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Abstract. Cognitive load has received increased focus as an area that can be 
more richly explored using neuroIS tools. This research study presents the ap-
plication of electroencephalography and eye tracking technologies to examine 
cognitive load of student learners in biochemistry. In addition to leveraging the 
Pope Engagement Index and eye tracking analysis techniques, we seek better 
understanding of the relationship that various individual characteristics have 
with the level of cognitive load experienced. While this study focuses on a par-
ticular STEM student population as they manipulate various learning models, it 
has implications for further studies in human-computer interaction and other 
learning environments.  

Keywords: Cognitive load · EEG · eye tracking · student learners · individual 
characteristics. 

1 Introduction 

In recent years, cognitive load has received increased focus as a construct of distinct 
interest that may be more richly explored using neuroIS tools [1, 2].  In particular, 
others have used neuroIS tools to examine the importance of engagement and cogni-
tive load in the areas of training and education [3] and shown their usefulness in un-
derstanding someone’s full-body experience as they engage with technology [4].  
Resulting, is a growing area of “neuro-education” [5, 6] to which we hope to contrib-
ute with our efforts.  
  

In our ongoing study that is taking place as part of a federally-funded grant pro-
ject1 in the United States, we use electroencephalography (EEG) and eye tracking 
                                                                 
1 This work was funded by the National Science Foundation under Grant Number 1711425. 
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technologies to assess cognitive load of student learners in biochemistry.  Overall, the 
goals of this project are:  

 
 to understand cognitive load as it impacts the development of undergraduate 

students’ conceptual understanding of structure-function relationships in 
chemistry and biochemistry, and to 

 refine the process for more effectively collecting and analyzing biometric da-
ta for mock classroom activities. 

 
Use of neurophysiological tools such as EEG and eye tracking has been touted as 

complementary to traditional psychometric tools of survey and observation by provid-
ing increased understanding of human behavior [7], and we have found that to be the 
case here, as well. Further, although brain-computer interface (BCI) tools have typi-
cally been used to provide communication and environmental control to people with 
severe motor disabilities [8], they have also been used to more richly assess cognitive 
states such as cognitive load [9].  Here, we seek to use the concept of a passive BCI 
[10] to allow for enrichment of classroom-based interactions while students engage in 
various modeling exercises in support of learning biochemistry concepts.  Passive 
BCI models have incorporated an EEG-based engagement index [11, 12] into their 
classifiers and we seek to do the same.  A passive BCI represents a downline goal for 
this current three-year effort to collect and refine measurements of cognitive load. 

 
In addition to measuring cognitive load, we are interested in how it relates to indi-

vidual human characteristics. Understanding the relationship that various individual 
characteristics have with experienced cognitive load could help us better understand 
the pipeline for students engaging in science, technology, engineering and math 
(STEM) fields – of which information systems is considered a subset – and better 
provide support for students.  While this study focuses on a particular STEM student 
population in biochemistry as they manipulate various learning models, it has impli-
cations for further studies with various student populations.  Further, we may have 
more confidence when applying neuroIS tools to understand human-computer interac-
tion phenomena, such as cognitive load, in seeing this case. 

2 Methodology 

The objective of the study is to evaluate the learning process and conceptual under-
standing of students in order to decrease their cognitive load. In the first year of this 
three-year study, more than sixty (60) students from a university in a metropolitan 
midwestestern city who are in the chemistry field have participated. Participants of 
the study were subdivided based on their stage of school year and four stages of cur-
riculum. The classification categories included fall and spring General Chemistry, 
Organic Chemistry, and Biochemistry curriculum. Even though the potential study 
population consists of freshman to senior students, many of the actual participants in 
the first exercise were freshman students.  
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Students were asked to fill out a survey about their individual characteristics rang-

ing from gender to level of athleticism. Individual characteristics of the study popula-
tion were not limited to gender, race, and ethnicity, but also included differences in 
self-perceived levels of athleticism, dexterity, medication intake, smoking status, 
biometric tool use, and video game experience.  This project is part of a larger study 
that will analyze the relationship between individual characteristics and various cog-
nitive measures of spatial ability such as obtained using a Purdue Visual Rotation Test 
[13] and Hidden Figures Test [14]. 

 
The study is being conducted in a simulated learning environment where an in-

structor is present to explain the lesson and while the student works through exercises. 
Students’ electrical brain activity is being measured using a 16-channel research-
grade BioSemi ActiveTwo bioamplifier system (http://www.cortechsolutions.com/ 
Products/Physiological-data-acquisition/Systems/ActiveTwo.aspx) running on a lap-
top. The electrode cap is configured according to the widely used 10-20 system of 
electrode placement [15]. Active electrodes are placed on the cap to allow for the 
recording of brain activations down-sampled to 256 Hz using a Common Average 
Reference (CAR). The sixteen recorded channels are: frontal-polar (Fp1, Fp2), 
frontal-central (FC3, FCz, FC4), central (C3, Cz, C4), temporal-parietal (TP7, TP8), 
parietal (P3, Pz, P4), and occipital (O1, Oz, O2). Eye tracking data is being recorded 
using Tobii eye tracking glasses (www.tobii.com) while students are manipulating 
2D, 3D, and virtual objects.  

 
Afterward, data is being analyzed using the EEGLab plugin 

(https://sccn.ucsd.edu/eeglab/index.php) to Matlab to ascertain band powers and cal-
culate cognitive load according to the Pope Engagement Index best represented by the 
calculation of (combined beta power) / (combined alpha power + combined theta 
power) [11]. 

3 Preliminary Results 

Presently, data has been transcribed for the first year and cleaned with some initial 
analysis conducted. Statistical analysis will be used to assess the relationship between 
individual characteristics, spatial ability measures, and cognitive load as reflected by 
the Pope Engagement Index. The initial data indicates that the students are predomi-
nantly freshman, white females, and traditionally-aged ranging from 19 to 21 years.  
 

Figure 1 starts to tell an interesting story of seven different student experiences 
based on EEG data that was able to be reliably captured and analyzed out of thirteen 
students in the first field visit. The y-axis in the figure represents the calculated values 
of the Pope Engagement Index per question per student and serves as a reflection of 
cognitive load.  It appears that Jill and Joy had a particularly difficult time with the 
classroom exercises whereas Sue and Diane did not necessarily have the same experi-
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ence. This difference in cognitive load indicates that gender may not be the determin-
ing factor here. Data will be further analyzed to assess the relationship of individual 
characteristics, various spatial abilities, and cognitive measures to more fully under-
stand student experiences. Already, later classroom exercises were modified based on 
preliminary understanding gained by reviewing general neurophysiological data, and 
there is early indication that cognitive load was able to be reduced for harder prob-
lems by providing better structure and scaffolding to solve these problems. 

 
 

 
Fig. 1. Bar graph of Pope Engagement Indices calculated for Organic Chemistry students2 

across six classroom exercise questions 

4 Conclusion 

NeuroIS tools may be used to assess cognitive load of students while engaging in 
classroom learning activities and manipulating biochemistry models of varying types. 
There is a growing area of “neuro-education” research and use of neuroIS tools to 
assess training.  Although the population of focus here is a student one in a particular 
subject area, this study has greater implications for future work and understanding the 
impact of individual characteristics on cognitive abilities. Further, this study presents 
an example of how we may inform passive BCI technologies and use them outside of 
a clinical setting typically reserved for patients with severe motor disabilities; hence, 
                                                                 
2 Pseudonyms used to protect identities. 
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we may expand their use to a real-world, classroom-based setting to better understand 
cognitive ability. 
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Abstract. With the growing use of smartphones in our daily life, mobile 
multitasking has become a widespread (and often dangerous) behavior. 
Research on mobile multitasking thus far only focuses on a limited 
number of IT tasks that can be performed with a smartphone: talking, 
listening to music, and texting. Thus, we do not know the extent to which 
these results generalize to other types of mobile multitasking behaviors 
such as reading while walking and gaming while walking. Also, we do 
not know the extent to which motor movement through physical space 
(i.e., walking vs. only standing) affects this phenomena. The current 
paper reports on an ongoing research that explores these questions. Our 
preliminary results suggest that mobile and standing  multitasking leads 
to the inability to perceive incoming stimuli. Gaming appears to be the 
most dangerous mobile multitasking task for pedestrians.  

Keywords: Multitasking, pedestrian, EEG, texting while walking, gaming while 
walking 

1 Introduction 

With the growing use of smartphones in our daily life, mobile multitasking has become 
a widespread (and often dangerous) behavior. We define mobile multitasking as the 
concurrent performance of one or more information technology (IT) tasks with a small 
computerized device (in most cases, a smartphone) while doing a motor movement such 
as walking. The behavior is increasingly common and can be seen almost anywhere. 
People are commuting to and from work, navigating the corridors of an office building, 
and even walking the halls of shopping malls, all while using their smartphone [1, 2].  
 
While public safety research shows that mobile multitaskers are more cognitively 
distracted than non-mobile pedestrians [3] our team’s recent work specifically 
measured this distraction using electroencephalography (EEG) and it is, to our 
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knowledge, the first of its kind [4, 5]. Our results suggest that the influence of task-set 
inhibition on switch cost is more important when subjects are texting while walking. In 
other words, the more participants engage cognitively in texting while walking, the less 
attentional resources are available to attend to external (and potentially dangerous) 
stimuli.  
 
Research on mobile multitasking thus far only focuses on a limited number of IT tasks 
that can be performed with a smartphone: talking, listening to music, and texting [3, 4, 
6-9]. Thus, we do not know the extent to which these results generalize to other types 
of mobile multitasking behaviors such as reading while walking and gaming while 
walking. Also, we do not know the extent to which motor movement through physical 
space (i.e., walking vs. only standing) affects this phenomena. The current paper reports 
on an ongoing research program that explores these questions.  

2 Related Work 

Humans generally experience performance problems when multitasking [10]. 
Multitasking is defined as the concurrent performance of two or more distinct tasks 
[11]. Research clearly demonstrates that multitasking deteriorates performance as 
compared to performing tasks one at a time [11]. This deterioration is explained by 
theories underlying divided attention and dual-task performance, which have asserted 
that limitations in human multitasking are attributed to competition for processing 
resources (i.e., Multiple-resource theory), as well as to competition for processing 
mechanisms (i.e., Structural theory) [12]. 

 
Mobile multitasking is cognitively and perceptually complex [13]. While most dual- 
task research has been conducted in laboratory settings (e.g., [3], mobile multitasking 
is a daily activity which is arguably more complex than the experimental paradigms 
typically used to study the attentional mechanisms involved in dual-task interference. 
First, mobile multitasking involves one or more IT tasks on a smartphone, which 
require focused attention and fine motor control. Also, it involves gross motor control 
(during walking, cycling, and other physical activities involving motor movement 
through physical space). The mobile multitasker must divide his attention between the 
IT tasks and the dynamic visual scenes which necessitate a sustained vigilance to the 
external environment. Mobile multitasking in urban areas is even more demanding as 
it involves making spatial decisions in complex dynamic visual scenes (e.g., walking 
in a crowd where others are also moving, crossing streets, using public transit, and 
climbing stairs). Finally, the opportunity to become immersed in the IT task while 
walking is greater than for similar activities such as driving since individuals can 
engage in: 1) more numerous and complex range of IT tasks, 2) which may be sustained 
for longer periods of time (imagine a pedestrian slowly wandering through a crowd 
while staring at a mobile device, whereas the same person driving may quickly produce 
an accident or have other cars honking at them). 

 
Recent studies confirm a significant increase in pedestrian injuries due to mobile phone 
usage between 2004 and 2010 [14], which coincides with the massive adoption of 
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smartphones in urban areas. Numerous accidents involving pedestrians using phones 
have been reported with the majority of victims being less than 30 years of age [3]. 
Several articles on public safety report the unsafe and risky behaviour of mobile 
multitaskers [3, 6, 8, 9, 13, 14]. An observation study conducted at multiple high risk 
intersections in a metropolitan area revealed that more than 7% of pedestrians were 
mobile multitasking, and these individuals took significantly longer to cross the 
intersections [9]. Experimental studies using a virtual environment also show the 
prevalence of unsafe and risky behaviors [15]. In a virtual pedestrian environment, 
mobile multitaskers took more time to cross the street, missed several safe opportunities 
to cross, took longer to initiate crossing when a safe gap was available, looked left and 
right less often, spent more time looking away from the road, and were more likely to 
be hit or almost hit by an oncoming vehicle [3, 6]. This is not just an outdoor phenomena 
as mobile multitaskers are also at risk of accidents in an office environment [16]. 
Indeed, accidents are also increasing on work premises (e.g., falling down the stairs) 
and some organizations, such as General Motor, are now even prohibiting mobile 
multitasking inside company buildings [17].  
 
Current research mostly focuses on texting while walking and we have little knowledge 
on the effect of other mobile multitasking behaviors. The device enables tasks with 
different levels of interactivity. Reading news on a mobile phone is unidirectional while 
texting is bidirectional. Writing an email usually entails slower communication speed 
than exchanging a short text message (SMS) which typically involve faster interactions. 
Some application like games may impose time constraints on the player (such as limited 
time to answer a question), which may have a consequence on the task switching 
behavior. Finally, some IT tasks are under the control of the user (such as scrolling 
through Facebook posts), while other events or alerts are not controlled by the user 
(e.g., pop-ups indicating new emails).  
 

3 Methodology 

Experimental design: We conducted a 2-factor within-subject experiment: Position 
(Standing vs Walking) and Task type. Due to the complexity of the design, we 
conducted the project in two phases. In Phase 1 (standing condition only), we used 4 
mobile tasks: A) reading a document, B) writing an email, C) playing Tetris, and D) 
group texting (i.e., texting with 2 individuals in the same conversation). In the second 
phase (walking condition only), 3 mobile tasks were used: (C) playing Tetris, D) group 
texting and E) individual texting (with one person)1. In both phases, we also had a 
control group in which participants were only attending to the stimuli (F). 

Participants: Thirty people (14 males, 16 females; ages 21-43, M = 25.6 years, SD = 
5.9 years)  participated in Phase 1 (standing) and 48 participated in Phase 2 (walking) 

                                                           
1 In order to keep the number of conditions at a manageable level, two tasks which exhibited the 

smallest levels of dual task interference in Phase 1 (Tasks A and B) were excluded from Phase 
2. 
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(20 males, 28 females; ages 18-46, M=25.5 years, SD=5.5 years). All participants had 
normal or corrected-to-normal vision and were pre-screened for glasses, epilepsy, as 
well as health, neurological, and psychiatric diagnoses. This study was approved by the 
ethics committee of our institution. Participants provided written consent before 
participating and received a 40$ gift certificate as compensation upon experiment 
completion. 

Stimuli and Apparatus: A dynamic point-light walker representation of a walking 
human form composed of 15 black dots was used as a biological motion stimulus. The 
dots, representing the head, shoulders, hips, elbows, wrists, knees, and ankles, were 
presented on a white background walking either leftward or rightward with a deviation 
angle of 3.0° (or -3.0°) from the participant. The point-light walker figure was displayed 
for 1000 ms with a resolution of 1280 x 1024 pixels using a projector (ViewSonic, Brea, 
California, United States). The walker stimulus had a height of 1.80 m and was 
displayed 4 m from participants, giving a 25 degree visual angle. Two speakers were 
located in front of participants which played a 1000 ms auditory stimulus cue with a 
random delay of +/- 500 ms before the presentation of the walker. Performance on 
point-like walker direction identification is strongly affected by divided attention in a 
dual-task paradigm, and the walker has ecological value in pedestrian safety research 
[4]. Thus, point-like walker stimulus is a suitable task for evaluating the switch cost of 
mobile multitasking in an authentic context. Mobile phone tasks were performed using 
an iPhone 6s (Apple, USA). In phase 2, the threadmill used was the iMov iMovR’s 
ThermoTread GT (iMovR, USA). 
 
Instrumentation and Measures: EEG data was recorded from 32 Ag-AgCl 
preamplified electrodes mounted on the actiCap and with a brainAmp amplifier 
(Brainvision, Morrisville). The EEG signal was recorded using 32 electrodes with an 
acquisition sampling rate of 1,000 Hz and analyzed with EEGLAB (San Diego, USA) 
and Brainvision (Morrisville, USA).  

Procedure: While participants were standing (Phase 1) or walking (Phase 2), the point-
like figure walker was presented shortly after the auditory cue stimulus. Participants 
were then asked to verbally identify the walker’s direction by answering “left” or 
“right” according to the side on which they perceived the walker would pass them. 
Participants were also performing different mobile tasks for approximately 16-18 
seconds per task. The experiment was composed of 5 blocks in Phase 1, one for each 
mobile tasks conditions and a control condition (5 x 22 trials), and 4 blocks in Phase 2, 
one for each tasks and a control condition (4 x 40 trials). The order of the blocks was 
counterbalanced and they were separated by a two-minute pause in which participants 
could sit on a chair while completing a short questionnaire. Prior to the first block, 
participants had a two-minute practice period to get used to the walker stimulus.  

4 Preliminary Results and Ongoing Work 
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We recently completed the data collection for this project and the EEG analysis is 
currently underway. However, the behavioral results have already been analyzed. 
Linear regression with mixed model was performed to compare the least squares means 
(LSM) of performance across tasks. LSM was calculated using the model where we 
control for age, sex, and level of social use. Table 1 presents the performance (i.e,, the 
proportion of walker directions correctly indicated by participants) by task. 
Unsurprisingly, the results show that mobile multitasking is risky.  
 
In the standing position, there are significant differences between playing Tetris and 
the control task  (t(116)=-5.64, p<.0001, Table 1) and between engaging in group 
texting and the control task (t(116)=-4.26, p = 0.0003) after adjustment for multiple 
comparisons [18].  
 
 
 

 Task name Phase 1 Standing Phase 2 Walking 
A Reading document 80,6% - 
B Writing an email 76,6% - 
C Playing tetris 66,6%† 80,8%† ‡ 
D Group texting 70,4%† 84,0%† 
E Individual texting - 85,4% 
F Control 82,1% 89,1% 

Table. 1. Behavioral results (Least Squares Means of Performance by Task) 
†: significantly lower than the control task; 
‡: significantly lower than the individual texting task. 

In the walking condition, there are significant differences between playing Tetris and 
the control task (t(141)=-5.11, p<.0001, Table 1) and between engaging in group 
texting and the control task (p = 0.0003) with the same adjustment. In the walking 
condition, we even find that performance of playing Tetris is lower that individual 
texting (t(141)=-2.85, p=0.02) after adjustment for multiple comparisons (Holm, 1979).  
 
5 Discussion and Concluding Comments 
 
Our preliminary results suggest that mobile and standing multitasking leads to the 
inability to perceive incoming stimuli. While the impacts on behavioral performance 
might seems small percentage wise, in real life only a single instance of not attending 
to an external stimuli can lead to physical injuries or have life threatening 
consequences. Our results also suggest that walking might not be the main contributor 
in reducing the behavioral performance. Even in the standing position, some tasks like 
playing a game and engaging in a group text might prevent people from noticing 
external events in a public environment. Finally, gaming appears to be the most 
dangerous mobile multitasking task for pedestrians.  
 
This research contributes to a better understanding of the impact of mobile multitasking 
on user behaviors. It contributes to the literature by exploring and comparing a larger 
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number of IT tasks performed on smartphones. Preliminary results suggest that playing 
a game and engaging in group texting (tasks that were absent from the mobile 
multitasking literature) diminish individuals’ performance compared to individuals not 
using a smartphone.  
 
These preliminary findings suggest that smartphone application designers and 
smartphone manufacturers should be careful in developing mobile apps, especially 
those related to games and group texting, by considering features related to user 
security. Given that some smartphone games are especially designed for mobility (e.g., 
Pokemon Go), we believe that these results should raise awareness of this very 
dangerous behavior in a pedestrian context.  
 
As with any experimental studies, our research has limitations. We used a relatively 
young sample, so potentially very good at multitasking and do have the cognitive 
performance declines of older adults (e.g. [19]). Thus, research might not be 
representative for the whole population, especially an issue as large-scale adoption of 
devices such as smartphones spreads to older age groups. Also, the walker required 
attention, but the impact of errors is not near as significant as in real life (imagine an 
oncoming car). Thus, it is conceivable that a pedestrian in a real-world situation may 
perform differently.  
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