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CONSTRUCTION OF 2-PEAKON SOLUTIONS
AND ILL-POSEDNESS FOR THE NOVIKOV EQUATION*

A. ALEXANDROU HIMONAST, CURTIS HOLLIMANY AND CARLOS KENIG?!

Abstract. For the Novikov equation, on both the line and the circle, we construct a 2-peakon
solution with an asymmetric antipeakon-peakon initial profile whose H®-norm for s < 3/2 is ar-
bitrarily small. Immediately after the initial time, both the antipeakon and peakon move in the
positive direction, and a collision occurs in arbitrarily small time. Moreover, at the collision time
the H®-norm of the solution becomes arbitrarily large when 5/4 < s < 3/2, thus resulting in norm-
inflation and ill-posedness. However, when s < 5/4, the solution at the collision time coincides with
a second solitary antipeakon solution. This scenario thus results in nonuniqueness and ill-posedness.
Finally, when s = 5/4 ill-posedness follows either from a failure of convergence or from a failure of
uniqueness. Considering that the Novikov equation is well-posed for s > 3/2, these results together
establish 3/2 as the critical index of well-posedness for this equation. The case s = 3/2 remains an
open question.
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1. Introduction and results. We consider the Cauchy problem for the Novikov
equation (NE) on the line and the circle

3 1
(1.1) up + vlug + 0, D2 {u‘g + §uui] + D2 bui} =0,
(1.2) u(z,0) =ug(z), z€RorT, teR,

where D2 is the Bessel potential D=2 = (1 —92)~1, and construct specific 2-peakon
solutions w(t) that collide at a finite time 7" in such a way as to give rise to the
phenomenon of norm-inflation. In particular, the norm-inflation generated by these
2-peakon collisions occurs in Sobolev spaces H*® with exponents between 5/4 and 3/2.
As such, we will refer to 3/2 as the critical exponent for well-posedness, as well-
posedness has been proven for exponents greater than 3/2 (see [HH2]). For exponents
s less than 5/4, the collision of the 2-peakons in fact converges to a single antipeakon
u(T), which can be thought of as a superposition of both peakons. This scenario
allows us to demonstrate nonuniqueness. Taken together, these results prove that the
NE is ill-posed in H* for s < 3/2.
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We recall that the NE is well-posed in the sense of Hadamard (see [H]) in Sobolev
spaces H?® with exponents s > 3/2 (see [HH2|). More precisely, if ug belongs to the
Sobolev space H® on the circle or the line, then there exists Ts = T5(||uo||m+) > 0 and
a unique solution u € C([0,Ts]; H®) of the Cauchy problem for the NE (1.1)—(1.2)
satisfying the estimate

1

(1.3) lu(®)| g < 2[uol|lgs for 0<t<Ty, with Ty=-—s—,
dcs|luollz-

where ¢; > 0 is a constant depending on s. Furthermore, the data-to-solution map
u(0) — wu(t) is continuous but not uniformly continuous.
The NE is an integrable equation, and its local form,

(1.4) (1 — 0P usr = uPUgas + BUlUpULe — 4uPuy,

was derived by Vladimir Novikov [N] in his attempt to classify all integrable Camassa—
Holm-type equations with quadratic and cubic nonlinearities of the form (1 —82)u; =
P(u, Uy, Ugy, - - -), where P is a polynomial of w and its derivatives. The Lax pair for
NE was derived by Hone and Wang in [HW] and is given by the equations

1 (2 L (o
(153) w2 =U (ma A) 7/)2 ’ 1/}2 =V (ma U, A) Q;Z)Q )
Y3/, 3 Vs /, Vs
where m = u — uy, and the matrices U and V are defined by
(1.5b)
0am 1 o — Uy % — Amu? u2
Um,AN)=10 0 Im |,V(mud)=][% — 325 —Ye — Amu?
10 0 —u? L I+ uu,

The NE possesses peakon traveling wave solutions [HM],[HLS], [GH], which on the
real line are given by the formula

(1.6) u(z,t) = £y/ce” 177t

where ¢ > 0 is the wave speed. On the circle, the peakon solutions are given by the
formula

Ve
cosh(m)

(1.7) ula,t) = v _Ct]

cosh([z —ct], —7), where [m—ct]pix—ct—%’[ 5
7r

In fact, the NE possesses multipeakon traveling wave solutions on both the line and
the circle [HM], [HLS], [GH]. More precisely, on the line the n-peakon

(1.8) u(x,t) = i:pj(t)efleqj(t)l

is a solution to NE if and only if the positions (q1, . .., g, ) and the momenta (p1, ..., p,)
satisfy the following system of 2n differential equations:

da;

= u2(Qj)a
(1.9) ddé
% = —u(qj)uz(q;)p;-
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The description of the periodic n-peakon is similar. Furthermore, NE solutions con-
serve the H'-norm, that is,

(1.10) /Roﬂr [uQ(t) +u§(t)] dz = /RO“T {uQ(O) +u§(o)} dz.

Next, we state our first result that gives the basic properties of the 2-peakon
solutions, which are constructed here and are needed for proving the ill-posedness of
the NE below 3/2.

THEOREM 1. For anye > 0 there exists a T > 0 for which the NE Cauchy problem
on the line and the circle (1.1)—(1.2) has a 2-peakon solution v € C([0,T); H®) such
that its lifespan and its initial size satisfy the estimates
(1.11) lifespan =T < g,

(1.12) luoll s <e,

while as t approaches the lifespan T the H*-norm of the solution u(t) satisfies the
estimates

oo (norm-inflation), 5/4 < s<3/2,
(1.13) thH% lu(®)|lzs = < may not exist, s=5/4,
—
Cs  for some Cs > 0, s < 5/4.

Moreover, when s < 5/4, then u(t) converges to an antipeakon u(T) = —/cr e~ 1*=97],
for some ¢ > 0 and qr > 0, with ||u(T)| g = Cs.

This theorem is a very interesting result in its own right. Unlike the Camassa—
Holm (CH) equation (see [CH], [FF], [L1], [MN])

(1.14) (1-— 3§)ut = Uy + 2UgUpy — SUUL
and the Degasperis—Procesi (DP) equation (see [DP], [HS], [LS], [L2], [DHH])
(1.15) (1- Q%)ut = Ulgpy + SUglzy — dUly,

for which we can construct special symmetric 2-peakon solutions, called peakon-
antipeakons, of the form

(1.16) u(z,t) = p(t)e”17H®] _ p(p)e~lz—a®l

this is impossible for the NE. Peakon-antipeakon solutions, which are convenient to
work with, are possible for CH and DP because these equations contain a symmetry
that allows us to reduce the ODE system corresponding to (1.9) for the positions and
the momenta via p = p; = —p2 and ¢ = ¢ = —qo. This symmetry causes the peak
and antipeak to move against each other and collide in finite time (see [HHG], [HGH],
[By]). Such a construction is not possible for the NE because by (1.9) we have % >0
for all positions g;. Thus, we see that for the NE all the peaks and antipeaks move
in the same direction. Therefore collision can occur only if the peakon that follows
moves faster than and eventually overtakes the one ahead of it. For this scenario to
occur we must break symmetry and solve the full system of the four highly nonlinear
differential equations defined by system (1.9) for n = 2 with appropriate initial data.
This procedure involves several novel ideas, which are described in sections 2 and 7.
The results are summarized in Theorems 3 and 6.
Next, using Theorem 1 we obtain the following ill-posedness result for the NE.
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THEOREM 2. The Cauchy problem for the NE on the line and the circle (1.1)-
(1.2) is ill-posed in Sobolev spaces H® for s < 3/2. More precisely, if 5/4 < s < 3/2,
then the data-to-solution map is not continuous, while if s < 5/4, then the solution is
not unique. When s =5/4, either continuity or uniqueness fails.

As we have mentioned before, this theorem combined with the well-posedness re-
sult for the NE in H®, s > 3/2, proved in [HH2], completes the well-posedness picture
of the NE in Sobolev spaces, except for s = 3/2, which remains an open question. It
is worth comparing the ill-posedness of the NE, which has cubic nonlinearities, with
that of CH and DP, the two integrable equations of the same type but with quadratic
nonlinearities, which are both well-posed in H®, s > 3/2. Defining the inflation in-
dez to be the Sobolev exponent s; such that there is norm-inflation (which implies
discontinuity of the data-to-solution map) for all s; < s < 3/2, we have the follow-
ing observations. For CH the inflation index s; = 1 and coincides with the index of
the H'-norm, which is the most important conserved quantity of CH. For s < 1 the
peakon-antipeakon traveling wave solution (1.16) for CH converges in H® to u(T) =0
as t approaches the collision time T', giving rise to another solution (namely, the trivial
solution) demonstrating ill-posedness due to failure of uniqueness. However, for DP
the inflation index s; = 1/2. When s < 1/2, the corresponding peakon-antipeakon
traveling wave solution for DP converges in H® to a function, which gives rise to
another kind of DP solution, called shock peakon, that results in failure of unique-
ness (see [HHG]). From our results above we see that the inflation index for the
NE is 5/4, which is a very interesting number and follows from the limiting behavior
of the momenta p;(t) and pa(t) as t approaches the collision time (see Theorem 3).
For s < 5/4 it is shown that the 2-peakon solution (2.1) constructed in section 2
converges in H® to an antipeakon, which gives rise to an antipeakon traveling wave
solution demonstrating failure of uniqueness (see Proposition 5).

Finally, we mention that the method used here for proving ill-posedness for the
NE is similar to that used by many authors for other nonlinear evolution equations.
For example, Bourgain and Pavlovic in [BP] proved ill-posedness for the 3D Navier—
Stokes equations in Besov spaces in the sense of norm-inflation. Similar methods for
establishing ill-posedness for dispersive equations have been used by Kenig, Ponce,
and Vega [KPV] and Christ, Colliander, and Tao [CCT]. The ill-posedness for the
generalized KdV and nonlinear Schrédinger equations in Sobolev spaces has been
tackled in [BKPSV]. The Euler equation in Sobolev spaces is examined in [BL1],
where a norm-inflation result for the related vorticity equation provides the foundation
for its ill-posedness. For the ill-posedness of the Burgers equation in H?/? we refer
the reader to Linares, Pilod, and Saut [LPS]. For more results on traveling wave
solutions, well-posedness, and other analytic and geometric properties of nonlinear
evolution equations we refer the reader to the following works and the references
therein: [BC], [BL2], [CHT], [CL], [CM], [DGH], [EEP], [ELY], [EY], [H], [HH1],
[HK], [HKM], [HMP], [KL], [KT], [LO], [Mc], [MST], [Ti], [W].

This paper is organized as follows. In section 2, we construct the 2-peakon so-
lutions on the line having the properties described in Theorem 1. We begin with
the system of the four differential equations defined by (1.9) when n = 2, and after
making the change of the dependent variables ¢ = ¢o — q1, p = p2 — p1, W = ps + p1,
and z = p1ps, we solve the resulting system and find explicit formulas for p,w, and
z in terms of ¢ (see Proposition 1). For ¢ = ¢(t) we obtain a rather complicated
autonomous differential equation, which can be dominated by a simpler one for which
we can prove, by a comparison argument, that ¢ becomes zero (collision) in finite time.
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Also, a precise estimate of the collision time is derived. This is contained in Proposi-
tion 2. In section 3, we estimate the H°-norm of the 2-peakon solutions constructed
earlier (see Proposition 3), and in section 4 we choose the parameter appropriately
so that both the lifespan (collision time) and the size of the 2-peakon solution at
the initial time are small. In section 5, we prove norm-inflation and ill-posedness for
5/4 < s < 3/2. Then, in section 6, we prove nonuniqueness for s < 5/4 by showing
that our 2-peakon solution wu(t) converges in H® to an antipeakon u(T"), which gives
rise to a second solution for the NE having the same initial data. Also, we explain
the ill-posedness of the NE for s = 5/4. Finally, in section 7 we prove our results
on the circle. We use analogous arguments to those used on the line, with the neces-
sary modifications to account for the periodic environment. A detailed outline of the
periodic case can be found in subsection 7.1.

2. Construction of 2-peakon solutions. It can be shown (see [HW], [GH])
that the 2-peakon

(2.1) w(z,t) = py(t)e”F= 0O 4 po (1)~ l#=a=0)]

is a solution of the NE if the positions g1, g2 and the momenta p;, ps satisfy the
following system of the four differential equations:

2
¢ = (Pl +P2€7‘q17qz|) )

2
g = (pre1= 0 4y ),

Py = ppa(pr + pae” 07 sgn(ar - ga)e 0,

P = P1p2 (Ple_'”_(“' +p2) -sgn(ga — qi)e” 1279,

where sgn(z) is the standard sign function defined to be 1 if z > 0, —1 if z < 0, and
0 if z = 0. At this point we make our first observation. Since ¢; > 0 and ¢} > 0,
both positions are increasing with time. Therefore we cannot have the “typical”
peakon-antipeakon collision which is created from the peakon traveling in the positive
direction and antipeakon traveling in the negative direction as observed in the cases
of the CH and DP equations. Also, we note that by translation we may assume that
the initial positions ¢; and ¢ are symmetric, that is,

(2.3) ¢1(0) = —a and ¢2(0) =a for some a > 0,
and, at least for a while, the difference between the positions is positive, that is,
(2.4) q(t) = g2(t) — qu(t) > 0.
Thus, the last system takes the simpler form
, 2
q = (p1 +p26“’) )
/ q 2
4o = (plff +p2> )
(2.5) °
Py = —pip2 (Pl + pze_q) e 9,

Py = p1p2 (Ple_q + pz)e_q~
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A

p1(0) = =(b+9) = uo(—a)

Fi1G. 1. Initial profile uo(x).

Furthermore, we shall assume that at time ¢ = 0 the initial momenta are

(2.6) p2(0)=b>1,  p1(0)=—(b+9), §>0.

That is, the initial profile ug(x) = u(x,0) is the asymmetric antipeakon-peakon
(2.7) up(z) = —(b+ 8)el#tal 4 pele—al,

which is displayed in Figure 1.

Next, we shall solve the system of differential equations (2.5) with the antipeakon-
peakon (2.7) as the initial data and prove that there is a collision in finite time.
To demonstrate this claim, it is more convenient to work with the following new
dependent variables:

q() = q2(t) — qu(t),  q(0) =2a >0,

(2.8) p(t) =pa(t) —pi(t), p(0) =2b+0 >0,
w(t) = pa(t) +p1(t), w(0)=—-6<0,
2(t) = pa(t) - pi(t),  2(0) = —b(b+6) <0

Deriving equations for g, p, w, and z. Subtracting the first equation of the
system (2.5) from the second we have

q = (plefq +p2)2 - (Pl +p2€7q)27
= (p2 —p1)(p2 +p1)(1 — e ?9),
(2.9) = pw(l —e29).

Next, we shall try to form differential equations for p and w using the system
(2.2). Assuming p; < 0 and py > 0, at least for some time, for p we have

P =pip2 (me_q + P2) e+ pips (m + pze_q)e_q,

=pip2(p2 +p1)e (1 +e™?),
(2.10) = zwe (14 e79).
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For w we have
w' = (p1€_q + pz)e_q — P12 <P1 + Pze_q) e,
= pip2(p2 —pr)e (1 —e9),
(2.11) =zpe (1 —e79).
Finally, for z we have
2 =ph - p1+p2pi,
= pip2 (ple*q + pz)efq —pip3 (pl + pze*‘J)e*q,
= pipze”* [(p? - p%)e*q},
(2.12) = —zwpe 24,
To summarize, we have the following system for ¢, p, w, and z:
¢ =pw(l—e 29,  go=q(0) =2a>0,
p = zwe (1 +e7), pg=p0) =2b+6 >0,
w' = 2pe” (1 —e"?), wy=w(0)=-8§<0,

!

2 = —zwpe %, z0=2(0) = =b(b+9) <0.

(2.13)

In the following result we derive explicit formulas for p, w, and z in terms of ¢. For
q, we derive an autonomous differential equation, which in turn is dominated by a
simpler such equation.

PROPOSITION 1 (solutions of transformed 2-peakon system). The system of dif-
ferential equations (2.13) has a unique smooth solution (q(t),p(t),w(t), z(t)) in an
interval [0,T), for some T > 0, such that z = z(t) is decreasing and, in terms of q, is
expressed by the formula

—z1

1/2
(1 —6—2‘1)1/2 ’

(2.14) z= <0, where 2z =b(b+35)(1—e?)

p = p(t) is decreasing and as a function of q is expressed by the formula

14+e¢ 14+e % 1/2
2.15 :(2—|—2z[ - D >0,
( ) p pO 1 \/1 — 672(1 \/1 — 672(10

and w = w(t) is decreasing and as a function of q is expressed by the formula

V1—e20 /1 —e 207\1/2
2.16 ) = — (g +22 - )" <o
216 w(t) = —(vf+ 2 [T -
The difference of the positions q = q(t) is decreasing and satisfies the initial value
problem

;L . 9 V1—e 20 /1 —e"247\3
q __f(q)__(w0+2zl{ 1+e % - 14+e4 }) .

N

14+e74 14e7% D

_ (1 —e 2
Vi—e20 1—e 20 (=™,

(2.17) : (pg + 221[

q(0) = qo = 2a > 0.
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Furthermore, the initial value problem (2.17) for q is dominated by the simpler initial
value problem

(2.18) ¢ =—g(q) = - (1—e2)"" 0<q0)=2a<1/2,

where

(2.19) @ =0v/2b(b+0) - g5 ",

Proof. We begin by expressing z in terms of ¢q. Using the equation for 2z’ and ¢/,
we find

2 —zpwe ™24 2 —e 24y
—=————— o —=-———.
g pw(l—e29) z  (1—e29)
Since z(0) < 0, we shall assume that z(¢) will remain negative. Therefore, from the
last relation we have

d 1d

—[In(=2)] = —= —[In(1 — e~29)].
(=) = =5 = [In(1 —e™)]
Integrating from 0 to ¢ gives

z —e 2
[ = gl

Finally, solving for z gives formula (2.14), which expresses z in terms of g.
Next we express p in terms of ¢. For this we divide the equation for p’ by the
equation for ¢’ and get
P zwe (1 +e79)

— /: .
¢ -

e i(1+e g
(1—e29)

Substituting into the above relation the formula for z given by (2.14), we have

— —q(1 A4 _ 1 —q\p—q
(2.20) o = 1 s e +f2 ) _ —a(lte )5/2 q
(1—e20) (1 —e729) (1 — e—20)
Furthermore, by making the change of variables, u = e~ 9| we have du = fe’q(t)q/(t)dt
and
—(1+e e 1+u 1+u 1+e 0
/ ( )g/zthz/ gdu= ————m +C= ———— - +C.
(1 —e2a) (1—u?) (1—u?) (1 —e—2a®))

Therefore, relation (2.20) reads as

221 2] ==l

Integrating (2.21) from 0 to ¢ gives

1+ e—a(®) 14+ e }

{pQ(t) —p%} =2 [\/1 — e—2q(D) B V1 — e 2

M| —
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which, when solved for p, gives formula (2.15), which expresses p in terms of q.
Finally, we express w in terms of ¢. Dividing the equation for w’ by the equation
for ¢’ gives

/ —4(1 — ¢4 —49(1 — e~ 9’
wo_zpetl-e) o o, e

7~ pul—e ) 1—e )
Now, substituting the formula for z given by (2.14) into the above relation, we get

—21 e 1(l—e)q¢ —z(1—e e
(2.22) ww' = oz (1_e ) —o\3/2
(1 —e 2‘1) ( e ) (1 — € 2q)

Furthermore, making again the change of variables u = e~9(*) we have

/ —(1—e %)e g — / 1—u V1—u? 1—e2a)
(1

(1— e20)°? I TR FT0

Therefore, relation (2.22) reads as

d{l ) d[ 1_6—2q<t>}

223 Llow? = -5 2
(2.23) dar 2% a1+ ea®

Integrating (2.23) from 0 to ¢ gives

swr - uf] = [ VLT,
2 14+ e 1+ ea®)
Solving for w while taking into consideration that w(t) < 0 in the choice of sign gives
formula (2.16), which expresses w in terms of q.

Concerning the differential equation for ¢, we begin from its equation ¢’ = wp(1—
e~2%), and by substituting for w and p their expressions (2.16) and (2.15), we obtain
the desired autonomous initial value problem (2.16). Next, we observe that

V1I—e 20 /12

2.24 >0, 0<¢g<
(2.24) Ty T 20 0<d¢<q,
and also that

1+e @ (2b+0)? _
2.25 22— = —2>1 €,
( ) Po 21 T o 2m — (b +0) +e

In fact, (2.25) is implied by the stronger condition

(2b + 6)*

2T > 45 + 4 2> 4% + 4 2
W1 0) > < 4b° 4+ 4b0 + §* > 4b° + 4b6 <— §° > 0,

which is true. Now, using (2.24) and (2.25) we see that the function f(g) in the
right-hand side of the differential equation (2.17) can be bounded from below by

sz (uf)" - (o [ ) e

=0 (0490 -e) ) ([ ]) e
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Using the bounds 1+e79 > 1 and 1 —e =29 > qq, for 0 < go < 1/2, which follow from
the simple but useful approximation

gg1—e—’”§x e l—e Ty if 0<z<1,

we have

F(@) > 8y/26(b+8) - gy - (1 —e720)*" = g(g).

Therefore, defining ¢; = §+/2b(b + 9) - qé/ * we see that the complicated initial value
problem for ¢ given in (2.17) is dominated by the simpler one shown in (2.18). |

Next we move our attention to the study of the solution ¢(¢) of the initial value
problem stated in Proposition 1. From the formulas for p and w, we see that they
blow up at a zero of q. Therefore, the lifespan of our 2-peakon solution is equal to
the first such zero. The following result, which is applicable to the simpler dominant
initial value problem (2.18), proves existence of a zero and provides an estimate for
its size in terms of the initial data.

PROPOSITION 2 (zero of q). Ifr < 1, then for given qo € (0,1/2) and ¢; > 0 the
solution to the initial value problem

dg

(2.26) 2 =@ =—a (1—e7)", 4(0) =g,

which begins positive and is decreasing, becomes zero in finite time T given by
q0 d 1 q0 d 1 1—r
(2.27) T:/ ¢ 27/ @ o
o 9@ @ty (1—e29) 1-r ¢
A key ingredient in proving Proposition 2 is the following elementary result that

compares solutions of the initial value problem (2.26) for different values of r. It states
that a bigger r corresponds to a bigger solution.

LEMMA 1 (comparison principle). If r; and ro are two values of r such that
r1 < rq, then the corresponding solutions q,, (t) and q,,(t) to the initial value problem
(2.26) with the same initial data qo satisfy qr, (t) < gry(t). That is,

ri<rs = g () < gn(h)
Proof. Tt follows from the fact that 1 < ro implies
-1 (1 — 6_2(1)” <-q (1 — 6_2‘1)T2 . 0
Remark. We note that for r > 1 the solution to the initial value problem (2.26)
has no zero. In fact, for » = 1 it reads as
dgq

il (1—e72), ¢(0)=qo.

Integrating this equation gives the explicit formula
1
q(t) — §1n |:1 + (e2q0 _ 1)6_(11 t:| - Q1(t)

From this formula we see that the solution ¢(t) exists for all ¢ > 0, is positive for all
times, and decreases to zero as t goes to co. Thus when r = 1, ¢1(¢) has no zero in
finite time. Since by the comparison principle the solution ¢, (t) that corresponds to
an r > 1 is greater than ¢ (), we conclude that ¢,.(¢t) has no zero in finite time if
r > 1. Therefore, the lifespan T is equal to co if » > 1.
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Proof of Proposition 2. We begin with the case r < 0. When r = 0, our initial
value problem (2.17) becomes the simple one ¢'(t) = —¢1, ¢(0) = go, whose solution
is

q(t) =qo —qi t = qo(t),

which has a zero at T = ¢o/q1. Thus, by the comparison lemma, Lemma 1, the
solution g, (t) that corresponds to an r < 0 is smaller than ¢o(t) and therefore has a
zero in finite time. In fact, it is smaller than ¢o/q1. This proves existence of a zero
for g, (t) when r < 0.

Existence of a zero for q(t) if 0 < r < 1. To prove existence of a zero of
qr(t) for 0 < r < 1, it suffices to do so under the additional condition

-1
(2.28) rA Y7 forall m=1,2,3,....

n
In fact, if r were of the form 21, then we would choose another r5 € (0,1) which
is not of this form and we have r < ro. Then, by the comparison lemma, Lemma 1,
proving the existence of a zero for ¢, (t) implies existence of a zero for ¢,(t). So, from
now on we shall assume that r satisfies condition (2.28). Therefore, there is a positive
integer n > 2 such that

n—2 n—1

2.2 —
(2.29) n_1<r<

It turns out that for proving existence of a zero for g = ¢,(t), we need its nth order
Taylor polynomial approximation at ¢ = 0. Differentiating (2.17) n times, we arrive
at the formula

n—1

nr—(n—1) nr—(j—1)
(2:30) ¢")(t) = giea(r) (1— e 2) i Y o) (1-e720) ,
j=1

where
(2.31) en(r) = (=1)"2" " 'r(2r = 1)+ ([n = 1Jr — [n — 2))
and ¢j(r) for j = 1,...,n — 1 are coefficients depending on r. Also, we obtain the

following formula for the (n + 1)th derivative of ¢:

(2.32)
(n+1)r—n n (n+1)r—(j—1)
(V@) =g e (1) (1= 0] T g Y e (1 e7) ’
j=1

where
(2.33) eny1(r) = (=1)" 2% (20 — 1) -+ (nr — [n — 1]),
and again c;(r) for j = 1,...,n are coefficients depending on r. Therefore, the nth
order Taylor polynomial approximation of ¢(t) at ¢t = 0 is given by

¢"(0) » , 4®(0) 3 4™ (0) ,  a"(T) i
2.34 t) = '(0)t t (A " tt
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where 0 < 7 < ¢. Next, we shall show that the coefficients ¢, (r) and ¢,41(r) defined
by (2.31) and (2.33) have the same sign, which is the key ingredient for proving the
existence of a zero for ¢(t). We prove this claim by considering the two possible cases,
n even and n odd. We begin with the case of n even. In this case, using the first part
of inequality (2.29) that r satisfies, we see that (n — 1)r > n — 2, and this implies
that ¢,(r) is a positive number. Also, using the second part of inequality (2.29)
we see that nr < n — 1, which implies that ¢,4+1(r) > 0 is a positive number too.
Furthermore, in the expression of ¢(™ (0) the first term ¢}c,, (1) (1- e‘2q°)nr_(n_1) i
the dominant term for go small enough since the exponent nr — (n — 1) is negative,
while the exponents of (1 — e~2%) appearing in all other terms of the sum (2.30) are
positive. Thus we can conclude

(2.35) ¢™(0) >0 if n is even and qq is small enough.
Similarly, in the expression of ¢"*1)(¢), the first term ¢ ' ¢, 1.1 (r) (1 — e=22(®)) (et byr=n
is the dominant term for ¢p small enough, since the exponent (n+ 1)r —n is negative
while all the exponents of (1—e~2¢(®")) appearing in the sum (2.32) are positive, except
the one that corresponds to j = n which has exponent (n + 1)r — (n — 1) which is
negative. However, (1 — e’Z‘I(t))("Jrl)r_(n_l) is dominated by (1 — 6*2‘1(‘5))(”“)“”
for ¢(t) < go small enough. Thus, we also have

(2.36) g™ (r) >0 if nis even and gq is small enough.

In the case that n > 2 is an odd positive integer, the signs change due to (—1)" = —1,
and using the same reasoning as in the even case we obtain that

(2.37) ¢™(0) <0 if nis odd and g is small enough

and

(2.38) ¢™* (1) <0 if nis odd and g is small enough.

Now we are ready to prove the existence of a zero for ¢(t). First we consider the case
that n is an odd number. Then, using the nth order Taylor polynomial approximation
(2.34) and the conditions (2.37), (2.38) we obtain that

7 (3) (n)
q2(|0)t2 + 4q (O)t?r NI 4 (O)t” for all ¢ > 0.

qt) < qo+d(0)t+ 30 -

Furthermore, since for large t the term %t" dominates and q(”)(O) < 0, we have
that the nth order Taylor polynomial approximation of ¢(t) becomes negative, thus
crossing the t-axis. This forces ¢(t) to have a zero at some positive time T', which is
the desired conclusion.

Finally, we prove the existence of a zero for ¢(t) in the even case. This is done
by contradiction. In fact, if ¢(t) > 0 for all ¢ > 0, then our differential equation
qt)=—q (1- e‘z’l(t))T implies that ¢(t) is decreasing for all ¢ > 0 and therefore

(2.39) q(t) <qo forall ¢t>0.

However, if n is even, then using the nth order Taylor polynomial approximation of
q(t) at t = 0, which is given by (2.34), and conditions (2.35) and (2.36), we have that

an 3) (0 M0
(2.40) q(t)2q0+q/(0)t+q2<| )t2+q 3'( )t3+...+q n'( )

t" forall ¢t>0.
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()
Inequality (2.40) leads to a contradiction because for large ¢ the term qT!(O)t” dom-
inates the Taylor polynomial approximation. Thus, there is some large time 7' > 0
such that

(2.41) a(t) > qo + 14™(0)

s "> 20, 0<t<T
n.

which contradicts inequality (2.39). This argument completes the proof of the exis-
tence of a zero for ¢(¢) when 0 < r < 1.

Estimating the zero T of the position ¢(t) when r < 1. Let T be
the zero of the solution ¢(¢) of our initial value problem (2.17), which is ¢'(¢t) =
-1 (1 — e*Qq(t))T , ¢(0) = qo. Integrating it from 0 to 7' we have

/T ﬁdt = —Q1T-
o ( '

1-— 6_2‘1(75))

Then, making the substitution ¢ = ¢(¢) and using the initial and terminal conditions
q(0) = go and ¢(T) = 0, we obtain the following formula for T":

(2.42) T

1 dq oL /qo dg 1 g7
aJo (I—e2)" ")y ¢ 1-7 @

Above, we used the estimate ¢ < 1 —e72¢ < 2¢if 0 < ¢ < % This completes the

proof of Proposition 2. O

Applying Proposition 2 with » = 3/4, we obtain the following result for the zero
of the solution to the initial value problem (2.17) and the lifespan of our 2-peakon
solution u.

COROLLARY 1 (zero of ¢ and lifespan of u). If0 < go < 1/2 and b, § satisfy
condition (2.6), then the solution to the initial value problem (2.17) begins positive, is
decreasing, and becomes zero in finite time T given by

(2.43)
T qoﬂ<i/qo¢r\/qé/4N q(l]/4 N 1
o fl@ " alo (1—e2)¥* T @ T 5 /2(b+0)-q/* 5/2b(b+0)

Proof. The existence and uniqueness of the solution follows from the fundamental
ODE theorem since f(q) is a smooth function. That ¢(¢) is decreasing follows from the
fact that ¢’ = —f(q) < 0. Finally, that ¢(¢) becomes zero in finite time follows from
the fact that our initial value problem (2.17) is dominated by the initial value problem
(2.18) for which Proposition 2 is applicable with r» = 3/4. Therefore, estimate (2.27)
gives (2.43), and this completes the proof of the lemma. d

The properties of our special 2-peakon solutions are summarized in the following
theorem and are a consequence of Proposition 1 and Corollary 1.

THEOREM 3 (construction of 2-peakon solutions). For given 0 < a < 1/4 and b,
d satisfying condition (2.6), the initial value problem for the positions q1,q2 and the
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momenta p1, P2,

2
qll = (pl +p2€_q) ) (Z1(0) = —a,
2
gy = (ple_q +p2) , 32(0) = a >0,

/

P

(2.44)

—P1p2 <p1 +p2€_q)6_q, p1(0) = —b—4,
P = p1p2 (plefq +p2)efq, p2(0) = b,

has a unique smooth solution (qu,qz,p1,p2)(t) with a finite lifespan T, which is the
zero of ¢ = g2 — q1, and which satisfies the estimate

1

R S
~ 51/2b(b + 0)

(2.45)

Furthermore, we have

w—
p1= w—r < 0 decreasing,

2
lim p;i(t) = —oco and —p; ~p~ g V4,
t—=T~

and

w + . .
pa = wrp > 0 increasing,

2
lim po(t) = oo and py ~p~q /4,
t—T—

where p and w are given in Proposition 1. Also, w = p1+p2 is decreasing from wg < 0
to wr, where wr = limy_,p- w(t), that is,

1
2

(2.46) wr = = (82 + (b +9)(1 - e
Finally, the 2-peakon
u(z,t) = py(t)e 171 Ol 4 py(t)elrme

is the NE solution for x € R, 0 < t < T, with the following asymmetric antipeakon-
peakon initial profile:

u(x,0) = —(b+ d)e”lotal ppe=lo=al 5 e R

For the visualization of p1, p2, ¢, and w we refer the reader to Figure 2.
3. Calculating the norm.

PROPOSITION 3. Let u(t) be the two-peakon solution to the NE. Then on [0,T)
we have

p2(t)
pi(t)’

(31) a3 = 16r(O)pF(D)Qs(q) + des (1= (1) pR(1),  with 7(t) = —
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A

'\r/bv

’\
pQ(O) = b QQ'Q

2a‘%

t\
0 T ,
= —0 ¢
w0 w(t)
W @ ========
pl(O) =—b—10¢ %@
2
\
S\

U . g

FiG. 2. Graphs of p1, p2, q, and w.

where ¢g = fR(l +E2)572d¢ and Qs(q), which is given below, satisfies the estimates

3-2s 1/2 3/2
62 Qo= [+ eyt (5 )des o fressa
: @)= [ 1+ sin® ()= ¢ In(1/q), s=1/2,
R 2
q-, S<]./2.

Proof. Since e~1#l(£) = 2/(1 + £€2), we have that the Fourier transform of
u(i, 1) = pre 0l 4 prelees

is given by

R 2ple—iffh 2p26—73§CI2 9 N pa .
1) = _ . i€qr (1 2 1&1).
U ="1ra 1+ 1ye e

Taking the square of the H*-norm of this quantity and factoring out p?, we obtain

. 2
(33) )l = 40 [ (1463721 + oo,
R 1
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Using Proposition 1 we see that

r:r(t)i—zjgg %<1 and r(t) S last "T.

Next, using r we write (3.3) as
(3.4 ). =49t [ (1 €721 = e
Expanding out the square under the integral in (3.4), we have
(3.5) [ret® — 1> = (1 —r)? + 4rsin (qi)
Substituting (3.5) into (3.4), we have
ool = 1orst [ (122 (% e o - net [ 0+ €
which gives

[u(®)||7+ = 16rpTQs(q) + 4es(1 —1)?p7,

where
(3.6) cs:/]R(Hs?)S*?ds and Qu(g >f/R(1+s> sin <Qf> .

Now, we see that to prove Proposition 3 it suffices to show that for 0 < ¢ < 1/8 we
have the estimate

2, 1/2 < s < 3/2,
Qs(q) = { ¢* - In(1/q), s=1/2,
72, s<1/2.

Starting with the integrand for Qs from (3.6) and making the change of variables
x = ¢&, which gives dz = gd€, we can write Q4(q) as

(3.7) Qs(q) = 2¢°7% / (¢* + 2°)* ?sin®(2/2)dx = 2¢°7**[I) + L],
0
where

1 2 (%) -2
) T . sin“(z/2)
n=| —% _d4r and L= [ S22 4
1 /0 (2 + 22)2—s T an 2 /1 (% +a2)2—s z

If s < 3/2, then the integral I is bounded since

[e%e) .2 o0
(3.8) I = / Mdm < / 12574y = L
1 ( - 1 3

@+ x2)2s —2s

Also, when s > 1/2 we have the following upper bound for I;:

! 1
(3.9) I < / 2?52 dx =
0

25 —1°
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Furthermore, for any s < 2 we have

1

1

(3.10) I > 25-2/ 22dr =252 3
0

Combining (3.10), (3.8), and (3.7) gives
I fallers ~ g%~ if 1/2<s < 3/2.
The case s < 1/2. Since I; + I is bounded below by I; and 0 < y < 1 we have

q 22 q
3.11 IL+1 >/ AN S 2874/ 2y o o251
(311 PR (242 v ox v
Combining (3.11) and (3.7) gives
(3.12) Qs(q) 2 ¢ ¢ =g if s<1/2.

To prove the reverse of inequality (3.12) we obtain an upper bound for I;. For this
argument, we let z = x/y and get

! a? asr [ 22 251 [0 1
I = — dx = q°°~ — dz < ¢g**~ —dz
1 /0 (2 + 22)2—5 q /0 (14 22)2s7 = q /0 (1+22)1-s

Since the last integral converges if 2(1 — s) > 1, which is equivalent to s < 1/2, we
see that it is equal to a finite constant c¢;. Combining this fact with (3.7) and (3.8)
we have

Qs(@) S g* "+ <S¢ i s<1/2,
which, together with (3.11), gives
Qs(q) =y* if s<1/2.
The case s = 1/2. We observe that

1 2
x 1
I = —————=dr=In(v/¢+141) - ——— +1In(1/9).
1 /0 TR x n( ¢ +1+ ) TQ+1+ n(1l/q)

Upper bound. From here we begin by removing the middle term and using the
fact that y < 1/4 in the first term. We get

(3.13) I <In(v2+41) +1n(1/q).

Substituting (3.13) back into (3.7) and taking into account estimate (3.8) for Iy we
have

(3.14) Q1(s) S ¢*In(1/q).
Lower bound. Using the fact that 2In(1/¢) > 1 we have
I > In(1/q) + (In(2) - 1)[21n(1/g)] = (21n(2) — 1) In(1/q).
We therefore arrive at
(3.15) Qi(s) 2 ¢*- I 2 ¢°In(1/q).

Putting together the upper and lower bounds (3.14) and (3.15) and taking the square
root of both sides of the equation gives the desired result of

Q1 (s) ~y* - In(1/q). 0
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4. Small lifespan and initial data. We begin by assuming that
p2(0) =b>1and —pi(0) =b+4,d >0,

so that the conditions for the existence of our 2-peakon with the lifespan estimate
(2.43) hold. Then, we have the following.

Lifespan estimate. For given ¢ > 0, we need to find b > 1 such that T' < e.
Since by Proposition 1 we have

TS <o
51/2b(b+0) ~ b

we must have

1
4.1 — < b>6te L.
( ) 5b_€<:> > £

Initial data estimate. Now, for the same ¢ > 0 we need to find gy < 1/8 such
that ||uo|| g < €. For this argument we use Proposition 3, from which we have

||u(0)||%{s = 167(0)17%(0)@5(610) + 405(1 — 7"(0))2}9%(0)7 r(t) = _§?Eg7

= 16b(b + 6)Qs(qo) + 4¢67,
which in turn gives
(07 < 320°Qs(q0) + 4es6”.

Case 1/2 < s < 3/2. Then by Proposition 3 we have Q.(q) < ¢ ** and
therefore

[u(0)[[F- < Csb?gg—>* + dey6”.

To demonstrate |jug| s < ¢, it suffices to choose g and & such that Csb?q3~* +
4¢46%2 < 2 or

[ V)

2
4e,d° < % and CSquS_QS < %

The first inequality holds if

€
4.2 < —.
(42) = 2+/2c¢;

Taking into consideration (4.2) and (4.1), the second inequality holds if

3-2s o g2 < g2 6%t < g2et
D =5007 = 20,022 20, — 8¢, 20,

or

6 _1
< ( g )3723
© = \T6e,C, '

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/05/19 to 205.208.116.24. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

2986 A. A. HIMONAS, C. HOLLIMAN, AND C. KENIG

Case s < 1/2. For such a Sobolev exponent s we have ||u(0)| g < ||u(0)] 5.
This combined with Proposition 3, which tells us that Q1(q0) < qo, gives

lu(0)[I7e < u(O)][Fx < C1bgo + ded”.

Thus |Jug||ms < € if go and J satisfy the inequalities

2 2

€ €
— and Cleqog—.

40152 S 9

[\

These inequalities hold if
6

<_° d g < —=
Ey— an —_—.
=9 /26 =96, C.

5. Norm-inflation and ill-posedness for 5/4 < s < 3/2. From Proposition
3 we have

(5.1) [u(®)]|. = 16r(E)p2 (H)Qs(g) + desp3 () (1 — r(1))?,

where the estimate for @ is given in (3.2). Also, using Theorem 3 we have

]

p2(t) ~q 3(t) and pi(t) ~ ¢ Y/3(t) for t close to T.

Next, we see that

and

Also, we have

(5.2) Jim pi () (1 — r(t))? = lim w?(t) = 6% + 2b(b+6) - (1 — e~ ).

t—T

Therefore, the first term of (5.1) can be estimated by

|
N
@

i 1/2 < s < 3/2,
’ ln(l/q)7 §= 1/27
s<1/2.

167(t)p3 (1) Qs (q) ~

KR Q
Niw e wfo

Combining the last estimate with the fact that g —25=0 <<= s= % we see that

oo (inflation), 5/4 < s < 3/2,
(5.3) tlin% 167(t)p3(t)Qs(q) = { may not exist, s =5/4,
—
0, s < 5/4.

Finally, using the limits (5.3) and (5.2) from formula (5.1) we conclude that

oo (inflation), 5/4 < s<3/2,
(5.4) thn% |u(t)||3. = { may not exist, 5s="5/4,
—
de, [52 F2b(b+0) - (1—e )|, s<5/4.

Therefore when 5/4 < s < 3/2 we have norm-inflation and ill-posedness for the NE.
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6. Nonuniqueness for s < 5/4. In this section, we prove that once we take
the Sobolev exponent to be less than 5/4, the NE admits nonunique solutions.

THEOREM 4 (nonuniqueness). For s < 5/4 the NE admits nonunique solutions.

Our proof of nonuniqueness revolves around examining the behavior of the limit
as t — T~ of the 2-peakon solution u with initial data given in (2.7). Once we take
the Sobolev exponent to be s < 5/4, this limit exists, and it is a single antipeakon.
The nonuniqueness then can be realized by taking a single antipeakon traveling wave
that at time 7" has the same profile as lim;_,r— u(x,t). From this point, a change of
variables can recast this scenario as two solutions arising from the same initial data.
To proceed with this argument, we begin by examining the pointwise limit, then the
L" limit, and finally we use these results in addition to the generalized dominated
convergence theorem (gDCT) to establish the H*® limit.

PROPOSITION 4 (pointwise limit). For each x € R we have

(6.1) tgr%l— u(z,t) = wpe 127l = yp(2),

N

where wy is given by (2.46), that is, wp = —(52 +26(b+9)(1 — e‘2a)> <0, and

gr = lim ¢(t) = lim ga(2).
t—T— t—T—

To prove Proposition 4 we need the following elementary result.

LEMMA 2. Given our functions p1,p2 and ¢ = q1 — q1 the following limits hold as
t—T7:

(6.2) lim p;(t)(1—e W)y =0, j=1,2.
t—T—

Proof. Using the estimates

1/2 1/2

p% ~q" and p% ~q~

and the inequality 1 — e~ < z for x € [0, 1] we have

lim |p; ()(1— e )| < Tim |p;(1)]-[q(t)| S lim |¢"*(@#)] - [q(t)] =0. O
t—T t—T t—T

Proof of Proposition 4. As we are working with a pointwise limit, we consider
the cases x > qr and = < gp separately so that we can evaluate the absolute values
|z — g;| in the definition of the 2-peakon solution w.

Case = > gr. Since ¢1 < g2 < g7, we have  — ¢; > 0 and therefore

u(, 1) = pa(H)e 7O 4 py(R)e POl = 0 (py(£)eB O 4 pa(1)e®).
Next, we will rewrite v in such a way so as to utilize Lemma 2. We have
u(z,t) = e~ - e22(®) . ( Cpi(t)(1 — ey ¢ w(t)).
Finally, taking the limit as ¢ — T~ of u and using (6.2) we get

(6.3) lim u(z,t) = wp-e T x> qr.
t—T—
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Case ¢ < qr. We follow essentially the same strategy as in the previous case,
simply correcting for signs. Since x is fixed and ¢ < g2 < gr, we see that after some
time ¢y we must have z < ¢1(t) < g2(t) < gr. Therefore, for t > ¢y we have z—gq; <0,
and u can be written as

u(z,t) = e® - e"n® (w(t) —pa(t)(1 — e*‘l(t))).
Thus taking the limit as ¢ — T~ of u and using again Lemma 2 we obtain

(6.4) lim w(z,t) = wy - 797, x < qr.
t—T—

Combining (6.3) and (6.4) we conclude that the 2-peakon solution u(t) has a limit as
t — T, which is given by the antipeakon (6.1). |

We next examine the limit of u in L" topology.

PROPOSITION 5 (convergence in L™). For our antipeakon-peakon solution u to
the NE, we have

lim ||u(z,t) —vp(@)|ler =0 for 1<r<4.
t—T~

Proof. As we will need to evaluate the absolute values in the exponents, we note
that the order of the peaks’ positions of u(z,t) and vr(z) is q1(f) < g2(t) < gpr. We
now expand the L"-norm as

[u(z,t) —vr ()7 = 1) + Ia(t) + I3(t) + La(t),

where the integrals /;(t) have their domains determined by ¢ < g2 < ¢, that is,
q1(t) qr
B0 [ et - vr@fde. @)= [ julat) - v da,
—0o0 q2(t)

q2(t) )
I(t) = / lu(z,t) — v ()| dz, I(t) = / |u(z,t) — vp(z)|"dx.

1(t) qar
Evaluating I,. Calculating the integral, we have

rq1(t)
I(t) = € — ple—th(t) +p2e—q2(t) — wpe T

r

In order to proceed with evaluating the limit, we observe the identity
pre” MM 4 poem 2 _premIm = =2 (e — 1) + w(t)e 2O — wpeTIT,

We can now evaluate the limit as

rq1(t) r
lim [(t) = lim e py(e? — 1) + [w(t)e 2" —wpeTT]| = 0.
t—T— t—T- r

Evaluating I». Using Jensen’s inequality |a; + - -+ a,|" < n"(|a1]|"+- - +|an|")
together with e~ 1#=9 (Ml <1, e~l#=ar(l < 1 and |p;| =~ ¢~'/*, we have

lim Ir(t) < lim (¢'7%(t) + q(t)|wr|") =0 (assuming r < 4).

t—T— t—T—
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Evaluating I3. After evaluating the absolute values inside the exponential and
using the identity

ple—x+q1 +p26—w+qz _ wTecc—qT — e—wequl (e—q _ 1) + e Twe?? — eﬂche—QT7

an application of Jensen’s inequality gives us

qT r qr
I3(t) < / dx + /

q2(t) q2(t)

We see that for the first term in this sum, we have

/QT

q2(t)

For the second term of this sum, we use the fact that |e"*we? — e®wre 9 |" < 1 and
Hoélder’s inequality to get

/QT
q2(t)

Putting these estimates together, we can now evaluate the limit of I3 as t — T via

T

e %e®py (t)(e” 1M — 1) e Tw(t)e® — Twpe | da.

r

Oy (B)(e 1 1)

e e py (1)(e 1 1) dr, S (ar — a2(0))

s
e Tw(t)e?®) — eTwre™ | dr < (gr — qa(t)).

T

lim I3 S lim ((qT —go(1) - [e2Wpy(t)(e7 1M — 1))

li
t—T t—T

+ (ar — ax()) =0.

Evaluating I4. This term is handled in precisely the same fashion as I;. Per-
forming the integration gives us

e "ar

L(t) = — "Pleql(t)erze‘”(t)—wTe‘”

T

Rewriting the expression inside of the absolute value gives us
ple‘“(t) + erqz(t) — wpelt = eqz(t)pl (e‘qm -1+ w(t)e‘”(t) — wrell,

Therefore, using the above identity along with the triangle inequality yields

—rqr

lim I4(t) < lim

m m . (|eq2(t)p1(e_Q(t) -]+ |w(t)e‘”(t) — wTeQT|> =0.
t—T— t—T— r

Summarizing the L™ convergence, 1 < r < 4. As we have computed
lim;_,p— I;(t) = 0 for j = 1,2, 3,4 it immediately follows that

Jim u(z,t) = or (@)l = lim (Il(t) + (1) + I3(t) + 14(t)) =0 0

COROLLARY 2. Ast goes to T our 2-peakon solution u(t) converges in H®, s <0,
to the antipeakon vy = wpe~1*=97!,

Now that we have successfully established pointwise and L" convergence, we are
ready to move on to a much stronger result that is of interest in itself. Ast — T,
the antipeakon-peakon solution converges to a single solitary antipeakon in H*® for
s < 5/4.
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THEOREM 5 (convergence in H®). For s < 5/4, our 2-peakon solution u(t)
converges to the antipeakon vr in H®, i.e.,
t—=T

Proof. We will begin by simplifying the H*-norm of u(x,t) — vy (x). We have

Jut) - orlfy. = [ 1+ € fate.0 - (e P
R
Our objective, when taking the limit, will be to move the limit inside of the integral.
Thus, the first thing we should verify is whether, pointwise, we have
1+ falgt) —vr @ =0 as t—=T".
We have
(€, t) —u(€, T)| < |lu(z,t) —u(z, T)| L
As we have proved that u(z,t) — u(z,T) in L', we have

lim (1+€2)°[a(¢, 1) — () = 0.

Next, we will define the bounding functions that will allow us to apply the gDCT. We
set

J(€) = (1+ €26, 0) — TR(O) < 401+ €2)° ([, O + [FT()) = g1(©)-

Next, we need to establish that the g;’s have a pointwise limit g. The most obvious
candidate for g is

9(&) = 8(1+&)°[or(€)].

Indeed, using the laws of limits, we have that u(¢,t) — 0r(€) pointwise in £ implies
gt — g pointwise in &. To finish satisfying the hypotheses of the gDCT, we must now
establish the integral properties of the g;’s. We have

Jimy [ a(pde = i s [ 1+ € 0P+ im 4 [ (14l
(E;L) 320510%,

where the left limit uses the hypothesis that s < 5/4. Furthermore, g is integrable
and

/ g(6)de = / 8Jor(€)%]de = 8- [[or|%. = 8 - degwd = 32equd.
R R

Therefore, we have [ g, — [ g. We now see that the hypotheses for the gDCT are
satisfied. Thus, we can conclude that

lim /R fo(€)dé = /R fla)de,

which, written more explicitly, tells us that

lim / (1+ &) [ae, 1) — T7(6)[2de = 0.

t—=T

Thus, we can conclude that as t — T', we have u(t) — vy in H*. d
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Proof of Theorem 4. Translating the NE 1-peakon solution (1.6) by xg and choos-
ing the minus sign we obtain the following antipeakon solution for the NE:

v(z,t) = —/ece @)=l forany ¢>0 and z0€R.

Choosing

c=w? and zg=qr—wiT

we obtain the NE antipeakon solution

P 2 a2
v(z,t) = —\Jwk e IFmartwrD) —wr ],

Since at t = T we have

v(z,T) = wpe™ "= = y(z,T),

we see that we have constructed two different NE solutions, which belong in H?,
s < 5/4, and agree at t = T. From here, a change of variables can recast these two
solutions as initial value problems at time ¢ = 0. This proves failure of uniqueness in
this range of Sobolev spaces. O

The case s = 5/4. If s = 5/4, then there are two possibilities. Either our
2-peakon solution u(t) does not converge in H°/4, in which case we can prove (by
a standard argument) that continuity of the solution map fails, or u(t) converges in
H®/* and has limit u(T') (since this is the limit for lower Sobolev exponents). In the
second case, we have nonuniqueness as in Theorem 4. This result completes the proof
of both Theorem 1 and 2 in the nonperiodic case.

7. The periodic case.

7.1. Outline of the proofs in the periodic case. The proofs of Theorems 1
and 2 have been demonstrated on the line, and we now present these proofs on the
circle, T = R/27Z. The key ingredient is using a periodic version of the peakon. In
subsection 7.2, we construct the 2-peakon solutions on the circle having the properties
described in Theorem 1. In subsection 7.3, we estimate the H®-norm of the 2-peakon
solutions, and in subsection 7.4 we choose the parameters so that both the lifespan
and the size of the 2-peakon solution at the initial time are simultaneously small. In
subsection 7.5, we prove norm-inflation and ill-posedness for 5/4 < s < 3/2. Finally,
in subsection 7.6, we prove nonuniqueness for s < 5/4 and explain the ill-posedness
of the NE for s = 5/4.

7.2. Construction of 2-peakon solutions on the circle. The 2-peakon so-
lutions to the periodic version of the NE are similar to those on the real line, with the
caveat that the peak is generated by periodizing the hyperbolic cosine rather than
using the exponential of the negative absolute value. The following equations are
taken from [GH] and [HM] and can also be derived in a straightforward fashion.

The periodic Novikov 2-peakon solutions are of the form

(7.1) u(z,t) = p1(t) cosh([z — ¢1(t)], — m) + p2(t) cosh([x — q2(t)]p — 7),

where [-], periodizes our function and is defined by the floor

(7.2) [z], =z — 27 L%J .
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We see that u solves the NE if the momenta py, po and the positions ¢, g2 satisfy the
following system of ODEs, which can be obtained by using Theorem 1.2 of [HM] with
the choice of parameters a = 0, b = 3. The 4 X 4 system we get is

q = p%[l + sinh? 7] + 2p1p2 cosh m cosh([g1 — ga]p — ™) +p§[1 + sinhz([ql —q2lp — ™),
b = pg[l + sinh? 7] + 2p1p2 cosh m cosh([g2 — q1]p — ™) +pf[1 + SinhQ([qg —qilp — ™),
p| = —p1p2 sinh([q1 — ga], — 7)[p1 cosh 7 + po cosh([g1 — g2, — )],

py = —p1p2sinh([g2 — q1], — 7)[p2 cosh m + py cosh([g2 — 1], — )]

Setting

E(z) = ccosh([e], — ), E'(x) = sinh([z], — ).

cosh coshm

and using ¢ = g2 — g1, our system can be written in the more compact form

g = cosh® 7 - (p1 + p2E(q))?,
gy = cosh® 7 - (1 E(q) + p2)?,
P = cosh® 7 - pipa(p1 + p2E(q)) E'(q),

/

phy = —cosh? 7 - pipa(p1E(q) + p2) E'(q).

(7.3)

Initial data. From this point, we make the same initial data assumptions as in
the real line case. We take the positions ¢; and ¢, at time t = 0 to be

¢1(0) =—a and g =a for some a > 0.
For the initial momenta, we shall assume that at time ¢t = 0
(7.4) p2(0) =b> 1, p1(0) =—=(b+46), ¢6>0.

With these assumptions, the initial profile ug(x) = u(x,0) is the asymmetric periodic
antipeakon-peakon

(7.5) uo(z) = —(b+ 9) cosh([z + a], — 7) + beosh([x — a], — 7).

This initial profile for w is displayed in Figure 3.
Following the intuition we developed in the real line case, we again will examine
the ODE system (7.3) in the derived variables p, ¢, w, z given by

9(t) = ¢2(t) —qa (t),  q(0) =2a >0,

(7.6) p(t) = p2(t) = pi(t), p(0)=2b+0>0,
w(t) = pa(t) + p1(t), w(0)=—6<0,
z2(t) = pa(t) - p1(t), 2(0)=-b(b+4d) <0

Deriving equations for g, p, w, and z on the circle. Beginning with ¢, we
follow the same strategy as in the nonperiodic case. We see that

q = cosh®r - (M E(q) +p2)?® — cosh® 7 - (p1E(q) + p2)?,
= cosh® 7 - (pa — p1)(p2 + p1)(1 — E*(q)),
(7.7 = cosh? 7 - pw(1 — E*(q)).
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—---------9

p1(0) = —(b+90) =~ ug(—a)

F1G. 3. Initial profile up(x).

The computations for p, w, and z follow the same strategy, and we arrive at the 4 x 4
system

¢ = cosh® 7 - pw(1 — E*(q)), q(0) = 2a >0,
(7.8) p = —cosh® - wz(1+ E(q)E'(q), p(0)=2b+§>0,

w' = —cosh? 7 - zp(1 — E(q))E'(q), w(0)=—6<0,

2 = cosh® 7 - zwpE(q)E'(q), 2(0) = —=b(b+4) <

This derived system of ODEs is more easily manipulated than the original 4 x 4
system, and we are now ready to tackle Proposition 1 in the periodic setting.

PROPOSITION 6 (periodic version of Proposition 1).  The system of differen-
tial equations (7.8) has a unique smooth solution (q(t),p(t),w(t), z(t)) in an interval
[0,T), for someT > 0, such that z = z(t) is decreasing and, in terms of q, is expressed
by the formula

-2

(7.9) z= W <0, where z =bb+ (5)(1 — EQ(QO))
- q

250,

p = p(t) is decreasing and as a function of q is expressed by the formula

1+ E(q(t) 1+ E(q) D1/2>0

(7.10) p(t) = (p?) +2a [\/1 —E2(q(t))  /1— E%(qo)

and w = w(t) is decreasing and as a function of q is expressed by the formula

_ V1= E @) V1-E(q()1)/?
(7.11) w(t)——<w3+2zl[ 1-|-E(q0)0 1+ E(q(t) ]) =0

The difference between the positions ¢ = q(t) is decreasing and satisfies the initial
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value problem

(7.12)
r_ - 2 V1-E%(q0)  /1-E2(q(t)1)"/2
¢ == la) = o m - (wh o+ 2 [ Ve S0 - M A )

1+E(q(t) 14 E(q)
VI=E(q(t)) 1-E%(q

'<p3+2zl[ )DUQ'(l—EQ(Q)%
q(0) = go = 2a > 0.

Furthermore, the initial value problem (7.12) is dominated by the simpler initial value
problem

¢ =—g(q) = —qi(1—e2)** 0<q0)=22<1/2,

where

¢ = 6v/2b(b+0) - qp/ .

Proof. We begin by solving for p,w, and z in terms of q. After this task is
completed, we can form an autonomous equation for ¢ by substituting in its defining
ODE (7.8) the expressions for p, ¢, and w.

Expressing z in terms of q. Using the equation for 2z’ and ¢’ we find

2 cosh®7 - zwpE(q)E'(q) _ zE(q)E'(q) Z  E(qQ)E'(q)d

¢ cosh®m-pw(l — E2(q)) 1—E?(q) 2 1-E%q)

Since z(0) < 0, we assume that z(t) will remain negative. Therefore, from the last
relation we have
d

1d 2
a[1n(—z)] = —ia[ln(l — E%(q))]-

Integrating this equation from 0 to ¢ gives
_ 2
n[20) = L [Lo B2
20 2 11— E2(q)

Solving for z(t), we find formula (7.9) for z in terms of g.
Expressing w in terms of g. Dividing the equation for w’ by the equation for
q' we have

(7.13) w' _ —cosh® - zp(1— E(q))E'(q) _ —2(1— E(q))E'(q)

q’ cosh? - pw(1 — E2(q)) w(l — E2(q))
;L (1 - E(q)E(q)d
(7.14) or ww =-—z- = Eg)

Substituting the formula for z given by (7.9) into the above equation gives us

21 (A -E@)E(9)d _ (1 - E(q)E(9)d
(1 - E2(g))""” 1—E*(q) (1 - E2(g))*”

(7.15) ww' =
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Making the change of variables u = E(q(t)), du = E’(q(t))q’ (t)dt, we obtain

(1-E@)E(@d ,, 1—u V1 —u? /1 —=E2(q(t))
/ (1—E2(q))3/2 dt_/(l_u2)3/2 YT T T o= 1+ E(q(t)) +C.

Therefore, relation (7.15) reads as

dq d [v/1= E*(q(1))
] ST
dtl2 dtl 1+ E(q(t))
Integrating this equation from 0 to ¢ gives
i) — ] = [ YL@ _ YT
2 ’ 1+ E(o) 1+ E(q() 1

We are thus able to solve for w(t) in terms of ¢(t), which gives us formula (7.11).
Expressing p in terms of g. Dividing the equation for p’ by the equation for
q’ we have

(7.16)

(7.17)

(7.18) P _ —cosh®m-wz(l+ E(q)E'(q) _ —2(1+ E(a))E'(9)
q cosh? 7 - pw(1 — E2(q)) p(1—-E%*(q)
1+ E(q))E'(9)q
1 = —z. ( .
(7.19) or pp z = E%(g)
Substituting in the above relation the formula for z given by (7.9) we have
1+ F £’ ! 1+ F £’ !
(1- E2(q)) g (1-E%(q))
Next, we make the change of variables u = E(q(t)), du = E’'(q(¢))¢'(t)dt and get
1+ F E’ ! 1 1 1+ F
/ (1+ (q2)) (33)2(] gt — / +2u3/2 — —|—2u1/2 oo +2 (q)l/2 Lc
(1- B2(0) TR R (1- B*(0)

Therefore, relation (7.20) reads as
BRI )
at 12" T E2(q))

~
Integrating this equation from 0 to ¢ gives us
1 14+ E(q(t 14+ E(q
5[})2(75) #ﬂ :Zl|: (2( ) (20) }
VISBG0) VI B(w)

and we are able to solve for p(¢) and obtain formula (7.10).

Solving the g ODE. Starting with the differential equation for ¢, which is
¢’ = cosh® 7 - pw(1 — E?(q)), we substitute for w and p their expressions (7.11) and

(7.10), respectively. We consequently obtain the following autonomous differential
equation for ¢:

(7.21)

q’:ff(q)icosh27r~{f (wSJrQZl[

V1-E*(q) 1- EQ(q(t))Dl/z}

[+ E@)  1+Ea0)
2 1+ E(q(t)) 1+ E(g) 7\¥? 2
s gy )

q(0) = go = 2a > 0.
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Next, we observe that

VIZFw) VT FG)
1+ E(qo) 1+ E(q(t) —

This inequality follows from the fact that

(\/17E2(:r))’_ —E'(x)

1+ E(z) 2v/1+ E(z)

Since the denominator is always positive, the sign of this derivative is controlled by
the numerator, —E'(z) = —ﬁ(w) sinh([z], — 7), which is positive for z € [0, ).
Next, we have

(7.22)

0<g<qo<m.

1+ E(qo) (2b+6)?
7.23 29— > () = —— 2 >14+F .
( ) Do z1 = 5%(q) — 2W(b+0) — + E(qo)

Our choice of initial data allows for the inequality 1 + E(qy) < 2, and we have
(2b+6)?
2b(b + 9)
which is true.

Now, using (7.22) and (7.23) we see that the function f(gq) in the right-hand side
of the differential equation (7.21) can be bounded from below as follows:

> 2 = 4b% +4b6 + 6% > 4b? + 4b6 — 6% > 0,

Fa) > cosh® w5 (20(0 + 6) (1 — B(0)) %) : ([%D (1 - E2(q)).

To continue our objective of finding a simpler dominating function for f, analogous
to the strategy in the real line case of this proof, we use the fact that F(q) > 0 in
conjunction with the following lemma.

LEMMA 3. For ¢ > 2cosh?(r)/sinh(2r — 1) and z € [0,1/2],
(7.24) c(1—-F*z)>1—e2",
Furthermore, we have the inequality

1
(7.25) 1— E%(qo) > 300

In particular, we will take ¢ = 3 in later computations.

Proof. Define the function

@)= (1=e72) = (-1 - E*(@)]).
Computing the derivative of f(x) shows that it will be negative for z € (0,1/2], and

2 cosh? 1
~ sinh(27 —1)°

As (7.24) has been established, we now move onto proving (7.25). This inequality is
obtained by applying our first inequality and then using the exponential inequality.
We get

1 1
1— E*(qo) > 5(1 — e ?0) > 3do- a
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With the above lemma, we are now ready to return to the proof of the proposition.
Dominating equation (periodic version). Using the above inequalities, and
following the same strategy as in the nonperiodic case, we obtain

. 2 . .
Since % > 1, we can remove this factor as we are bounding from below.

Consequently, f(q) has precisely the same lower bound as in the real line case given
by

3/4 3/4
fla) 2 8- 0) g (1= ) = (1)
where the constant ¢; is given by

g =29 \/b(b+§)-q3/4.

Thus, we see that the complicated initial value problem for ¢ (7.21) is dominated by

3/4
)

(7.26) ¢ =-q(l-e?) q(0) = go = 2a > 0.

This ODE is precisely the same as the one derived in the real line case. Therefore we
can immediately arrive at the same conclusions for q.

PROPOSITION 7 (periodic version of Proposition 2). If r < 1, then for given
qo € (0,1/2) and q1 > 0 the solution to the initial value problem

(7.27) % =—g:(@) = -1 (1—¢729)", ¢(0) = qo,

which begins positive and is decreasing, becomes zero in finite time T given by

9 4 1 q0 d 1 1—r
(7.28) T:/ a :—/ 4 =~ D
o 9@ @y (I—e?)"  1-r q
COROLLARY 3 (periodic version of Corollary 1). If0 < gy < 1/2 and b > 1,

d > 0 satisfy condition (7.4), then the solution to the initial value problem (7.12)
begins positive, is decreasing, and becomes zero in finite time T given by

(7.29)
T w0 dq < i/qo dq N q(l)/4 N q(l)/4 N 1
o fl@ " a)o (1—e2)¥ T @ 5 /2(b+0)- ¢/t 63/20(b+6)

We summarize the above results in the following theorem.

THEOREM 6 (periodic version of Theorem 3). For given 0 < a < 1/4, b > 1,
and § > 0 satisfying condition (7.4), the initial value problem for the positions q1, g2
and the momenta py, pa

¢; = cosh® 7 - (p1 + p2E(q))?, 71(0) = —a,
(7.30) q% - COShz m (p1E(q) +p2)?, 72(0) = a,

py = cosh™ 7 - p1pa(p1 + p2E(q)) E'(q), p1(0) = —(b+9),

phy = —cosh® m - p1pa(pLE(q) + p2) E' (@), p2(0) = b,
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has a unique smooth solution (q1(t),q2(t), p1(t), p2(t)) with a finite lifespan T, which
is the zero of ¢ = g2 — qu, satisfying the estimate (7.29) and such that

w—p

p1 = —— <0, decreasing, lim pi(t) = —o0, and —p; ~p =~ g, and
2 t—T—
w + . . . _
P2 = wrp > 0, increasing, lim po(t) = 0o, and ps ~p~q /4
2 t—T—

where p and w are given in Proposition 6. Also, w = p1+p2 is decreasing from wg < 0
to wr, where

[NIE

wr = lim w(t) = —(52 +2b(b+ 8)(1 — E(2a)))

t—T-
Finally, the 2-peakon
u(z,t) = pi(t) cosh([z — ¢1(t)]p, — m) + pa(t) cosh([z — g2 (t)]p, — ), 2 € T, 0 < t < T,
is a solution to the NE with the following asymmetric antipeakon-peakon initial profile:
u(z,0) = —(b+ ) cosh([z + a], — 7) + beosh([x — a], — 7),
The quantities p1, p2, q, and w have properties similar to their analogues defined on

the line, and we refer the reader to Figure 2 for a visualization of them.

7.3. Calculating the norm on the circle. We begin with the following propo-
sition which summarizes the calculation of the H®-norm of u. This computation is
nearly identical to the nonperiodic case with the exception of an extra factor of sinh? 7.

PROPOSITION 8 (periodic version of Proposition 3). Let u(t) be the 2-peakon
solution (7.1) to the NE. Then on [0,T) we have
u(®) - = 165inh® 7 - (P () Qs (q) + dsink® 7 -, (1= r(1) PR (D),
p2(t)
pa(t)’

where cs =Y. _(14+n?)*"2 and Qs(q), which is given below, satisfies the estimates

with  r(t) =

o o @2, 1/2 < s < 3/2,
Q= 3 (et (B) =8t maaje, s=1/2
n=-00 q°, s<1/2.

Proof. We begin by noting that the Fourier transform of F is calculated as

sinh(7) ) 1

E(n) = (2' cosh(m)/) 1+ n2

Recalling that the 2-peakon u can be written as

u@,t) = cosh- (pr(OE( - (1) + p2()E(w — 02(1))),

we can express the Fourier transform of u as

ﬂ(n,t) _ 21Sj:1h;T e (1 + @e—inq)_
n P
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Taking the square of the H®-norm of this quantity, we obtain

(7.31)
Ju@) e = D2 (42l P =4sinh®nopt 0 (14n?) 14 e
1

n—=—oo n=—oo

Using Proposition 6 we see that

(7.32) r=r(t) = —2?8 = % <1 and r(t) /last "T.

Using r we write (7.31) as

(7.33) lu(t) 3. = 4sinb®7-p3 3 (1+ n2)572’1 _remina

n=—oo

Expanding out the square of the absolute value inside of the sum (7.33), we have
|retd™ — 1% = (1 — 7)? 4 4rsin? (?)

We therefore obtain the formula
|w(t)||%. = 16sinh? 7 - rp?Q4(q) + 4sinh® 7 - ¢,(1 — 7)%p?,
where
o0 B o0 o ) n
Cs = n;m(l +n2)*? and Q(q) = n;m(l +n?)*%sin? (q2>

From this point, we note that ), has already been estimated in this periodic setting
in [HHG]. Using equation (4.25) from [HHG], and also (4.28), where the norm is
expanded into the sum of the squares of sines, we have

o ¢/, 1/2 < s <3/2,
n
(7.34) Qs =~ sin? (%)(1 +n2) 2~ gy/M(1/q), s=1,2, O
n=1 q, s<1/2.

7.4. Small lifespan and initial data on the circle. This section follows the
same argument as in the real line case, with the exception of an extra factor of sinh? 7
stemming from the periodic version of the norm-estimates. We begin by assuming
that

p2(0) =b>1and —pi1(0)=b+4,d >0,
so that the conditions for the existence of our 2-peakon with the lifespan estimate
(7.29) hold.

Lifespan estimate. For given ¢ > 0, we need to find b > 1 such that T' < e.
Since by Proposition 6 we have
e L1
54/2b(b+5) — b
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we must have

(7.35) —<e<= b>d¢

Initial data estimate. Now, for the same £ > 0 we need to find gy < 1/8 such
that ||ug||g= < e. For this we use Proposition 8, from which we have, recalling that

_ _p2(t)
T(t) - pi(t)’

w(0)||%s = 16sinh? 7 - b(b + 6)Qs(qo) + 4sinh? 7 - ¢,02.
This identity implies
u(0)|%. < 32sinh? 7 - b2Q4(qo) + 4sinh® 7 - ¢,02.

Case 1/2 < s < 3/2. Now by Proposition 8 we have Q(qo) < ¢o~>° and
therefore

|u(0)]|%. < Cysinh® 7 - b%g3 2% + 4sinh® 7 - ¢,02.

To have |lug|/grs < € it suffices to choose gy and § such that C,sinh? 7 - b2g3 2 +
4sinh? - cs0%2 < &2 or

[ V)

2
€ €
4sinh? 7 - ¢,6% < 5 and  Cjsinh®r - qug_Qs < 5

The first inequality holds if

€
7.36 0 —m——.
( ) — 2sinh m/2c¢,

Taking into consideration (7.36) and (7.35), the second inequality holds if

3 9s g? g2 52t g2et
qO S . 2 S —2.—-92 = =
2C, sinh* 7 - b2 2C,6 2 2C 8¢, - 2C,

or
gb )3%2
16¢,C, '

QOS(

Case s < 1/2. For such a Sobolev exponent s we have |[u(0)| g < ||u(0)] 5.
This combined with Proposition 8, which tells us that Q1(q0) < go, gives

[u(0)[[Fs < lu(0)[7 < C1b%qo + 4e16.

52

Thus |luo|lgs < € if go and § satisfy the inequalities 4¢16% < 5 and Cib?qy < §
These inequalities hold if

6 < ° and < ’
11 .
= 226 =96,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/05/19 to 205.208.116.24. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

ILL-POSEDNESS FOR THE NOVIKOV EQUATION 3001

7.5. Norm-inflation and ill-posedness on the circle. From Proposition 8
we have

(7.37) w(t)||%. = 16sinh® 7 - r(t)p2(t)Qs(q) + 4sinh? 7 - cspr(t)(1— r(t))Q.

We see that the argument from section 5 holds, with the simple inclusion of a factor
of sinh? 7. Following these arguments, we see that

oo (inflation), 5/4 < s<3/2,
(7.38) t]in% lu(t)||%. = { may not exist, s=5/4,
—
4sinh? 7 - ¢ 52—|—2b(b—|—5)-(1—6_‘10)], s < 5/4.

Therefore when 5/4 < s <3/2 we have norm-inflation and ill-posedness for the NE. O

7.6. Nonuniqueness for s < 5/4 on the circle. As in the case on the line,
the NE admits nonunique solutions once we take the Sobolev exponent s < 5/4. This
is equally as interesting as the result in which periodic 2-peakons maintain the same
collision properties as nonperiodic ones.

THEOREM 7 (nonuniqueness—periodic version of Theorem 4). For s < 5/4 the
NE admits nonunique solutions.

Our proof of nonuniqueness in the periodic setting again follows the same strategy
used in the real line case. We again examine the behavior of the limit as t — T~
of the 2-peakon solution u with initial data given in (7.5). Once this limit has been
established in the desired ways, the same argument as in the real line case implies
nonuniqueness.

PROPOSITION 9 (pointwise limit—periodic version of Proposition 4). For each
r € R we have

(7.39) lim u(x,t) = wy cosh([x — ¢r], — 7) = vr(z).
t—T

where

(7.40) qr = tll)r;lﬁ Q(t) = tll)r%li q2(t) and wp = til}l;r}i w(t).

Remark. We can avoid the multiple cases needed in the real line version of this
proof because we do not need to expand out an absolute value. Here, as we are using
the hyperbolic cosine, we will have both e” and e~ present, thus avoiding the need
to break into cases.

Proof. Our solution u is a 2m-periodic function, and we will restrict our atten-
tion to the interval [0,27]. As we know that the limits of ¢; and ¢ exist, we will
further restrict our attention to a time ¢y > 0 when these position functions remain
within a single period. This will avoid any complications of moving between periods
which would require using the floor function in our definition. Using the exponential
definition of the hyperbolic cosine, we get

1
u(z,t) = 3 [e”’w(pleql + p2e®) + e T (prem +pge*Q2)}.
Rewriting this expression to generate terms containing w gives us

(7.41)
u(z,t) = % [e”_’” (e‘”pl (e79—=1)+ we‘h) +e Tt (we_q1 +e Ppy(e”?— 1))}
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Taking the limit as t — 7'~ of (7.41), and using the limit established in Lemma 2, we
obtain

lim u(z,t) = wy cosh([x — ¢r], — 7). O
t—T—

We next demonstrate that v converges to vp ast — T~ in L".

PROPOSITION 10 (convergence in L"—periodic version of Proposition 5). For
our antipeakon-peakon solution u to the NE, we have
(7.42) lim ||lu(z,t) — vr(z)|| - = 0.

t—=T~

Proof. The same remarks that we made for the pointwise proof apply here to
taking a tg > 0 such that ¢; and ¢ lie within a single 27 period after time .
Analogous to the pointwise limit, as we have both e* and e~ present in our hyperbolic
cosines, we will not have to break our argument into cases in order to simplify the
absolute values. This fact also allows us to bypass the restriction 1 < r < 4 as we
do not cut the domain of the integration, creating the situation we saw in the real
line case on the subintegral on [q1, g2]. After rewriting the hyperbolic cosines in their
exponential form we get

1 2m
Jute.t) ~ er@)l =5 |
0

= (e + pae~ — wre~)
.
+ e " (p16q1 + poe?? — wTeqT> ’ dx.
Using Jensen’s inequality and evaluating the resulting integrals, we get
1 2m
2,
e’ —e”

T
S . ’ple_‘h +p26_QZ _ U/Te_qT
r

s
e’ T (pw*ql + poe™ 9 — wTe*qT> 4™ (pleql + poe® — wTetIT) ‘ dx

r T _ =TT r
4+ ‘plefh +p2€q2 _ 'lUTeqT
r

Using Lemma 2, we have

T T
lim ‘ple’“ + poe?® —wre?”| =0 and lim ‘ple‘“ + poe?? —wrel”| =0.
t—>T~ t—T-
Therefore applying the limit as ¢t — T~ we get
lim ||u(z,t) — vr(z)||5- = 0. O
t—=T-

Now that we have successfully established pointwise and L" convergence, we will
use these results to establish H® by using the dominated convergence theorem.

THEOREM 8 (convergence in H*—periodic version of Theorem 5). For s < 5/4,
our antipeakon-peakon solution u converges to vy in H?, i.e.,

(7.43) lim ||u(x,t) — vr(z)||gs = 0.
t—>T
Proof. From the definition of the H*-norm of u(x,t) — vy (z), we have

lu(z,t) = vr(@) |3 = Y (1+n®)fi(n,t) - op(n)|*.
nez
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Our objective, when taking the limit, will be to move the limit inside of the inte-
gral. Thus, we begin by examining the limit of the summand. As we have already
established the convergence of u to vy in L', via Proposition 10, we see that the
inequality

[u(n,t) —u(n, T)| < |u(x,t) —u(z,T)|| L
implies that

lim (1 +n2)*a(n,t) — vr(n)]* = 0.
t—T~

Next, we will define the bounding sequences that will allow us to apply the gDCT.
We set

fon) = (14 n2)fa(n, ¢) = TE ) < 401+ 02)* ([, 02 + [57(0) ) = guln).

We need to establish that the g¢;’s have a pointwise limit g, i.e., for each n € Z,
lim;_,7- g¢(n) = g(n). The most obvious candidate for g is

g(n) = 8(1 + n?)*[or(n)|* where Zg(n) = 32cosh? 7 - cwr.
nez

Indeed, using the laws of limits, we have that @(n,t) — vp(n) for each n implies
gt — ¢ for each n. To finish satisfying the hypotheses of the gDCT, we must now
establish the sum properties of the g;’s. We have

lim Z gi(n) = 32 sinh? 7 - cswy,

where the left limit uses the 5/4-hypothesis (1.13). We now see that the hypotheses for
the gDCT are satisfied. Thus, we can conclude that as t — T, we have u(x,t) — vp
in H®. O

Proof of Theorem 7. Translating the NE 1-peakon solution by zy and choosing
the minus sign we obtain the following antipeakon solution for the NE:

v(x,t) = —v/c cosh([x —xg —ct], —7) forany ¢>0 and zo€T.

As in the real line case, we choose ¢ = w2 and zg = g — w271 and obtain the
antipeakon solution v(x,t) = wr cosh([z — zg — w3t] — 7). Since at t = T we have

v(z,T) = wy cosh([z — gr]p, — 7) = u(z,T),

we see that we have constructed two different NE solutions, which belong in H?,
s < 5/4, and agree at t = T. From here, a change of variables can recast these two
solutions as stemming from the same initial data at time ¢ = 0. This scenario proves
failure of uniqueness in this range of Sobolev spaces. O

The case s = 5/4. The argument for ill-posedness in this case is precisely
the same as that in the nonperiodic case. This result completes the proof of both
Theorems 1 and 2 in the periodic case.
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