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CONSTRUCTION OF 2-PEAKON SOLUTIONS
AND ILL-POSEDNESS FOR THE NOVIKOV EQUATION∗

A. ALEXANDROU HIMONAS† , CURTIS HOLLIMAN‡ , AND CARLOS KENIG§

Abstract. For the Novikov equation, on both the line and the circle, we construct a 2-peakon
solution with an asymmetric antipeakon-peakon initial profile whose Hs-norm for s < 3/2 is ar-
bitrarily small. Immediately after the initial time, both the antipeakon and peakon move in the
positive direction, and a collision occurs in arbitrarily small time. Moreover, at the collision time
the Hs-norm of the solution becomes arbitrarily large when 5/4 < s < 3/2, thus resulting in norm-
inflation and ill-posedness. However, when s < 5/4, the solution at the collision time coincides with
a second solitary antipeakon solution. This scenario thus results in nonuniqueness and ill-posedness.
Finally, when s = 5/4 ill-posedness follows either from a failure of convergence or from a failure of
uniqueness. Considering that the Novikov equation is well-posed for s > 3/2, these results together
establish 3/2 as the critical index of well-posedness for this equation. The case s = 3/2 remains an
open question.
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nonuniqueness
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1. Introduction and results. We consider the Cauchy problem for the Novikov
equation (NE) on the line and the circle

ut + u2ux + ∂xD
−2

[
u3 +

3

2
uu2x

]
+D−2

[1
2
u3x

]
= 0,(1.1)

u(x, 0) = u0(x), x ∈ R or T, t ∈ R,(1.2)

where D−2 is the Bessel potential D−2 = (1− ∂2x)
−1, and construct specific 2-peakon

solutions u(t) that collide at a finite time T in such a way as to give rise to the
phenomenon of norm-inflation. In particular, the norm-inflation generated by these
2-peakon collisions occurs in Sobolev spaces Hs with exponents between 5/4 and 3/2.
As such, we will refer to 3/2 as the critical exponent for well-posedness, as well-
posedness has been proven for exponents greater than 3/2 (see [HH2]). For exponents
s less than 5/4, the collision of the 2-peakons in fact converges to a single antipeakon
u(T ), which can be thought of as a superposition of both peakons. This scenario
allows us to demonstrate nonuniqueness. Taken together, these results prove that the
NE is ill-posed in Hs for s < 3/2.
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ILL-POSEDNESS FOR THE NOVIKOV EQUATION 2969

We recall that the NE is well-posed in the sense of Hadamard (see [H]) in Sobolev
spaces Hs with exponents s > 3/2 (see [HH2]). More precisely, if u0 belongs to the
Sobolev space Hs on the circle or the line, then there exists Ts = Ts(||u0||Hs) > 0 and
a unique solution u ∈ C([0, Ts];H

s) of the Cauchy problem for the NE (1.1)–(1.2)
satisfying the estimate

(1.3) ‖u(t)‖Hs ≤ 2‖u0‖Hs for 0 ≤ t ≤ Ts, with Ts =
1

4cs‖u0‖2Hs

,

where cs > 0 is a constant depending on s. Furthermore, the data-to-solution map
u(0) 7→ u(t) is continuous but not uniformly continuous.

The NE is an integrable equation, and its local form,

(1.4) (1− ∂2x)ut = u2uxxx + 3uuxuxx − 4u2ux,

was derived by Vladimir Novikov [N] in his attempt to classify all integrable Camassa–
Holm–type equations with quadratic and cubic nonlinearities of the form (1−∂2x)ut =
P (u, ux, uxx, . . .), where P is a polynomial of u and its derivatives. The Lax pair for
NE was derived by Hone and Wang in [HW] and is given by the equations

(1.5a)



ψ1

ψ2

ψ3




x

= U (m,λ)



ψ1

ψ2

ψ3


 ,



ψ1

ψ2

ψ3




t

= V (m,u, λ)



ψ1

ψ2

ψ3


 ,

where m = u− uxx and the matrices U and V are defined by
(1.5b)

U (m,λ) =




0 λm 1
0 0 λm
1 0 0


, V (m,u, λ) =




1
3λ2 − uux

ux

λ − λmu2 u2x
u
λ − 2

3λ2 −ux

λ − λmu2

−u2 u
λ

1
3λ2 + uux


.

The NE possesses peakon traveling wave solutions [HM],[HLS], [GH], which on the
real line are given by the formula

(1.6) u(x, t) = ±
√
c e−|x−ct|,

where c > 0 is the wave speed. On the circle, the peakon solutions are given by the
formula

(1.7) u(x, t) =

√
c

cosh(π)
cosh([x− ct]p−π), where [x− ct]p .

= x− ct−2π
[x− ct

2π

]
.

In fact, the NE possesses multipeakon traveling wave solutions on both the line and
the circle [HM], [HLS], [GH]. More precisely, on the line the n-peakon

(1.8) u(x, t) =

n∑

j=1

pj(t)e
−|x−qj(t)|

is a solution to NE if and only if the positions (q1, . . . , qn) and the momenta (p1, . . . , pn)
satisfy the following system of 2n differential equations:

(1.9)





dqj
dt

= u2(qj),

dpj
dt

= −u(qj)ux(qj)pj .
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2970 A. A. HIMONAS, C. HOLLIMAN, AND C. KENIG

The description of the periodic n-peakon is similar. Furthermore, NE solutions con-
serve the H1-norm, that is,

∫

R or T

[
u2(t) + u2x(t)

]
dx =

∫

R or T

[
u2(0) + u2x(0)

]
dx.(1.10)

Next, we state our first result that gives the basic properties of the 2-peakon
solutions, which are constructed here and are needed for proving the ill-posedness of
the NE below 3/2.

Theorem 1. For any ε > 0 there exists a T > 0 for which the NE Cauchy problem
on the line and the circle (1.1)–(1.2) has a 2-peakon solution u ∈ C([0, T ];Hs) such
that its lifespan and its initial size satisfy the estimates

lifespan = T < ε,(1.11)

‖u0‖Hs < ε,(1.12)

while as t approaches the lifespan T the Hs-norm of the solution u(t) satisfies the
estimates

(1.13) lim
t→T

‖u(t)‖Hs =





∞ (norm-inflation), 5/4 < s < 3/2,

may not exist, s = 5/4,

Cs for some Cs > 0, s < 5/4.

Moreover, when s < 5/4, then u(t) converges to an antipeakon u(T ) = −√
cT e

−|x−qT |,
for some cT > 0 and qT > 0, with ‖u(T )‖Hs = Cs.

This theorem is a very interesting result in its own right. Unlike the Camassa–
Holm (CH) equation (see [CH], [FF], [L1], [MN])

(1− ∂2x)ut = uuxxx + 2uxuxx − 3uux(1.14)

and the Degasperis–Procesi (DP) equation (see [DP], [HS], [LS], [L2], [DHH])

(1− ∂2x)ut = uuxxx + 3uxuxx − 4uux,(1.15)

for which we can construct special symmetric 2-peakon solutions, called peakon-
antipeakons, of the form

u(x, t) = p(t)e−|x+q(t)| − p(t)e−|x−q(t)|,(1.16)

this is impossible for the NE. Peakon-antipeakon solutions, which are convenient to
work with, are possible for CH and DP because these equations contain a symmetry
that allows us to reduce the ODE system corresponding to (1.9) for the positions and
the momenta via p = p1 = −p2 and q = q1 = −q2. This symmetry causes the peak
and antipeak to move against each other and collide in finite time (see [HHG], [HGH],

[By]). Such a construction is not possible for the NE because by (1.9) we have
dqj
dt ≥ 0

for all positions qj . Thus, we see that for the NE all the peaks and antipeaks move
in the same direction. Therefore collision can occur only if the peakon that follows
moves faster than and eventually overtakes the one ahead of it. For this scenario to
occur we must break symmetry and solve the full system of the four highly nonlinear
differential equations defined by system (1.9) for n = 2 with appropriate initial data.
This procedure involves several novel ideas, which are described in sections 2 and 7.
The results are summarized in Theorems 3 and 6.

Next, using Theorem 1 we obtain the following ill-posedness result for the NE.
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ILL-POSEDNESS FOR THE NOVIKOV EQUATION 2971

Theorem 2. The Cauchy problem for the NE on the line and the circle (1.1)–
(1.2) is ill-posed in Sobolev spaces Hs for s < 3/2. More precisely, if 5/4 < s < 3/2,
then the data-to-solution map is not continuous, while if s < 5/4, then the solution is
not unique. When s = 5/4, either continuity or uniqueness fails.

As we have mentioned before, this theorem combined with the well-posedness re-
sult for the NE in Hs, s > 3/2, proved in [HH2], completes the well-posedness picture
of the NE in Sobolev spaces, except for s = 3/2, which remains an open question. It
is worth comparing the ill-posedness of the NE, which has cubic nonlinearities, with
that of CH and DP, the two integrable equations of the same type but with quadratic
nonlinearities, which are both well-posed in Hs, s > 3/2. Defining the inflation in-
dex to be the Sobolev exponent si such that there is norm-inflation (which implies
discontinuity of the data-to-solution map) for all si < s < 3/2, we have the follow-
ing observations. For CH the inflation index si = 1 and coincides with the index of
the H1-norm, which is the most important conserved quantity of CH. For s < 1 the
peakon-antipeakon traveling wave solution (1.16) for CH converges in Hs to u(T ) = 0
as t approaches the collision time T , giving rise to another solution (namely, the trivial
solution) demonstrating ill-posedness due to failure of uniqueness. However, for DP
the inflation index si = 1/2. When s < 1/2, the corresponding peakon-antipeakon
traveling wave solution for DP converges in Hs to a function, which gives rise to
another kind of DP solution, called shock peakon, that results in failure of unique-
ness (see [HHG]). From our results above we see that the inflation index for the
NE is 5/4, which is a very interesting number and follows from the limiting behavior
of the momenta p1(t) and p2(t) as t approaches the collision time (see Theorem 3).
For s < 5/4 it is shown that the 2-peakon solution (2.1) constructed in section 2
converges in Hs to an antipeakon, which gives rise to an antipeakon traveling wave
solution demonstrating failure of uniqueness (see Proposition 5).

Finally, we mention that the method used here for proving ill-posedness for the
NE is similar to that used by many authors for other nonlinear evolution equations.
For example, Bourgain and Pavlovic in [BP] proved ill-posedness for the 3D Navier–
Stokes equations in Besov spaces in the sense of norm-inflation. Similar methods for
establishing ill-posedness for dispersive equations have been used by Kenig, Ponce,
and Vega [KPV] and Christ, Colliander, and Tao [CCT]. The ill-posedness for the
generalized KdV and nonlinear Schrödinger equations in Sobolev spaces has been
tackled in [BKPSV]. The Euler equation in Sobolev spaces is examined in [BL1],
where a norm-inflation result for the related vorticity equation provides the foundation
for its ill-posedness. For the ill-posedness of the Burgers equation in H3/2 we refer
the reader to Linares, Pilod, and Saut [LPS]. For more results on traveling wave
solutions, well-posedness, and other analytic and geometric properties of nonlinear
evolution equations we refer the reader to the following works and the references
therein: [BC], [BL2], [CHT], [CL], [CM], [DGH], [EEP], [ELY], [EY], [H], [HH1],
[HK], [HKM], [HMP], [KL], [KT], [LO], [Mc], [MST], [Ti], [W].

This paper is organized as follows. In section 2, we construct the 2-peakon so-
lutions on the line having the properties described in Theorem 1. We begin with
the system of the four differential equations defined by (1.9) when n = 2, and after
making the change of the dependent variables q = q2 − q1, p = p2 − p1, w = p2 + p1,
and z = p1p2, we solve the resulting system and find explicit formulas for p, w, and
z in terms of q (see Proposition 1). For q = q(t) we obtain a rather complicated
autonomous differential equation, which can be dominated by a simpler one for which
we can prove, by a comparison argument, that q becomes zero (collision) in finite time.
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2972 A. A. HIMONAS, C. HOLLIMAN, AND C. KENIG

Also, a precise estimate of the collision time is derived. This is contained in Proposi-
tion 2. In section 3, we estimate the Hs-norm of the 2-peakon solutions constructed
earlier (see Proposition 3), and in section 4 we choose the parameter appropriately
so that both the lifespan (collision time) and the size of the 2-peakon solution at
the initial time are small. In section 5, we prove norm-inflation and ill-posedness for
5/4 < s < 3/2. Then, in section 6, we prove nonuniqueness for s < 5/4 by showing
that our 2-peakon solution u(t) converges in Hs to an antipeakon u(T ), which gives
rise to a second solution for the NE having the same initial data. Also, we explain
the ill-posedness of the NE for s = 5/4. Finally, in section 7 we prove our results
on the circle. We use analogous arguments to those used on the line, with the neces-
sary modifications to account for the periodic environment. A detailed outline of the
periodic case can be found in subsection 7.1.

2. Construction of 2-peakon solutions. It can be shown (see [HW], [GH])
that the 2-peakon

u(x, t) = p1(t)e
−|x−q1(t)| + p2(t)e

−|x−q2(t)|(2.1)

is a solution of the NE if the positions q1, q2 and the momenta p1, p2 satisfy the
following system of the four differential equations:

q′1 =
(
p1 + p2e

−|q1−q2|
)2

,

q′2 =
(
p1e

−|q2−q1| + p2

)2

,

p′1 = p1p2

(
p1 + p2e

−|q1−q2|
)
· sgn(q1 − q2)e

−|q1−q2|,

p′2 = p1p2

(
p1e

−|q2−q1| + p2

)
· sgn(q2 − q1)e

−|q2−q1|,

(2.2)

where sgn(x) is the standard sign function defined to be 1 if x > 0, −1 if x < 0, and
0 if x = 0. At this point we make our first observation. Since q′1 ≥ 0 and q′2 ≥ 0,
both positions are increasing with time. Therefore we cannot have the “typical”
peakon-antipeakon collision which is created from the peakon traveling in the positive
direction and antipeakon traveling in the negative direction as observed in the cases
of the CH and DP equations. Also, we note that by translation we may assume that
the initial positions q1 and q2 are symmetric, that is,

q1(0) = −a and q2(0) = a for some a > 0,(2.3)

and, at least for a while, the difference between the positions is positive, that is,

q(t) = q2(t)− q1(t) > 0.(2.4)

Thus, the last system takes the simpler form

q′1 =
(
p1 + p2e

−q
)2

,

q′2 =
(
p1e

−q + p2

)2

,

p′1 = −p1p2
(
p1 + p2e

−q
)
e−q,

p′2 = p1p2

(
p1e

−q + p2

)
e−q.

(2.5)
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x

u0

p1(0) = −(b+ δ) ≈ u0(−a)

q1(0) = −a
•

u0(a) ≈ b = p2(0)

q2(0) = a
•

Fig. 1. Initial profile u0(x).

Furthermore, we shall assume that at time t = 0 the initial momenta are

p2(0) = b≫ 1, p1(0) = −(b+ δ), δ > 0.(2.6)

That is, the initial profile u0(x) = u(x, 0) is the asymmetric antipeakon-peakon

u0(x) = −(b+ δ)e−|x+a| + be−|x−a|,(2.7)

which is displayed in Figure 1.
Next, we shall solve the system of differential equations (2.5) with the antipeakon-

peakon (2.7) as the initial data and prove that there is a collision in finite time.
To demonstrate this claim, it is more convenient to work with the following new
dependent variables:

q(t) = q2(t)− q1(t), q(0) = 2a > 0,

p(t) = p2(t)− p1(t), p(0) = 2b+ δ > 0,

w(t) = p2(t) + p1(t), w(0) = −δ < 0,

z(t) = p2(t) · p1(t), z(0) = −b(b+ δ) < 0.

(2.8)

Deriving equations for q, p, w, and z. Subtracting the first equation of the
system (2.5) from the second we have

q′ =
(
p1e

−q + p2

)2

−
(
p1 + p2e

−q
)2

,

= (p2 − p1)(p2 + p1)(1− e−2q),

= pw(1− e−2q).(2.9)

Next, we shall try to form differential equations for p and w using the system
(2.2). Assuming p1 < 0 and p2 > 0, at least for some time, for p we have

p′ = p1p2

(
p1e

−q + p2

)
e−q + p1p2

(
p1 + p2e

−q
)
e−q,

= p1p2(p2 + p1)e
−q(1 + e−q),

= zwe−q(1 + e−q).(2.10)
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For w we have

w′ =
(
p1e

−q + p2

)
e−q − p1p2

(
p1 + p2e

−q
)
e−q,

= p1p2(p2 − p1)e
−q(1− e−q),

= zpe−q(1− e−q).(2.11)

Finally, for z we have

z′ = p′2 · p1 + p2 · p′1,

= p21p2

(
p1e

−q + p2

)
e−q − p1p

2
2

(
p1 + p2e

−q
)
e−q,

= p1p2e
−q

[
(p21 − p22)e

−q
]
,

= −zwpe−2q.(2.12)

To summarize, we have the following system for q, p, w, and z:

q′ = pw(1− e−2q), q0 = q(0) = 2a > 0,

p′ = zwe−q(1 + e−q), p0 = p(0) = 2b+ δ > 0,

w′ = zpe−q(1− e−q), w0 = w(0) = −δ < 0,

z′ = −zwpe−2q, z0 = z(0) = −b(b+ δ) < 0.

(2.13)

In the following result we derive explicit formulas for p, w, and z in terms of q. For
q, we derive an autonomous differential equation, which in turn is dominated by a
simpler such equation.

Proposition 1 (solutions of transformed 2-peakon system). The system of dif-
ferential equations (2.13) has a unique smooth solution (q(t), p(t), w(t), z(t)) in an
interval [0, T ), for some T > 0, such that z = z(t) is decreasing and, in terms of q, is
expressed by the formula

z =
−z1(

1− e−2q
)1/2 < 0, where z1 = b(b+ δ)

(
1− e−2q0

)1/2
,(2.14)

p = p(t) is decreasing and as a function of q is expressed by the formula

p =
(
p20 + 2z1

[ 1 + e−q

√
1− e−2q

− 1 + e−q0

√
1− e−2q0

])1/2

> 0,(2.15)

and w = w(t) is decreasing and as a function of q is expressed by the formula

w(t) = −
(
w2

0 + 2z1

[√1− e−2q0

1 + e−q0
−

√
1− e−2q

1 + e−q

])1/2

< 0.(2.16)

The difference of the positions q = q(t) is decreasing and satisfies the initial value
problem

q′ = −f(q) .= −
(
w2

0 + 2z1

[√1− e−2q0

1 + e−q0
−

√
1− e−2q

1 + e−q

]) 1
2 ·

·
(
p20 + 2z1

[ 1 + e−q

√
1− e−2q

− 1 + e−q0

√
1− e−2q0

]) 1
2 · (1− e−2q),(2.17)

q(0) = q0 = 2a > 0.
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Furthermore, the initial value problem (2.17) for q is dominated by the simpler initial
value problem

q′ = −g(q) .= −q1
(
1− e−2q

)3/4
, 0 < q(0) = 2a < 1/2,(2.18)

where

(2.19) q1 = δ
√

2b(b+ δ) · q1/40 .

Proof. We begin by expressing z in terms of q. Using the equation for z′ and q′,
we find

z′

q′
=

−zpwe−2q

pw(1− e−2q)
or

z′

z
=

−e−2qq′

(1− e−2q)
.

Since z(0) < 0, we shall assume that z(t) will remain negative. Therefore, from the
last relation we have

d

dt
[ln(−z)] = −1

2

d

dt
[ln(1− e−2q)].

Integrating from 0 to t gives

ln
[z(t)
z0

]
= −1

2
ln
[ 1− e−2q

1− e−2q0

]
.

Finally, solving for z gives formula (2.14), which expresses z in terms of q.
Next we express p in terms of q. For this we divide the equation for p′ by the

equation for q′ and get

p′

q′
=
zwe−q(1 + e−q)

pw(1− e−2q)
or pp′ = z · e

−q(1 + e−q)q′

(1− e−2q)
.

Substituting into the above relation the formula for z given by (2.14), we have

pp′ =
−z1(

1− e−2q
)1/2 · e

−q(1 + e−q)q′

(1− e−2q)
=

−z1(1 + e−q)e−qq′
(
1− e−2q

)3/2 .(2.20)

Furthermore, by making the change of variables, u = e−q(t), we have du = −e−q(t)q′(t)dt
and

∫ −(1 + e−q)e−qq′
(
1− e−2q

)3/2 dt =

∫
1 + u

(
1− u2

)3/2 du =
1 + u

(
1− u2

)1/2 + C =
1 + e−q(t)

(
1− e−2q(t)

)1/2 + C.

Therefore, relation (2.20) reads as

d

dt

[1
2
p2
]
= z1

d

dt

[ 1 + e−q

√
1− e−2q

]
.(2.21)

Integrating (2.21) from 0 to t gives

1

2

[
p2(t)− p20

]
= z1

[ 1 + e−q(t)

√
1− e−2q(t)

− 1 + e−q0

√
1− e−2q0

]
,

D
o

w
n
lo

ad
ed

 0
8
/0

5
/1

9
 t

o
 2

0
5
.2

0
8
.1

1
6
.2

4
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2976 A. A. HIMONAS, C. HOLLIMAN, AND C. KENIG

which, when solved for p, gives formula (2.15), which expresses p in terms of q.
Finally, we express w in terms of q. Dividing the equation for w′ by the equation

for q′ gives

w′

q′
=
zpe−q(1− e−q)

pw(1− e−2q)
or ww′ = z · e

−q(1− e−q)q′

(1− e−2q)
.

Now, substituting the formula for z given by (2.14) into the above relation, we get

ww′ =
−z1(

1− e−2q
)1/2 · e

−q(1− e−q)q′

(1− e−2q)
=

−z1(1− e−q)e−qq′
(
1− e−2q

)3/2 .(2.22)

Furthermore, making again the change of variables u = e−q(t), we have

∫ −(1− e−q)e−qq′
(
1− e−2q

)3/2 dt =

∫
1− u

(
1− u2

)3/2 du = −
√
1− u2

1 + u
+ C = −

√
1− e−2q(t)

1 + e−q(t)
+ C.

Therefore, relation (2.22) reads as

d

dt

[1
2
w2

]
= −z1

d

dt

[√1− e−2q(t)

1 + e−q(t)

]
.(2.23)

Integrating (2.23) from 0 to t gives

1

2

[
w2(t)− w2

0

]
= z1

[√1− e−2q0

1 + e−q0
−

√
1− e−2q(t)

1 + e−q(t)

]
.

Solving for w while taking into consideration that w(t) < 0 in the choice of sign gives
formula (2.16), which expresses w in terms of q.

Concerning the differential equation for q, we begin from its equation q′ = wp(1−
e−2q), and by substituting for w and p their expressions (2.16) and (2.15), we obtain
the desired autonomous initial value problem (2.16). Next, we observe that

√
1− e−2q0

1 + e−q0
−

√
1− e−2q

1 + e−q
≥ 0, 0 ≤ q ≤ q0,(2.24)

and also that

p20 − 2z1
1 + e−q0

√
1− e−2q0

≥ 0 ⇐⇒ (2b+ δ)2

2b(b+ δ)
≥ 1 + e−q0 .(2.25)

In fact, (2.25) is implied by the stronger condition

(2b+ δ)2

2b(b+ δ)
≥ 2 ⇐⇒ 4b2 + 4bδ + δ2 > 4b2 + 4bδ ⇐⇒ δ2 > 0,

which is true. Now, using (2.24) and (2.25) we see that the function f(q) in the
right-hand side of the differential equation (2.17) can be bounded from below by

f(q) ≥
(
w2

0

) 1
2 ·

(
2z1

[ 1 + e−q

√
1− e−2q

]) 1
2 · (1− e−2q)

= δ ·
(
2b(b+ δ)

(
1− e−2q0

)1/2) 1
2
([ 1 + e−q

√
1− e−2q

]) 1
2 · (1− e−2q).
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Using the bounds 1+ e−q > 1 and 1− e−2q0 ≥ q0, for 0 ≤ q0 ≤ 1/2, which follow from
the simple but useful approximation

x

2
≤ 1− e−x ≤ x ⇐⇒ 1− e−x ≃ x if 0 ≤ x ≤ 1,

we have

f(q) ≥ δ
√
2b(b+ δ) · q1/40 ·

(
1− e−2q

)3/4 .
= g(q).

Therefore, defining q1
.
= δ

√
2b(b+ δ) · q1/40 we see that the complicated initial value

problem for q given in (2.17) is dominated by the simpler one shown in (2.18).

Next we move our attention to the study of the solution q(t) of the initial value
problem stated in Proposition 1. From the formulas for p and w, we see that they
blow up at a zero of q. Therefore, the lifespan of our 2-peakon solution is equal to
the first such zero. The following result, which is applicable to the simpler dominant
initial value problem (2.18), proves existence of a zero and provides an estimate for
its size in terms of the initial data.

Proposition 2 (zero of q). If r < 1, then for given q0 ∈ (0, 1/2) and q1 > 0 the
solution to the initial value problem

dq

dt
= −gr(q) .= −q1

(
1− e−2q

)r
, q(0) = q0,(2.26)

which begins positive and is decreasing, becomes zero in finite time T given by

T =

∫ q0

0

dq

gr(q)
=

1

q1

∫ q0

0

dq

(1− e−2q)
r ≃ 1

1− r

q1−r
0

q1
.(2.27)

A key ingredient in proving Proposition 2 is the following elementary result that
compares solutions of the initial value problem (2.26) for different values of r. It states
that a bigger r corresponds to a bigger solution.

Lemma 1 (comparison principle). If r1 and r2 are two values of r such that
r1 ≤ r2, then the corresponding solutions qr1(t) and qr2(t) to the initial value problem
(2.26) with the same initial data q0 satisfy qr1(t) ≤ qr2(t). That is,

r1 ≤ r2 =⇒ qr1(t) ≤ qr2(t).

Proof. It follows from the fact that r1 ≤ r2 implies

−q1
(
1− e−2q

)r1 ≤ −q1
(
1− e−2q

)r2
.

Remark. We note that for r ≥ 1 the solution to the initial value problem (2.26)
has no zero. In fact, for r = 1 it reads as

dq

dt
= −q1

(
1− e−2q

)
, q(0) = q0.

Integrating this equation gives the explicit formula

q(t) =
1

2
ln
[
1 + (e2q0 − 1)e−q1 t

]
.
= q1(t).

From this formula we see that the solution q(t) exists for all t ≥ 0, is positive for all
times, and decreases to zero as t goes to ∞. Thus when r = 1, q1(t) has no zero in
finite time. Since by the comparison principle the solution qr(t) that corresponds to
an r > 1 is greater than q1(t), we conclude that qr(t) has no zero in finite time if
r > 1. Therefore, the lifespan T is equal to ∞ if r ≥ 1.
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Proof of Proposition 2. We begin with the case r ≤ 0. When r = 0, our initial
value problem (2.17) becomes the simple one q′(t) = −q1, q(0) = q0, whose solution
is

q(t) = q0 − q1 t
.
= q0(t),

which has a zero at T = q0/q1. Thus, by the comparison lemma, Lemma 1, the
solution qr(t) that corresponds to an r < 0 is smaller than q0(t) and therefore has a
zero in finite time. In fact, it is smaller than q0/q1. This proves existence of a zero
for qr(t) when r ≤ 0.

Existence of a zero for q(t) if 0 < r < 1. To prove existence of a zero of
qr(t) for 0 < r < 1, it suffices to do so under the additional condition

r 6= n− 1

n
for all n = 1, 2, 3, . . . .(2.28)

In fact, if r were of the form n−1
n , then we would choose another r2 ∈ (0, 1) which

is not of this form and we have r < r2. Then, by the comparison lemma, Lemma 1,
proving the existence of a zero for qr2(t) implies existence of a zero for qr(t). So, from
now on we shall assume that r satisfies condition (2.28). Therefore, there is a positive
integer n ≥ 2 such that

n− 2

n− 1
< r <

n− 1

n
.(2.29)

It turns out that for proving existence of a zero for q = qr(t), we need its nth order
Taylor polynomial approximation at t = 0. Differentiating (2.17) n times, we arrive
at the formula

q(n)(t) = qn1 cn(r)
(
1− e−2q(t)

)nr−(n−1)

+ qn1

n−1∑

j=1

cj(r)
(
1− e−2q(t)

)nr−(j−1)

,(2.30)

where

cn(r) = (−1)n2n−1r(2r − 1) · · ·
(
[n− 1]r − [n− 2]

)
(2.31)

and cj(r) for j = 1, . . . , n − 1 are coefficients depending on r. Also, we obtain the
following formula for the (n+ 1)th derivative of q:

q(n+1)(t) = qn+1
1 cn+1(r)

(
1− e−2q(t)

)(n+1)r−n

+ qn+1
1

n∑

j=1

cj(r)
(
1− e−2q(t)

)(n+1)r−(j−1)

,

(2.32)

where

cn+1(r) = (−1)n+12nr(2r − 1) · · ·
(
nr − [n− 1]

)
,(2.33)

and again cj(r) for j = 1, . . . , n are coefficients depending on r. Therefore, the nth
order Taylor polynomial approximation of q(t) at t = 0 is given by

q(t) = q0 + q′(0)t+
q′′(0)

2!
t2 +

q(3)(0)

3!
t3 + · · ·+ q(n)(0)

n!
tn +

q(n+1)(τ)

(n+ 1)!
tn+1,(2.34)
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where 0 ≤ τ ≤ t. Next, we shall show that the coefficients cn(r) and cn+1(r) defined
by (2.31) and (2.33) have the same sign, which is the key ingredient for proving the
existence of a zero for q(t). We prove this claim by considering the two possible cases,
n even and n odd. We begin with the case of n even. In this case, using the first part
of inequality (2.29) that r satisfies, we see that (n − 1)r > n − 2, and this implies
that cn(r) is a positive number. Also, using the second part of inequality (2.29)
we see that nr < n − 1, which implies that cn+1(r) > 0 is a positive number too.

Furthermore, in the expression of q(n)(0) the first term qn1 cn(r)
(
1− e−2q0

)nr−(n−1)
is

the dominant term for q0 small enough since the exponent nr − (n − 1) is negative,
while the exponents of (1− e−2q0) appearing in all other terms of the sum (2.30) are
positive. Thus we can conclude

q(n)(0) > 0 if n is even and q0 is small enough.(2.35)

Similarly, in the expression of q(n+1)(t), the first term qn+1
1 cn+1(r)

(
1− e−2q(t)

)(n+1)r−n

is the dominant term for q0 small enough, since the exponent (n+1)r−n is negative
while all the exponents of (1−e−2q(t)) appearing in the sum (2.32) are positive, except
the one that corresponds to j = n which has exponent (n + 1)r − (n − 1) which is

negative. However,
(
1− e−2q(t)

)(n+1)r−(n−1)
is dominated by

(
1− e−2q(t)

)(n+1)r−n

for q(t) ≤ q0 small enough. Thus, we also have

q(n+1)(τ) > 0 if n is even and q0 is small enough.(2.36)

In the case that n ≥ 2 is an odd positive integer, the signs change due to (−1)n = −1,
and using the same reasoning as in the even case we obtain that

q(n)(0) < 0 if n is odd and q0 is small enough(2.37)

and

q(n+1)(τ) < 0 if n is odd and q0 is small enough.(2.38)

Now we are ready to prove the existence of a zero for q(t). First we consider the case
that n is an odd number. Then, using the nth order Taylor polynomial approximation
(2.34) and the conditions (2.37), (2.38) we obtain that

q(t) ≤ q0 + q′(0)t+
q′′(0)

2!
t2 +

q(3)(0)

3!
t3 + · · ·+ q(n)(0)

n!
tn for all t ≥ 0.

Furthermore, since for large t the term q(n)(0)
n! tn dominates and q(n)(0) < 0, we have

that the nth order Taylor polynomial approximation of q(t) becomes negative, thus
crossing the t-axis. This forces q(t) to have a zero at some positive time T , which is
the desired conclusion.

Finally, we prove the existence of a zero for q(t) in the even case. This is done
by contradiction. In fact, if q(t) > 0 for all t > 0, then our differential equation
q′(t) = −q1

(
1− e−2q(t)

)r
implies that q(t) is decreasing for all t > 0 and therefore

q(t) ≤ q0 for all t ≥ 0.(2.39)

However, if n is even, then using the nth order Taylor polynomial approximation of
q(t) at t = 0, which is given by (2.34), and conditions (2.35) and (2.36), we have that

q(t) ≥ q0 + q′(0)t+
q′′(0)

2!
t2 +

q(3)(0)

3!
t3 + · · ·+ q(n)(0)

n!
tn for all t ≥ 0.(2.40)
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Inequality (2.40) leads to a contradiction because for large t the term q(n)(0)
n! tn dom-

inates the Taylor polynomial approximation. Thus, there is some large time T > 0
such that

q(t) ≥ q0 +
1

2

q(n)(0)

n!
Tn > 2q0, 0 ≤ t ≤ T,(2.41)

which contradicts inequality (2.39). This argument completes the proof of the exis-
tence of a zero for q(t) when 0 < r < 1.

Estimating the zero T of the position q(t) when r < 1. Let T be
the zero of the solution q(t) of our initial value problem (2.17), which is q′(t) =
−q1

(
1− e−2q(t)

)r
, q(0) = q0. Integrating it from 0 to T we have

∫ T

0

q′(t)(
1− e−2q(t)

)r dt = −q1T.

Then, making the substitution q = q(t) and using the initial and terminal conditions
q(0) = q0 and q(T ) = 0, we obtain the following formula for T :

T =
1

q1

∫ q0

0

dq

(1− e−2q)
r T ≃ 1

q1

∫ q0

0

dq

qr
=

1

1− r

q1−r
0

q1
.(2.42)

Above, we used the estimate q ≤ 1 − e−2q ≤ 2q if 0 ≤ q ≤ 1
2 . This completes the

proof of Proposition 2.

Applying Proposition 2 with r = 3/4, we obtain the following result for the zero
of the solution to the initial value problem (2.17) and the lifespan of our 2-peakon
solution u.

Corollary 1 (zero of q and lifespan of u). If 0 < q0 < 1/2 and b, δ satisfy
condition (2.6), then the solution to the initial value problem (2.17) begins positive, is
decreasing, and becomes zero in finite time T given by

T =

∫ q0

0

dq

f(q)
≤

1

q1

∫ q0

0

dq

(1− e−2q)3/4
≃

q
1/4
0

q1
≃

q
1/4
0

δ
√

2b(b+ δ) · q
1/4
0

≃
1

δ
√

2b(b+ δ)
.

(2.43)

Proof. The existence and uniqueness of the solution follows from the fundamental
ODE theorem since f(q) is a smooth function. That q(t) is decreasing follows from the
fact that q′ = −f(q) < 0. Finally, that q(t) becomes zero in finite time follows from
the fact that our initial value problem (2.17) is dominated by the initial value problem
(2.18) for which Proposition 2 is applicable with r = 3/4. Therefore, estimate (2.27)
gives (2.43), and this completes the proof of the lemma.

The properties of our special 2-peakon solutions are summarized in the following
theorem and are a consequence of Proposition 1 and Corollary 1.

Theorem 3 (construction of 2-peakon solutions). For given 0 < a ≤ 1/4 and b,
δ satisfying condition (2.6), the initial value problem for the positions q1, q2 and the
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momenta p1, p2,

q′1 =
(
p1 + p2e

−q
)2

, q1(0) = −a,

q′2 =
(
p1e

−q + p2

)2

, q2(0) = a > 0,

p′1 = −p1p2
(
p1 + p2e

−q
)
e−q, p1(0) = −b− δ,

p′2 = p1p2

(
p1e

−q + p2

)
e−q, p2(0) = b,

(2.44)

has a unique smooth solution (q1, q2, p1, p2)(t) with a finite lifespan T , which is the
zero of q = q2 − q1, and which satisfies the estimate

(2.45) T .
1

δ
√
2b(b+ δ)

.

Furthermore, we have

p1 =
w − p

2
< 0 decreasing,

lim
t→T−

p1(t) = −∞ and − p1 ≃ p ≃ q−1/4,

and

p2 =
w + p

2
> 0 increasing,

lim
t→T−

p2(t) = ∞ and p2 ≃ p ≃ q−1/4,

where p and w are given in Proposition 1. Also, w = p1+p2 is decreasing from w0 < 0
to wT , where wT

.
= limt→T− w(t), that is,

wT = −
(
δ2 + 2b(b+ δ)(1− e−2a)

) 1
2

.(2.46)

Finally, the 2-peakon

u(x, t) = p1(t)e
−|x−q1(t)| + p2(t)e

−|x−q2(t)|

is the NE solution for x ∈ R, 0 < t < T , with the following asymmetric antipeakon-
peakon initial profile:

u(x, 0) = −(b+ δ)e−|x+a| + be−|x−a|, x ∈ R.

For the visualization of p1, p2, q, and w we refer the reader to Figure 2.

3. Calculating the norm.

Proposition 3. Let u(t) be the two-peakon solution to the NE. Then on [0, T )
we have

‖u(t)‖2Hs = 16r(t)p21(t)Qs(q) + 4cs
(
1− r(t)

)2
p21(t), with r(t)

.
= −p2(t)

p1(t)
,(3.1)
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t

•p2(0) = b

•p1(0) = −b− δ

•2a

•w0 = −δ

•wT

•
T

p 2
(t
)
≈
q
−

1
4

p
1 (t) ≈

−
q
−

1
4

q(t)

w(t)

Fig. 2. Graphs of p1, p2, q, and w.

where cs =
∫
R
(1 + ξ2)s−2dξ and Qs(q), which is given below, satisfies the estimates

Qs(q)
.
=

∫

R

(1 + ξ2)s−2 sin2
(
qξ

2

)
dξ ≃





q3−2s, 1/2 < s < 3/2,

q2 · ln(1/q), s = 1/2,

q2, s < 1/2.

(3.2)

Proof. Since ê−|x|(ξ) = 2/(1 + ξ2), we have that the Fourier transform of

u(x, t) = p1e
−|x−q1| + p2e

−|x−q2|

is given by

û(ξ, t) =
2p1e

−iξq1

1 + ξ2
+

2p2e
−iξq2

1 + ξ2
=

2

1 + ξ2
· p1e−iξq1 ·

(
1 +

p2
p1
e−iξq

)
.

Taking the square of the Hs-norm of this quantity and factoring out p21, we obtain

‖u(t)‖2Hs = 4p21

∫

R

(1 + ξ2)s−2
∣∣∣1 + p2

p1
e−iξq

∣∣∣
2

dξ.(3.3)
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Using Proposition 1 we see that

r = r(t)
.
= −p2(t)

p1(t)
=
p+ w

p− w
< 1 and r(t) ր 1 as tր T.

Next, using r we write (3.3) as

‖u(t)‖2Hs = 4p21

∫

R

(1 + ξ2)s−2
∣∣∣1− re−iξq

∣∣∣
2

dξ.(3.4)

Expanding out the square under the integral in (3.4), we have

|reiqξ − 1|2 = (1− r)2 + 4r sin2
(
qξ

2

)
.(3.5)

Substituting (3.5) into (3.4), we have

‖u(t)‖2Hs = 16rp21

∫

R

(1 + ξ2)s−2 sin2
(
qξ

2

)
dξ + 4(1− r)2p21

∫

R

(1 + ξ2)s−2dξ,

which gives

‖u(t)‖2Hs = 16rp21Qs(q) + 4cs(1− r)2p21,

where

cs =

∫

R

(1 + ξ2)s−2dξ and Qs(q) =

∫

R

(1 + ξ2)s−2 sin2
(
qξ

2

)
dξ.(3.6)

Now, we see that to prove Proposition 3 it suffices to show that for 0 < q < 1/8 we
have the estimate

Qs(q) ≃





q3−2s, 1/2 < s < 3/2,

q2 · ln(1/q), s = 1/2,

q2, s < 1/2.

Starting with the integrand for Qs from (3.6) and making the change of variables
x = qξ, which gives dx = qdξ, we can write Qs(q) as

Qs(q) = 2q3−2s

∫ ∞

0

(q2 + x2)s−2 sin2(x/2)dx = 2q3−2s
[
I1 + I2

]
,(3.7)

where

I1
.
=

∫ 1

0

x2

(q2 + x2)2−s
dx and I2

.
=

∫ ∞

1

sin2(x/2)

(q2 + x2)2−s
dx.

If s < 3/2, then the integral I2 is bounded since

I2 =

∫ ∞

1

sin2(x/2)

(q2 + x2)2−s
dx .

∫ ∞

1

x2s−4dx =
1

3− 2s
.(3.8)

Also, when s > 1/2 we have the following upper bound for I1:

I1 ≤
∫ 1

0

x2s−2dx =
1

2s− 1
.(3.9)
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Furthermore, for any s < 2 we have

I1 ≥ 2s−2

∫ 1

0

x2dx = 2s−2 · 1
3
.(3.10)

Combining (3.10), (3.8), and (3.7) gives

‖fq‖Hs ≃ q
3
2−s if 1/2 < s < 3/2.

The case s < 1/2. Since I1 + I2 is bounded below by I1 and 0 < y < 1 we have

I1 + I2 &

∫ q

0

x2

(q2 + x2)2−s
dx & q2s−4

∫ q

0

x2dx ≃ q2s−1.(3.11)

Combining (3.11) and (3.7) gives

Qs(q) & q3−2s · q2s−1 = q2 if s < 1/2.(3.12)

To prove the reverse of inequality (3.12) we obtain an upper bound for I1. For this
argument, we let z = x/y and get

I1
.
=

∫ 1

0

x2

(q2 + x2)2−s
dx = q2s−1

∫ 1/q

0

z2

(1 + z2)2−s
dz ≤ q2s−1

∫ ∞

0

1

(1 + z2)1−s
dz.

Since the last integral converges if 2(1 − s) > 1, which is equivalent to s < 1/2, we
see that it is equal to a finite constant cs. Combining this fact with (3.7) and (3.8)
we have

Qs(q) . q3−2s[q2s−1 + 1] . q2 if s < 1/2,

which, together with (3.11), gives

Qs(q) ≃ y2 if s < 1/2.

The case s = 1/2. We observe that

I1 =

∫ 1

0

x2

(q2 + x2)3/2
dx = ln

(√
q2 + 1 + 1

)
− 1√

q2 + 1
+ ln(1/q).

Upper bound. From here we begin by removing the middle term and using the
fact that y < 1/4 in the first term. We get

I1 ≤ ln(
√
2 + 1) + ln(1/q).(3.13)

Substituting (3.13) back into (3.7) and taking into account estimate (3.8) for I2 we
have

Q 1
2
(s) . q2 ln(1/q).(3.14)

Lower bound. Using the fact that 2 ln(1/q) > 1 we have

I1 ≥ ln(1/q) + (ln(2)− 1)[2 ln(1/q)] = (2 ln(2)− 1) ln(1/q).

We therefore arrive at

Q 1
2
(s) & q2 · I1 & q2 ln(1/q).(3.15)

Putting together the upper and lower bounds (3.14) and (3.15) and taking the square
root of both sides of the equation gives the desired result of

Q 1
2
(s) ≃ y2 · ln(1/q).
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4. Small lifespan and initial data. We begin by assuming that

p2(0) = b≫ 1 and − p1(0) = b+ δ, δ > 0,

so that the conditions for the existence of our 2-peakon with the lifespan estimate
(2.43) hold. Then, we have the following.

Lifespan estimate. For given ε > 0, we need to find b > 1 such that T < ε.
Since by Proposition 1 we have

T .
1

δ
√
2b(b+ δ)

≤ 1

δb
,

we must have

1

δb
≤ ε ⇐⇒ b ≥ δ−1ε−1.(4.1)

Initial data estimate. Now, for the same ε > 0 we need to find q0 < 1/8 such
that ‖u0‖Hs < ε. For this argument we use Proposition 3, from which we have

‖u(0)‖2Hs = 16r(0)p21(0)Qs(q0) + 4cs
(
1− r(0)

)2
p21(0), r(t)

.
= −p2(t)

p1(t)
,

= 16b(b+ δ)Qs(q0) + 4csδ
2,

which in turn gives

‖u(0)‖2Hs ≤ 32b2Qs(q0) + 4csδ
2.

Case 1/2 < s < 3/2. Then by Proposition 3 we have Qs(q0) . q3−2s
0 and

therefore

‖u(0)‖2Hs ≤ Csb
2q3−2s

0 + 4csδ
2.

To demonstrate ‖u0‖Hs < ε, it suffices to choose q0 and δ such that Csb
2q3−2s

0 +
4csδ

2 ≤ ε2 or

4csδ
2 ≤ ε2

2
and Csb

2q3−2s
0 ≤ ε2

2
.

The first inequality holds if

δ ≤ ε

2
√
2cs

.(4.2)

Taking into consideration (4.2) and (4.1), the second inequality holds if

q3−2s
0 ≤ ε2

2Csb2
≤ ε2

2Csδ−2ε−2
=
δ2ε4

2Cs
≤ ε2ε4

8cs · 2Cs

or

q0 ≤
( ε6

16csCs

) 1
3−2s

.
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Case s ≤ 1/2. For such a Sobolev exponent s we have ‖u(0)‖Hs ≤ ‖u(0)‖H1 .
This combined with Proposition 3, which tells us that Q1(q0) . q0, gives

‖u(0)‖2Hs ≤ ‖u(0)‖2H1 ≤ C1b
2q0 + 4c1δ

2.

Thus ‖u0‖Hs < ε if q0 and δ satisfy the inequalities

4c1δ
2 ≤ ε2

2
and C1b

2q0 ≤ ε2

2
.

These inequalities hold if

δ ≤ ε

2
√
2c1

and q0 ≤ ε6

16csCs
.

5. Norm-inflation and ill-posedness for 5/4 < s < 3/2. From Proposition
3 we have

‖u(t)‖2Hs = 16r(t)p21(t)Qs(q) + 4csp
2
1(t)

(
1− r(t)

)2
,(5.1)

where the estimate for Qs is given in (3.2). Also, using Theorem 3 we have

p21(t) ≃ q−1/2(t) and p22(t) ≃ q−1/2(t) for t close to T .

Next, we see that

r = r(t)
.
=

p2(t)

−p1(t)
≃ q−1/4

q−1/4
≃ 1 as tր T,

and

p1(t)
(
1− r(t)

)
= p1(t)

(
1 +

p2(t)

p1(t)

)
= p2(t) + p1(t) = w(t).

Also, we have

(5.2) lim
t→T

p21(t)
(
1− r(t)

)2
= lim

t→T
w2(t) = δ2 + 2b(b+ δ) · (1− e−q0).

Therefore, the first term of (5.1) can be estimated by

16r(t)p21(t)Qs(q) ≃





q
5
2−2s, 1/2 < s < 3/2,

q
3
2 · ln(1/q), s = 1/2,

q
3
2 , s < 1/2.

Combining the last estimate with the fact that 5
2 − 2s = 0 ⇐⇒ s = 5

4 we see that

lim
t→T

16r(t)p21(t)Qs(q) =





∞ (inflation), 5/4 < s < 3/2,

may not exist, s = 5/4,

0, s < 5/4.

(5.3)

Finally, using the limits (5.3) and (5.2) from formula (5.1) we conclude that

(5.4) lim
t→T

‖u(t)‖2Hs =





∞ (inflation), 5/4 < s < 3/2,

may not exist, s = 5/4,

4cs

[
δ2 + 2b(b+ δ) · (1− e−q0)

]
, s < 5/4.

Therefore when 5/4 < s < 3/2 we have norm-inflation and ill-posedness for the NE.
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6. Nonuniqueness for s < 5/4. In this section, we prove that once we take
the Sobolev exponent to be less than 5/4, the NE admits nonunique solutions.

Theorem 4 (nonuniqueness). For s < 5/4 the NE admits nonunique solutions.

Our proof of nonuniqueness revolves around examining the behavior of the limit
as t → T− of the 2-peakon solution u with initial data given in (2.7). Once we take
the Sobolev exponent to be s < 5/4, this limit exists, and it is a single antipeakon.
The nonuniqueness then can be realized by taking a single antipeakon traveling wave
that at time T has the same profile as limt→T− u(x, t). From this point, a change of
variables can recast this scenario as two solutions arising from the same initial data.
To proceed with this argument, we begin by examining the pointwise limit, then the
Lr limit, and finally we use these results in addition to the generalized dominated
convergence theorem (gDCT) to establish the Hs limit.

Proposition 4 (pointwise limit). For each x ∈ R we have

lim
t→T−

u(x, t) = wT e
−|x−qT | .= vT (x),(6.1)

where wt is given by (2.46), that is, wT = −
(
δ2 + 2b(b+ δ)(1− e−2a)

) 1
2

< 0, and

qT
.
= lim

t→T−

q1(t) = lim
t→T−

q2(t).

To prove Proposition 4 we need the following elementary result.

Lemma 2. Given our functions p1, p2 and q = q1− q1 the following limits hold as
t→ T−:

lim
t→T−

pj(t)(1− e−q(t)) = 0, j = 1, 2.(6.2)

Proof. Using the estimates

p21 ≃ q−1/2 and p22 ≃ q−1/2

and the inequality 1− e−x < x for x ∈ [0, 1] we have

lim
t→T−

|pj(t)(1− e−q(t))| ≤ lim
t→T−

|pj(t)| · |q(t)| . lim
t→T−

|q−1/4(t)| · |q(t)| = 0.

Proof of Proposition 4. As we are working with a pointwise limit, we consider
the cases x ≥ qT and x < qT separately so that we can evaluate the absolute values
|x− qj | in the definition of the 2-peakon solution u.

Case x ≥ qT . Since q1 ≤ q2 ≤ qT , we have x− qj ≥ 0 and therefore

u(x, t) = p1(t)e
−|x−q1(t)| + p2(t)e

−|x−q2(t)| = e−x ·
(
p1(t)e

q1(t) + p2(t)e
q2(t)

)
.

Next, we will rewrite u in such a way so as to utilize Lemma 2. We have

u(x, t) = e−x · eq2(t) ·
(
− p1(t)(1− e−q(t)) + w(t)

)
.

Finally, taking the limit as t→ T− of u and using (6.2) we get

lim
t→T−

u(x, t) = wT · e−x+qT , x ≥ qT .(6.3)
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Case x < qT . We follow essentially the same strategy as in the previous case,
simply correcting for signs. Since x is fixed and q1 ≤ q2 ≤ qT , we see that after some
time t0 we must have x < q1(t) ≤ q2(t) ≤ qT . Therefore, for t > t0 we have x−qj < 0,
and u can be written as

u(x, t) = ex · e−q1(t)
(
w(t)− p2(t)(1− e−q(t))

)
.

Thus taking the limit as t→ T− of u and using again Lemma 2 we obtain

lim
t→T−

u(x, t) = wT · ex−qT , x < qT .(6.4)

Combining (6.3) and (6.4) we conclude that the 2-peakon solution u(t) has a limit as
t→ T−, which is given by the antipeakon (6.1).

We next examine the limit of u in Lr topology.

Proposition 5 (convergence in Lr). For our antipeakon-peakon solution u to
the NE, we have

lim
t→T−

‖u(x, t)− vT (x)‖Lr = 0 for 1 ≤ r < 4.

Proof. As we will need to evaluate the absolute values in the exponents, we note
that the order of the peaks’ positions of u(x, t) and vT (x) is q1(t) < q2(t) < qT . We
now expand the Lr-norm as

‖u(x, t)− vT (x)‖rLr

.
= I1(t) + I2(t) + I3(t) + I4(t),

where the integrals Ij(t) have their domains determined by q1 < q2 < qT , that is,

I1(t)
.
=

∫ q1(t)

−∞
|u(x, t)− vT (x)|rdx, I3(t)

.
=

∫ qT

q2(t)

|u(x, t)− vT (x)|rdx,

I2(t)
.
=

∫ q2(t)

q1(t)

|u(x, t)− vT (x)|rdx, I4(t)
.
=

∫ ∞

qT

|u(x, t)− vT (x)|rdx.

Evaluating I1. Calculating the integral, we have

I1(t) =
erq1(t)

r
·
∣∣∣p1e−q1(t) + p2e

−q2(t) − wT e
−qT

∣∣∣
r

.

In order to proceed with evaluating the limit, we observe the identity

p1e
−q1(t) + p2e

−q2(t) − wT e
−qT = e−q2p1(e

q − 1) + w(t)e−q2(t) − wT e
−qT .

We can now evaluate the limit as

lim
t→T−

I1(t) = lim
t→T−

erq1(t)

r
·
∣∣∣e−q2p1(e

q − 1) + [w(t)e−q2(t) − wT e
−qT ]

∣∣∣
r

= 0.

Evaluating I2. Using Jensen’s inequality |a1+ · · ·+an|r ≤ nr(|a1|r+ · · ·+ |an|r)
together with e−|x−qj(t)| ≤ 1, e−|x−qT (t)| ≤ 1, and |pj | ≃ q−1/4, we have

lim
t→T−

I2(t) . lim
t→T−

(q1−
r
4 (t) + q(t)|wT |r) = 0 (assuming r < 4).
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Evaluating I3. After evaluating the absolute values inside the exponential and
using the identity

p1e
−x+q1 + p2e

−x+q2 − wT e
x−qT = e−xeq2p1(e

−q − 1) + e−xweq2 − exwT e
−qT ,

an application of Jensen’s inequality gives us

I3(t) .

∫ qT

q2(t)

∣∣∣e−xeq2p1(t)(e
−q(t) − 1)

∣∣∣
r

dx+

∫ qT

q2(t)

∣∣∣e−xw(t)eq2(t) − exwT e
−qT

∣∣∣
r

dx.

We see that for the first term in this sum, we have

∫ qT

q2(t)

∣∣∣e−xeq2(t)p1(t)(e
−q(t) − 1)

∣∣∣
r

dx, . (qT − q2(t)) ·
∣∣∣eq2(t)p1(t)(e−q(t) − 1)

∣∣∣
r

.

For the second term of this sum, we use the fact that |e−xweq2 − exwT e
−qT |r . 1 and

Hölder’s inequality to get

∫ qT

q2(t)

∣∣∣e−xw(t)eq2(t) − exwT e
−qT

∣∣∣
r

dx . (qT − q2(t)).

Putting these estimates together, we can now evaluate the limit of I3 as t→ T via

lim
t→T

I3 . lim
t→T

(
(qT − q2(t)) ·

∣∣∣eq2(t)p1(t)(e−q(t) − 1))
∣∣∣
r

+ (qT − q2(t)
)
= 0.

Evaluating I4. This term is handled in precisely the same fashion as I1. Per-
forming the integration gives us

I4(t) =
e−rqT

r
·
∣∣∣p1eq1(t) + p2e

q2(t) − wT e
qT
∣∣∣
r

.

Rewriting the expression inside of the absolute value gives us

p1e
q1(t) + p2e

q2(t) − wT e
qT = eq2(t)p1(e

−q(t) − 1) + w(t)eq2(t) − wT e
qT .

Therefore, using the above identity along with the triangle inequality yields

lim
t→T−

I4(t) ≤ lim
t→T−

e−rqT

r
·
(
|eq2(t)p1(e−q(t) − 1)|+ |w(t)eq2(t) − wT e

qT |
)r

= 0.

Summarizing the Lr convergence, 1 ≤ r < 4. As we have computed
limt→T− Ij(t) = 0 for j = 1, 2, 3, 4 it immediately follows that

lim
t→T−

‖u(x, t)− vT (x)‖rLr = lim
t→T−

(
I1(t) + I2(t) + I3(t) + I4(t)

)
= 0.

Corollary 2. As t goes to T our 2-peakon solution u(t) converges in Hs, s ≤ 0,
to the antipeakon vT = wT e

−|x−qT |.

Now that we have successfully established pointwise and Lr convergence, we are
ready to move on to a much stronger result that is of interest in itself. As t → T ,
the antipeakon-peakon solution converges to a single solitary antipeakon in Hs for
s < 5/4.
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Theorem 5 (convergence in Hs). For s < 5/4, our 2-peakon solution u(t)
converges to the antipeakon vT in Hs, i.e.,

lim
t→T

‖u(t)− vT ‖Hs = 0.(6.5)

Proof. We will begin by simplifying the Hs-norm of u(x, t)− vT (x). We have

‖u(t)− vT ‖2Hs =

∫

R

(1 + ξ2)s|û(ξ, t)− v̂T (ξ)|2dξ.

Our objective, when taking the limit, will be to move the limit inside of the integral.
Thus, the first thing we should verify is whether, pointwise, we have

(1 + ξ2)s|û(ξ, t)− v̂T (ξ)|2 → 0 as t→ T−.

We have

|û(ξ, t)− û(ξ, T )| ≤ ‖u(x, t)− u(x, T )‖L1 .

As we have proved that u(x, t) → u(x, T ) in L1, we have

lim
t→T−

(1 + ξ2)s|û(ξ, t)− v̂T (ξ)|2 = 0.

Next, we will define the bounding functions that will allow us to apply the gDCT. We
set

ft(ξ)
.
= (1 + ξ2)s|û(ξ, t)− v̂T (ξ)|2 ≤ 4(1 + ξ2)s

(
|û(ξ, t)|2 + |v̂T (ξ)|2

)
.
= gt(ξ).

Next, we need to establish that the gt’s have a pointwise limit g. The most obvious
candidate for g is

g(ξ) = 8(1 + ξ2)s|v̂T (ξ)2|.

Indeed, using the laws of limits, we have that û(ξ, t) → v̂T (ξ) pointwise in ξ implies
gt → g pointwise in ξ. To finish satisfying the hypotheses of the gDCT, we must now
establish the integral properties of the gt’s. We have

lim
t→T

∫

R

gt(ξ)dξ = lim
t→T

4

∫

R

(1 + ξ2)s|û(ξ, t)|2dξ + lim
t→T

4

∫

R

(1 + ξ2)s|v̂T (ξ)|2dξ

(5.4)
= 32csw

2
T ,

where the left limit uses the hypothesis that s < 5/4. Furthermore, g is integrable
and

∫

R

g(ξ)dξ =

∫

R

8|vT (ξ)2|dξ = 8 · ‖vT ‖2Hs = 8 · 4csw2
T = 32csw

2
T .

Therefore, we have
∫
gt →

∫
g. We now see that the hypotheses for the gDCT are

satisfied. Thus, we can conclude that

lim
t→T

∫

R

ft(ξ)dξ =

∫

R

f(x)dξ,

which, written more explicitly, tells us that

lim
t→T

∫

R

(1 + ξ2)s|û(ξ, t)− v̂T (ξ)|2dξ = 0.

Thus, we can conclude that as t→ T , we have u(t) → vT in Hs.
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Proof of Theorem 4. Translating the NE 1-peakon solution (1.6) by x0 and choos-
ing the minus sign we obtain the following antipeakon solution for the NE:

v(x, t) = −
√
c e−|(x−x0)−ct| for any c > 0 and x0 ∈ R.

Choosing

c = w2
T and x0 = qT − w2

TT

we obtain the NE antipeakon solution

v(x, t) = −
√
w2

T e
−|(x−qT+w2

TT )−w2
T t|.

Since at t = T we have

v(x, T ) = wT e
−|x−qT | = u(x, T ),

we see that we have constructed two different NE solutions, which belong in Hs,
s < 5/4, and agree at t = T . From here, a change of variables can recast these two
solutions as initial value problems at time t = 0. This proves failure of uniqueness in
this range of Sobolev spaces.

The case s = 5/4. If s = 5/4, then there are two possibilities. Either our
2-peakon solution u(t) does not converge in H5/4, in which case we can prove (by
a standard argument) that continuity of the solution map fails, or u(t) converges in
H5/4 and has limit u(T ) (since this is the limit for lower Sobolev exponents). In the
second case, we have nonuniqueness as in Theorem 4. This result completes the proof
of both Theorem 1 and 2 in the nonperiodic case.

7. The periodic case.

7.1. Outline of the proofs in the periodic case. The proofs of Theorems 1
and 2 have been demonstrated on the line, and we now present these proofs on the
circle, T = R/2πZ. The key ingredient is using a periodic version of the peakon. In
subsection 7.2, we construct the 2-peakon solutions on the circle having the properties
described in Theorem 1. In subsection 7.3, we estimate the Hs-norm of the 2-peakon
solutions, and in subsection 7.4 we choose the parameters so that both the lifespan
and the size of the 2-peakon solution at the initial time are simultaneously small. In
subsection 7.5, we prove norm-inflation and ill-posedness for 5/4 < s < 3/2. Finally,
in subsection 7.6, we prove nonuniqueness for s < 5/4 and explain the ill-posedness
of the NE for s = 5/4.

7.2. Construction of 2-peakon solutions on the circle. The 2-peakon so-
lutions to the periodic version of the NE are similar to those on the real line, with the
caveat that the peak is generated by periodizing the hyperbolic cosine rather than
using the exponential of the negative absolute value. The following equations are
taken from [GH] and [HM] and can also be derived in a straightforward fashion.

The periodic Novikov 2-peakon solutions are of the form

u(x, t) = p1(t) cosh([x− q1(t)]p − π) + p2(t) cosh([x− q2(t)]p − π),(7.1)

where [·]p periodizes our function and is defined by the floor

[x]p = x− 2π
⌊ x
2π

⌋
.(7.2)
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We see that u solves the NE if the momenta p1, p2 and the positions q1, q2 satisfy the
following system of ODEs, which can be obtained by using Theorem 1.2 of [HM] with
the choice of parameters a = 0, b = 3. The 4× 4 system we get is

q′1 = p21[1 + sinh2 π] + 2p1p2 coshπ cosh([q1 − q2]p − π) + p22[1 + sinh2([q1 − q2]p − π)],

q′2 = p22[1 + sinh2 π] + 2p1p2 coshπ cosh([q2 − q1]p − π) + p21[1 + sinh2([q2 − q1]p − π)],

p′1 = −p1p2 sinh([q1 − q2]p − π)[p1 coshπ + p2 cosh([q1 − q2]p − π)],

p′2 = −p1p2 sinh([q2 − q1]p − π)[p2 coshπ + p1 cosh([q2 − q1]p − π)].

Setting

E(x)
.
=

1

coshπ
· cosh([x]p − π), E′(x)

.
=

1

coshπ
· sinh([x]p − π),

and using q = q2 − q1, our system can be written in the more compact form

q′1 = cosh2 π · (p1 + p2E(q))2,

q′2 = cosh2 π · (p1E(q) + p2)
2,

p′1 = cosh2 π · p1p2(p1 + p2E(q))E′(q),

p′2 = − cosh2 π · p1p2(p1E(q) + p2)E
′(q).

(7.3)

Initial data. From this point, we make the same initial data assumptions as in
the real line case. We take the positions q1 and q2 at time t = 0 to be

q1(0) = −a and q2 = a for some a > 0.

For the initial momenta, we shall assume that at time t = 0

p2(0) = b≫ 1, p1(0) = −(b+ δ), δ > 0.(7.4)

With these assumptions, the initial profile u0(x) = u(x, 0) is the asymmetric periodic
antipeakon-peakon

u0(x) = −(b+ δ) cosh([x+ a]p − π) + b cosh([x− a]p − π).(7.5)

This initial profile for u is displayed in Figure 3.
Following the intuition we developed in the real line case, we again will examine

the ODE system (7.3) in the derived variables p, q, w, z given by

q(t) = q2(t)− q1(t), q(0) = 2a > 0,

p(t) = p2(t)− p1(t), p(0) = 2b+ δ > 0,

w(t) = p2(t) + p1(t), w(0) = −δ < 0,

z(t) = p2(t) · p1(t), z(0) = −b(b+ δ) < 0.

(7.6)

Deriving equations for q, p, w, and z on the circle. Beginning with q, we
follow the same strategy as in the nonperiodic case. We see that

q′ = cosh2 π · (p1E(q) + p2)
2 − cosh2 π · (p1E(q) + p2)

2,

= cosh2 π · (p2 − p1)(p2 + p1)(1− E2(q)),

= cosh2 π · pw(1− E2(q)).(7.7)
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x

u0

p1(0) = −(b+ δ) ≈ u0(−a)

q1(0) = −a
•

u0(a) ≈ b = p2(0)

q2(0) = a
• 2π•

Fig. 3. Initial profile u0(x).

The computations for p, w, and z follow the same strategy, and we arrive at the 4× 4
system

q′ = cosh2 π · pw(1− E2(q)), q(0) = 2a > 0,

p′ = − cosh2 π · wz(1 + E(q))E′(q), p(0) = 2b+ δ > 0,

w′ = − cosh2 π · zp(1− E(q))E′(q), w(0) = −δ < 0,

z′ = cosh2 π · zwpE(q)E′(q), z(0) = −b(b+ δ) < 0.

(7.8)

This derived system of ODEs is more easily manipulated than the original 4 × 4
system, and we are now ready to tackle Proposition 1 in the periodic setting.

Proposition 6 (periodic version of Proposition 1). The system of differen-
tial equations (7.8) has a unique smooth solution (q(t), p(t), w(t), z(t)) in an interval
[0, T ), for some T > 0, such that z = z(t) is decreasing and, in terms of q, is expressed
by the formula

z =
−z1(

1− E2(q)
)1/2 < 0, where z1 = b(b+ δ)

(
1− E2(q0)

)1/2
> 0,(7.9)

p = p(t) is decreasing and as a function of q is expressed by the formula

p(t) =
(
p20 + 2z1

[ 1 + E(q(t))√
1− E2(q(t))

− 1 + E(q0)√
1− E2(q0)

])1/2

> 0,(7.10)

and w = w(t) is decreasing and as a function of q is expressed by the formula

w(t) = −
(
w2

0 + 2z1

[√1− E2(q0)

1 + E(q0)
−

√
1− E2(q(t))

1 + E(q(t))

])1/2

< 0.(7.11)

The difference between the positions q = q(t) is decreasing and satisfies the initial
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value problem

q′ = −f(q) .= − cosh2 π ·
(
w2

0 + 2z1

[√1− E2(q0)

1 + E(q0)
−

√
1− E2(q(t))

1 + E(q(t))

])1/2

(7.12)

·
(
p20 + 2z1

[ 1 + E(q(t))√
1− E2(q(t))

− 1 + E(q0)√
1− E2(q0)

])1/2

· (1− E2(q)),

q(0) = q0 = 2a > 0.

Furthermore, the initial value problem (7.12) is dominated by the simpler initial value
problem

q′ = −g(q) .= −q1
(
1− e−2q

)3/4
, 0 < q(0) = 2a < 1/2,

where

q1 = δ
√
2b(b+ δ) · q1/40 .

Proof. We begin by solving for p, w, and z in terms of q. After this task is
completed, we can form an autonomous equation for q by substituting in its defining
ODE (7.8) the expressions for p, q, and w.

Expressing z in terms of q. Using the equation for z′ and q′ we find

z′

q′
=

cosh2 π · zwpE(q)E′(q)

cosh2 π · pw(1− E2(q))
=
zE(q)E′(q)

1− E2(q)
or

z′

z
=
E(q)E′(q)q′

1− E2(q)
.

Since z(0) < 0, we assume that z(t) will remain negative. Therefore, from the last
relation we have

d

dt
[ln(−z)] = −1

2

d

dt
[ln(1− E2(q))].

Integrating this equation from 0 to t gives

ln
[z(t)
z0

]
= −1

2
ln
[1− E2(q(t))

1− E2(q0)

]
.

Solving for z(t), we find formula (7.9) for z in terms of q.
Expressing w in terms of q. Dividing the equation for w′ by the equation for

q′ we have

w′

q′
=

− cosh2 π · zp(1− E(q))E′(q)

cosh2 π · pw(1− E2(q))
=

−z(1− E(q))E′(q)

w(1− E2(q))
(7.13)

or ww′ = −z · (1− E(q))E′(q)q′

1− E2(q)
.(7.14)

Substituting the formula for z given by (7.9) into the above equation gives us

ww′ =
z1(

1− E2(q)
)1/2 · (1− E(q))E′(q)q′

1− E2(q)
=
z1(1− E(q))E′(q)q′

(
1− E2(q)

)3/2 .(7.15)
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Making the change of variables u = E(q(t)), du = E′(q(t))q′(t)dt, we obtain
∫

(1− E(q))E′(q)q′
(
1− E2(q)

)3/2 dt =

∫
1− u

(
1− u2

)3/2 du = −
√
1− u2

1 + u
+ C = −

√
1− E2(q(t))

1 + E(q(t))
+ C.

Therefore, relation (7.15) reads as

d

dt

[1
2
w2

]
= −z1

d

dt

[√1− E2(q(t))

1 + E(q(t))

]
.(7.16)

Integrating this equation from 0 to t gives

1

2

[
w2(t)− w2

0

]
= z1

[√1− E2(q0)

1 + E(q0)
−

√
1− E2(q(t))

1 + E(q(t))

]
.(7.17)

We are thus able to solve for w(t) in terms of q(t), which gives us formula (7.11).
Expressing p in terms of q. Dividing the equation for p′ by the equation for

q′ we have

p′

q′
=

− cosh2 π · wz(1 + E(q))E′(q)

cosh2 π · pw(1− E2(q))
=

−z(1 + E(q))E′(q)

p(1− E2(q))
,(7.18)

or pp′ = −z · (1 + E(q))E′(q)q′

1− E2(q)
.(7.19)

Substituting in the above relation the formula for z given by (7.9) we have

pp′ =
z1(

1− E2(q)
)1/2 · (1 + E(q))E′(q)q′

1− E2(q)
=
z1(1 + E(q))E′(q)q′

(
1− E2(q)

)3/2 .(7.20)

Next, we make the change of variables u = E(q(t)), du = E′(q(t))q′(t)dt and get
∫

(1 + E(q))E′(q)q′
(
1− E2(q)

)3/2 dt =

∫
1 + u

(
1− u2

)3/2 du =
1 + u

(
1− u2

)1/2 + C =
1 + E(q)

(
1− E2(q)

)1/2 + C.

Therefore, relation (7.20) reads as

d

dt

[1
2
p2
]
= z1

d

dt

[ 1 + E(q)√
1− E2(q)

]
.

Integrating this equation from 0 to t gives us

1

2

[
p2(t)− p20

]
= z1

[ 1 + E(q(t))√
1− E2(q(t))

− 1 + E(q0)√
1− E2(q0)

]
,

and we are able to solve for p(t) and obtain formula (7.10).
Solving the q ODE. Starting with the differential equation for q, which is

q′ = cosh2 π · pw(1 − E2(q)), we substitute for w and p their expressions (7.11) and
(7.10), respectively. We consequently obtain the following autonomous differential
equation for q:

q′ = −f(q) .= cosh2 π ·
{
−
(
w2

0 + 2z1

[√1− E2(q0)

1 + E(q0)
−

√
1− E2(q(t))

1 + E(q(t))

])1/2}
(7.21)

·
(
p20 + 2z1

[ 1 + E(q(t))√
1− E2(q(t))

− 1 + E(q0)√
1− E2(q0)

])1/2

· (1− E2(q)),

q(0) = q0 = 2a > 0.
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Next, we observe that
√
1− E2(q0)

1 + E(q0)
−

√
1− E2(q(t))

1 + E(q(t))
≥ 0, 0 ≤ q ≤ q0 < π.(7.22)

This inequality follows from the fact that

(√1− E2(x)

1 + E(x)

)′
=

−E′(x)

2
√
1 + E(x)

.

Since the denominator is always positive, the sign of this derivative is controlled by
the numerator, −E′(x) = − 1

cosh(π) sinh([x]p − π), which is positive for x ∈ [0, π).

Next, we have

p20 − 2z1
1 + E(q0)√
1− E2(q0)

≥ 0 ⇐⇒ (2b+ δ)2

2b(b+ δ)
≥ 1 + E(q0).(7.23)

Our choice of initial data allows for the inequality 1 + E(q0) ≤ 2, and we have

(2b+ δ)2

2b(b+ δ)
≥ 2 ⇐⇒ 4b2 + 4bδ + δ2 > 4b2 + 4bδ ⇐⇒ δ2 > 0,

which is true.
Now, using (7.22) and (7.23) we see that the function f(q) in the right-hand side

of the differential equation (7.21) can be bounded from below as follows:

f(q) ≥ cosh2 π · δ
(
2b(b+ δ)

(
1− E2(q0)

)1/2) 1
2
([ 1 + E(q(t))√

1− E2(q(t))

]) 1
2 · (1− E2(q)).

To continue our objective of finding a simpler dominating function for f , analogous
to the strategy in the real line case of this proof, we use the fact that E(q) ≥ 0 in
conjunction with the following lemma.

Lemma 3. For c ≥ 2 cosh2(π)/ sinh(2π − 1) and x ∈ [0, 1/2],

c(1− E2(x)) ≥ 1− e−2x.(7.24)

Furthermore, we have the inequality

1− E2(q0) ≥
1

3
q0.(7.25)

In particular, we will take c = 3 in later computations.

Proof. Define the function

f(x)
.
=

(
1− e−2x

)
−

(
c · [1− E2(x)]

)
.

Computing the derivative of f(x) shows that it will be negative for x ∈ (0, 1/2], and

c ≥ 2 cosh2 π

sinh(2π − 1)
.

As (7.24) has been established, we now move onto proving (7.25). This inequality is
obtained by applying our first inequality and then using the exponential inequality.
We get

1− E2(q0) ≥
1

3
(1− e−2q0) ≥ 1

3
q0.
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With the above lemma, we are now ready to return to the proof of the proposition.
Dominating equation (periodic version). Using the above inequalities, and

following the same strategy as in the nonperiodic case, we obtain

f(q) ≥
[√2 cosh2 π

3
· δ ·

√
b(b+ δ) · q1/40

]
·
(
1− e−2q

)3/4

.

Since
√
2 cosh2 π

3 ≥ 1, we can remove this factor as we are bounding from below.
Consequently, f(q) has precisely the same lower bound as in the real line case given
by

f(q) ≥ δ ·
√
b(b+ δ) · q1/40 ·

(
1− e−2q

)3/4

= q1

(
1− e−2q

)3/4

,

where the constant q1 is given by

q1 = δ ·
√
b(b+ δ) · q1/40 .

Thus, we see that the complicated initial value problem for q (7.21) is dominated by

q′ = −q1
(
1− e−2q

)3/4
, q(0) = q0 = 2a > 0.(7.26)

This ODE is precisely the same as the one derived in the real line case. Therefore we
can immediately arrive at the same conclusions for q.

Proposition 7 (periodic version of Proposition 2). If r < 1, then for given
q0 ∈ (0, 1/2) and q1 > 0 the solution to the initial value problem

dq

dt
= −gr(q) .= −q1

(
1− e−2q

)r
, q(0) = q0,(7.27)

which begins positive and is decreasing, becomes zero in finite time T given by

T =

∫ q0

0

dq

gr(q)
=

1

q1

∫ q0

0

dq

(1− e−2q)
r ≃ 1

1− r

q1−r
0

q1
.(7.28)

Corollary 3 (periodic version of Corollary 1). If 0 < q0 < 1/2 and b > 1,
δ > 0 satisfy condition (7.4), then the solution to the initial value problem (7.12)
begins positive, is decreasing, and becomes zero in finite time T given by

T =

∫ q0

0

dq

f(q)
≤

1

q1

∫ q0

0

dq

(1− e−2q)3/4
≃

q
1/4
0

q1
≃

q
1/4
0

δ
√

2b(b+ δ) · q
1/4
0

≃
1

δ
√

2b(b+ δ)
.

(7.29)

We summarize the above results in the following theorem.

Theorem 6 (periodic version of Theorem 3). For given 0 < a ≤ 1/4, b > 1,
and δ > 0 satisfying condition (7.4), the initial value problem for the positions q1, q2
and the momenta p1, p2

q′1 = cosh2 π · (p1 + p2E(q))2, q1(0) = −a,
q′2 = cosh2 π · (p1E(q) + p2)

2, q2(0) = a,

p′1 = cosh2 π · p1p2(p1 + p2E(q))E′(q), p1(0) = −(b+ δ),

p′2 = − cosh2 π · p1p2(p1E(q) + p2)E
′(q), p2(0) = b,

(7.30)
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has a unique smooth solution (q1(t), q2(t), p1(t), p2(t)) with a finite lifespan T , which
is the zero of q = q2 − q1, satisfying the estimate (7.29) and such that

p1 =
w − p

2
< 0, decreasing, lim

t→T−

p1(t) = −∞, and − p1 ≃ p ≃ q−1/4, and

p2 =
w + p

2
> 0, increasing, lim

t→T−

p2(t) = ∞, and p2 ≃ p ≃ q−1/4,

where p and w are given in Proposition 6. Also, w = p1+p2 is decreasing from w0 < 0
to wT , where

wT
.
= lim

t→T−

w(t) = −
(
δ2 + 2b(b+ δ)(1− E(2a))

) 1
2

.

Finally, the 2-peakon

u(x, t) = p1(t) cosh([x− q1(t)]p − π) + p2(t) cosh([x− q2(t)]p − π), x ∈ T, 0 < t < T,

is a solution to the NE with the following asymmetric antipeakon-peakon initial profile:

u(x, 0) = −(b+ δ) cosh([x+ a]p − π) + b cosh([x− a]p − π),

The quantities p1, p2, q, and w have properties similar to their analogues defined on
the line, and we refer the reader to Figure 2 for a visualization of them.

7.3. Calculating the norm on the circle. We begin with the following propo-
sition which summarizes the calculation of the Hs-norm of u. This computation is
nearly identical to the nonperiodic case with the exception of an extra factor of sinh2 π.

Proposition 8 (periodic version of Proposition 3). Let u(t) be the 2-peakon
solution (7.1) to the NE. Then on [0, T ) we have

‖u(t)‖2Hs = 16 sinh2 π · r(t)p21(t)Qs(q) + 4 sinh2 π · cs
(
1− r(t)

)2
p21(t),

with r(t)
.
= −p2(t)

p1(t)
,

where cs =
∑∞

−∞(1 + n2)s−2 and Qs(q), which is given below, satisfies the estimates

Qs(q)
.
=

∞∑

n=−∞
(1 + n2)s−2 sin2

(
qn

2

)
≃





q3−2s, 1/2 < s < 3/2,

q2 · ln(1/q), s = 1/2,

q2, s < 1/2.

Proof. We begin by noting that the Fourier transform of E is calculated as

Ê(n) =
(
2 · sinh(π)

cosh(π)

)
· 1

1 + n2
.

Recalling that the 2-peakon u can be written as

u(x, t) = coshπ ·
(
p1(t)E(x− q1(t)) + p2(t)E(x− q2(t))

)
,

we can express the Fourier transform of u as

û(n, t) =
2 sinhπ

1 + n2
· p1e−inq1 ·

(
1 +

p2
p1
e−inq

)
.
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ILL-POSEDNESS FOR THE NOVIKOV EQUATION 2999

Taking the square of the Hs-norm of this quantity, we obtain

‖u(t)‖2Hs =

∞∑

n=−∞
(1 + n2)s|û(n, t)|2 = 4 sinh2 π · p21

∞∑

n=−∞
(1 + n2)s−2

∣∣∣1 + p2
p1
e−inq

∣∣∣
2

.

(7.31)

Using Proposition 6 we see that

r = r(t)
.
= −p2(t)

p1(t)
=
p+ w

p− w
< 1 and r(t) ր 1 as tր T.(7.32)

Using r we write (7.31) as

‖u(t)‖2Hs = 4 sinh2 π · p21
∞∑

n=−∞
(1 + n2)s−2

∣∣∣1− re−inq
∣∣∣
2

.(7.33)

Expanding out the square of the absolute value inside of the sum (7.33), we have

|reiqn − 1|2 = (1− r)2 + 4r sin2
(
qn

2

)
.

We therefore obtain the formula

‖u(t)‖2Hs = 16 sinh2 π · rp21Qs(q) + 4 sinh2 π · cs(1− r)2p21,

where

cs =

∞∑

n=−∞
(1 + n2)s−2 and Qs(q) =

∞∑

n=−∞
(1 + n2)s−2 sin2

(
qn

2

)
.

From this point, we note that Qs has already been estimated in this periodic setting
in [HHG]. Using equation (4.25) from [HHG], and also (4.28), where the norm is
expanded into the sum of the squares of sines, we have

Qs ≃
∞∑

n=1

sin2
(qn

2

)
(1 + n2)s−2 ≃





q3/2−s, 1/2 < s < 3/2,

q
√
ln(1/q), s = 1, 2,

q, s < 1/2.

(7.34)

7.4. Small lifespan and initial data on the circle. This section follows the
same argument as in the real line case, with the exception of an extra factor of sinh2 π
stemming from the periodic version of the norm-estimates. We begin by assuming
that

p2(0) = b≫ 1 and − p1(0) = b+ δ, δ > 0,

so that the conditions for the existence of our 2-peakon with the lifespan estimate
(7.29) hold.

Lifespan estimate. For given ε > 0, we need to find b > 1 such that T < ε.
Since by Proposition 6 we have

T .
1

δ
√
2b(b+ δ)

≤ 1

δb
,
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we must have

1

δb
≤ ε ⇐⇒ b ≥ δ−1ε−1.(7.35)

Initial data estimate. Now, for the same ε > 0 we need to find q0 < 1/8 such
that ‖u0‖Hs < ε. For this we use Proposition 8, from which we have, recalling that

r(t) = −p2(t)
p1(t)

,

‖u(0)‖2Hs = 16 sinh2 π · b(b+ δ)Qs(q0) + 4 sinh2 π · csδ2.

This identity implies

‖u(0)‖2Hs ≤ 32 sinh2 π · b2Qs(q0) + 4 sinh2 π · csδ2.

Case 1/2 < s < 3/2. Now by Proposition 8 we have Qs(q0) . q3−2s
0 and

therefore

‖u(0)‖2Hs ≤ Cs sinh
2 π · b2q3−2s

0 + 4 sinh2 π · csδ2.

To have ‖u0‖Hs < ε it suffices to choose q0 and δ such that Cs sinh
2 π · b2q3−2s

0 +
4 sinh2 π · csδ2 ≤ ε2 or

4 sinh2 π · csδ2 ≤ ε2

2
and Cs sinh

2 π · b2q3−2s
0 ≤ ε2

2
.

The first inequality holds if

δ ≤ ε

2 sinhπ
√
2cs

.(7.36)

Taking into consideration (7.36) and (7.35), the second inequality holds if

q3−2s
0 ≤ ε2

2Cs sinh
2 π · b2

≤ ε2

2Csδ−2ε−2
=
δ2ε4

2Cs
≤ ε2ε4

8cs · 2Cs

or

q0 ≤
( ε6

16csCs

) 1
3−2s

.

Case s ≤ 1/2. For such a Sobolev exponent s we have ‖u(0)‖Hs ≤ ‖u(0)‖H1 .
This combined with Proposition 8, which tells us that Q1(q0) . q0, gives

‖u(0)‖2Hs ≤ ‖u(0)‖2H1 ≤ C1b
2q0 + 4c1δ

2.

Thus ‖u0‖Hs < ε if q0 and δ satisfy the inequalities 4c1δ
2 ≤ ε2

2 and C1b
2q0 ≤ ε2

2 .
These inequalities hold if

δ ≤ ε

2
√
2c1

and q0 ≤ ε6

16csCs
.
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7.5. Norm-inflation and ill-posedness on the circle. From Proposition 8
we have

‖u(t)‖2Hs = 16 sinh2 π · r(t)p21(t)Qs(q) + 4 sinh2 π · csp21(t)
(
1− r(t)

)2
.(7.37)

We see that the argument from section 5 holds, with the simple inclusion of a factor
of sinh2 π. Following these arguments, we see that

(7.38) lim
t→T

‖u(t)‖2Hs =





∞ (inflation), 5/4 < s < 3/2,

may not exist, s = 5/4,

4 sinh2 π · cs
[
δ2 + 2b(b+ δ) · (1− e−q0)

]
, s < 5/4.

Therefore when 5/4<s<3/2 we have norm-inflation and ill-posedness for the NE.

7.6. Nonuniqueness for s < 5/4 on the circle. As in the case on the line,
the NE admits nonunique solutions once we take the Sobolev exponent s < 5/4. This
is equally as interesting as the result in which periodic 2-peakons maintain the same
collision properties as nonperiodic ones.

Theorem 7 (nonuniqueness—periodic version of Theorem 4). For s < 5/4 the
NE admits nonunique solutions.

Our proof of nonuniqueness in the periodic setting again follows the same strategy
used in the real line case. We again examine the behavior of the limit as t → T−

of the 2-peakon solution u with initial data given in (7.5). Once this limit has been
established in the desired ways, the same argument as in the real line case implies
nonuniqueness.

Proposition 9 (pointwise limit—periodic version of Proposition 4). For each
x ∈ R we have

lim
t→T

u(x, t) = wT cosh([x− qT ]p − π)
.
= vT (x).(7.39)

where

qT
.
= lim

t→T−

q1(t) = lim
t→T−

q2(t) and wT
.
= lim

t→T−

w(t).(7.40)

Remark. We can avoid the multiple cases needed in the real line version of this
proof because we do not need to expand out an absolute value. Here, as we are using
the hyperbolic cosine, we will have both ex and e−x present, thus avoiding the need
to break into cases.

Proof. Our solution u is a 2π-periodic function, and we will restrict our atten-
tion to the interval [0, 2π]. As we know that the limits of q1 and q2 exist, we will
further restrict our attention to a time t0 > 0 when these position functions remain
within a single period. This will avoid any complications of moving between periods
which would require using the floor function in our definition. Using the exponential
definition of the hyperbolic cosine, we get

u(x, t) =
1

2

[
eπ−x(p1e

q1 + p2e
q2) + e−π+x(p1e

−q1 + p2e
−q2)

]
.

Rewriting this expression to generate terms containing w gives us

u(x, t) =
1

2

[
eπ−x

(
eq2p1(e

−q − 1) + weq2
)
+ e−π+x

(
we−q1 + e−q1p2(e

−q − 1)
)]
.

(7.41)D
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Taking the limit as t→ T− of (7.41), and using the limit established in Lemma 2, we
obtain

lim
t→T−

u(x, t) = wT cosh([x− qT ]p − π).

We next demonstrate that u converges to vT as t→ T− in Lr.

Proposition 10 (convergence in Lr—periodic version of Proposition 5). For
our antipeakon-peakon solution u to the NE, we have

lim
t→T−

‖u(x, t)− vT (x)‖Lr = 0.(7.42)

Proof. The same remarks that we made for the pointwise proof apply here to
taking a t0 > 0 such that q1 and q2 lie within a single 2π period after time t0.
Analogous to the pointwise limit, as we have both ex and e−x present in our hyperbolic
cosines, we will not have to break our argument into cases in order to simplify the
absolute values. This fact also allows us to bypass the restriction 1 ≤ r < 4 as we
do not cut the domain of the integration, creating the situation we saw in the real
line case on the subintegral on [q1, q2]. After rewriting the hyperbolic cosines in their
exponential form we get

‖u(x, t)− vT (x)‖rLr =
1

2

∫ 2π

0

∣∣∣ex−π
(
p1e

−q1 + p2e
−q2 − wT e

−qT
)

+ eπ−x
(
p1e

q1 + p2e
q2 − wT e

qT
)∣∣∣

r

dx.

Using Jensen’s inequality and evaluating the resulting integrals, we get

1

2

∫ 2π

0

∣∣∣ex−π
(
p1e

−q1 + p2e
−q2 − wT e

−qT
)
+ eπ−x

(
p1e

q1 + p2e
q2 − wT e

qT
)∣∣∣

r

dx

≤ erπ − e−rπ

r
·
∣∣∣p1e−q1+p2e

−q2 − wT e
−qT

∣∣∣
r

+
erπ − e−rπ

r
·
∣∣∣p1eq1+p2eq2 − wT e

qT
∣∣∣
r

.

Using Lemma 2, we have

lim
t→T−

∣∣∣p1eq1 + p2e
q2 − wT e

qT
∣∣∣
r

= 0 and lim
t→T−

∣∣∣p1eq1 + p2e
q2 − wT e

qT
∣∣∣
r

= 0.

Therefore applying the limit as t→ T− we get

lim
t→T−

‖u(x, t)− vT (x)‖rLr = 0.

Now that we have successfully established pointwise and Lr convergence, we will
use these results to establish Hs by using the dominated convergence theorem.

Theorem 8 (convergence in Hs—periodic version of Theorem 5). For s < 5/4,
our antipeakon-peakon solution u converges to vT in Hs, i.e.,

lim
t→T

‖u(x, t)− vT (x)‖Hs = 0.(7.43)

Proof. From the definition of the Hs-norm of u(x, t)− vT (x), we have

‖u(x, t)− vT (x)‖2Hs =
∑

n∈Z

(1 + n2)s|û(n, t)− v̂T (n)|2.
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Our objective, when taking the limit, will be to move the limit inside of the inte-
gral. Thus, we begin by examining the limit of the summand. As we have already
established the convergence of u to vT in L1, via Proposition 10, we see that the
inequality

|û(n, t)− û(n, T )| ≤ ‖u(x, t)− u(x, T )‖L1

implies that

lim
t→T−

(1 + n2)s|û(n, t)− v̂T (n)|2 = 0.

Next, we will define the bounding sequences that will allow us to apply the gDCT.
We set

ft(n)
.
= (1 + n2)s|û(n, t)− v̂T (n)|2 ≤ 4(1 + n2)s

(
|û(n, t)|2 + |v̂T (n)|2

)
.
= gt(n).

We need to establish that the gt’s have a pointwise limit g, i.e., for each n ∈ Z,
limt→T− gt(n) = g(n). The most obvious candidate for g is

g(n) = 8(1 + n2)s|v̂T (n)|2 where
∑

n∈Z

g(n) = 32 cosh2 π · cswT .

Indeed, using the laws of limits, we have that û(n, t) → v̂T (n) for each n implies
gt → g for each n. To finish satisfying the hypotheses of the gDCT, we must now
establish the sum properties of the gt’s. We have

lim
t→T

∑

n∈Z

gt(n) = 32 sinh2 π · cswT ,

where the left limit uses the 5/4-hypothesis (1.13). We now see that the hypotheses for
the gDCT are satisfied. Thus, we can conclude that as t → T , we have u(x, t) → vT
in Hs.

Proof of Theorem 7. Translating the NE 1-peakon solution by x0 and choosing
the minus sign we obtain the following antipeakon solution for the NE:

v(x, t) = −
√
c cosh([x− x0 − ct]p − π) for any c > 0 and x0 ∈ T.

As in the real line case, we choose c = w2
T and x0 = qT − w2

TT and obtain the
antipeakon solution v(x, t) = wT cosh([x− x0 − w2

T t]− π). Since at t = T we have

v(x, T ) = wT cosh([x− qT ]p − π) = u(x, T ),

we see that we have constructed two different NE solutions, which belong in Hs,
s < 5/4, and agree at t = T . From here, a change of variables can recast these two
solutions as stemming from the same initial data at time t = 0. This scenario proves
failure of uniqueness in this range of Sobolev spaces.

The case s = 5/4. The argument for ill-posedness in this case is precisely
the same as that in the nonperiodic case. This result completes the proof of both
Theorems 1 and 2 in the periodic case.
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