CoPPer: Soft Real-time Application Performance
Using Hardware Power Capping

Connor Imes
University of Chicago
ckimes@cs.uchicago.edu

Huazhe Zhang
University of Chicago
huazhe @cs.uchicago.edu

Abstract—Dynamic voltage and frequency scaling (DVFS) has
been the cornerstone of innumerable software approaches to
meeting application timing requirements with minimal energy.
However, recent trends in technology—e.g., moving voltage con-
verters on chip—favor hardware control of DVFS, as hardware
can both react faster to external events and perform fine-grained
power management across a device. We respond to these trends
with CoPPer, which instead uses hardware power capping to
meet application performance requirements with high energy
efficiency. We find that meeting performance requirements with
power capping is more challenging than using DVFS because
the relationship between power and performance is non-linear
and has diminishing returns at high power values. CoPPer over-
comes these difficulties by using adaptive control to approximate
non-linearities and a novel gain limit to avoid over-allocating
power when it is no longer beneficial. We evaluate CoPPer
with 20 parallel applications and compare it to both a classic
linear DVFS controller and to a sophisticated control-theoretic,
model-driven software DVFS manager. CoPPer provides all
the functionality of the sophisticated DVFS-based approach,
without requiring a user-specified model or time-consuming,
exhaustive application/system pre-characterization. Compared to
DVES, CoPPer’s gain limit reduces energy by 6% on average and
by 12% for memory-bound applications. For high performance
requirements, the energy savings are even greater: 8% on average
and 18% for memory-bound applications.

I. INTRODUCTION

As energy usage and power dissipation have become key
concerns for computer systems, a number of software ap-
proaches have arisen to manage the tradeoffs between timing
and power/energy. The vast majority of those approaches
use dynamic voltage and frequency scaling (DVEFS) to set
the processor frequency (and by extension the voltage) to
trade compute capacity for reduced power consumption. This
technique is especially useful for workloads with real-time or
quality-of-service demands—the DVES setting is adjusted so
that the timing demands (i.e., job performance or latency re-
quirements) are just met and no additional power is dissipated.

Recent trends, however, indicate that exposing DVFS to
software control is being deprecated; instead, future hardware
will directly control frequency and voltage. Linux kernel
developers acknowledge that manufacturers are moving DVFS
management to hardware, beyond software’s control [26].
Indeed, current Linux distributions no longer have default
support for the userspace DVFS governor, which allowed
software to explicitly set processor frequency. The Linux
kernel documentation notes, “the idea that frequency can be

University of Chicago
kzhao@uchicago.edu

Kevin Zhao Henry Hoffmann
University of Chicago

hankhoffmann@cs.uchicago.edu

set to a single frequency is fictional for Intel Core processors.
Even if the scaling driver selects a single P-State, the actual
frequency the processor will run at is selected by the processor
itself” [7]. Intel processors have moved away from Speed Step,
which allows software complete control of DVFS, to Speed
Shift, which gives hardware control over DVFS settings. Intel
claims that moving DVFS control from the OS to hardware
provides 20-45% improvements in responsiveness for bursty
workloads [21] and reduces the latency of DVFS changes to
about 1/30th of the time it takes for software to make the same
change [5].

There is one major drawback of moving DVES to hardware:
for applications with timing requirements, software has all the
knowledge about both the current and desired performance.
Existing software-based DVFS approaches select the lowest
DVEFS setting that meets an application’s timing requirement.
When DVES is completely transitioned to hardware, software
will need another mechanism to meet timing constraints with
minimal energy. Fortunately, emerging interfaces let software
set power caps on hardware, with hardware free to determine
what DVFES settings should be used and when, so long as
the average power over some time window is respected. For
example, Intel’s Running Average Power Limit (RAPL) allows
software to set power limits on hardware [6]. The challenge
is that meeting timing requirements with DVFS is easy:
simple linear models map changes in clockspeed to changes
in speedup. Meeting timing requirements with power capping
is harder: power and speedup have a non-linear relationship
and most applications exhibit diminishing performance returns
with increasing power.

We prepare for the transition away from software DVFS
management by proposing CoPPer (Control Performance with
Power), a software system that uses adaptive control theory
to meet application performance goals by tuning hardware
power caps. CoPPer has three key features. First, it works
on applications without prior knowledge of their specific
performance/power tradeoffs; i.e., it does not require a system
or application-specific power cap/performance model based on
pre-characterization, making it suitable for general purpose
computing workloads composed of repeated jobs. Second,
it uses a Kalman filter to adapt control to non-linearities
in the power cap/performance relationship. Third, it intro-
duces adaptive gain limits to prevent power from being over-
allocated when applications cannot achieve additional speedup.

That is, if a workload’s performance does not improve with
expanded power limits, CoPPer will not allocate additional
power, whereas standard control-theoretic approaches take no
additional power-saving action. Thus, CoPPer saves energy
in many cases compared to existing DVFS-based approaches
while maintaining its formal guarantees.

In summary, this paper makes the following contributions:

o Proposes using software-defined, hardware-enforced
power capping instead of software-managed DVFS to
more energy-efficiently meet application timing con-
straints.

o Presents CoPPer, a feedback controller that: meets per-
formance goals by manipulating hardware power caps,
handles non-linearity in power cap/performance tradeoffs,
and introduces adaptive gain limits to further reduce
power when it does not increase performance.

o Evaluates CoPPer using Intel RAPL, achieving better en-
ergy efficiency than software DVFS control, with similar
timing guarantees. Specifically, CoPPer improves energy
efficiency by 6% on average with a 12% improvement for
memory-bound applications. At the highest performance
targets, CoPPer’s gain-limit saves even more energy: 8%
on average and 18% for memory-bound applications.

« Open-source release of CoPPer reference implementation
and benchmark patches.!

In short, CoPPer overcomes the difficulties in using software
power capping to meet performance goals and improves
energy efficiency over software-managed DVFS, which is
becoming obsolete.

II. BACKGROUND AND MOTIVATION

Many modern computer systems are underutilized, leading
to significant portions of time where application performance
requirements can be met with less than the full system capacity
[3, 22, 23]. This trend has led to flourishing research in
energy-aware scheduling that tailors resource usage to meet the
performance requirements while minimizing energy. Software
DVFS management has been essential in many energy-aware
scheduling algorithms [1, 16, 31, 34]. Recent survey papers
devote entire sections to the various ways DVFS has been
used in scheduling systems [24, 35]. However, there are strong
indications that DVFS will not be directly controllable by
software in future processors.

A. The Future of Software DVFS

Since SandyBridge, Intel processors take software DVFS
settings as suggestions, and hardware has been free to dynam-
ically alter the actual clockspeed and voltage independently
from the software-specified setting [7, 26]. With the Skylake
architecture, Intel has been actively campaigning to move
DVFS management wholly to hardware and instead have
software specify power. The hardware is then free to rapidly
change DVFS settings to achieve better performance while still
respecting those power limits [21]. For example, if software

! Available at: https://github.com/powercap/

3.0 3.0

n
2.5 2.5
3 2.0 -~ 3 2.0 J
|
& 15 -~ & 15 -
1.0 l.. 1.0 -'.

1 15 2 25 3 1 2 3 4 5 6

Frequency (Normalized) Power Cap (Normalized)

(a) DVFS (b) Power cap

Fig. 1: DVFS / Power cap performance impact for vips.

sets power limits requiring any 50 ms time window to average
a maximum of 100 W, hardware is free to use turbo mode to
speed up the processing of any bursty work within that 50 ms,
as long as it compensates by running in a low-power state for
some of that time.

Of course, even as DVFS shifts to hardware, it is still the
software’s responsibility to provide its own notion of either
“best” or “good enough” performance. The capability to spec-
ify power caps and simultaneously provide some optimization
is already provided by interfaces like Intel’s RAPL [6]. Recent
works show that a combination of RAPL and software resource
management can achieve even better performance or energy
proportionality while guaranteeing power consumption [15,
32]. What is still needed, however, is a software component
that can guarantee performance constraints while minimizing
energy consumption. We address this need with CoPPer, which
provides soft, application-level performance guarantees by
manipulating hardware power caps, without the need to pre-
characterize application workloads.

Two related RAPL-based works merit a brief comparison.
PEGASUS meets timing constraints using a multi-step bang-
bang controller, but requires (1) pre-characterization of work-
loads and (2) empirically-determined, workload-dependent
values for both latency headroom thresholds and coarse-
grained power cap deltas [18]. HyPPo meets SLAs using an
observe-decide-act loop for heterogeneous workloads in cloud
environments, but its SLAs are in the form of CPU utilization
requests rather than actual application timing goals, and, unlike
CoPPer, does not provide formal guarantees [2].

B. The Challenges of Actuating Power

Meeting performance targets with power caps instead of
DVES settings introduces new challenges. Figure 1 demon-
strates how the compute-bound vips application’s perfor-
mance is affected by DVFS frequencies (Figure 1a) compared
to processor power caps (Figure 1b) on our evaluation system.
Three challenges are immediately apparent from the figures.
First, DVFS produces a linear response in performance, but
power capping is non-linear. Second, power capping has
diminishing returns: as power increases, the change in per-
formance becomes smaller. Third, the range of DVFS settings
is much smaller than power settings: the ratio of the maximum
to minimum DVFS setting is 2.75, but power capping has a
ratio of over 6 (as can be seen from the x-axes).

DVFS
Conservative Power Cap —A— Aggressive Power Cap

- - - Performance Requirement —o—

Performance
(Normalized)

Control Period

Fig. 2: DVFS and power capping with linear models.

The linear relationship between DVFS and performance
makes it easy to apply textbook control-theoretic techniques
to build a performance management system based on DVFS,
and many examples exist in the literature [8, 9, 14, 17, 27, 29,
33]. With DVFS, control models assume that—for compute-
bound applications—a 2x change in frequency produces a 2x
change in performance. Applying the same techniques to build
a performance management system based on power capping is
more complicated. The major issue is that controllers based on
time-invariant linear models will have varying error dependent
on the current power cap. The simple solution is to build a
linear model that never overestimates the relationship between
power and speedup [8]. The downsides to this approach are:
(1) a developer must know the maximum error for any appli-
cation the system might run and (2) using such a conservative
estimate slows down the controller’s reaction to changes in the
application or environment.

Figure 2 shows the difference between a controller based
on a linear DVFS model extracted from Figure la and two
(one conservative and one aggressive) based on fitting time-
invariant linear models to the power capping data from Fig-
ure 1b. All approaches start at the maximum DVES or power
setting and must bring performance down to the required level
while minimizing energy. Figure 2 shows the DVFES controller
quickly reaches the desired performance, but the conservative
power capping controller is much slower to react. The conser-
vative approach never violates the performance requirement,
but its slow reaction wastes energy. The aggressive approach
overreacts, oscillating around the performance target instead
of settling on it. These results demonstrate how sensitive
power capping approaches can be to their input models. The
next section describes an adaptive control design for meeting
performance goals with power capping that overcomes the
difficulties highlighted by this example without requiring a
user-specified model.

III. A GENERAL POWER CAPPING DESIGN

CoPPer’s goal is to provide soft performance guarantees,
with the competing goal of keeping power as low as possi-
ble. To achieve the best energy efficiency, a power capping
framework for meeting performance targets must not allocate
more power than is actually needed by an application. CoPPer
uses an adaptive control-theoretic approach to meet soft real-
time performance constraints and employs a gain limit to
proactively reduce power consumption when it determines that

Min / Max

Power
Performance Performance ¢ System
Goal Error Power Ca
— Sl g 5L Controller f—]
Performance4 Application
Feedback

Fig. 3: CoPPer’s feedback control design.

power is over-allocated. For maximum portability, CoPPer is
independent of any particular system, application, and power
capping implementation.

A. Adaptive Controller Formulation

Figure 3 presents CoPPer’s feedback control design. CoPPer
requires three pieces of information at runtime: (1) the soft
performance goal, (2) performance feedback, and (3) the
minimum and maximum power that the system allows. A
user provides CoPPer with the performance goal, P,.. ¢, which
is just the inverse of a job latency deadline 7, i.e., Py = 771
At runtime, the application measures its own performance,
Pm(t), which it provides to CoPPer. The minimum and maxi-
mum power caps, Uy, and U, ., are system properties that
can often be determined at runtime.

The controller first computes the performance error,
followed by a speedup value:

e(t) = Prey — pm(t) (1)
s(t) = gain(t) - (s(t -1+ ZEE;))

where s(t — 1) is the speedup signal generated in the previous
iteration, b(t) is the base speed estimate produced by a Kalman
filter [30], and gain(t) (where 0 < gain(t) < 1) is a time-
varying value that scales the control response. The gain is
described in more detail shortly (Section III-B). Finally, the
new power cap to be applied is computed as:

w(t) = Upin - 8(t) 3)

Figure 1b (Section II-B) shows that, unlike with DVFS
frequencies, a scalable compute-bound application’s speedup
is a non-linear function of the power cap. Figure 2 then
illustrates how formulating a controller based on a linear
model can cause the controller to converge very slowly, or
to not converge at all. CoPPer overcomes this limitation by
treating the application’s base speed, b(t), as a time-varying
value and estimating it with a Kalman filter. In practice, this
approach is analogous to estimating a non-linear curve with a
series of tangent lines, each with slope b(t). Thus, CoPPer’s
use of the Kalman filter allows it to overcome the problematic
non-linear relationship between performance and power caps.

B. The Gain Limit

In many cases, allocating a higher power cap increases
power consumption without actually increasing an applica-
tion’s performance. With vips in Figure 1 (Section II-B),
performance scales linearly as higher DVES frequencies are

3.0 3.0

25 25
g g
< 2.0 S 2.0
g — i -.-_-u'.“.
@ 1.5 __.-" " @ 1.5 o
|
Lo == 10| =*
1 15 2 25 3 1 2 3 4 5 6

Frequency (Normalized) Power Cap (Normalized)

(a) DVFS (b) Power cap

Fig. 4: DVFES / Power cap performance impact for HOP.

applied, but eventually a predefined maximum allowable fre-
quency is reached and TurboBoost is enabled. TurboBoost
allows the processor to run at higher frequencies for short
periods of time, at the cost of higher power consumption
and heat generation. In contrast, performance increases non-
linearly as higher power caps are applied, until a little beyond
the system’s thermal design power (TDP), i.e., the power level
at which the processor is designed to safely dissipate heat
under most workloads. Unfortunately, TDP is not a reliable
indicator of the maximum power cap that can be applied
efficiently. Figure 4 demonstrates the power cap/performance
behavior of the HOP application, where performance levels-
off well before the system TDP, and begins exhibiting perfor-
mance unpredictability before beginning to achieve some small
increases in average performance again once the power cap is
greater than than the system TDP. These behaviors make it
difficult for controllers to efficiently meet performance targets.
CoPPer uses a gain limit to avoid over-allocating power when
it is not useful, e.g., for unachievable performance targets in
vips or moderate targets in HOP (Figures 1 and 4).

The gain limit is used in computing the gain(t) term in
Eqn. 2. This term is initially 1, and will remain so until the
controller settles. Based on the performance history, gain may
be reduced to lower the speedup when CoPPer detects that the
extra speedup is not beneficial (and thus wasting power). In
general, the convex properties of performance/power tradeoff
spaces ensure that reducing the speedup never increases power
consumption, and in most cases reduces it.

Intuitively, if the performance error value computed in
Eqgn. 1 is low, then the system has converged to the perfor-
mance target and the speedup signal should remain where it
is. However, if error values are high but the difference in error
values between iterations is low, the controller has settled,
but the performance target is not achievable. It may then be
beneficial to reduce the speedup, and thus the power. Speedup
is reduced by setting gain to:

gain(t) =1 — a. - ens(t) - Aeps(t) 4)

where a. (0 < a, < 1) is the gain limit, a constant that

controls how low the gain can go, and:

le®]

enlt) =5 5)
Aen(t) = len(t — 1) — en(t) ©)
ens(t) =1— — %)
en(t) +1
1
Aens(t) = A1 8

Since P,y is the performance target, e, (t) is the absolute
normalized performance error. Ae,, (t) in Eqn. 6 is the absolute
change in e, (t) since the previous iteration. Eqns. 7 and 8
compute values e,s(t) and Ae,s(t), which determine how
much impact e, (t) and Ae, (t) have on reducing the speedup.
Both e,(t) and Ae,s(t) lay in the unit circle. As normalized
performance error e, (t) approaches 0, e,s(t) also approaches
0, which reduces the impact of the gain limit in Eqn. 4.
Conversely, if the error is high, e,s(t) approaches 1 and the
gain limit will have a greater impact on the speedup. As the
change in normalized performance error Ae,,(t) approaches 0,
Ae,s(t) approaches 1, thus increasing the gain limit’s impact
in Eqn. 4. Conversely, if the change in error is high, Ae, (%)
approaches 0 and the gain limit will have less impact on the
speedup. Therefore, Eqn. 4 reduces the speedup signal by a
factor of at most «., with the greatest change in speedup
occurring when the absolute performance error e,,(t) is high
and the absolute change in error Ae,, (t) is low. Setting a. = 0
disables the gain limit entirely, corresponding to gain(t) =1
in Eqn. 2.

In practice, Eqn. 2 clamps the speedup value at % prior
to applying the gain to prevent slow controller regnp;z)nse if
P, was previously unachievable.> High performance errors
force a speedup value too high for the gain to overcome if
the speedup is not clamped first. In cases of high performance
error, the gain limit’s effectiveness is also constrained by the
accuracy of Uner and U,,in. If speedup is not clamped at a
reasonable upper value, the gain limit must be quite high to
overcome the inaccuracy.

Recall that CoPPer holds gain(t) at 1 until the controller
converges. Until then, the controller is an adaptive deadbeat
control system that retains the corresponding control-theoretic
guarantees [8]. Specifically, it can converge to the desired
performance in as little as one control iteration. At that point,
CoPPer computes Eqns. 4-8, which may change gain(t). In
control-theoretic terms, a non-zero gain is equivalent to adding
a zero to the characteristic equation of the closed loop system.
Given the definition of gain(t), it is equivalent to a zero
greater than 1, which moves the controller in the opposite
direction from the feedback signal. Normally, this would be
undesirable behavior, but this is exactly the behavior we want
when we are no longer seeing performance improvements by
increasing the power cap.

2In control terminology, this is an anti-windup mechanism.

10

11

3| copper_init (&cop,

5| for

C. Using CoPPer

Application-level feedback provides high-level metrics that
are conducive to goal-oriented software and has been shown
to provide a more reliable measure of application progress
than low-level metrics like performance counters or memory
bandwidth [10]. Many applications that are subject to perfor-
mance constraints already measure performance and integrate
with runtime DVES controllers to meet performance targets.
A performance target is any positive real value that makes
sense for the application, and can conceivably be configured
from any number of sources, e.g., a command line parameter,
a configuration file, or dynamically via a software interface.
At desired time or work intervals called window periods

(described further in Section IV-B), the application measures °

its performance and calls the controller. Developers for this
class of applications already perform these tasks, so all that
remains is to replace function calls to an existing DVFS
controller with those for CoPPer.

CoPPer is designed to be independent of any particular
system, application, and power capping implementation. It is
initialized with a performance target, the minimum and maxi-
mum allowed power values, and the starting power cap.® After
each window period, the copper_adapt function is called
with an identifier and the current application performance. This
function returns the new power cap, which is then applied to
the system. For example:

// initialize CoPPer

copper cop;

perf_goal,
// application main loop

(i = 1; i <= NUM_LOOPS; i++) {
do_application_work () ;

if (1 % window_size == 0) {

// end of window period

perf = get_window_performance () ;

powercap = copper_adapt (&cop, 1, perf);

apply powercap (powercap) ;
}

pwr_min, pwr_max, pwr_start);

3}

Listing 1: Using CoPPer to compute and apply power caps.

The underlined functions simply replace the existing DVFS-
related ones. Furthermore, the apply_powercap function is
independent of CoPPer—an example is provided in the next
section.

IV. EXPERIMENTAL SETUP

This section details the platform and applications used to
evaluate CoPPer. We quantify application performance vari-
ability, which directly impacts an application’s ability to be
controlled, and we describe the control approaches CoPPer is
evaluated against.

A. Testing Platform

We evaluate CoPPer on an Ubuntu Linux system with
kernel 3.13.0, configured to support both software-managed
DVEFS and Intel RAPL. To record runtime power behavior,

3An accurate starting power cap is optional, but knowing the initial
configuration helps the controller to settle as quickly as possible.

6

8

9
10
11
12

we read energy from the Model-Specific Registers [12, 28].
Energy measurements are only used to evaluate CoPPer, they
are not required in practice. For our experiments, we enable
TurboBoost and set power caps for the RAPL short_term
constraint at the Package level. We keep the system’s default
time window of 7812.5 us. To apply RAPL power caps, we
provide an easy-to-use tool called RAPLCap, but stress again
that CoPPer is independent of the power capping implemen-
tation. For example, the apply_powercap function used in
Listing 1 might be:

raplcap rc;

3| void apply_powercap (double powercap) {

uint32_t n = raplcap_get_num_sockets (&rc);

raplcap_limit rl = {
// time window = 0 keeps current
.seconds = 0.0,
// share computed power cap evenly
.watts = powercap / (double) n

}i

for (uint32_t i =
raplcap_set limits (i, &rc,
&rl);

time window

0; 1 < n; i++) {
RAPLCAP_ZONE_PACKAGE, NULL,

Listing 2: Applying a power cap with RAPLCap

The RAPL interface sets a limit on average power consump-
tion over a time window, with hardware controlling DVFS and
power allocation within that window.

B. Evaluation Applications

Our experiments use applications from the PARSEC bench-
mark suite [4], MineBench [25], STREAM [20], and SWISH++
[19]. PARSEC provides a wide variety of parallel applica-
tions that exhibit different ranges of performance and power
behavior. MineBench provides a representative set of data
mining applications, some of which support parallel execution.
STREAM is a synthetic benchmark that stresses main memory
and represents memory-bound applications. SWISH++ is a
file indexing and search engine. All inputs are delivered with
or generated directly from the benchmark sources, with the
exception of dedup which uses a publicly available disc
image, and raytrace and x264 which are from standard
test sequences.

Applications contain top-level loops, where each loop it-
eration completes a job. We instrument the applications with
the Heartbeats interface to measure job performance, as real
applications would [11]. As is common in control systems,
CoPPer executes at fixed job intervals called window periods.
For example, CoPPer will compute a new power cap every 50
video frames in x264.

Applications exhibit variability in their performance behav-
ior, with some behaving more predictably than others. Figure 5
demonstrates the behavior of the applications used in this
paper when running in an uncontrolled setting (default system
power caps). Naturally, better predictability typically results in
lower error in meeting performance targets, as will be shown
in Section V-A.

1.0
0.8 9
0.6
0.4

o nﬂnH H lollllaclal.

(S
Q‘& & «\‘“3&;,0@ & qp Ve;a &v %‘z@“\x x\,\o*\@«, 4@‘
N
8 >
& 6 a@“" 6;““\
o

Coeff. of Variation
(Std. Deviation/Mean)

NCFgIN
% &
NN f@"z
S0

i K\

Fig. 5: Application job performance variability.

C. Execution and Analysis

Prior to performing the evaluation, we first characterize
the behavior of all applications by running them without any
control at each of the evaluation system’s DVFS frequencies
and measuring their performance and power behavior. These
exhaustive characterizations are only required for our analysis
and not in practice. We use the results to derive an oracle
with perfect foreknowledge of job behavior and no compu-
tation overhead. The oracle runs at the highest-performance
frequency for the application (which is not always the highest
frequency or the TurboBoost setting) until a job completes,
then sets the most energy-efficient frequency and aggressively
places the processor cores in a low-power sleep state, with no
delay or transition overhead.

The oracle is thus an ideal performance DVFS governor
which never misses a performance goal, and is a good base-
line for comparison. Modern Linux systems provide a real
performance governor, which is not as efficient as our oracle
since it does not know the highest-performing frequency for
each application and incurs state transition overhead. With the
exception of unachievable performance targets, we compare
the energy consumption of all the executions in the evaluation
against the oracle to determine their relative energy efficiency.

The different analyses compare CoPPer with various gain
limits against a simple linear DVFS controller and a sophisti-
cated DVFS controller that meets soft performance constraints
and schedules for optimal energy consumption [13]. The
simple linear DVFS controller estimates the ratio of control
change (a primitive application-specific base speed estimate)
in the first iteration, whereas a textbook controller requires
this value at initialization and is rarely as good as our runtime
estimate. It then uses an O(log(n)) algorithm to map speedup
values to the lowest of n DVEFS frequencies that meets
the performance target, which is also an improvement over
textbook approaches in that limiting the controller to discrete
DVES settings prevents oscillations.

The sophisticated DVFS controller requires a system model
that maps DVFS frequencies to speedup and powerup values.
It uses this model to divide window periods between two
DVEFS settings to meet a performance target precisely, where
the schedule is computed using an O(n?) algorithm to find the
best energy consumption subject to the performance constraint.
This approach results in low error and often higher energy
efficiency than the simple approach, as Section V-A will show.

We also use a much more efficient DVFES actuation function
than the sophisticated DVFS controller comes with, reducing
its actuation overhead by two orders of magnitude. We use
a lower bound of 20 jobs per window period in our evalu-
ation for the benefit of the sophisticated DVFS controller—
a minimum of 20 jobs ensures less than 5% performance
error in its scheduling. CoPPer does not suffer this scheduling
limitation, but we make the accommodation for the DVFS
controller anyway in an effort to provide the most challenging
comparison possible.

We provide the DVFS controllers with linear models (e.g., a
2x change in frequency results in a 2x change in performance
and power), which works quite well on our evaluation system.
It should be noted, however, that poor models can cause
slow, oscillating, non-convergent, or otherwise unpredictable
behavior in model-driven controllers. In contrast to the DVFS
controllers, CoPPer does not require a model, only the min-
imum and maximum power values, and therefore can run in
constant O(1) time.

V. EXPERIMENTAL EVALUATION

This section evaluates CoPPer. We first show that CoP-
Per achieves similar error to, and higher energy efficiency
than, both a simple and a sophisticated DVFS controller.
Next, we show that CoPPer improves energy efficiency for
memory-bound applications and that its gain limit avoids over-
allocating power when performance targets are not achievable.
We then show the advantages of using an adaptive controller
by demonstrating its behavior for an application with a phased
input and then in response to interference caused by multiple
concurrent applications.

A. Efficiently Meeting Performance Goals

We begin by quantifying CoPPer’s ability to achieve high
energy efficiency while meeting soft performance goals. We
use gain limits of 0.0 (disabled) and 0.5. For this analysis, we
consider the steady-state behavior of the controllers. Therefore,
each controller is initialized with the same s(¢) value for ¢t = 0
(see Eqn. 2 in Section III).

For each application, we define and evaluate three dif-
ferent performance goals which specify how much to favor
performance over energy consumption: high, medium, and
low. We define the high performance goal to mean that the
application must maintain at least 90% of top performance.
The medium and low goals correspond to maintaining 70%
and 50% of top performance, respectively. We note that
actual performance values provided to CoPPer are application-
specific, as described in Section III-C (i.e., not a percentage),
and are chosen by the application designer or user depending
on the application deployment context.

We quantify the ability to meet performance goals with low
energy using two metrics:

o Energy efficiency is the ratio of the ideal performance

governor’s energy consumption (as computed by the
oracle) to the actual energy consumption achieved.

0o DVFS — Simple 00 DVFS — Sophisticated 00 CoPPer — 0.0 00 CoPPer—0.5

1.6
14) — —
high T 12 HJ o m
N 10 e 1 A T
=]
Z 14 : _ -
medium § 1.2 m _ _ ’ﬂ_{] ~)
Q
5 1.0 ’-ﬂ h-’N J
£ ~ 0.4
m
5 L4 — :
low 5 1.2 i mH i
1.0 m~04
3 08 o (& B @ o W g (R e N X (R o & &€
RS T P R LU S I NSO SN S &%
o F™ @ 0 @ & &Q«\c B %@5 $®(\e/ 6&5* O
3 @ &

Fig. 6: Application energy efficiency for DVFS controllers and CoPPer, with and without a gain limit, for high, medium, and
low performance targets (higher is better). Results are normalized to an ideal performance DVFS governor.

0o DVFS — Simple 00 DVFS — Sophisticated 00 CoPPer — 0.0 00 CoPPer — 0.5

20
15 M
5
il [ﬂﬂ]l R | [[ﬂ
20
e 15
medium & 10 .
N al Al Il Al
= | Al P I | O
20
15
low 10 I
; A4 il ol f Ll
c\’(\o\‘i\g&@* & @(é & \)«i\“e’ﬁ&@(’e Q,;\O(\e o +’Lbb(’b‘\o?:b\ 6660? 0\\36’@‘ Q&P*\\\ Y\XX Q\OQ \Q\e}‘\e {(0{1"5 &Qz((,/qg@a“adoe
vad"e ©° X\\;\b’o @@ & e ¢ (e'b((\) Q“Q\% A g o & Y
ES 2 S

Fig. 7: Application performance error for DVFES controllers and CoPPer, with and without a gain limit, for for high, medium,

and low performance targets (lower is better).

e Mean Absolute Percentage Error (MAPE) quantifies the
error between the desired performance and the achieved
performance; it is a standard metric for evaluating control
systems [8].

MAPE computes the performance error for an application with
n jobs and a performance goal of P, y as:

1 < ;)
MAPE = 100%- — Z pm(z.) < Prey:
ni:l pm(l)zpref5 0

where p,, (7) is the achieved performance for the i-th job. Each
failure to achieve the performance target increases MAPE by
an amount relative to how badly the target was missed.
Figures 6 and 7 present the energy efficiency and MAPE
values for all applications and targets. Despite the challenges
described in Section II-B (e.g., non-linearity and larger range
in the power cap/performance relationship), CoPPer achieves
higher energy efficiency and similar MAPE compared to

Pref —Pm (7')
Prey (9)

TABLE I: CoPPer energy efficiency with gain limits of 0.0
and 0.5 compared to the sophisticated DVFS controller.

Energy Efficiency vs DVFS

Performance CoPPer-0.0 CoPPer-0.5
high 1.05 1.08
medium 1.03 1.06
low 1.02 1.04
Average 1.03 1.06

both the simple and sophisticated DVFS controllers for most
applications and performance targets.

Table I shows the average energy efficiency gains of CoPPer
compared to the sophisticated DVFS controller for different
performance goals. CoPPer is 3% more energy-efficient with
no gain limit and 6% more efficient with gain limit 0.5. Note
that CoPPer’s energy efficiency gains increase as the perfor-
mance goal increases. For high goals, the DVFES approach must

3.0 3.0
2.5 2.5
-§ 2.0 '5 2.0
2 . 2 | -
v 150 . n SR R o
10 l.] l... n 10 l—.wl-
I 15 2 25 3 1 2 3 4 5 6

Frequency (Normalized) Power Cap (Normalized)

(a) DVFS (b) Power cap
Fig. 8 (a) DVFS and (b) power cap effects on
streamcluster.

use TurboBoost, which is inefficient. CoPPer however, can set
a power cap that allows the performance goal to be met and
leave the decision to Turbo or not to hardware, which has more
information about whether that choice is appropriate—exactly
the motivation to move DVFS control to hardware and allow
software to simply cap power.

Fregmine and streamcluster are outliers for both
energy efficiency and MAPE. Fregmine is composed of re-
peated jobs, but its behavior is not predictable with feedback—
the application uses a recursive algorithm that causes job
performance to continually slow as it progresses. This be-
havior is quantified by its high job variability as shown in
Figure 5 (Section IV-B). Streamcluster exhibits a perfor-
mance/power tradeoff space that does not scale well beyond
a fairly low DVFS setting or power cap, as demonstrated in
Figure 8. In fact, its performance degrades dramatically as
resource allocation increases. Even CoPPer’s gain limit cannot
adapt since it detects a change in performance when trying to
reduce the power cap. The ideal performance DVFS governor
(the oracle) knows not to allocate higher frequencies since
it has access to the application-specific characterizations, but
practical runtime controllers do not have this information. Us-
ing streamcluster-specific power cap ranges for CoPPer
would produce results similar to the other applications; the
DVEFS controllers, however, would need whole new models.

B. Controlling Memory-bound Applications

Our benchmark set contains 6 memory-bound applica-
tions: KMeans, KMeans-Fuzzy, ScalParC, STREAUM,
streamcluster, and SVM-RFE. CoPPer achieves notice-
ably higher energy efficiency for these applications than with
DVEFS. Table II summarizes the average ratio of energy effi-
ciencies across all performance targets for these applications,
comparing CoPPer with and without a gain limit to the
sophisticated DVFS controller.

We see that even without a gain limit, CoPPer already
improves on the sophisticated DVFS controller’s energy ef-
ficiency by 10% on average. With a gain limit of 0.5, the
improvement rises to 12%. These are significant energy sav-
ings. CoPPer performs especially well compared to DVFS with
these memory-bound applications for the higher performance
targets. Again, even without a gain limit, CoPPer improves

TABLE II: CoPPer energy efficiency compared to the sophis-
ticated DVFES controller for memory-bound applications.

Energy Efficiency vs DVFS

Performance CoPPer-0.0 CoPPer-0.5
high 1.15 1.18
medium 1.09 1.11
low 1.06 1.08
Average 1.10 1.12

TABLE III: Energy efficiency for unachievable performance
targets, normalized to the sophisticated DVFS controller.

Gain Limit Energy Efficiency
0.0 1.00
0.2 1.01
0.5 1.10
0.6 1.16
0.8 1.29
0.99 1.46

energy efficiency by 15% for the high performance target.
DVFS can benefit from TurboBoost at high performance
targets for many applications, but the higher DVFS frequencies
also result in unnecessarily high energy consumption for
memory-bound applications. By setting power caps instead
of forcing DVFS frequencies, CoPPer achieves better energy
savings by allowing the processor to scale frequencies more
quickly between computational and memory-intensive periods.
The gain limit provides significant energy savings for memory-
bound applications with only a small loss in performance. In
general, we advocate the use of 0.5 gain limit in practice since
it produces almost no difference in MAPE, but can provide
significant energy savings for memory-bound workloads.

C. Reducing Power for Unachievable Goals

Sometimes performance targets simply are not achievable.
This could be due to a user requesting too much from an
application given the available processing capability, or the
application may just want to run as fast as possible. When a
performance target is unachievable, a naive resource controller
will continue to increase resource allocations like DVES fre-
quencies or power caps in an attempt to improve performance,
needlessly wasting energy. In this part of the evaluation, we
demonstrate that CoPPer’s gain limit helps avoid this pitfall. In
Section III-B, we explained that the gain limit’s effectiveness
is constrained by the accuracy of the minimum and maximum
power values. For this experiment, we use a more reasonable
(and safer) maximum power limit—the evaluation system’s
TDP of 270 W.

For each application, we set an unrealistically high per-
formance target—1000x greater than what the system can
actually achieve. We then execute both the sophisticated DVFS
controller and CoPPer with a range of gain limit values. As
the performance target is not actually achievable, MAPE is
meaningless. Instead, we normalize energy efficiency to the
sophisticated DVFS controller. Table III presents the results
for select gain limits.

The DVFS controller runs in the TurboBoost setting for
the entirety of each execution. We also verified that the

1.0 X

08 M\JJM\M»MM
1

0.6 1

1
0.4 : :
0.2 : :
1 1

Performance
(Normalized)

250
200 | AP AAAPANTIAR A A
150
100
50

Power

(Watts)

4500
time [frame]

(a) Uncontrolled behavior.

2.0
1.5

oAl

0.5

Performance
(Normalized)

200

150

Power
(Watts)

100

1
3000

1
1
1
1
1
1
1
1
1

50

0 1500 4500

time [frame]

(b) Meeting a performance target with CoPPer.

Fig. 9: An x264 input with distinct phases.

simple DVES controller and the evaluation system’s real Linux
performance governor achieved nearly identical results as
the sophisticated controller. As should be expected, CoPPer
without a gain limit behaves similarly. With gain limits en-
abled, CoPPer achieves increasingly better energy efficiency
for small increases in application runtime. A 0.5 gain limit
demonstrates a significant improvement in energy efficiency—
a 10% increase over the sophisticated DVFS controller. A gain
limit of 0.99 increases energy efficiency by 46% over the
DVEFS controller, though suffers a 20% loss in performance
as it pulls power consumption back too aggressively.

These results clearly demonstrate the gain limit’s advan-
tages. For achievable performance targets, it has minimal
impact on controller behavior. For unachievable targets, it can
greatly improve energy efficiency over the sophisticated DVFS
controller.

D. Adapting to Runtime Changes

This experiment demonstrates CoPPer’s ability to respond
to changes in application behavior at runtime. We run x264
with a video input that exhibits three distinct levels of encoding
difficulty. Figure 9a demonstrates the uncontrolled behavior
of the input, with performance normalized to the maximum
achieved. Dashed vertical lines denote where phase changes
occur. The first phase has the lowest average performance and
is therefore the most difficult to encode, followed closely by

the third phase. The second phase has the highest performance,
meaning it is the easiest part of the video to encode. Frames
that are easier to encode offer an opportunity to save energy
when meeting a performance target, as fewer resources are
needed to satisfy the constraint. In the uncontrolled execution,
power is consistently high as no changes to resource alloca-
tions are being made.

Figure 9b shows the time series for CoPPer with a gain limit
of 0.0 for the medium performance target and a window size
of 50 frames. Performance is normalized to the target. Now
the performance remains mostly fixed (per the constraint),
whereas the power consumption fluctuates as the power cap
changes. Power values are now inversely proportional to the
performance behavior seen in Figure 9a since CoPPer is able
to reduce power consumption to save energy during phases
of easier encoding. Of course, the actual power consumption
recorded for any given frame does not necessarily match the
power cap—it may be lower.

The fluctuations around the performance target in each
phase are a result of input variability. The uncontrolled ex-
ecution in Figure 9a testifies to the variability’s presence in
the input. We see similar behavior in other applications to
varying degrees, but this visual clarifies where performance
error (MAPE) comes from, and why some applications are
difficult to control. Still, CoPPer meets the performance target
with high energy efficiency and low error. For this execution,
energy efficiency is 1.25 compared to the ideal performance
governor (the oracle) and MAPE is 6.48%.

E. Multiple Applications

This section evaluates CoPPer’s resilience to interference
from another application. We begin the experiment by launch-
ing each application with a performance target. Roughly
halfway through each execution, we launch a second ap-
plication which was randomly selected from the PARSEC
benchmark suite. The second application does not perform any
DVEFS or power control, but introduces interference into the
system by consuming resources.

Figures 10 and 11 present the energy efficiency and
MAPE results for each application. As should be expected,
MAPE is higher than in previous experiments given that
there is significant disturbance to system resources, which
also makes the application more difficult to control even
when the controller recognizes the disturbance and adapts to
it. Some applications (e.g., facesim, canneal, dedup,
streamcluster, STREAM, and SVM_RFE) were not able
to achieve the performance target after the second application
is started, simply because there were not sufficient resources
remaining in the system. Instead, the controller makes a
best effort. These applications drag down the average energy
efficiency, which otherwise remains high like in the single
application analysis (e.g., KMeans and ScalParC). Still,
the average across all applications is nearly as good as the
ideal performance governor would achieve in the absence of
interference.

0o DVFS — Simple [0 DVFS — Sophisticated 00 CoPPer —

0.0 00 CoPPer—0.5

EE (Norm)
e = =
o W

Ll

”Mmﬂﬂmnm”m

ol m

& & 2 (o2 © & o>
& S & (@ o0 VNS
&6(3\ o& o K &Q\d‘ & o) ‘@Q + &
\0\3 ’&\\)\ A\ 9

e’b

&)
éeé <(\L\\ﬁ Qg/: o X \>\O \4\

Ml

3 3
& S A

Fig. 10: Application energy efficiency for DVES controllers and CoPPer, with and without a gain limit, under interference by
a second application (higher is better). Results are normalized to an ideal performance DVES governor.

0o DVFS — Simple 00 DVFS — Sophisticated 00 CoPPer — 0.0 00 CoPPer — 0.5

~ 50
S 20
= 30
: il
o f Il
= 10| il wm _l Il e _ifll il e (I
> X e 53) & Y W X 4 N O << e
ec“o\e & s\c,69 &e‘(a {\\(“%& @\Y“(® \O(\ € ﬂ’@ @“‘\e% be «‘?3} 5‘?\ © QN\BQ <<°1} ,b\‘”(& &“‘%
‘0\3& o° o&° k@ &@z) %\“ o ¢ \“ »
B

Fig. 11: Application performance error for DVFS controllers and CoPPer, with and without a gain limit, under interference by

a second application (lower is better).

VI. CONCLUSION

Recent trends in processor design have increased the tension
between hardware and operating systems designers over who
should manage voltage and frequency scaling. Software can
make better estimates about future processing requirements,
but the hardware can react faster to events that dictate a need
for adjustment. The latest Intel hardware is moving in the di-
rection of limiting software access to DVFS, which negatively
impacts the huge number of power and energy-aware sched-
ulers that depend on DVFES for managing performance/power
tradeoffs. We propose using software-specified, hardware-
enforced power capping instead of software-managed DVFS
to energy-efficiently meet application timing requirements. We
present CoPPer, a control-theoretic approach that meets soft
performance goals by manipulating hardware power limits,
and evaluate it using Intel RAPL. CoPPer overcomes the
challenges of non-linearity and wider control ranges in power
cap/performance tradeoff spaces compared with DVFS. This
paper demonstrates that controlling power limits provides
similar performance guarantees as state-of-the-art DVES ap-
proaches but with better energy efficiency, particularly when
using CoPPer’s gain limit to prevent over-allocation of power
when it is not beneficial. Controlling power allows the hard-
ware to have fine-grained control over frequency and voltage
but still enables the huge array of power and energy-aware
scheduling techniques that currently depend on DVFS.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful feed-
back. This research is supported by NSF (CCF-1439156, CNS-
1526304, CCF-1823032, CNS-1764039). Additional support

comes from the Proteus project under the DARPA BRASS
program and a DOE Early Career award.

REFERENCES

[1] S. Albers, “Algorithms for dynamic speed scaling,”
in STACS, 2011.

[2] M. Arnaboldi, R. Brondolin, and M. D. Santam-
brogio, “HyPPO: Hybrid performance-aware power-
capping orchestrator,” in /CAC, 2018.

[3] L. A. Barroso and U. Hélzle, “The case for energy-
proportional computing,” Computer, vol. 40, no. 12,
Dec. 2007.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The
PARSEC benchmark suite: Characterization and ar-
chitectural implications,” in PACT, 2008.

[5] P. Bright, “The many tricks Intel Skylake uses to
go faster and use less power,” Ars Technica, Aug.
2015. [Online]. Available: http://arstechnica.com/
information- technology/2015/08/the- many- tricks-
intel - skylake - uses - to - go - faster - and - use - less -
power/.

[6] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna,
and C. Le, “RAPL: Memory power estimation and
capping,” in ISLPED, 2010.

[71 L. K. Documentation. (2016). Intel p-state driver,
[Online]. Available: https://www.kernel.org/doc/
Documentation/cpu-freq/intel-pstate.txt.

[8] A. Filieri, H. Hoffmann, and M. Maggio, “Auto-
mated design of self-adaptive software with control-
theoretical formal guarantees,” in /ICSE, 2014.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

A. Goel, D. Steere, C. Pu, and J. Walpole, “SWiFT:
A feedback control and dynamic reconfiguration
toolkit,” in 2nd USENIX Windows NT Symposium,
1998.

H. Hoffmann, M. Maggio, M. Santambrogio, A.
Leva, and A. Agarwal, “A generalized software
framework for accurate and efficient management
of performance goals,” in EMSOFT, 2013.

H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E.
Miller, and A. Agarwal, “Application Heartbeats:
A generic interface for specifying program perfor-
mance and goals in autonomous computing environ-
ments,” in ICAC, 2010.

C. Imes, L. Bergstrom, and H. Hoffmann, “A
portable interface for runtime energy monitoring,”
in FSE, 2016.

C. Imes, D. H. K. Kim, M. Maggio, and H. Hoff-
mann, “POET: A portable approach to minimizing
energy under soft real-time constraints,” in RTAS,
2015.

C. Karamanolis, M. Karlsson, and X. Zhu, “Design-
ing controllable computer systems,” in HorOS, 2005.
J. Krzywda, A. Ali-Eldin, E. Wadbro, P. stberg, and
E. Elmroth, “ALPACA: Application performance
aware server power capping,” in ICAC, 2018.

P. Kumar and L. Thiele, “p-YDS algorithm: An
optimal extension of yds algorithm to minimize
expected energy for real-time jobs,” in EMSOFT,
2014.

C. Lefurgy, X. Wang, and M. Ware, “Power capping:
a prelude to power shifting,” Cluster Computing, vol.
11, no. 2, 2008.

D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso,
and C. Kozyrakis, “Towards energy proportionality
for large-scale latency-critical workloads,” in ISCA,
2014.

P. J. Lucas. (2014). SWISH++, [Online]. Available:
http://swishplusplus.sourceforge.net/.

J. D. McCalpin, “Memory bandwidth and machine
balance in current high performance computers,’
IEEE TCCA Newsletter, 1995.

Meghana R., “An overview of the 6th generation
Intel Core processor (code-named Skylake),” Intel
Developer Zone, Mar. 2016. [Online]. Available:
https : // software . intel . com / en - us / articles / an -
overview - of - the - 6th - generation - intel - core -
processor-code-named-skylake.

D. Meisner, C. M. Sadler, L. A. Barroso, W.-D.
Weber, and T. F. Wenisch, “Power management of
online data-intensive services,” in ISCA, 2011.

N. Mishra, C. Imes, J. D. Lafferty, and H. Hoff-
mann, “CALOREE: Learning control for predictable
latency and low energy,” in ASPLOS, 2018.

S. Mittal, “A survey of techniques for improving
energy efficiency in embedded computing systems,”
1JCAET, vol. 6, no. 4, 2014.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G.
Memik, and A. Choudhary, “MineBench: A bench-
mark suite for data mining workloads,” in IISWC,
2006.

N. Pitre. (2014). Teaching the scheduler about power
management, [Online]. Available: http://Iwn.net/
Articles/602479/.

R. Pothukuchi, A. Ansari, P. Voulgaris, and J. Tor-
rellas, “Using multiple input, multiple output formal
control to maximize resource efficiency in architec-
tures,” in ISCA, 2016.

E. Rotem, A. Naveh, D. R. amd Avinash Ananthakr-
ishnan, and E. Weissmann, ‘“Power management
architecture of the 2nd generation Intel Core mi-
croarchitecture, formerly codenamed Sandy Bridge,”
in Hot Chips, 2011.

M. H. Santriaji and H. Hoffmann, “GRAPE: Min-
imizing energy for GPU applications with perfor-
mance requirements,” in MICRO, 2016.

G. Welch and G. Bishop, “An introduction to the
Kalman filter,” UNC Chapel Hill, Department of
Computer Science, Tech. Rep. TR 95-041.

F. F. Yao, A. J. Demers, and S. Shenker, “A schedul-
ing model for reduced CPU energy,” in FOCS, 1995.
H. Zhang and H. Hoffmann, “Maximizing perfor-
mance under a power cap: A comparison of hard-
ware, software, and hybrid techniques,” in ASPLOS,
2016.

R. Zhang, C. Lu, T. Abdelzaher, and J. Stankovic,
“ControlWare: A middleware architecture for feed-
back control of software performance,” in ICDCS,
2002.

B. Zhao, H. Aydin, and D. Zhu, “Energy manage-
ment under general task-level reliability constraints,”
in RTAS, 2012.

S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fe-
dorova, and M. Prieto, “Survey of energy-cognizant
scheduling techniques,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 24, no. 7, 2013.

