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Abstract—Dynamic voltage and frequency scaling (DVFS) has
been the cornerstone of innumerable software approaches to
meeting application timing requirements with minimal energy.
However, recent trends in technology—e.g., moving voltage con-
verters on chip—favor hardware control of DVFS, as hardware
can both react faster to external events and perform fine-grained
power management across a device. We respond to these trends
with CoPPer, which instead uses hardware power capping to
meet application performance requirements with high energy
efficiency. We find that meeting performance requirements with
power capping is more challenging than using DVFS because
the relationship between power and performance is non-linear
and has diminishing returns at high power values. CoPPer over-
comes these difficulties by using adaptive control to approximate
non-linearities and a novel gain limit to avoid over-allocating
power when it is no longer beneficial. We evaluate CoPPer
with 20 parallel applications and compare it to both a classic
linear DVFS controller and to a sophisticated control-theoretic,
model-driven software DVFS manager. CoPPer provides all
the functionality of the sophisticated DVFS-based approach,
without requiring a user-specified model or time-consuming,
exhaustive application/system pre-characterization. Compared to
DVFS, CoPPer’s gain limit reduces energy by 6% on average and
by 12% for memory-bound applications. For high performance
requirements, the energy savings are even greater: 8% on average
and 18% for memory-bound applications.

I. INTRODUCTION

As energy usage and power dissipation have become key

concerns for computer systems, a number of software ap-

proaches have arisen to manage the tradeoffs between timing

and power/energy. The vast majority of those approaches

use dynamic voltage and frequency scaling (DVFS) to set

the processor frequency (and by extension the voltage) to

trade compute capacity for reduced power consumption. This

technique is especially useful for workloads with real-time or

quality-of-service demands—the DVFS setting is adjusted so

that the timing demands (i.e., job performance or latency re-

quirements) are just met and no additional power is dissipated.

Recent trends, however, indicate that exposing DVFS to

software control is being deprecated; instead, future hardware

will directly control frequency and voltage. Linux kernel

developers acknowledge that manufacturers are moving DVFS

management to hardware, beyond software’s control [26].

Indeed, current Linux distributions no longer have default

support for the userspace DVFS governor, which allowed

software to explicitly set processor frequency. The Linux

kernel documentation notes, “the idea that frequency can be

set to a single frequency is fictional for Intel Core processors.

Even if the scaling driver selects a single P-State, the actual

frequency the processor will run at is selected by the processor

itself” [7]. Intel processors have moved away from Speed Step,

which allows software complete control of DVFS, to Speed

Shift, which gives hardware control over DVFS settings. Intel

claims that moving DVFS control from the OS to hardware

provides 20-45% improvements in responsiveness for bursty

workloads [21] and reduces the latency of DVFS changes to

about 1/30th of the time it takes for software to make the same

change [5].

There is one major drawback of moving DVFS to hardware:

for applications with timing requirements, software has all the

knowledge about both the current and desired performance.

Existing software-based DVFS approaches select the lowest

DVFS setting that meets an application’s timing requirement.

When DVFS is completely transitioned to hardware, software

will need another mechanism to meet timing constraints with

minimal energy. Fortunately, emerging interfaces let software

set power caps on hardware, with hardware free to determine

what DVFS settings should be used and when, so long as

the average power over some time window is respected. For

example, Intel’s Running Average Power Limit (RAPL) allows

software to set power limits on hardware [6]. The challenge

is that meeting timing requirements with DVFS is easy:

simple linear models map changes in clockspeed to changes

in speedup. Meeting timing requirements with power capping

is harder: power and speedup have a non-linear relationship

and most applications exhibit diminishing performance returns

with increasing power.

We prepare for the transition away from software DVFS

management by proposing CoPPer (Control Performance with

Power), a software system that uses adaptive control theory

to meet application performance goals by tuning hardware

power caps. CoPPer has three key features. First, it works

on applications without prior knowledge of their specific

performance/power tradeoffs; i.e., it does not require a system

or application-specific power cap/performance model based on

pre-characterization, making it suitable for general purpose

computing workloads composed of repeated jobs. Second,

it uses a Kalman filter to adapt control to non-linearities

in the power cap/performance relationship. Third, it intro-

duces adaptive gain limits to prevent power from being over-

allocated when applications cannot achieve additional speedup.



That is, if a workload’s performance does not improve with

expanded power limits, CoPPer will not allocate additional

power, whereas standard control-theoretic approaches take no

additional power-saving action. Thus, CoPPer saves energy

in many cases compared to existing DVFS-based approaches

while maintaining its formal guarantees.

In summary, this paper makes the following contributions:

• Proposes using software-defined, hardware-enforced

power capping instead of software-managed DVFS to

more energy-efficiently meet application timing con-

straints.

• Presents CoPPer, a feedback controller that: meets per-

formance goals by manipulating hardware power caps,

handles non-linearity in power cap/performance tradeoffs,

and introduces adaptive gain limits to further reduce

power when it does not increase performance.

• Evaluates CoPPer using Intel RAPL, achieving better en-

ergy efficiency than software DVFS control, with similar

timing guarantees. Specifically, CoPPer improves energy

efficiency by 6% on average with a 12% improvement for

memory-bound applications. At the highest performance

targets, CoPPer’s gain-limit saves even more energy: 8%

on average and 18% for memory-bound applications.

• Open-source release of CoPPer reference implementation

and benchmark patches.1

In short, CoPPer overcomes the difficulties in using software

power capping to meet performance goals and improves

energy efficiency over software-managed DVFS, which is

becoming obsolete.

II. BACKGROUND AND MOTIVATION

Many modern computer systems are underutilized, leading

to significant portions of time where application performance

requirements can be met with less than the full system capacity

[3, 22, 23]. This trend has led to flourishing research in

energy-aware scheduling that tailors resource usage to meet the

performance requirements while minimizing energy. Software

DVFS management has been essential in many energy-aware

scheduling algorithms [1, 16, 31, 34]. Recent survey papers

devote entire sections to the various ways DVFS has been

used in scheduling systems [24, 35]. However, there are strong

indications that DVFS will not be directly controllable by

software in future processors.

A. The Future of Software DVFS

Since SandyBridge, Intel processors take software DVFS

settings as suggestions, and hardware has been free to dynam-

ically alter the actual clockspeed and voltage independently

from the software-specified setting [7, 26]. With the Skylake

architecture, Intel has been actively campaigning to move

DVFS management wholly to hardware and instead have

software specify power. The hardware is then free to rapidly

change DVFS settings to achieve better performance while still

respecting those power limits [21]. For example, if software

1Available at: https://github.com/powercap/
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Fig. 1: DVFS / Power cap performance impact for vips.

sets power limits requiring any 50 ms time window to average

a maximum of 100 W, hardware is free to use turbo mode to

speed up the processing of any bursty work within that 50 ms,

as long as it compensates by running in a low-power state for

some of that time.

Of course, even as DVFS shifts to hardware, it is still the

software’s responsibility to provide its own notion of either

“best” or “good enough” performance. The capability to spec-

ify power caps and simultaneously provide some optimization

is already provided by interfaces like Intel’s RAPL [6]. Recent

works show that a combination of RAPL and software resource

management can achieve even better performance or energy

proportionality while guaranteeing power consumption [15,

32]. What is still needed, however, is a software component

that can guarantee performance constraints while minimizing

energy consumption. We address this need with CoPPer, which

provides soft, application-level performance guarantees by

manipulating hardware power caps, without the need to pre-

characterize application workloads.

Two related RAPL-based works merit a brief comparison.

PEGASUS meets timing constraints using a multi-step bang-

bang controller, but requires (1) pre-characterization of work-

loads and (2) empirically-determined, workload-dependent

values for both latency headroom thresholds and coarse-

grained power cap deltas [18]. HyPPo meets SLAs using an

observe-decide-act loop for heterogeneous workloads in cloud

environments, but its SLAs are in the form of CPU utilization

requests rather than actual application timing goals, and, unlike

CoPPer, does not provide formal guarantees [2].

B. The Challenges of Actuating Power

Meeting performance targets with power caps instead of

DVFS settings introduces new challenges. Figure 1 demon-

strates how the compute-bound vips application’s perfor-

mance is affected by DVFS frequencies (Figure 1a) compared

to processor power caps (Figure 1b) on our evaluation system.

Three challenges are immediately apparent from the figures.

First, DVFS produces a linear response in performance, but

power capping is non-linear. Second, power capping has

diminishing returns: as power increases, the change in per-

formance becomes smaller. Third, the range of DVFS settings

is much smaller than power settings: the ratio of the maximum

to minimum DVFS setting is 2.75, but power capping has a

ratio of over 6 (as can be seen from the x-axes).
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Fig. 2: DVFS and power capping with linear models.

The linear relationship between DVFS and performance

makes it easy to apply textbook control-theoretic techniques

to build a performance management system based on DVFS,

and many examples exist in the literature [8, 9, 14, 17, 27, 29,

33]. With DVFS, control models assume that—for compute-

bound applications—a 2× change in frequency produces a 2×
change in performance. Applying the same techniques to build

a performance management system based on power capping is

more complicated. The major issue is that controllers based on

time-invariant linear models will have varying error dependent

on the current power cap. The simple solution is to build a

linear model that never overestimates the relationship between

power and speedup [8]. The downsides to this approach are:

(1) a developer must know the maximum error for any appli-

cation the system might run and (2) using such a conservative

estimate slows down the controller’s reaction to changes in the

application or environment.

Figure 2 shows the difference between a controller based

on a linear DVFS model extracted from Figure 1a and two

(one conservative and one aggressive) based on fitting time-

invariant linear models to the power capping data from Fig-

ure 1b. All approaches start at the maximum DVFS or power

setting and must bring performance down to the required level

while minimizing energy. Figure 2 shows the DVFS controller

quickly reaches the desired performance, but the conservative

power capping controller is much slower to react. The conser-

vative approach never violates the performance requirement,

but its slow reaction wastes energy. The aggressive approach

overreacts, oscillating around the performance target instead

of settling on it. These results demonstrate how sensitive

power capping approaches can be to their input models. The

next section describes an adaptive control design for meeting

performance goals with power capping that overcomes the

difficulties highlighted by this example without requiring a

user-specified model.

III. A GENERAL POWER CAPPING DESIGN

CoPPer’s goal is to provide soft performance guarantees,

with the competing goal of keeping power as low as possi-

ble. To achieve the best energy efficiency, a power capping

framework for meeting performance targets must not allocate

more power than is actually needed by an application. CoPPer

uses an adaptive control-theoretic approach to meet soft real-

time performance constraints and employs a gain limit to

proactively reduce power consumption when it determines that
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Fig. 3: CoPPer’s feedback control design.

power is over-allocated. For maximum portability, CoPPer is

independent of any particular system, application, and power

capping implementation.

A. Adaptive Controller Formulation

Figure 3 presents CoPPer’s feedback control design. CoPPer

requires three pieces of information at runtime: (1) the soft

performance goal, (2) performance feedback, and (3) the

minimum and maximum power that the system allows. A

user provides CoPPer with the performance goal, Pref , which

is just the inverse of a job latency deadline τ , i.e., Pref = τ−1.

At runtime, the application measures its own performance,

pm(t), which it provides to CoPPer. The minimum and maxi-

mum power caps, Umin and Umax, are system properties that

can often be determined at runtime.

The controller first computes the performance error,

followed by a speedup value:

e(t) = Pref − pm(t) (1)

s(t) = gain(t) ·

(

s(t− 1) +
e(t)

b(t)

)

(2)

where s(t−1) is the speedup signal generated in the previous

iteration, b(t) is the base speed estimate produced by a Kalman

filter [30], and gain(t) (where 0 < gain(t) ≤ 1) is a time-

varying value that scales the control response. The gain is

described in more detail shortly (Section III-B). Finally, the

new power cap to be applied is computed as:

u(t) = Umin · s(t) (3)

Figure 1b (Section II-B) shows that, unlike with DVFS

frequencies, a scalable compute-bound application’s speedup

is a non-linear function of the power cap. Figure 2 then

illustrates how formulating a controller based on a linear

model can cause the controller to converge very slowly, or

to not converge at all. CoPPer overcomes this limitation by

treating the application’s base speed, b(t), as a time-varying

value and estimating it with a Kalman filter. In practice, this

approach is analogous to estimating a non-linear curve with a

series of tangent lines, each with slope b(t). Thus, CoPPer’s

use of the Kalman filter allows it to overcome the problematic

non-linear relationship between performance and power caps.

B. The Gain Limit

In many cases, allocating a higher power cap increases

power consumption without actually increasing an applica-

tion’s performance. With vips in Figure 1 (Section II-B),

performance scales linearly as higher DVFS frequencies are
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Fig. 4: DVFS / Power cap performance impact for HOP.

applied, but eventually a predefined maximum allowable fre-

quency is reached and TurboBoost is enabled. TurboBoost

allows the processor to run at higher frequencies for short

periods of time, at the cost of higher power consumption

and heat generation. In contrast, performance increases non-

linearly as higher power caps are applied, until a little beyond

the system’s thermal design power (TDP), i.e., the power level

at which the processor is designed to safely dissipate heat

under most workloads. Unfortunately, TDP is not a reliable

indicator of the maximum power cap that can be applied

efficiently. Figure 4 demonstrates the power cap/performance

behavior of the HOP application, where performance levels-

off well before the system TDP, and begins exhibiting perfor-

mance unpredictability before beginning to achieve some small

increases in average performance again once the power cap is

greater than than the system TDP. These behaviors make it

difficult for controllers to efficiently meet performance targets.

CoPPer uses a gain limit to avoid over-allocating power when

it is not useful, e.g., for unachievable performance targets in

vips or moderate targets in HOP (Figures 1 and 4).

The gain limit is used in computing the gain(t) term in

Eqn. 2. This term is initially 1, and will remain so until the

controller settles. Based on the performance history, gain may

be reduced to lower the speedup when CoPPer detects that the

extra speedup is not beneficial (and thus wasting power). In

general, the convex properties of performance/power tradeoff

spaces ensure that reducing the speedup never increases power

consumption, and in most cases reduces it.

Intuitively, if the performance error value computed in

Eqn. 1 is low, then the system has converged to the perfor-

mance target and the speedup signal should remain where it

is. However, if error values are high but the difference in error

values between iterations is low, the controller has settled,

but the performance target is not achievable. It may then be

beneficial to reduce the speedup, and thus the power. Speedup

is reduced by setting gain to:

gain(t) = 1− αc · ens(t) ·∆ens(t) (4)

where αc (0 ≤ αc < 1) is the gain limit, a constant that

controls how low the gain can go, and:

en(t) =
|e(t)|

Pref

(5)

∆en(t) = |en(t− 1)− en(t)| (6)

ens(t) = 1−
1

en(t) + 1
(7)

∆ens(t) =
1

∆en(t) + 1
(8)

Since Pref is the performance target, en(t) is the absolute

normalized performance error. ∆en(t) in Eqn. 6 is the absolute

change in en(t) since the previous iteration. Eqns. 7 and 8

compute values ens(t) and ∆ens(t), which determine how

much impact en(t) and ∆en(t) have on reducing the speedup.

Both ens(t) and ∆ens(t) lay in the unit circle. As normalized

performance error en(t) approaches 0, ens(t) also approaches

0, which reduces the impact of the gain limit in Eqn. 4.

Conversely, if the error is high, ens(t) approaches 1 and the

gain limit will have a greater impact on the speedup. As the

change in normalized performance error ∆en(t) approaches 0,

∆ens(t) approaches 1, thus increasing the gain limit’s impact

in Eqn. 4. Conversely, if the change in error is high, ∆ens(t)
approaches 0 and the gain limit will have less impact on the

speedup. Therefore, Eqn. 4 reduces the speedup signal by a

factor of at most αc, with the greatest change in speedup

occurring when the absolute performance error en(t) is high

and the absolute change in error ∆en(t) is low. Setting αc = 0
disables the gain limit entirely, corresponding to gain(t) = 1
in Eqn. 2.

In practice, Eqn. 2 clamps the speedup value at Umax

Umin

prior

to applying the gain to prevent slow controller response if

Pref was previously unachievable.2 High performance errors

force a speedup value too high for the gain to overcome if

the speedup is not clamped first. In cases of high performance

error, the gain limit’s effectiveness is also constrained by the

accuracy of Umax and Umin. If speedup is not clamped at a

reasonable upper value, the gain limit must be quite high to

overcome the inaccuracy.

Recall that CoPPer holds gain(t) at 1 until the controller

converges. Until then, the controller is an adaptive deadbeat

control system that retains the corresponding control-theoretic

guarantees [8]. Specifically, it can converge to the desired

performance in as little as one control iteration. At that point,

CoPPer computes Eqns. 4–8, which may change gain(t). In

control-theoretic terms, a non-zero gain is equivalent to adding

a zero to the characteristic equation of the closed loop system.

Given the definition of gain(t), it is equivalent to a zero

greater than 1, which moves the controller in the opposite

direction from the feedback signal. Normally, this would be

undesirable behavior, but this is exactly the behavior we want

when we are no longer seeing performance improvements by

increasing the power cap.

2In control terminology, this is an anti-windup mechanism.



C. Using CoPPer

Application-level feedback provides high-level metrics that

are conducive to goal-oriented software and has been shown

to provide a more reliable measure of application progress

than low-level metrics like performance counters or memory

bandwidth [10]. Many applications that are subject to perfor-

mance constraints already measure performance and integrate

with runtime DVFS controllers to meet performance targets.

A performance target is any positive real value that makes

sense for the application, and can conceivably be configured

from any number of sources, e.g., a command line parameter,

a configuration file, or dynamically via a software interface.

At desired time or work intervals called window periods

(described further in Section IV-B), the application measures

its performance and calls the controller. Developers for this

class of applications already perform these tasks, so all that

remains is to replace function calls to an existing DVFS

controller with those for CoPPer.

CoPPer is designed to be independent of any particular

system, application, and power capping implementation. It is

initialized with a performance target, the minimum and maxi-

mum allowed power values, and the starting power cap.3 After

each window period, the copper_adapt function is called

with an identifier and the current application performance. This

function returns the new power cap, which is then applied to

the system. For example:

1 // initialize CoPPer

2 copper cop;

3 copper_init(&cop, perf_goal, pwr_min, pwr_max, pwr_start);

4 // application main loop

5 for (i = 1; i <= NUM_LOOPS; i++) {

6 do_application_work();

7 if (i % window_size == 0) {

8 // end of window period

9 perf = get_window_performance();

10 powercap = copper_adapt(&cop, i, perf);

11 apply_powercap(powercap);

12 }

13 }

Listing 1: Using CoPPer to compute and apply power caps.

The underlined functions simply replace the existing DVFS-

related ones. Furthermore, the apply_powercap function is

independent of CoPPer—an example is provided in the next

section.

IV. EXPERIMENTAL SETUP

This section details the platform and applications used to

evaluate CoPPer. We quantify application performance vari-

ability, which directly impacts an application’s ability to be

controlled, and we describe the control approaches CoPPer is

evaluated against.

A. Testing Platform

We evaluate CoPPer on an Ubuntu Linux system with

kernel 3.13.0, configured to support both software-managed

DVFS and Intel RAPL. To record runtime power behavior,

3An accurate starting power cap is optional, but knowing the initial
configuration helps the controller to settle as quickly as possible.

we read energy from the Model-Specific Registers [12, 28].

Energy measurements are only used to evaluate CoPPer, they

are not required in practice. For our experiments, we enable

TurboBoost and set power caps for the RAPL short term

constraint at the Package level. We keep the system’s default

time window of 7812.5µs. To apply RAPL power caps, we

provide an easy-to-use tool called RAPLCap, but stress again

that CoPPer is independent of the power capping implemen-

tation. For example, the apply_powercap function used in

Listing 1 might be:

1 raplcap rc;

2

3 void apply_powercap(double powercap) {

4 uint32_t n = raplcap_get_num_sockets(&rc);

5 raplcap_limit rl = {

6 // time window = 0 keeps current time window

7 .seconds = 0.0,

8 // share computed power cap evenly

9 .watts = powercap / (double) n

10 };

11 for (uint32_t i = 0; i < n; i++) {

12 raplcap_set_limits(i, &rc, RAPLCAP_ZONE_PACKAGE, NULL,

&rl);

13 }

14 }

Listing 2: Applying a power cap with RAPLCap

The RAPL interface sets a limit on average power consump-

tion over a time window, with hardware controlling DVFS and

power allocation within that window.

B. Evaluation Applications

Our experiments use applications from the PARSEC bench-

mark suite [4], MineBench [25], STREAM [20], and SWISH++

[19]. PARSEC provides a wide variety of parallel applica-

tions that exhibit different ranges of performance and power

behavior. MineBench provides a representative set of data

mining applications, some of which support parallel execution.

STREAM is a synthetic benchmark that stresses main memory

and represents memory-bound applications. SWISH++ is a

file indexing and search engine. All inputs are delivered with

or generated directly from the benchmark sources, with the

exception of dedup which uses a publicly available disc

image, and raytrace and x264 which are from standard

test sequences.

Applications contain top-level loops, where each loop it-

eration completes a job. We instrument the applications with

the Heartbeats interface to measure job performance, as real

applications would [11]. As is common in control systems,

CoPPer executes at fixed job intervals called window periods.

For example, CoPPer will compute a new power cap every 50

video frames in x264.

Applications exhibit variability in their performance behav-

ior, with some behaving more predictably than others. Figure 5

demonstrates the behavior of the applications used in this

paper when running in an uncontrolled setting (default system

power caps). Naturally, better predictability typically results in

lower error in meeting performance targets, as will be shown

in Section V-A.
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Fig. 8: (a) DVFS and (b) power cap effects on

streamcluster.

use TurboBoost, which is inefficient. CoPPer however, can set

a power cap that allows the performance goal to be met and

leave the decision to Turbo or not to hardware, which has more

information about whether that choice is appropriate—exactly

the motivation to move DVFS control to hardware and allow

software to simply cap power.

Freqmine and streamcluster are outliers for both

energy efficiency and MAPE. Freqmine is composed of re-

peated jobs, but its behavior is not predictable with feedback—

the application uses a recursive algorithm that causes job

performance to continually slow as it progresses. This be-

havior is quantified by its high job variability as shown in

Figure 5 (Section IV-B). Streamcluster exhibits a perfor-

mance/power tradeoff space that does not scale well beyond

a fairly low DVFS setting or power cap, as demonstrated in

Figure 8. In fact, its performance degrades dramatically as

resource allocation increases. Even CoPPer’s gain limit cannot

adapt since it detects a change in performance when trying to

reduce the power cap. The ideal performance DVFS governor

(the oracle) knows not to allocate higher frequencies since

it has access to the application-specific characterizations, but

practical runtime controllers do not have this information. Us-

ing streamcluster-specific power cap ranges for CoPPer

would produce results similar to the other applications; the

DVFS controllers, however, would need whole new models.

B. Controlling Memory-bound Applications

Our benchmark set contains 6 memory-bound applica-

tions: KMeans, KMeans-Fuzzy, ScalParC, STREAM,

streamcluster, and SVM-RFE. CoPPer achieves notice-

ably higher energy efficiency for these applications than with

DVFS. Table II summarizes the average ratio of energy effi-

ciencies across all performance targets for these applications,

comparing CoPPer with and without a gain limit to the

sophisticated DVFS controller.

We see that even without a gain limit, CoPPer already

improves on the sophisticated DVFS controller’s energy ef-

ficiency by 10% on average. With a gain limit of 0.5, the

improvement rises to 12%. These are significant energy sav-

ings. CoPPer performs especially well compared to DVFS with

these memory-bound applications for the higher performance

targets. Again, even without a gain limit, CoPPer improves

TABLE II: CoPPer energy efficiency compared to the sophis-

ticated DVFS controller for memory-bound applications.

Energy Efficiency vs DVFS

Performance CoPPer-0.0 CoPPer-0.5

high 1.15 1.18
medium 1.09 1.11

low 1.06 1.08
Average 1.10 1.12

TABLE III: Energy efficiency for unachievable performance

targets, normalized to the sophisticated DVFS controller.

Gain Limit Energy Efficiency

0.0 1.00
0.2 1.01
0.5 1.10
0.6 1.16
0.8 1.29
0.99 1.46

energy efficiency by 15% for the high performance target.

DVFS can benefit from TurboBoost at high performance

targets for many applications, but the higher DVFS frequencies

also result in unnecessarily high energy consumption for

memory-bound applications. By setting power caps instead

of forcing DVFS frequencies, CoPPer achieves better energy

savings by allowing the processor to scale frequencies more

quickly between computational and memory-intensive periods.

The gain limit provides significant energy savings for memory-

bound applications with only a small loss in performance. In

general, we advocate the use of 0.5 gain limit in practice since

it produces almost no difference in MAPE, but can provide

significant energy savings for memory-bound workloads.

C. Reducing Power for Unachievable Goals

Sometimes performance targets simply are not achievable.

This could be due to a user requesting too much from an

application given the available processing capability, or the

application may just want to run as fast as possible. When a

performance target is unachievable, a naive resource controller

will continue to increase resource allocations like DVFS fre-

quencies or power caps in an attempt to improve performance,

needlessly wasting energy. In this part of the evaluation, we

demonstrate that CoPPer’s gain limit helps avoid this pitfall. In

Section III-B, we explained that the gain limit’s effectiveness

is constrained by the accuracy of the minimum and maximum

power values. For this experiment, we use a more reasonable

(and safer) maximum power limit—the evaluation system’s

TDP of 270 W.

For each application, we set an unrealistically high per-

formance target—1000× greater than what the system can

actually achieve. We then execute both the sophisticated DVFS

controller and CoPPer with a range of gain limit values. As

the performance target is not actually achievable, MAPE is

meaningless. Instead, we normalize energy efficiency to the

sophisticated DVFS controller. Table III presents the results

for select gain limits.

The DVFS controller runs in the TurboBoost setting for

the entirety of each execution. We also verified that the
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(b) Meeting a performance target with CoPPer.

Fig. 9: An x264 input with distinct phases.

simple DVFS controller and the evaluation system’s real Linux

performance governor achieved nearly identical results as

the sophisticated controller. As should be expected, CoPPer

without a gain limit behaves similarly. With gain limits en-

abled, CoPPer achieves increasingly better energy efficiency

for small increases in application runtime. A 0.5 gain limit

demonstrates a significant improvement in energy efficiency—

a 10% increase over the sophisticated DVFS controller. A gain

limit of 0.99 increases energy efficiency by 46% over the

DVFS controller, though suffers a 20% loss in performance

as it pulls power consumption back too aggressively.

These results clearly demonstrate the gain limit’s advan-

tages. For achievable performance targets, it has minimal

impact on controller behavior. For unachievable targets, it can

greatly improve energy efficiency over the sophisticated DVFS

controller.

D. Adapting to Runtime Changes

This experiment demonstrates CoPPer’s ability to respond

to changes in application behavior at runtime. We run x264

with a video input that exhibits three distinct levels of encoding

difficulty. Figure 9a demonstrates the uncontrolled behavior

of the input, with performance normalized to the maximum

achieved. Dashed vertical lines denote where phase changes

occur. The first phase has the lowest average performance and

is therefore the most difficult to encode, followed closely by

the third phase. The second phase has the highest performance,

meaning it is the easiest part of the video to encode. Frames

that are easier to encode offer an opportunity to save energy

when meeting a performance target, as fewer resources are

needed to satisfy the constraint. In the uncontrolled execution,

power is consistently high as no changes to resource alloca-

tions are being made.

Figure 9b shows the time series for CoPPer with a gain limit

of 0.0 for the medium performance target and a window size

of 50 frames. Performance is normalized to the target. Now

the performance remains mostly fixed (per the constraint),

whereas the power consumption fluctuates as the power cap

changes. Power values are now inversely proportional to the

performance behavior seen in Figure 9a since CoPPer is able

to reduce power consumption to save energy during phases

of easier encoding. Of course, the actual power consumption

recorded for any given frame does not necessarily match the

power cap—it may be lower.

The fluctuations around the performance target in each

phase are a result of input variability. The uncontrolled ex-

ecution in Figure 9a testifies to the variability’s presence in

the input. We see similar behavior in other applications to

varying degrees, but this visual clarifies where performance

error (MAPE) comes from, and why some applications are

difficult to control. Still, CoPPer meets the performance target

with high energy efficiency and low error. For this execution,

energy efficiency is 1.25 compared to the ideal performance

governor (the oracle) and MAPE is 6.48%.

E. Multiple Applications

This section evaluates CoPPer’s resilience to interference

from another application. We begin the experiment by launch-

ing each application with a performance target. Roughly

halfway through each execution, we launch a second ap-

plication which was randomly selected from the PARSEC

benchmark suite. The second application does not perform any

DVFS or power control, but introduces interference into the

system by consuming resources.

Figures 10 and 11 present the energy efficiency and

MAPE results for each application. As should be expected,

MAPE is higher than in previous experiments given that

there is significant disturbance to system resources, which

also makes the application more difficult to control even

when the controller recognizes the disturbance and adapts to

it. Some applications (e.g., facesim, canneal, dedup,

streamcluster, STREAM, and SVM_RFE) were not able

to achieve the performance target after the second application

is started, simply because there were not sufficient resources

remaining in the system. Instead, the controller makes a

best effort. These applications drag down the average energy

efficiency, which otherwise remains high like in the single

application analysis (e.g., KMeans and ScalParC). Still,

the average across all applications is nearly as good as the

ideal performance governor would achieve in the absence of

interference.
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