903.11672,
2019.

N. Jaques, S. Taylor, A. Azaria, A. Ghandeharioun, A. Sano, and
R. Picard. Predicting students’ happiness from physiology, phone,
mobility, and behavioral data. In 2015 International Conference on
Affective Computing and Intelligent Interaction (ACII), pages 222-228.
IEEE, 2015.

N. Jaques, S. Taylor, A. Sano, and R. Picard. Predicting tomorrow?s
mood, health, and stress level using personalized multitask learning and
domain adaptation. In IJCAI 2017 Workshop on Artificial Intelligence
in Affective Computing, pages 17-33, 2017.

S. Jeong and C. L. Breazeal. Improving smartphone users’ affect
and wellbeing with personalized positive psychology interventions. In
Proceedings of the Fourth International Conference on Human Agent
Interaction, HAI 2016, Biopolis, Singapore, October 4-7, 2016, pages
131-137, 2016.

M. F. Jung. Affective grounding in human-robot interaction. In Proceed-
ings of the 2017 ACM/IEEE International Conference on Human-Robot
Interaction, pages 263-273. ACM, 2017.

C.-C. Lee, E. Mower, C. Busso, S. Lee, and S. Narayanan. Emotion
recognition using a hierarchical binary decision tree approach. Speech
Communication, 53(9-10):1162-1171, 2011.

J. J. Lee, F. Sha, and C. Breazeal. A bayesian theory of mind approach
to nonverbal communication. In 2019 14th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pages 487-496. IEEE,
2019.

A. Lopez-Rincon. Emotion recognition using facial expressions in
children using the nao robot. In 2019 International Conference on
Electronics, Communications and Computers (CONIELECOMP), pages
146-153. IEEE, 2019.

D. McDuff and M. Czerwinski. Designing Emotionally Sentient Agents.
Communications of the ACM, 2018.

D. McDuff, A. Mahmoud, M. Mavadati, M. Amr, J. Turcot, and R. e.
Kaliouby. Affdex sdk: a cross-platform real-time multi-face expression
recognition toolkit. In Proceedings of the 2016 CHI Conference

[21]

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

Extended Abstracts on Human Factors in Computing Systems, pages
3723-3726. ACM, 2016.

Y.-H. Oh, J. See, A. C. Le Ngo, R. C. W. Phan, and V. M. Baskaran.
A survey of automatic facial micro-expression analysis: Databases,
methods, and challenges. Frontiers in Psychology, 9:1128, 2018.

I. D. Raji and J. Buolamwini. Actionable auditing: Investigating the
impact of publicly naming biased performance results of commercial ai
products. In AAAI/ACM Conf. on Al Ethics and Society, 2019.

O. Rudovic, J. Lee, M. Dai, B. Schuller, and R. W. Picard. Personalized
machine learning for robot perception of affect and engagement in
autism therapy. Science Robotics, 3(19), 2018.

S. Spaulding, H. Chen, S. Ali, M. Kulinski, and C. Breazeal. A
social robot system for modeling children’s word pronunciation: Socially
interactive agents track. In Proceedings of the 17th International Con-
ference on Autonomous Agents and MultiAgent Systems, pages 1658—
1666. International Foundation for Autonomous Agents and Multiagent
Systems, 2018.

S. Spaulding, G. Gordon, and C. Breazeal. Affect-aware student models
for robot tutors. In Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems, pages 864—872. International
Foundation for Autonomous Agents and Multiagent Systems, 2016.

B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain
adaptation. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.
K. Wang, N. An, B. N. Li, Y. Zhang, and L. Li. Speech emotion
recognition using fourier parameters. [EEE Transactions on Affective
Computing, 6(1):69-75, 2015.

T. Yamauchi and K. Xiao. Reading emotion from mouse cursor motions:
Affective computing approach. Cognitive science, 42(3):771-819, 2018.
G.-Z. Yang, J. Bellingham, P. E. Dupont, P. Fischer, L. Floridi, R. Full,
N. Jacobstein, V. Kumar, M. McNutt, R. Merrifield, B. J. Nelson,
B. Scassellati, M. Taddeo, R. Taylor, M. Veloso, Z. L. Wang, and
R. Wood. The grand challenges of science robotics. Science Robotics,
3(14), 2018.

L. Zhang, D. Tjondronegoro, V. Chandran, and J. Eggink. Towards
robust automatic affective classification of images using facial expres-
sions for practical applications. Multimedia Tools and Applications,
75(8):4669-4695, 2016.



