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Developing Instructional Design Agents to Support Novice and K-12 Design Education
Introduction

Artificial intelligence (Al) and its potential to dramatically reshape areas of application has
drifted into and out of our public and academic discourse over several peroids'. With advances in
computing and cloud technology it has seen another revival garnering attention as Google’s
Alphago?, a simulated Go player, resoundingly defeated the most skilled human players,
personal assistants such as Siri or Alexa use natural language processing to respond to our
queries and commands over a bevy of electronic devices and the National Science Foundation
makes numerous proposal calls emphasizing Al applications, such as the Future of Work at the
Human-Technology Frontier® which seeks new vision and research into human-technology
partnerships.

The areas of design and education have also seen waves of interest in Al, from the use of Al-
powered design agents to assist designers in the design process within design research* to the
deployment of intelligent agents in intelligent tutoring systems to monitor and support students
learning in physics, math and other fields within education research’!°. To date, however, there
appears to be little work that addresses the union of these two bodies of work: how Al might
assist in design education. In light of the well-documented difficulties novice designers have in
learning and practicing design!!"'® and the increased interest in teaching design in K-12
classrooms'* and the limited experience many K-12 educators have with engineering education
and design more specifically'>"'® we propose instructional design agent’s, computer embedded
intelligent agents who can perform design practices or processes, as an approach for scaffolding
new and novice designers’ learning. Toward this end, we synthesize research on intelligent
agents in education and Al powered design agents to develop an instructional design agent
framework. This framework outlines the major components of these agents and the key
pedagogical and technological decisions that design educators and researchers need to make for
constructing an instructional design agent and associated curriculum. After presenting the
generic framework, we provide an early demonstration example, based on our ongoing work,
involving a set of instructional design agents that scaffold divergent and convergent design
search process in a solar farm design activity.

In design education, the growing use of computer-aided-design, including open-source platforms
like FreeCAD or other digital design environments (e.g'’), provide an opportunity for embedding
instructional design agents within these systems. For this work, we define intelligence and more
specifically artificial intelligence as the capability of a computer system to perform some activity
toward some goal in an uncertain environment'8. This is sometimes called performance
intelligence'®. For design, this translates to the ability of some computer system’s capacity to
engage in some part of the design process or design practices in an uncertain environment toward
some goal.

The paper is structured as follows. First, we review literature in Al-powered design agents,
henceforth called design agents, and intelligent agents in education. Next, drawing out key
insights from these bodies of literature and our initial efforts in developing design agents for



education, we present the instructional design agent framework and its core components.
Following this, we present a demonstration case of how the instructional design agents could be
implemented, briefly outlining our platform, the activity students engage in, a small pilot study,
results and discussion. Finally, we close with limitations, implications and future work.

Literature Review
Intelligent Agents in Education

An intelligent agent is an autonomous system that can sense and act on the given environment in
pursuit of its own agenda®’. There are four basic properties of an intelligent agent, it can: 1) run
without direct intervention of humans (i.e., autonomy), 2) communicate and interact with
humans and other agents (i.e., social ability), perceive the environment and respond to changes in
it (i.e., reactivity), and exhibit goal-directed behavior (i.e., pro-activeness>'). Furthermore, the
most important property of an intelligent agent is that the agent is conceptualized or implemented

using human-like concepts, such as knowledge, belief, intention, and emotion?!.

With capacity for reasoning, planning, natural language processing and other human intelligence
abilities, intelligent agents have been deployed in many domains to assist human’s work.
Education, where teachers and learners struggle to cover more material while meeting rising
expectations and standards, is a ripe arena for intelligent agents to have a large impact on the
practices therein. Following this, intelligent agents for education have been extensively
researched over the past three decades. Perhaps the most well established and popular
educational platforms that use intelligent agents are intelligent tutoring systems (ITS, e.g.
ITS are computer programs that provide individualized instructions to learners by
computationally or statistically modeling learners’ knowledge, cognitive or other related states
and contrast students’ states with an expert model of a given domain to provide appropriate
instruction'®2*. While not all ITS explicitly use intelligent agents, many ITS use agents for tasks
such as posing questions to students®, providing students’ feedback'%?%, and responding to

students’ questions?’.
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More specifically within the scope of engineering education, ITS have seen reasonable traction,
being used to teach several subjects such as circuits?®°, thermodynamics, software
engineering®!, computer-numerical control operations*? and several others**-*,

Intelligent agents can act in different roles within a learning environment. For example, agents
can be experts, mentors, and motivators®; learning companions>®; guides, and teammates®’.
Mentor is the most common role that intelligent agents assume. The mentor agent takes on the
characteristics or persona of a “person” who has advanced experience and knowledge and uses
these to collaborate with the students toward a shared goal®. Researchers have argued that, to be
a successful mentor, intelligent agents should have an appropriate persona, and control
pedagogical interventions with students™.

The vision of intelligent agents in education has shifted over the past several decades. Initially
the goal of these agents was to enhance domain knowledge and skills, which has gradually
expanded to incorporate the social aspects of human-agent interactions (e.g., motivation and



emotion®. Furthermore, the application of intelligent agents has extended to more knowledge
and skill domains over time. The earlier application focus on the well-structured domains (e.g.,
math*’), while newer works has expanded to ill-structured domains (e.g., leadership training and
decision making in stressful situations®’; strategic CAD skills*!).

Design Agents

Computationally encoding design intelligence, as exemplified by the ability to conduct design
practices or behavior, has been the subject of considerable research in design. Often design
intelligence is encoded into agents in a computing environment who then engage in some design
practice or behavior® . This review briefly outlines some of the common motivations behind
the development of design agents as well as providing a high-level overview of the software
architecture used in these systems.

A frequent motivation or target goal of design agent systems is to create intelligent assistive tools
for designers, often by having agents search a design space for solutions®** %46 These design
agent systems typically employ multiple agents, called multi-agent systems, which includes
multiple agents with the same role as well as differentiated roles across agents® **447 Some of
the roles design agents may take on include search/configuration agents that create solutions*>
4344 t0 evaluators that assess the performance of a generated solution***® to manager agents that
oversee and intervene in the design search®*. Multiple agents of the same type may be included
to perform similar actions on different aspects of the design, such as individual evaluation agents
that each evaluate a design based on one of a set of performance criteria*® or as an adaptive
population of search agents with different preferences>*.

These groups of design agents are then situated within a larger system which control their
integration and joint execution of some type of design practices or behavior. While the exact
details of the system architecture differ by research study or architecture model employed, many
models employ well-established artificial intelligence algorithms, such as variations the genetic
algorithms>***8 or simulated annealing®, at the system level.

Another way in which design agents have been deployed is to simulate human designers. These
design agents can be the subject of research studies in lieu of human designers, as there are often
constraints or limitations in studying human designers for a given topic. McComb, Cagan,
Kotovsky and colleagues have done considerable work in this arena and developed the
Cognitively Inspired Simulated Annealing Teams (CISAT)* and Heterogeneous Simulated
Annealing Teams (HSAT)* algorithms to represent design teams’ design behavior’®>!. The
CISAT algorithm employs a modifiable number of design agents who select a search direction,
generate, evaluate, and finally recommend or decline self-generated design solutions. CISAT
also incorporates several design behaviors into its agents such as asynchronous interactions with
other ‘team’ members and satisficing. HSAT is largely identical to CISAT, but incorporates
fewer design behaviors into its operations. These algorithms have been used in various
applications to simulate designers, for example, in°! CISAT was used to simulate a set of
designers who learned design operation sequences to improve their design and a set who did not,
to compare how the learning of sequences affected final design artifact performance.



A less common way in which design agents have been deployed is as instructional agents. Given
the paucity of work in this area, it is difficult discuss common patterns in architecture, but in
general these agents are more student facing, aiming to improve some aspect of learning in
design projects*!>2. For instance, Hu and Taylor*! modified the open-source computer-aided-
drafting (CAD) platform, FreeCAD, to include an intelligent tutoring system, which acts as an
agent, to assist students in the operations needed to make specific geometric objects. The system
or agent exhaustively analyzes the potential operation sequences to make some geometric object
students are tasked with creating and when students diverge from creating the object, it suggests
multiple routes for putting their design on track. By offering multiple routes for correcting their
design, the agent aims to teach strategic flexibility or the ability to identify and execute multiple
creation routes for a designed object.

What this paper contributes

In this manuscript, we build on two streams of work. First, we draw on intelligent agents and
intelligent agents in education including the notion of what agents are, what roles agents might
portray and what agents can provide to students in educational settings. Second, we draw on
computational design including the architecture of design agents, the types of design intelligence
that has been computerized and what design agents can provide designers. These lines of work
are integrated to propose instructional design agents which can help scaffold key challenging
parts of the design process or design practices to assist early or novice designers in getting
exposed to and starting to learn how to design.

Learning design can be challenging for novice or early designers for an array of reasons; we
briefly highlight a few central reasons here. First, design problems are often ambiguous'! and
may have a high degree of uncertainty>>. Second, most designers and especially novice designers
will be limited in their knowledge of the problem or capacity to evaluate all possible solutions or
considerations, a condition sometimes called bounded rationality>*. Importantly, even a relatively
simple design problem may have a design space beyond what an individual designer can
exhaustively explore. A third challenge arises in that research has identified that designers often
fixate® on certain design features or design artifacts early on, leading them to stick with less
promising designs despite mounting evidence of their limitations. These few points, while far
from exhaustive illustrate some of the challenges facing novice designers: it can be difficult to
find a heading or navigate through design problems; designers will have to learn and modify
their strategy throughout the process and designers will need to recognize and mitigate practices
that may inhibit their ability to find promising design solutions. For these reasons and others,
design agents may be able to support novices in learning and developing as designers.

In the next section we elaborate on these instructional design agents through a tripartite
framework encompassing the role of agents, the role of students and the interactions between the
two.

Instructional Design Agents Framework

Instructional design agents are agents in a computer environment who encode some segment of
design intelligence, such as the ability to conduct some part of the design process or some design



practices, for the purposes of helping students learn design or educators teach design. They are
deployed in design challenges or projects as is common for learning design. Instructional design
agents do not replace the typical curricular or project structure of design learning in the
classroom; instead they are woven in with the larger instructional design. Thus, the framework
presented here will discuss both the design instructional design agents and curriculum/project in
which they are embedded. It is important to note given the complexity of developing and
integrating instructional design agents into design projects, early implementations may rely more
on the curricular/project structure to frame and scaffold the agents. As the instructional design
agents and curriculum evolve, more of these responsibilities may be incorporated into the agents
themselves.

In applying the instructional design agent’s framework, design educators should start by
considering what they want their students to learn about design. Educationally speaking, the
instructional design agents within this framework act as an educational scaffold or means to
support less experienced students to successfully engage and complete an activity they might
otherwise be unable to complete®®. While scaffolding originally referred functions performed by
experts or teachers, it may also be performed in technology-supported learning environments>’.
Therefore, in addition to identifying the parts or scope of design an educator wants to introduce
students to, they should additionally consider how the instructional design agents might assist
students in navigating and completing the design challenge. The rest of this section will delineate
the major considerations needed to setup this scaffolding.
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Figure 1: The Instructional Design Agent Framework

In order to realize the implementation of instructional design agents in design projects, there are
three pedagogical and associated technological decisions to consider: the role of the agents, the
role of the student and the interactions between agents and students. Collectively, these form a
tripartite framework for implementing instructional design agents, graphically depicted in Figure
1. In the figure, both the instructional design agents and student are responsible for sections of



the design process or respective design practices. Note that the design processes depicted in the
figure are generic; there are many ways to operationalize or conduct the design process® and this
model can be flexibly applied to these different processes. In the rest of this section, we address
each component of the framework by defining them and outlining the key curricular and
technological decisions educators will need to consider. An overview of the following three
sections is provided in Table 1.

Table 1 Instruction Design Agent Framework Components and Key Decisions

Instruction Design Agent’s Role e What design intelligence will the
agents embody

What roles will the agents assume
How many agents will there be

Level of scaffolding in interaction
What type of interaction

Interaction with multiple agents
Scope of student’s responsibilities for
the design challenge

Human-Agent Interaction

Student Role

Instructional Design Agents Role

What is the role of an instructional design agent? The instructional design agent’s role can be
defined as the set of responsibilities and activities that fall within an agent’s intended purpose,
which when viewed holistically, demarcate its position or part to play within the design
challenge.

In light of this definition, we turn to three points of consideration needed to develop this role:
what design intelligence will the agent(s) embody, what specific types of roles will the design
agent(s) assume and how many design agents should be employed.

We discuss the design intelligence agents embody first, as this has implications for the other
decisions about the agent’s role(s). There many ways in which intelligence can be defined or
measured'’, however one way in which it can be defined is as the capacities or the tasks some
system (whether biological or computational) can complete or learn to complete to address some
goal'® %% In this context, this can be translated to a systems capable of performing some set of
design practices or parts of the design process toward some goal. The design practices an
instructional design agent perform are a direct reflection of its responsibilities within its role and
the larger design challenge or project. Note also that this is a definition of domain-specific
artificial intelligence or weak AI°°, where the domain is the area of design education.

Past work on design agents in the broader design literature have developed systems capable of
performing different design practices. Two common design practices these agents engage in are
detailed search or optimization of a relatively well-defined design-space (e.g., °') and a more
conceptual search of design alternatives where constraints are open to change, leading to
searches across different parts of the design space (e.g.**). Note, in practice there are many
similarities in between design agents across these two areas of design behavior. Computationally,



both genetic algorithms*® and simulated annealing***® have been used to partially or completely
structure design agents’ behavior for these two search practices. Briefly, genetic algorithms
metaphorically evoke evolutionary concepts to structure the search of a design space, typically
creating a ‘generation’ of designs, testing them against some objective, keeping the fittest and
using those remaining to create a new generation. This process is performed iteratively to
identify promising design alternatives. Simulated annealing metaphorically evokes the annealing
process in metallurgy to structure the search of a design space, starting at a high ‘temperature’
where there is a greater likelihood of generated designs being accepted for consideration and
slowly ‘cooling’ or decreasing the rate of acceptance, allowing better performing designs to
displace others. These two approaches illustrate ways in which design intelligence, as the
capacity to perform design practices or behaviors, can be embodied by design agents and by
extension instructional design agents.

While these two common approaches for computerizing design intelligence enable instructional
design agents to engage in a variety of design practices or behaviors, they are limited in how
much of the design process can be encapsulated or enacted by instructional design agents.
Therefore, in addition to directly extending research on design agents into design education,
there are also many opportunities for pursuing new avenues to embody design intelligence in
instructional design agents. This holds the promise of diversifying and expanding the potential of
how instructional design agents could assist early or novice designers in learning design. For
example, drawing inspiration from*® use of searchable design component database for their agent
system, a smart query agent could be constructed that returned a list of promising components
emphasizing different trade-off considerations for detailed design or modeling. A component
trade-off agent like this could help students to continue to explore, refine and optimize their
design even after several decisions have been set. Another example could involve an agent that
employs neural network techniques that map features of a states across a design space and
transformations to that design states, similar to design heuristics®!, and use this network to
recommend a transformation to designers when they are unable to progress. Such an agent could
furthermore ‘learn’ from designers’ feedback about whether recommended transformations were
useful or not. A heuristic design agent like this could help novice designers escape fixation or
design dead-ends and encourage more divergent thinking®2.

The design practices an instructional agent engages in form the foundation of the role the
educator intends the agent to enact.

The next point of consideration asks what specific type of role should instructional design agent
take in the design challenge? To some degree, an instructional design agent’s role is constrained
by the types of design practice or practices it engages in. However, it is also possible that an
agent with capabilities in some design practice could implemented to take on several roles. For
example, one of the most common roles intelligent agents in education take on is the role of
mentor®®. An instructional design agent could act as a mentor by demonstrating good design
practice or guiding a novice designer through challenging parts of the design process. Other
potential roles in design could be coequal team members, junior team members or even rivals
depending on the scenario.



The role an agent takes on need not be only be framed or structured by the design practices it
takes. The curriculum or instructional material for the design project can help frame the design
agent because making the agents state and goals clear to the student is critical for human-agent
interaction®’. For example, by introducing, the agent and textually or pictorially depicting its
specific role in the project. Particularly in early development of an instructional design agent,
curricular or instructional framing of the agent may be especially useful as the curriculum and
technology are likely still developing.

The specific type of role an agent is should address the design educator’s goals for what students
should get out of the activity and is realized both through its encoded design practices and its
interactions with students.

The third consideration for the instructional design agent’s role asks how many instructional
design agents should be incorporated into the design project? This decision relates to what kinds
of design practices the agents are responsible for as well as the specific roles they assume.

In terms of the design practices agents are responsible for, this can affect the number of
instructional design agents needed in several ways. First, one component of determining how
many agents should be employed relates to the scope of the agents. For example, in the design
literature reviewed previously some work looks to define agents with a small, focused scope,
such as the single function agent (SIFA) framework (e.g.**), where agents have one central
function and a focal parameter or design object. A SIFA may provide advice to other agents
about a single parameter of a design. On the other end of the spectrum, in the CISAT platform*
agents are responsible for several functions and design variables, resulting in agents with a
broader scope. Here, CISAT agents generated full design artifacts, evaluated them and stored or
discarded them. While the nature of the agent’s internal architecture is a technical decision that
may not affect students, those agents that are student-facing, i.e. those that students directly
interact with, may better operate with a broader scope, lest students get overwhelmed or
confused interacting with a voluminous number of agents responsible for a microscopic level of
design actions. An exception to this is if the instructional design agents intended responsibilities
are small in scope; then an approach like SIFA** would be preferable.

A second way in which the design practices may affect the number instructional design agents is
in the number of larger design practices (which may be composed of several functions) an
educator wants agents to engage in. While the practice of searching a design space for new ideas
may well be encapsulated by a single agent, if structure of the activity also employs an agent for
offering suggestions when designers are stuck, this suggestion agent may be better implemented
as a separate agent to make their roles clearer to the student. Finally, similar to how personas are
used represent different types of users or customers for product design®®* instructional design
agents can have different persona’s reflecting different ways in which designers may approach
some practice. This could also lead to having more design agents. For instance, a suggestion

agent could rely on different sets of heuristics to recommend to a designer when they are stuck.

In addition to what and how many design practices are encoded in design agents, their specific
roles can affect how many design agents should be deployed. While a mentor may act as a single



agent, team members may well be represented by several agents. Furthermore, instructional
design agents who act as team members could embody different design personas to offer a
novice designer a broader suite of virtual designers to interact with.

Thus the number of instructional design agents employed in a design challenge depends on what
type and how many design practices an educator wants them to scaffold as well as considerations
of the specific types of roles they assume.

Interaction between Instructional Design Agent(s) and Student(s)

The interaction between instructional design agents and students can be defined simply as the
exchange of ideas, information or design components between these two parties in the design
challenge.

The three points of consideration for the interaction between design agents and students are how
scaffolded is the interaction, what type of interaction do they have and how are these interactions
handled if there are multiple instructional design agents.

The way in which instructional design agents interact with students is central to determining how
and to what degree students are scaffolded in the design challenge. Turning first to the degree of
scaffolding the type of interaction, these can range from highly to minimally scaffolded
depending on the level of assistance an educator wants to provide. For instance, take an ideation
agent acting as a mentor. In a highly scaffolded interaction, this ideation agent could generate a
broad selection of designs with critical design variables laid bare to showcase the depth of the
design space to a student. That same agent in a minimally scaffolded interaction could provide
suggestions in the form of design heuristics to designers only when they are stuck or specifically
request for help, instead of automatically.

Next, turning to how students and instructional design agents might interact, the literature for
intelligent agents in education, particularly ITS, demonstrate a wide variety of modes such as
answering students’ questions®’, posing questions to students* and providing students’
feedback!®2°. It is worth noting, however, many of types of interactions prevalent in the
intelligent agents for education literature stem from environments focused on developing
foundational domain knowledge such as physics® % or math® %7 which may not always map to
design education—particularly if learning goals aim toward design thinking or design cognition.
Nevertheless, some of these are reasonably transferable to system built for design education such
as giving feedback on students’ artifacts instead feedback on their answers to questions or
answering questions about science concepts as they relate to design variables of interesting>>.
There are also opportunities for developing new interaction modes between students and agents
more appropriate to learning design such as agents who generate a list of alternative components
or designs for students to consider or offer strategies for overcoming fixation. The type of design
practice agents engage in, what type of role they assume and how they interact with students’ are
all interrelated and mutually shape each other, however it’s not clear if they all have a one-to-one
correspondence. Thus, there is flexibility in how these components may be integrated within
instructional design agents and considerable room for research and innovation in this space.



Similar to the type of role instructional design agents assume, the curriculum or instructional
material can help frame or reinforce the interaction between students and agents. For example,
design logs in the project might contain a set of prompts for students to rank or explicate trade-
offs on a list of design alternatives suggested by an agent. By selecting instructional design
agents’ design practices, role type and interaction type, different parts of the design process can
be scaffolded to greater or lesser degrees for novice designers, enabling numerous configurations
for design challenges students may participate in.

A final consideration under the human-agent interaction concerns how interactions are handled
with multiple instructional design agents. When there are more than one instructional design
agents, it will need to be decided if there will be any coordination or interaction among design
agents themselves. If instructional design agents will need to coordinate in order to interact with
the student, scaffold the design challenge or other reason(s) this may require a higher level of
abstraction in the code architecture for controlling interaction such as manager agents (e.g.’) who
oversee agents’ actions or more of the overall process. Creating instructional design agents who
are more responsive or reactive to changes in their environment, including the actions of other
agents, would make instructional design agents closer to the definition of intelligent agents in
terms of reactivity and social ability?!.

Student’s Role

Students role, defined abstractly, is very similar to the instructional design agent’s role. Here,
student’s role can be defined as the set of responsibilities and activities that they are expected to
engage in for the project, which when viewed holistically, demarcate their part to play within the
design challenge. For students, however, they have a dual role as both designers and learners. As
design challenges or projects fall under the broad umbrella of project-based learning, they have
an emphasis on creating authentic, practice-oriented learning environments®? leading to student’s
role as designers and learners being tightly interconnected.

The primary point of consideration for this part of the model pertains to the scope of student’s
design process or design practices the educator intends them to participate in.

The scope of student’s design process or practices for a particular design challenge reflects what
the educator hopes students will learn through direct design experience. More novice or younger
designers may be presented with simpler or more constrained design problems while more
informed designers'! may be presented with more complex and less constrained design
problems. Unlike the first two parts of the framework, this part is well established in the
education and design education body of knowledge. One additional consideration under student’s
scope of design practice is whether the parts of the design process they are responsible for will
mirror or complement what the instructional design agents perform. For instance, if the
instructional design agents are implemented as team members, the student and design agents may
coordinate on the same design practices, such as collectively generating design concepts, similar
to how an all-human design team would function. In another example, if an educator wants to
scaffold novice designers experience with challenging steps of the design process, design agents
may perform these parts of the design process instead of students, as depicted generically in



Figure 1. Following this, the interaction between a design agent and a human designer allows for
their respective design responsibilities to be complementary.

Demonstration of an Instructional Design Agent System

Now that we’ve presented a more general framework for instructional design agents, we turn to a
demonstration of it in the form of the system and associated curriculum we’ve been developing
over the past year. Our initial work developing these agents, as well as the synthesis of intelligent
agents in education and design agent’s literature served as the critical foundation for abstracting
out and realizing the instructional design agent framework. Now in turn, this framework assists
us in pushing our particular system forward. This project is still in early stages of development,
so we present results from pilot run of a design challenge focusing on divergent and convergent
design search strategies.

In what follows, we first present the platform used for the activity and provide a general
discussion of the instructional design agents embedded within it. Next, we present the specific
design challenge and how the design agents were configured in the challenge, relating this to the
instructional design agent’s framework. Following this, we briefly review the study context, data
collection and methods of analysis. The results are presented afterward, highlighting how
students interacted with two instructional design agents and their perceptions of the agents and
the agents’ design assistance, followed by a brief discussion. The paper concludes with overall
implications, limitations and future work under the banner of instructional design agents.

Design Platform

Energy3D is a computer-aided-design (CAD) platform which covers the design of buildings,
photovoltaic systems and concentrated solar power systems®®. For example, Figure 2 displays a
solar farm that was built in Energy3D. In addition to allowing for the design of these systems,
the platform has its own physics engine used to simulate the sun and leverages weather data from
across the globe to perform several types of analysis including photovoltaic and concentrated
solar power annual and daily kilowatt hour (kWh) production and building annual and daily
energy consumption. Energy3D also features a design-action focused data-logger, which
captures everything from designer’s transformations to the design object, analysis actions and
use of Energy3D platform controls (e.g., view-controls).

Recently, we have extended Energy3D to include agents empowered by one or more genetic
algorithms, an approach discussed in the framework section, to search through a design space for
design alternatives. In this section we reserve our discussion of these agents to an abstract
overview as they may be employed in different configurations across design challenges.

At the broadest level these design agents engage in design search practices or processes. In their
current form they have been constrained to search over a small numbers of design variables as
we develop the system. One of these design agents takes an input, such as a current solar rack
within the CAD scene a user is viewing and conducts a search by creating multiple versions of
that design, testing them against some objective, keeping those that perform well and iterating
through this process n many times. This ensures the agents will find a better or equivalent



performing design every time. Once the search is complete, a summary like the one displayed in
Figure 3 is displayed. This shows the starting state for a design’s variables and performance and
the subsequent design the agent identifies. The tabs on the lower part of the window allow the
designer to review how the design variables evolved over ‘generations’ or iterations of the
genetic algorithm. By changing parameters to design agents search, such as how many
alternatives they consider or how much variability there is to newly derived alternatives, these
design agents may assume different design persona’s or design strategies to searching a design
space.

Design Challenge: Divergent-Convergent Solar Farm Design

The design challenge asks students to design a solar farm in Energy3D with the assistance of two
design agents, Bob and Carol. The goal is to design a solar farm that can generate maximum
profit, with a minimum target of at least $100, in the peak of summer in New England.

Figure 2: An Example Solar Farm

Designers must manipulate three design variables to improve their solar farm: the tilt angle of a
solar panel, the rows of solar panel per rack, and the spacing between adjacent racks. While the
design space is constrained to three variables, the variables are interrelated and produce an
uneven performance landscape across the design space, eluding simple rules or calculations for
an optimal configuration. The design challenge is structured as a divergent-convergent search for
a better performing solar farm®. The first part focuses on create diverse set of design
alternatives. The second part focuses on optimizing promising candidates to identify a more
optimal configuration.
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Figure 3: Example Design Agent Feedback

Table 2 Scaffolding A Divergent-Convergent Design Process

Instructional Design Agent’s Role Bob: Team member who conducts an
exploratory search of the design space

Carol: Team member who conducts a focused
improvement on a small number of design
alternatives

Human-Agent Interaction Bob: Share several different preliminary
designs emerging from supplied baseline
design

Carol: Improve or refine an existing design
provided by student

Student: Provide Bob with baseline for
diverging and Carol with an advanced design
for refinement.

Student Role Student: Performs parallel design
practices/processes with instructional design
agents, diverging at first and then converging
toward an optimal design. Log agents and
their own designs, submit their final design.




In design, understanding that a design space may contain several promising designs and no
transparent route for identifying the best candidates can be difficult to apprehend for those new
to design. A divergent-convergent search process is one method for navigating such a space.
However, both of these processes can be difficult. A broad swath of research and design methods
have targeted increasing ideation or exploration of new ideas in design®-% to address challenges
designers have diverging. At the same time designers have a tendency toward satisficing’® or
selecting a ‘good enough’ solution once found, which raises challenges with convergence.
Therefore, we sought to scaffold these two design practices with instructional design agents.

Table 2 outlines how this activity maps to the instructional design agent framework. Designers
work with two agents who act as team members, Bob and Carol. Bob performs a more
exploratory search at the beginning of the design process and Carol assists in refining a design
alternative in the second part of the challenge. The student designer performs these actions in
parallel; first conducting their own divergent search and then receiving suggestions by Bob. A
design log gives the designer space for capturing their own designers and suggestions from Bob.
After reviewing these design alternatives, the designer picks a subset of promising alternatives to
refine. The designer makes a first attempt to improve the design, and then asks Carol for further
improvements. Students are encouraged to iteratively refine their design with Carol, such as
identifying changes Carol makes and further improving these to optimize the design further.
Students receive either exploratory or refined alternatives in the same format as displayed in
Figure 3.

Study Context and Methods

A pilot study was conducted at a mid-sized university in the southeastern United States. A
convenience sample of eighteen junior or senior engineering students participated. Most reported
mechanical engineering as their major, with one reporting a sub-focus within mechanical. There
were sixteen males and two females. Twelve of the participants were white, two were African-
American, two were Asian or Pacific Islander, one Native American and one who preferred not
to answer.

Students used Energy3D to complete the Divergent-Convergent Solar Farm activity outlined
above. Two forms of data were collected. First, each student completed a design log that
prompted them to record their designs as well as recommendations from the instructional design
agents. Additionally, the design log had prompts for designers to record their reasoning behind
key decisions and what design strategies they employed. In particular, the design log asked them
to explain their reasoning for selecting a subset of designs to carry into the convergence process
and for their strategy for optimizing their design. These questions were covertly intended to also
measure Bob and Carol’s impact on their design decisions and strategies. Second, students’
interactions with Energy3D were logged in the background, such as when they called the Al or
changed parameters of their design.

Analysis for this demonstration consists of descriptive reporting of students’ and Bob’s divergent
search as well as highlighting illustrative cases of students interacting with Bob and Carol.
Furthermore, we conducted a thematic analysis’! on students reasoning behind their selection of



promising designs and reported design strategies, with an emphasis on how Bob and Carol
influenced both of these.

Demonstration Results

The results first cover students’ interactions with and perceptions of Bob’s influence on their
design process, followed by a presentation of students’ interactions and perceptions of Carol’s
influence on their design process. For Bob, we first report descriptive results about the range of
design space exploration students and Bob engaged in, followed by some illustrative examples.
We close with a look at students’ perceptions of Bob’s influence on their decision to carry
forward designs to the convergence stage.

Table 3 Average Search Range of Students and Bob

Inter-row Spacing Tilt Angle SP Per Rack
Students 1.33 15.39 1.65
Bob 1.55 30.93 1.77

Table 3 displays the average search range across the three design variables for all students as
well as Bob’s suggestions across all students. Individual ranges reflect those reported in each
student’s design log. Absolute values are used to account for negative values a tilt angle may
take. Note that the feasible range for inter-row spacing (measured in meters) and solar panels per
rack is approximately 1-10 and 1-6, respectively.

Student 9 and Bob's Divergent Search

4 Bob
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Rows per Rack
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Figure 4: Student 9 and Bob's Search



Student 10 and Bob's Divergent Search
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Figure 5: Student 10 and Bob's Search

While the feasible range for tilt angle is -90 to 90, the realistic range is narrower. From Table 3
the search range of Bob was slightly greater than even fairly advanced students’ on average for
inter-row spacing and solar panels per rack. Moreover, Bob’s average search range was
considerable greater than students on tilt angles.

To illustrate the relationship between students and Bob’s divergent search, we present two
exemplar cases. In the first case, student 9 generally searched across a wider range than Bob,
whereas in the second case, student 10 generally searched across a narrower range than Bob.
Note that prior clinical trials revealed that students often struggled to come up with more than
five divergent design alternatives and this process, combined with logging in their journal
required considerable time from students. Therefore, students are asked to generate three
designs, whereas Bob generates five, as depicted in the figures.

Turning to student 9 first, Figure 4 displays a 3D scatterplot of Bob and student 9’s design
alternatives. Across the x-axis, representing tilt angle it can be seen that student 9°s designs
stretch over a greater range than Bob’s and both show some variation across inter-row spacing.

On the other hand, the 3D scatterplot for student 10 and Bob in Figure 5 shows student 10 design
alternatives varying across tilt angles with Bob’s alternatives stretching beyond these tilt angles
as well as presenting designs of greater and fewer solar panels per rack. The range of Bob’s
search space seems to encompass most of students 10’s search.



Lastly for Bob, we report on a thematic analysis of students’ responses to a question in their
design log which asked them share their reasoning and motivation for selecting a certain subset
of designs to carry forward. A majority of students indicated that the performance of their or
Bob’s design was the primary factor in selecting a given set of designs to optimization. Aside
from this, two other themes emerged. First, a few designers explained that Bob’s designs were
different than their own and that these designs outperformed their own or appeared to be a
promising direction to explore the design space. For instance, student 10 contrasted one of
Bob’s designs with his own, stating: “...Bob’s 5" design has a more drastic angle, so it might be
good to experiment with that.” And student 13 wrote “I chose Bob Design 4 because it had just a
minimal angle. I think small angle will work well for this application because small angle means
we can max out the amount of panels because there will be less issue with them overshadowing
each other.”

A related but broader reflection about Bob’s designs was made by a few other designers. They
noted that Bob produced a large variety of designs from which they could sample. These students
put less emphasis on the immediate performance of Bob’s design alternatives and instead
focused on the variety. For instance, student 15 states: “I then chose Bob’s designs 4 and 5 even
though they are not the most efficient ones... because they are two different approaches of Bob
considering tilt angle, number of rows per rack and distance, so they might yield different results
in the next iterations.”

The results now to turn to students’ interactions with Carol and reflections on how her
suggestions may or may not have affected their own design strategy. Unlike Bob, students
seemed less clear on how to leverage Carol to advance their design. Students sometimes
submitted early designs to Carol instead of their subset of designs from the divergence stage or
abruptly dropped designs entirely instead of iteratively optimizing a design. Therefore, there is
less to report for students’ interactions with Carol. We first report on some examples of how
students iteratively refined their design with Carol and close the section with an analysis of
students’ perceptions of how Carol may or may not have influenced their design strategy.

Table 4 Student 12 and Carol’s Third Refinement

Carol Student 12
Tilt Angle -18.56 -14.5
Solar Panels Rows per Rack | 4 5
Inter-row Spacing 3.49 4
Profit $101.98 $113.34

Turning first to illustrative examples of Carol and students interacting, Table 4 displays student
12 and Carol’s interaction after Carol’s second suggested refinement. Now starting their third
revision cycle, student 12 tried several small changes to their solar farm, slightly adjusting the
title angle and solar panel rows per rack until arriving at a better performing configuration.
Student 12°s small adjustments were captured in their design log. With these changes they were
able to improve notably on Carol’s recommended change, leading to a further refinement of their
solar farm.



Table 5 Student 3 and Carol’s Third Refinement

Student 3 Carol
Tilt Angle -5 -7.02
Solar Panels Rows per Rack | 5 5
Inter-row Spacing 4.66 4.66
Profit $98.19 $98.28

In contrast to Table 4, Table 5 starts with student 3’s second iteration, followed by Carol’s
recommendation. Based on student 3’s solar farm, Carol returns a slightly improved design. The
improvement is marginal, producing only a few cents more than student 3’s design, despite there
being considerable room for improvement. In this example, Carol is unable to find any stronger
improvement.

In their responses to the design log prompt about their design strategies, many students reported
adjusting one parameter at a time as their primary strategy for refining their design. Additionally,
a few students expressed surprise at changes Carol made to the design, explaining her changes
were more dramatic than they expected or in a direction they were not considering. For example,
student 7 stated “Carol showed me that I needed to make more drastic changes to my design
instead of trying to fine-tune the small details” and student 15-2 shared “The way Al thought in
the last revise was much different to what I was thinking.” Although this stage was intended as a
convergence stage both Carol and student’s saw opportunities for changes beyond small
calibration tweaks. A more conservative theme emerged from a few other designers who
described carefully watching changes Carol made to the solar farm and using her
recommendations for further adjustments. For instance, student 11 shared that they revised their
design by “Setting values lower or higher than Carol’s design and revising from there.” This set
of students did not mention any surprising or pronounced changes from Carol, suggesting their
revisions may have been on a smaller scale.

Discussion of Demonstration

A number of observations can be made from this pilot study for scaffolding divergent-
convergent solar farm design. First, Bob shows some promise as an instructional design agent.
On average, his range of designers were near or exceeded the range of designs explored by this
set of relatively more experienced junior and senior engineers. For designers who are unsure of
promising directions in the design space, Bob was able to generate a variety of designs for them
to consider. It is important to note that Bob’s range was larger on average while simultaneously
always representing an improvement or the same performance in design, which may not always
hold for students’ exploration. In their written responses to how they decided to select a subset of
design alternatives to carry into the convergence stage, some designers reported seeing
unexpected designs from Bob while others emphasized the variety of designs Bob generated. In
both ways, Bob helped scaffold students’ exploration of the design space.

Second, Carol’s interaction with students was more mixed. Many students continued to explore
different design possibilities or did not advance the designs they had selected from the first stage.
Students who did attempt to revise their designs were sometimes able to gain something by



adjusting Carol’s design, but sometimes Carol returned design alternatives with minimal
improvement. This particular point represents a challenge we faced in selecting an appropriate
search strategy for Carol. While a longer search would likely ensure at least a modest
improvement to recommend to students, this would also inhibit the design process as students
would have to wait longer for Carol to recommend something.

Third, a more general point, is that students sometimes observed ideas from Bob and Carol and
other times seemed to pay less attention to their suggestions. In the spirit of design and authentic
project-based learning we sought avoid making an overly guided design challenge, however, in a
challenge scaffolded by instructional design agents, it is important for students to learn and
reflect on their interactions with the agents. In other work with intelligent agents, some
researchers have focused on humanizing agents to make them more relatable and increase
students recognition and interaction with them®72. These are often called pedagogical agents.
This may be a promising route for future development of our instructional design agents.

The results presented here demonstrate the feasibility of using instructional design agents to
teach a divergent-convergent design process, while noting some difficulties particularly with
scaffolding the convergence process. We have begun to revise this part of the activity due to
student confusion, removing some of the documentation and making the flow of the activity
clearer, with future tests of the activity planned. More broadly, this demonstration shows some
preliminary evidence that the instructional design agents framework may work to help scaffold
inexperienced and novice designers’ introduction and exposure to the design process.

Conclusions, Limitations and Future Work

The work presented in this manuscript has some important limitations. The project demonstrated
here is early in development and needs further refinement. The population studied was a
convenience sample for testing and developing our instructional design agent system; the activity
and system itself needs to be run with less experienced designers in K-12 settings and early or
first year engineering students to fully understand its affordances and limitations as a means of
scaffolding design education. At a broader level, more work is needed to identify the strengths
and weaknesses of the instructional design agent framework proposed here, including the depth
of design challenges it can support. It should be acknowledged that implementing an
instructional design agent system will require dedicated time and effort and may be best handled
through collaborative partnerships between researchers, teachers and developers, where possible.

This work proposed the instructional design agents as a means for scaffolding the challenges
early and novice designers have in learning this complex set of practices, strategies and
processes. The instruction design agent framework was introduced to delineate the core
pedagogical and technological components of these agents the kinds of decisions design
educators and researchers will need to consider in creating such agents. Ongoing work in
developing design agents for a solar farm design challenge was used to demonstrate how these
agents might support students divergent and convergent search processes. Pilot results indicate
the divergent agent has some positive affect while the other, convergent agent is more mixed.
This provides some initial evidence that design agents may be a useful way to scaffold students’



design learning but also points to challenges in properly calibrating design agents to assist
students, encouraging student interaction with agents, integrating agents and associated
curriculum and the need for developing other types of agents in other design contexts.

In future work we aim to continue to revise the divergence-convergence activity reported here
and start running the activity with collaborators in early engineering programs as well as high
school teachers interested in bringing this approach into their classrooms. We will also
experiment with ways to further humanize Bob and Carol drawing on ideas from pedagogical
agent research®-’2.

The potential of Al to empower and assist students in design and other complex fields of study
remains an open question and vast opportunity for research, development and pedagogical
innovations. This holds especially true as human-technology collaboration weighs heavily
toward further expansion and changing the nature of how students will work in their future
careers.
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