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when running at large scale, (6) libraries and dependencies

differ in a cloud function compared with a local machine, and

(7) latency to the cloud makes roundtrips costly. Past appli-

cations have addressed only subsets of these challenges, in

application-specific ways.

In this paper, we present gg, a general framework for build-

ing burst-parallel cloud-functions applications, by building

them on an abstraction of transient, functional containers, or

thunks. gg helps applications express their jobs in terms of in-

terrelated thunks (hermetically sealed, short-lived containers

that may reference the output of other thunks or produce other

thunks as output), then schedules, instantiates, and executes

those thunks on a cloud-functions service.

gg can containerize and execute existing programs, e.g.,

software compilation, unit tests, video encoding, or searching

a movie with an object-recognition kernel. gg does this with

thousands-way parallelism on short-lived cloud functions. In

some cases, this yields considerable benefits in terms of per-

formance. Depending on the frequency of the task (e.g., for

compilation or unit tests every few minutes), cloud functions

are also much less expensive than keeping a comparable clus-

ter running continuously.

gg and other parallel execution systems. In its goals and

approach, gg is kin with container-orchestration systems

such as Kubernetes [5] and Docker Swarm [10], outsourcing

tools like the Utility Coprocessor [12] and icecc [20], and

cluster-computation tools such as Hadoop [38], Dryad [22],

Spark [40], and CIEL [27].

But gg also differs from these systems in its focus on a new

computing substrate (cloud functions), mode of execution

(burst-parallel, latency-sensitive programs starting from zero),

and target application domain (everyday “local” programs,

e.g. software compilation, that depend on an environment

captured from the user’s own laptop).

For example, the “stateless” nature of cloud functions (they

boot up with no dependable transient state) makes gg place

a large focus on efficient containerization and dependency

management: loading the minimal set of the right files into

each container at boot-up. Cluster-computation systems like

Dryad, Spark, and CIEL do not do this—although they can

interface with existing code and systems (e.g., a video encoder

or a database server), these components must be loaded in

advance by the user on a long-lived compute node. Container

systems like Kubernetes do this, but they are not aimed at

efficient execution of a transient interactive task—gg is more

than 45× faster than Google Kubernetes Engine at startup,

and 13× faster than Spark-on-Lambda (Figure 7). We discuss

related work more completely in Section 2.

1.1 Summary of Results

We ported four applications to express their jobs in gg’s for-

mat: a description of each container, and how it depends on

other containers, that we call the intermediate representation,

Compiling Inkscape

Tool Time Cost

single-core make 32m 34s —

icecc to a warm 48-core EC2 machine 6m 51s $2.30∕hr

icecc to a warm 384-core EC2 cluster 6m 57s $18.40∕hr

gg to AWS Lambda 1m 27s 50¢∕run

Figure 2: Compiling Inkscape using gg on AWS Lambda is almost

5× faster than outsourcing the job to a warm 384-core cluster, with-

out the costs of maintaining a warm cluster for an occasional task.

or IR (§3). One of them does it automatically, by inferring

the IR from an existing software build system (e.g., make or

ninja). The rest write out the description explicitly: a unit-

testing framework (Google Test [17]), parallel video encoding

with inter-thread communication (ExCamera [15]), and object

recognition using Scanner [30] and TensorFlow [1].

We then implemented gg back-ends, which interpret the IR

and execute the job, for five compute engines (a local machine,

a cluster of warm VMs, AWS Lambda, IBM Cloud Functions,

and Google Cloud Functions) and three storage engines (S3,

Google Cloud Storage, and Redis) (Figure 1).

For compiling large programs from a cold start, gg’s func-

tional approach and fine-grained dependency management

yield significant performance benefits. Figure 2 shows a sum-

mary of the results for compiling an open-source software,

Inkscape [21]. Running “cold” on AWS Lambda (with no pre-

provisioned compute resources), gg was almost 5× faster than

an existing system (icecc), running on a 48-core or 384-core

cluster of warm VMs (i.e., not including time to provision

and boot the VMs1).

In summary, gg is a practical tool that addresses the princi-

pal challenges faced by burst-parallel cloud-functions appli-

cations. It helps developers and users build applications that

burst from zero to thousands of parallel threads to achieve low

latency for everyday tasks. gg is open-source software and

the source code is available at https://snr.stanford.edu/gg.

2 Related Work

gg has many antecedents—cluster-computation systems such

as Hadoop [38], Spark [40], Dryad [22], and CIEL [27]; con-

tainer orchestrators like Docker Swarm and Kubernetes; out-

sourcing tools like distcc [8], icecc [20], and UCop [12];

rule-based workflow systems like make [13], CMake [7], and

Bazel [4]; and cloud-functions tools like ExCamera/mu [15],

PyWren [23], and Spark-on-Lambda [36].

Compared with these, gg differs principally in its focus

on targeting a new computing substrate (thousands of cloud

functions, working to accelerate a latency-sensitive local-

1Current cloud-computing services typically take an additional 0.5–2 min-

utes to provision and boot such a cluster.
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application task). We discuss how gg fits with the prior litera-

ture in several categories:

Process migration and outsourcing. The idea of accelerat-

ing a local application’s interactive operations by using the

resources of the cloud has a long pedigree; earlier work such

as the Utility Coprocessor (UCop) also sought to “improve

performance from the coffee-break timescale of minutes to

the 15–20 second timescale of interactive performance” by

outsourcing to a cloud VM [12]. gg shares the same goal.

gg’s architectural differences from this work come from its

different needs: instead of outsourcing applications transpar-

ently to a single warm cloud VM, gg orchestrates thousands

of unreliable and stateless cloud functions from a cold start.

Unlike UCop, gg is not transparent to the application—we re-

quire applications to be ported to express jobs in gg’s format.

In return, gg provides optimized orchestration of swarms of

cloud functions and fault tolerance (failed functions are rerun

with the same inputs). Unlike UCop’s distributed caching

filesystem, gg’s IR, which is based on content-addressed im-

mutable data, allows cloud workers to be provisioned with all

necessary dependencies in a single roundtrip and to commu-

nicate intermediate values directly between each other.

Container orchestration. gg’s IR resembles container and

environment-description languages, including Docker [10]

and Vagrant [34], and container-orchestration systems such as

Docker Swarm and Kubernetes. In contrast to these systems,

gg’s thunks are designed to be efficiently instantiated within

a cloud function, expressible in terms of other thunks to form

a computation graph, and deterministic and defined by their

code and data, allowing gg to provide fault tolerance and

memoization. These systems were not designed for transient

computations, and gg has much quicker startup. For example,

starting 1,000 empty containers with gg takes about 4 seconds

on a VM cluster or on AWS Lambda. Google Kubernetes

Engine, given a warm cluster, takes more than 3 minutes

(§5.1). Recent academic work has shown how to lower this

overhead to provide faster cloud-functions services [28].

Workflow systems. Workflow systems like Dryad [22],

Spark [40], and CIEL [27] let users execute a (possibly dy-

namic) DAG of tasks on a cluster. However, gg differs from

these systems in some significant ways:

• gg is aimed at a different kind of application. For example,

while Spark is often used for data analytics tasks, it is not

commonly used for accelerating the sorts of “everyday”

local applications that gg is designed for. No prior work

has successfully accelerated something like “compiling

Chromium” using Spark, and the challenges in accom-

plishing this (capturing the user’s local environment and

the information flow of the task, exporting the job and its

dependencies efficiently to the cloud, running thousands

of copies of the C++ compiler in a fault-tolerant way) are

simply not what Spark does.

• gg uses OS abstractions: it encapsulates arbitrary code

and dependency files in lightweight containers, somewhat

similar to a tool like Docker. gg focuses on efficiently

loading code and its minimal necessary dependencies on

cloud functions that boot up with no dependable state. By

contrast, systems like Dryad and Spark principally use

language-level mechanisms. While their jobs can inter-

face with existing software (e.g., the Dryad paper [22]

describes how a node can talk to a local SQL Server

process, and Spark jobs routinely invoke system binaries

such as ffmpeg), these systems do not take care of de-

ploying the existing code, worrying about how to move

the container in a way that minimizes bytes moved across

the network, etc. The user is responsible for loading the

necessary code and dependencies beforehand on a pool

of long-lived machines.

• gg is considerably lighter weight. In practice, attempts

to port workflow systems to support execution on cloud

functions (scaling from zero) have not performed well,

partly because of these systems’ overheads. Because of

its focus on transient execution, gg carries an order-of-

magnitude less overhead. For example, gg is 13× faster

at invoking 1,000 “sleep 2” tasks than Spark-on-Lambda

(Figure 7).

• gg supports dynamic data access (a function can produce

another function that accesses arbitrary data) and non-

DAG dataflows (e.g., loops and recursion). It does this

while remaining agnostic to the application’s program-

ming language. For example, gg has no language-level

API binding to launch a new subtask. (CIEL also allows

subtasks to spawn new subtasks, but requires use of its

Skywriting programming language to do this.)

Burst-parallel cloud functions. Researchers and practition-

ers have taken advantage of cloud-functions platforms to

implement low-latency, massively parallel applications. Ex-

Camera [15] uses AWS Lambda to scale out video encoding

and processing tasks over thousands of function invocations,

and PyWren [23] exposes a MapReduce-like Python API that

executes on AWS Lambda. Spark-on-Lambda [40] is a port of

Spark that uses AWS Lambda cloud functions. In contrast, gg

helps applications use cloud-functions platforms for a broader

set of workloads, including irregular execution graphs and

ones that change as execution evolves. gg’s main contribution

is specifying an IR that permits a diverse class of applications

(written in any programming language) to be abstracted from

the compute and storage platform, and to leverage common

services for dependency management, straggler mitigation,

and scheduling.

Build tools. Several build systems (e.g., make [13], Bazel [4],

Nix [11], and Vesta [19]) and outsourcing tools (such as

distcc [8], icecc [20], and mrcc [26]) seek to incremen-

talize, parallelize, or distribute compilation to more-powerful
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remote machines. Building on such systems, gg automati-

cally transforms existing build processes into their own IR.

The goal is to compile programs quickly—irrespective of

the software’s own build system—by making use of cloud-

functions platforms that can burst from complete dormancy

to thousands-way parallelism and back.

Existing remote compilation systems, including distcc

and icecc, send data between a master node and the workers

frequently during the build. These systems perform best on a

local network, and add substantial latency when building on

more remote servers in the cloud. In contrast, gg uploads all

the build input once and executes and exchanges data purely

within the cloud, reducing the effects of network latency.

3 Design and Implementation

gg is designed as a general system to help application devel-

opers manage the challenges of creating burst-parallel cloud-

functions applications. The expectation is that users will take

computations that might normally run locally or on small

clusters for a long time (e.g., test suites, machine learning,

data exploration and analysis, software compilation, video

encoding and processing), and outsource them to thousands

of short-lived parallel threads in the cloud, in order to achieve

near-interactive completion time.

In this section, we describe the design of gg’s intermediate

representation (§3.1), front-end code generators (§3.2), and

back-end execution engines (§3.3).

3.1 gg’s Intermediate Representation

The format that gg uses—a set of documents describing a

container and its dependency on other containers—is intended

to elicit enough information from applications about their

jobs (fine-grained dependencies and dataflow) to be able to

efficiently execute a job on constrained and stateless cloud

functions. It includes:

1. A primitive of a content-addressed cloud thunk: a

codelet or executable applied to named input data.

2. An intermediate representation (IR) that expresses jobs

as a lazily evaluated lambda expression of interdepen-

dent thunks.

3. A strategy for representing dynamic computation graphs

and data-access patterns in a language-agnostic and

memoizable way, using tail recursion.

We discuss each of these elements.

3.1.1 Thunk: A Lightweight Container

In the functional-programming literature, a thunk is a param-

eterless closure (a function) that captures a snapshot of its

arguments and environment for later evaluation. The process

of evaluating the thunk—applying the function to its argu-

ments and saving the result—is called forcing it [2].

For gg, our goal is to simplify the creation of new appli-

cations by allowing them to target the IR, which lets them

leverage the common services provided by the back-end en-

gines. Accordingly, the representation of a thunk follows from

several design goals. It should be: (1) simple enough to be

portable to different compute and storage platforms, (2) gen-

eral enough to express a variety of plausible applications, (3)

agnostic to the programming language used to implement the

function, (4) efficient enough to capture fine-grained depen-

dencies that can be materialized on stateless and space-limited

cloud functions, and (5) able to be memoized to prevent re-

dundant work.

To satisfy these requirements, gg represents a thunk with a

description of a container that identifies, in content-addressed

manner, an x86-64 Linux executable and all of its input data

objects. The container is hermetically sealed: it is not al-

lowed to use the network or access unlisted objects or files.

The thunk also describes the arguments and environment

for the executable, and a list of tagged output files that it

will generate—the results of forcing the thunk. The thunk

is represented as a Protobuf [31] structure (Figure 3 shows

three thunks for three different stages of a build process).

This container-description format is simple to implement and

reason about, and is well-matched to the statelessness and

unreliability of cloud functions.

In the content-addressing scheme, the name of an object

has four components: (1) whether the object is a primitive

value (hash starting with V) or represents the result of forcing

some other thunk (hash starting with T), (2) a SHA-256 hash,

(3) the length in bytes, and (4) an optional tag that names an

object or a thunk’s output.

Forcing a thunk means instantiating the described container

and running the code. To do this, the executor must fetch the

code and data values. Because these are content-addressed,

this can be from any mechanism capable of producing a blob

that has the correct name—durable or ephemeral storage (e.g.,

S3, Redis, or Bigtable), a network transfer from another node,

or by finding the object already available in RAM from a

previous execution. The executor then runs the executable

with the provided arguments and environment—for debug-

ging or security purposes, preferably in a mode that prevents

the executable from accessing the network or any data not

listed as a dependency. The executor collects the output blobs,

calculates their hashes, and records that the outputs can be

substituted in place of any reference to the just-forced thunk.

3.1.2 gg IR: A Lazily Evaluated Lambda Expression

The structure of interdependent thunks is what defines the gg

IR. We use a one-way IR, a document format that applications

write to express their jobs, as opposed to a two-way API (e.g.,

a function call to spawn a new task and observe its result)
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1 PREPROCESS(hello.c) → hello.i 2 COMPILE(hello.i) → hello.s 3 ASSEMBLE(hello.s) → hello.o

content hash: T0MEiRL

{ function: {

hash: 'VDSo_TM',

args: [

'gcc', -E', 'hello.c',

'-o', 'hello.i' ],

envars: [ 'LANG=us_US' ] },

objects: [

'VLb1SuN=hello.c',

'VDSo_TM=gcc',

'VAs.BnH=cpp',

'VB33fCB=/usr/stdio.h' ],

outputs: [ 'hello.i' ] }

content hash: TRFSH91

{ function: {

hash: 'VDSo_TM',

args: [

'gcc', '-x', 'cpp-output',

'-S', 'hello.i',

'-o', 'hello.s' ],

envars: [ 'LANG=us_US' ] },

objects: [

' T0MEiRL =hello.i',

'VDSo_TM=gcc',

'VMRZGH1=cc1', ],

outputs: [ 'hello.s' ] }

content hash: T42hGtG

{ function: {

hash: 'VDSo_TM',

args: [

'gcc', '-x', 'assembler',

'-c', 'hello.s',

'-o', 'hello.o' ],

envars: [ 'LANG=us_US' ] },

objects: [

' TRFSH91 =hello.s',

'VDSo_TM=gcc',

'VUn3XpT=as', ],

outputs: [ 'hello.o' ] }

Figure 3: An example of gg IR consisting of three thunks for building a “Hello, World!” program that represents the expression

ASSEMBLE(COMPILE(PREPROCESS(hello.c))) → hello.o. To produce the final output hello.o, thunks must be forced in order from

left to right. Other thunks, such as the link operation, can reference the last thunk’s output using its hash, T42hGtG. Hashes have been shortened

for display, and dependencies between thunks are shown in color.

because we expect the application will be running on the

user’s own computer, at some remote cloud-functions engine:

the intention is to avoid roundtrips over a long-latency path

by keeping the application out of the loop. We also envision

that it will be possible to better schedule and optimize a job,

and easier to maintain different interoperable back-ends, if the

application is out of the loop before execution begins.2 This

representation exposes the computation graph to the back-end,

along with the identities and sizes of objects that need to be

communicated between thunks. Based on this information,

the back-end can schedule the forcing of thunks, place thunks

with similar data-dependencies or an output-input relationship

on the same physical infrastructure, and manage the storage

or transfer of intermediate results, without roundtrips back to

the user’s own computer.

The IR allows gg to schedule jobs efficiently, mitigate the

effect of stragglers by invoking multiple concurrent thunks

on the critical path, recover from failures by forcing a thunk

a second time, and memoize thunks. This is achieved in an

application-agnostic, language-agnostic manner.

The application generally starts by forcing a single thunk

that represents the ultimate outcome of the interactive op-

eration. This thunk typically depends on other thunks that

need to be forced first, etc., leading the back-end to lazily

2Systems like the LLVM compiler suite [25] (which allows front-end

language compilers to benefit from a library of back-end optimization passes

and assemblers, interfacing through an IR) and Halide [33] (which separates

an image-processing algorithm from its schedule and execution strategy)

have demonstrated the benefits of a rigid representational abstraction in other

settings. gg’s use of an IR is not exactly the same as these, but it has a similar

value in abstracting front-ends (applications and the tools that help them

express their jobs) from back-end execution engines in a way that allows

efficient and portable execution.

force thunks recursively until obtaining the final result. Fig-

ure 3 shows an example IR for computing the expression

ASSEMBLE(COMPILE(PREPROCESS(hello.c))).

3.1.3 Tail Recursion: Supporting Dynamic Execution

The above design is sufficient to describe a directed acyclic

graph (DAG) of deterministic tasks executing in the cloud.

However, many jobs do not have a data-access pattern that is

completely known upfront. For example, in compiling soft-

ware, it is unknown a priori which header files and libraries

will need to be read by a given stage. Other applications use

loops, recursion, and other non-DAG dataflows.

An application may also have an unpredictable degree of

parallelism. For example, an application might detect objects

in a large image, and then on each subregion where an object

is detected (which may be zero regions, or might be 10,000

regions), the application searches for a target object. Here, the

computation graph is not known in advance.

Systems like PyWren [23] and CIEL’s Skywriting lan-

guage [27] handle this case by giving tasks access to an API

call to invoke a new task. For gg, we aimed to preserve the

memoizability and language-independence of the IR, which

is challenging if tasks can invoke tasks on their own and if gg

must expose a language binding. Instead, gg handles this sit-

uation through language-independent tail recursion: a thunk

can write another thunk as its output.

3.2 Front-ends

We developed four front-ends that emit gg IR: a C++ SDK,

a Python SDK, a group of command-line tools, and a series
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of model substitution primitives that can infer gg IR from a

software build system.

The C++ and Python SDKs are straightforward. Each ex-

poses a thunk abstraction and allows the developer to describe

a parallel application in terms of codelets. These codelets are

applied to blobs of named data, which may be read-only mem-

ory regions or files in the filesystem.

The model-substitution primitives extract a gg IR descrip-

tion of an existing build system, without actually compiling

the software. Instead, we run the build system with a modi-

fied PATH so that each stage is replaced with a stub: a model

program that understands the behavior of the underlying stage

well enough so that when the model is invoked in place of the

real stage, it can write out a thunk that captures the arguments

and data that will be needed in the future, so that forcing the

thunk will produce the exact output that would have been

produced during actual execution. We used this technique to

infer gg IR from the existing build systems for several large

open-source applications (§4.1).

3.3 Back-ends

gg IR express the application against an abstract machine

that requires two components: an execution engine for forc-

ing the individual thunks, and a content-addressed storage

engine for storing the named blobs referenced or produced

by the thunks. The coordinator program brings these two

components together.

Storage engine. A storage engine provides a simple inter-

face to a content-address storage, consisted of GET and PUT

functions to retrieve and store objects. We implemented sev-

eral content-addressed storage engines, backed by S3, Redis,

and Google Cloud Storage. We also have a preliminary im-

plementation (not evaluated here) that allows cloud functions

to communicate directly among one another, avoiding the

latency and throughput limitations of using a reliable blob

storage (e.g., S3) to exchange small objects.

Execution engine. In conjunction with a storage engine,

each execution engine implements a simple abstraction: a

function that receives a thunk as the input and returns the

hashes of its output objects (which can be either values or

thunks). The engine can execute the thunk anywhere, as long

as it returns correct output hashes that are retrievable from the

storage engine. We implemented back-end execution engines

for several environments: a local multicore machine, a cluster

of remote VMs, AWS Lambda, Google Cloud Functions, and

IBM Cloud Functions (OpenWhisk).

The coordinator. The main entry-point for executing a thunk

is the coordinator program. The inputs to this program are

the target thunk, a list of available execution engines and the

storage engine. This program implements services offered by

gg, such as job scheduling, memoization, failure recovery and

straggler mitigation.

Upon start, this program materializes the target thunk’s

dependency graph, which includes all the other thunks needed

to get the output. Then, the thunks that are ready to execute are

passed to execution engines, based on their available capacity.

When the execution of a thunk is done, the program updates

the graph by replacing the references to the just-forced thunk

and adds a cache entry associating the output hash to the input

hash. The thunks that become ready to execute are placed

on a queue and passed to the execution engines when their

capacity permits. The unified interface allows the user to mix-

and-match different execution engines, as long as they share

the same storage engine.

The details of invocation, execution and placement are left

to the execution engines. For example, the default engine for

AWS Lambda/S3 invokes a new Lambda for each thunk. The

Lambda downloads all the dependencies from S3 and sets up

the environment, executes the thunk, uploads the outputs back

to S3 and shuts down. For applications with large input/output

objects, the roundtrips to S3 could affect the performance. As

an optimization for such cases, the user can decide to run

the execution engine in the “long-lived” mode, where each

Lambda worker stays up until the job finishes and seeks out

new thunks to execute. The execution engine keeps an index

of all the objects that are already present on each worker’s

local storage. When placing thunks on workers, it selects the

worker with the most data available, in order to minimize the

need to fetch dependencies from the storage back-end.

The coordinator can also apply optimizations to the depen-

dency graph. For example, multiple thunks can be bundled

as one and sent to the execution engine. This is useful when

the output of one thunk will be consumed by the next thunk,

creating a linear pipeline of work. By scheduling all of those

thunks on one worker, the system reduces the number of

roundtrips.

Failure recovery and straggler mitigation. In case of co-

ordinator failure, the job can be picked up where it was left

off, as the coordinator program uses on-disk cache entries to

avoid redoing the work that has already been done. In case of

a recoverable error in executing a thunk, the execution engine

notifies the coordinator with the failure reason, where it can

decide to retry the job or pass it to another available execution

engine for execution.

Straggler mitigation is another service managed by the

coordinator program which duplicates pending executions

in the same or a different execution engine. The program

keeps track of the execution time for each thunk, and if the

execution time exceeds a timeout (set by either the user or the

application developer) the job will be duplicated. Since the

functions don’t have any side-effects, the coordinator simply

picks the output that becomes ready first.
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Local (make) Distributed (icecc) Distributed (gg)

Estimated SLoC 1 core 48 cores 48 cores 384 cores 384 cores AWS Lambda

FFmpeg 1,200,000 06m 19s 20s 01m 03s 39s 40s 44s ± 04s

GIMP 800,000 06m 48s 49s 02m 35s 02m 38s 01m 26s 01m 38s ± 03s

Inkscape 600,000 32m 34s 01m 40s 06m 51s 06m 57s 01m 20s 01m 27s ± 07s

Chromium 24,000,000 15h 58m 20s 38m 11s 46m 01s 42m 18s 40m 57s 18m 55s ± 10s

Figure 9: Comparison of cold-cache build times in different scenarios described in §5.2. gg on AWS Lambda is competitive with or faster than

using conventional outsourcing (icecc), and in the case of the largest programs, 2–5× faster. This includes both the time required to generate

gg IR from a given repository and then to execute the IR.

5.2.2 Baselines

For each package, we measured the start to finish build time

in four different scenarios as the baseline for local and dis-

tributed builds:

make, make (48): The package’s own build system was ex-

ecuted on a single core (make), and with up to 48-way

parallelism (make -j48). The make and make (48) tests

were done on 4-core and 48-core EC2 VMs, respectively.

No remote machines were involved in these tests.

icecc (48), icecc (384): The package was built using the

icecc distributed compiler on a 4-core client that out-

sources the job to a 48-core VM, or to eight 48-core VMs,

for a total of 384 cores.

5.2.3 gg’s Benchmarks

We conducted the following experiments for each package to

evaluate gg:

1. gg (384): The package was built with the same config-

uration as the icecc (384) experiment: a 4-core client

farming out to eight 48-core machines, using gg’s back-

end for a cluster of VMs.

2. gg-λ: The package was built on a 4-core client outsourc-

ing to AWS Lambda, using as many concurrent Lambdas

as possible (up to 8,000 in the case of Chromium).

For Chromium experiments, an additional standby EC2

VM acted as the overflow worker for thunks whose total

data size exceeded Lambda’s storage limit of 500 MB.

Throughout building Chromium, there were only 2

thunks (out of ~90,000 thunks) that did not fit on a

Lambda and had to be forced on this overflow node.

5.2.4 Discussion of Evaluation Results

Figure 9 shows the median times for the package builds. gg is

about 2–5× faster than a conventional tool (icecc) in building

medium- and large-sized software packages. For example, gg

compiles Inkscape in 87 seconds on AWS Lambda, compared

with 7 minutes when outsourced with icecc to a warm 384-

core cluster. This is a 4.8× speedup. Chromium, one of the

largest open-source projects available, compiles in under 20

minutes using gg on AWS Lambda, which is 2.2× faster than

icecc (384).

We do not think gg’s performance improvements on AWS

Lambda can be explained simply by the availability of more

cores than our 384-core cluster; icecc improved only mod-

estly between the 48-core and 384-core case and doesn’t

appear to effectively use higher degrees of parallelism. This

is largely because icecc, in order to simplify dependency

tracking, runs the preprocessor locally, which becomes a ma-

jor bottleneck. gg’s fine-grained dependency tracking allows

the system to efficiently outsource this step to the cloud and

minimize the work done on the local machine.

Figure 10 shows an execution breakdown for compiling

Inkscape. We observe two important characteristics. First,

the large spikes correspond to Lambdas that have failed or

taken longer than usual to complete. gg’s straggler mitigation

detects and relaunches these jobs to prevent an increase in

end-to-end latency. Second, the last few jobs are primarily

serial (archiving and linking), and consume almost a quarter

of the total job-completion time. These characteristics were

also observed in the other build jobs.

5.3 Unit Tests

To benchmark gg’s performance in running unit tests created

with the Google Test framework, we chose the VPX video

codec library [9], which contains ~7,000 unit tests. We anno-

tated each test with the list of required data files.

The Google Test library that is shipped with LibVPX is

only capable of running the tests serially. To establish a better

baseline, we used gtest-parallel, a program that executes

Google Test binaries in parallel on the local machine. We ran

the tests with 4- and 48-way parallelism and compared the

results with gg on AWS Lambda, with 8,000-way parallelism.

Figure 11 shows the summary of these results.

Using the massive parallelism available, gg was able to

execute all of the test cases in parallel, and 99% of the test
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6 Limitations and Discussion

gg has a number of important limitations and opportunities

for future work.

Direct communication between workers. Although com-

mentators have noted that “two Lambda functions can

only communicate through an autoscaling intermediary ser-

vice. . . like S3” [18], our experience differs: we have found

that on AWS Lambda, two Lambda functions can communi-

cate directly using off-the-shelf NAT-traversal techniques, at

speeds up to 600Mbps (although the performance is variable

and requires an appropriate protocol and failure-recovery strat-

egy). We thus believe that the performance of systems such as

ExCamera, PyWren, and gg is likely to improve in the future

as practitioners develop better mechanisms for harnessing this

computing substrate, including direct communication.

In follow-on work, we are developing a 3D ray-tracing

engine on gg, that will quickly render complex scenes across

thousands of nodes, where the scene geometry and textures

consume far more space than any individual node’s mem-

ory. To achieve sufficient performance, this will require low-

latency and high-speed communication between workers, mo-

tivating the use of direct network connectivity, instead of an

intermediate storage system such as S3 or Pocket [24].

Limited to CPU programs. gg specifies the format of the

code as an x86-64 Linux ELF executable. The IR has no mech-

anism to signal a need for GPUs or other accelerators, and effi-

ciently scheduling such resources poses nontrivial challenges,

because loading and unloading configuration state from a

GPU is a more expensive operation than memory-mapping a

file. We plan to investigate the appropriate mechanisms for a

gg back-end to schedule thunks onto GPUs.

A gg DSL to program for the IR. Currently, we have im-

plemented a C++ and Python SDK for users to express ap-

plications that target the gg IR. However, this requires the

user to explicitly provide an x86-64 executable and all of its

dependencies prior to thunk generation. We envision a lan-

guage in which users can write high-level code in Python or

C++, using primitives such as a parallel map, fold, and other

operations, which will be compiled into the gg IR.

Why cloud functions? Transient, burst-parallel execution

on services like AWS Lambda produces a different cost struc-

ture from a warm cluster. It takes about the same amount of

time for gg to compile Inkscape on AWS Lambda as on a

384-core cluster of warm EC2 VMs (Figure 9). The job costs

about 50 cents per run on Lambda, compared with $18.40 per

hour to keep a 384-core cluster running (Figure 2). Whether

it is financially beneficial for the gg user to run such jobs on

long-running VMs or on cloud functions depends on how

often the user has a job to run. From an economic perspec-

tive, the provider is compensating the infrequent user for their

elasticity; e.g., for having structured their workload to vacate

compute resources when no task is active, and to tolerate vari-

ations in the exact number of nodes available for a job and

the timing of when they are allocated.

In the future, we expect the performance characteristics of

VMs and Lambda-like services to move closer together. There

is no intrinsic reason for it to take more than 30 seconds to

provision and boot an infrastructure-as-a-service VM in the

public cloud. Linux itself can boot in less than a second, and

KVM and VMware can provision a VM in less than 3 seconds.

We understand the remaining time is largely “management

plane” overhead. If this can be reduced, then cloud functions

may hold no compelling advantage over virtual machines

for executing burst-parallel applications—but tools like gg

that aid efficient execution on remote compute infrastructure

(whether VM or cloud function) may remain valuable.

7 Conclusion

In this paper, we described gg, a framework that helps develop-

ers build and execute burst-parallel applications. gg presents

a portable abstraction: an intermediate representation (IR)

that captures the future execution of a job as a composition of

lightweight Linux containers. This lets gg support new and

existing applications in various languages that are abstracted

from the compute and storage platform and from runtime

features that address underlying challenges: dependency man-

agement, straggler mitigation, placement, and memoization.

As a computing substrate, we suspect cloud functions are in

a similar position to Graphics Processing Units in the 2000s.

At the time, GPUs were designed solely for 3D graphics, but

the community gradually recognized that they had become

programmable enough to execute some parallel algorithms

unrelated to graphics. Over time, this “general-purpose GPU”

(GPGPU) movement created systems-support technologies

and became a major use of GPUs, especially for physical

simulations and deep neural networks.

Cloud functions may tell a similar story. Although intended

for asynchronous microservices, we believe that with suffi-

cient effort by this community the same infrastructure is ca-

pable of broad and exciting new applications. Just as GPGPU

computing did a decade ago, nontraditional “serverless” com-

puting may have far-reaching effects.
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