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Abstract—When quantum computers become scalable and
reliable, they are likely to break all public-key cryptography
standards, such as RSA and Elliptic Curve Cryptography. The
projected threat of quantum computers has led the U.S. National
Institute of Standards and Technology (NIST) to an effort
aimed at replacing existing public-key cryptography standards
with new quantum-resistant alternatives. In December 2017, 69
candidates were accepted by NIST to Round 1 of the NIST
Post-Quantum Cryptography (PQC) standardization process.
NTRUEncrypt is one of the most well-known PQC algorithms
that has withstood cryptanalysis. The speed of NTRUEncrypt
in software, especially on embedded software platforms, is
limited by the long execution time of its primary operation,
polynomial multiplication. In this paper, we investigate speeding
up NTRUEncrypt using software/hardware codesign on a Xil-
inx Zynq UltraScale+ multiprocessor system-on-chip (MPSoC).
Polynomial multiplication is implemented in the Programmable
Logic (PL) of Zynq using two approaches: traditional Register-
Transfer Level (RTL) and High-Level Synthesis (HLS). The
remaining operations of NTRUEncrypt are executed in software
on the Processing System (PS) of Zynq, using the bare-metal
mode. The speed-up of our software/hardware codesigns vs.
purely software implementations is determined experimentally
and analyzed in the paper. The results are reported for the RTL-
based and HLS-based hardware accelerators, and compared to
the best available software implementation, included in the NIST
submission package. The speed-ups for encryption were 2.4 and
3.9, depending on the selected parameter set. For decryption,
the corresponding speed-ups were 4.0 and 6.8. In addition, for
the polynomial multiplication operation itself, the speed up was
in excess of 75. Our code for the NTRUEncrypt polynomial
multiplier accelerator is being made open-source for further
evaluation on multiple software/hardware platforms.

Index Terms—Post-Quantum Cryptography, lattice-based,
NTRU, hardware/software codesign, High-Level Synthesis

I. INTRODUCTION

Major investment by several big companies, such as Google,
IBM, Intel and Microsoft, has led to the record-breaking
general-purpose quantum processor with 72 physical qubits,
released by Google in March 2018 [1]. It has been predicted
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that quantum computers will reach the computational power
and maturity sufficient to break existing public-key cryptogra-
phy algorithms by 2031, or earlier [2]. When it happens, all
traditional methods of dealing with the growing computational
capabilities of potential attackers, such as increasing key
sizes, would be futile. The only viable solution is to develop
new standards based on algorithms resistant against quantum
computer attacks, which at the same time can be executed on
traditional computing platforms, such as smartphones, laptops,
FPGA-based hardware accelerators, etc. In December 2016,
NIST published an official Call for Proposals and Request for
Nominations for Public-Key PQC algorithms [3]. A year later,
Round 1 of the NIST standardization process commenced [4].

To date, the assessment of candidates has focused primarily
on their security, with software efficiency envisioned as the
next major evaluation goal. Relatively little progress has been
made so far to understand the true potential of these algorithms
for efficient hardware and embedded systems implementa-
tions. Evaluation challenges include the large number of
algorithms, their novelty, complex mathematical descriptions,
non-standard fundamental operations, large public/private key
sizes, multiple parameter sets, and a multitude of possible opti-
mization targets. A complete, purely hardware implementation
of a single candidate may easily take a year-long effort by a
qualified graduate student or engineer [5].

In this paper, we present a methodology aimed at sub-
stantially reducing the development time for the majority of
PQC candidates, with limited influence on the accuracy of the
comparison and thus ranking of candidates. This methodology
is based on software/hardware (SW/HW) codesign, optionally
combined with High-Level Synthesis (HLS). To pave the way
for the future implementations of multiple other algorithms
(possibly all Round 2 candidates), we demonstrate the vi-
ability of this approach using one of the most promising
Round 1 PQC candidates, NTRUEncrypt [6]. This candidate is
a substantially revised version of the earlier NTRU encryption
schemes, such as an early variant proposed in 1996 [7], and
its extended version standardized by IEEE in 2008 [8].

We are applying the well-known SW/HW codesign and HLS
techniques to the new, mostly unexplored, domain of bench-



marking candidates for new post-quantum cryptography (PQC)
standards. Novelty is in comparison to all previous benchmark-
ing efforts undertaken during previous cryptographic competi-
tions, such as AES, SHA-3, CAESAR. During these contests
only fully hardware and fully software implementations were
compared [5]. Previous work on SW/HW codesign of PQC
was not aimed at comparing multiple candidates against each
other [9], [10], [11]. What makes our effort different is a focus
on developing methodology for efficient and fair evaluation of
a large number of candidates, and a close tie of our efforts to
the NIST PQC standardization process.

II. BACKGROUND

A. NTRUEncrypt

NTRUEncrypt has four major parameters (N , p, q, d). We
implement two variants of the NIST Round 1 PQC candidate
NTRUEncrypt: ntru-pke-443, with N=443, p=3, q=2048, and
d=143, and ntru-pke-743, with N=743, p=3, q=2048, and
d=247 [6].

The scheme is based on polynomial additions and multi-
plications in the ring R = Zq[X]/XN − 1. We use the ∗ to
denote a polynomial multiplication in R, which is the cyclic
convolution of the coefficients of two polynomials.

During the key generation, the user chooses two random
secret polynomials F ∈ R and g ∈ R, with so called small
coefficients. All such polynomials have d coefficients equal to
1, d coefficients equal to -1, and the remaining coefficients
equal to 0. The private key f is computed as f = 1 + p · F .
Please note that in our notation, * denotes the multiplication
of two polynomials, and · denotes the multiplication of a
polynomial by a number. The public key h is calculated as

h = f−1 ∗ g · p in R. (1)

The most time consuming operation of encryption is t = r∗h,
where r ∈ R is a randomly chosen polynomial with small
coefficients, and h is a public key (a polynomial with large
coefficients). The main operation of the Phase 1 of decryption
(denoted as DEC-1) is m′ = f∗c = (1+3·F )∗c, where F ∈ R
is a representation of a private key (a polynomial with small
coefficients), and c is a ciphertext (a polynomial with large
coefficients). The main operation of the Phase 2 of decryption
(denoted as DEC-2) is t′ = r ∗ h, which is identical to that
performed during encryption.

B. Polynomial Multiplication

The algorithm we use for Poly Mult is given below as
Algorithm 1. A similar Fast Convolution Algorithm was
reported earlier in [12]. The for loop in lines 9-11 corresponds
to adding to the temporary polynomial c = cN−1..c0 the input
polynomial a = aN−1..a0 rotated by bi locations to the left,
namely, a <<< bi = aN−bi−1..a0aN−1..aN−bi . Similarly,
the for loop in lines 13-15 corresponds to the subtraction of
the same value from c.

The operation c = a ∗ (1 + 3 · b) can be performed as

a ∗ b+ 2 · a ∗ b+ a = a ∗ b+ a ∗ b << 1 + a. (2)

Algorithm 1 Polynomial Multiplication, Poly Mult
1: Inputs:
2: Polynomial a(X) with N ”big” coefficients in the range [0, q−1].
3: Polynomial b(X) with d coefficients 1 at the locations

b0, b1, ..., bd−1 and d coefficients -1 at the locations
bd, bd+1, ..., b2d−1, where 0 ≤ bi ≤ N − 1.

4: Output:
5: c(X) = a(X) ∗ b(X)modXN − 1
6: Pseudocode:
7: for i := 0 to 2d− 1 do
8: if i < d then
9: for j := 0 to N − 1 do

10: cj = cj + aj−bi modN

11: end for
12: else
13: for j := 0 to N − 1 do
14: cj = cj − aj−bi modN

15: end for
16: end if
17: end for

III. PREVIOUS WORK

A. Hardware Accelerators for NTRUEncrypt

In 2001, Bailey et al. [12] introduced and implemented
a Fast Convolution Algorithm for polynomial multiplication,
exploiting the sparsity of polynomials, similar to that listed
above as Algorithm 1. In [13], Kamal et al. analyzed several
implementation options for NTRUEncrypt targeting Virtex-
E family of FPGAs. In this design, the polynomial multi-
plier took advantage of the ternary nature of polynomials
in NTRUEncrypt and utilized an empirically chosen Barrel
shifter (rotator). Liu et al. implemented the truncated poly-
nomial ring multiplier using linear feedback shift register
(LFSR) in 2015 [14] and an extended LFSR in 2016 [15].
Their design had a variable execution time and supported
all major parameter sets for NTRUEncrypt SVES [8]. The
full hardware design of NTRUEncrypt SVES, supporting two
major parameter sets, ees1087ep1 and ees1499ep1, has been
reported in [16].

B. Software-Hardware Codesign of PQC Algorithms

Some attempts to improve implementations of post-quantum
cryptosystems have been made through SW/HW codesign. A
coprocessor consisting of the PicoBlaze softcore and several
parallel acceleration units for the McEliece Cryptosystem was
implemented on Spartan-3AN FPGAs by Ghosh et al. [9].
Aysu et al. [10] built a high-speed implementation of lattice-
based digital signatures using SW/HW codesign techniques.
The design targeted the Cyclone IV FPGA family and con-
sisted of a NIOS II processor, a hash unit, and a polynomial
multiplier. Migliore et al. [17] presented a SW/HW codesign
for the lattice-based Fan-Vercauteren (FV) homomorphic en-
cryption scheme. Taking into account that all aforementioned
papers used substantially different platforms, and focused on
significantly different algorithms, limited lessons could be
learned from these efforts.



C. Use of HLS to Implement Cryptographic Algorithms

The implementation of AES using both RTL and HLS-based
approaches was reported in [18]. The HLS/RTL ratios of area
and maximum clock frequency were close to 1.00. However,
the HLS design required 20% more clock cycles, which caused
the reduction in throughput by a factor of 1.19. Additionally,
in [19], the RTL and HLS approaches were applied to the
implementation and ranking of five final SHA-3 candidates.
The relative ranking of candidates was shown to be the same
for Altera FPGAs using both approaches, in terms of all three
major performance metrics: throughput, area, and throughput
to area ratio, and only slightly different for Xilinx FPGAs.

In [20], 16 authenticated ciphers, including the current
standard, AES-GCM, and the primary variants of 13 Round 3
CAESAR candidates were evaluated using both approaches.
The study has demonstrated a high correlation between the
rankings of the evaluated algorithms obtained using the RTL
and HLS approach, respectively. In particular, after applying
HLS, the algorithm rankings in terms of throughput and
throughput to area ratio either remained unchanged or was
affected only for algorithms that had a close ranking in RTL.

IV. METHODOLOGY

A. Platform and Software

The platform selected for our experiments is Xilinx Zynq
UltraScale+ MPSoC XCZU9EG-2FFVB1156E, mounted on
the ZCU102 Evaluation Kit from Xilinx. This MPSoC is
composed of two major parts sharing the same chip, the
Processing System (PS) and the Programmable Logic (PL).
The PS includes a quad-core ARM Cortex-A53 Application
Processing Unit (APU), out of which, we use only one pro-
cessor (Core 0 of Cortex-A53), running at the frequency of 1.2
GHz. The PL includes a programmable FPGA fabric similar
to that of Virtex UltraScale+ FPGAs. The software used is
Xilinx Vivado Design Suite HLx Edition, Xilinx Software
Development Kit (XSDK), and Xilinx Vivado HLS, all with
the versions no. 2017.2.

B. Partitioning into Software and Hardware

The reference and optimized software implementations of
NTRUEncrypt were identical in the submission package for
Round 1 of the PQC standardization process [6], and we were
not aware of any more optimized software implementation of
this algorithm at the time of performing experimental measure-
ments for this paper. The results obtained during experimental
profiling of this reference/optimized software implementation,
using a single core of ARM Cortex-A53, running with the
frequency of 1.2 GHz, are summarized in the left portion
of Table I. These results clearly indicate that Poly Mult is
the most-time consuming operation for both encryption and
decryption. The percentage of the total execution time used by
this operation is higher for decryption, and for both encryption
and decryption increases with the increase in the security level.

A block diagram of the SW/HW codesign experimental
setup is shown in Fig. 1. The hardware portion is composed
of the implementation of Poly Mult, extended with Input
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Fig. 1: Block diagram of the SW/HW experimental setup.

TABLE I: Results of profiling for NTRU

Function Time
[us]

Time
[%] Function Time

[us]
Time
[%]

Software Software/Hardware
ntru-pke-443 - Encryption

1.Poly Mult 279.7 62.3% 1.generate r 68.1 35.9%
2.generate r 68.1 15.1% 2.pad msg 44.4 23.4%
3.pad msg 44.4 9.9% 3.mask m 25.9 13.7%
4.mask m 25.9 5.8% 4.Poly Mult 20.1 10.6%
Other 31.2 6.9% Other 31.2 16.4%
Total 449.3 100.0% Total 189.7 100.0%

ntru-pke-443 - Decryption
1.Poly Mult 561.1 80.8% 1.generate r 67.5 38.8%
2.generate r 67.5 9.7% 2.Poly Mult 41.0 23.5%
3.unmask m 26.2 3.8% 3.unmask m 26.2 15.0%
4.lift msg 10.2 1.5% 4.lift msg 10.2 5.8%
Other 29.2 4.2% Other 29.2 16.8%
Total 694.2 100.0% Total 174.1 100.0%

ntru-pke-743 - Encryption
1.Poly Mult 744.2 77.7% 1.generate r 82.5 34.0%
2.generate r 82.5 8.6% 2.pad msg 43.4 17.9%
3.pad msg 43.4 4.5% 3.mask m 39.7 16.3%
4.mask m 39.7 4.1% 4.Poly Mult 29.6 12.2%
Other 47.5 5.0% Other 47.5 19.6%
Total 957.2 100.0% Total 242.6 100.0%

ntru-pke-743 - Decryption
1.Poly Mult 1,488.7 88.7% 1.generate r 81.8 33.3%
2.generate r 81.8 4.9% 2.Poly Mult 55.8 22.7%
3.unmask m 39.8 2.4% 3.unmask m 39.8 16.2%
4.lift msg 17.2 1.0% 4.lift msg 17.2 7.0%
Other 51.1 3.0% Other 51.1 20.8%
Total 1,678.5 100.0% Total 245.5 100.0%

and Output FIFOs, as well as AXI DMA, for high-speed
communication with the PS. The software portion, including
all remaining functionality of NTRUEncrypt, is implemented
in C and runs in Zynq PS. Timing measurements are performed
using an AXI Timer, capable of measuring time in clock
cycles of the 200 MHz system clock. Poly Mult can operate
at a variable frequency different than that of DMA, which



can be set at run time. Input and Output FIFOs use different
clocks for writing and reading data. This SW/HW codesign
platform can be easily adapted for other PQC candidates for
hardware acceleration by replacing the Poly Mult unit with
a new hardware accelerator. In addition, the aforementioned
design has the capability to leverage partial reconfiguration to
change the hardware accelerator during the run time.

C. Design of Hardware Using the RTL Methodology

The RTL design of Poly Mult follows closely the block
diagram shown in Fig. 2. Positions of 1s and -1s in F ,
constituting a private key, are assumed to be preloaded to the
512x9 F RAM, before any decryption begins. Similarly, the
coefficients of h, constituting a public key, are assumed to be
preloaded to the SIPO with parallel input (SIPO w/PI) before
any encryption or decryption starts. All of these coefficients
can be stored in Reg h, and loaded back to SIPO w/PI in a
single clock cycle in case SIPO w/PI is used in-between for
any operation not involving h.

Each multiplication involves rotating the output of the SIPO
w/PI by the number of positions read from r RAM (for ENC
and DEC-2) or F RAM for (DEC-1). The result of rotation is
then either added to or subtracted from the previous contents of
t m PISO (denoted by sum fb). The conditional subtraction is
accomplished by one’s complementing using an XOR with c0v
(c0 replicated 11 times) and the addition of c0 as the carry in
of the adders represented by squares with +. The multiplication
m′ = f ∗c = (1+3 ·F )∗c, performed during DEC-1, requires
on top of that adding sum fb shifted by 1 to the left and adding
the contents of SIPO w/PI rotated by 0 positions (in agreement
with Eq. (2)). The multiplication t = r ∗ h, performed during
ENC and DEC-2, takes 1 + 2 · d + #pipeline stages − 1
clock cycles. The multiplication m′ = f ∗ c = (1 + 3 · F ) ∗ c,
performed during DEC-1, requires two additional clock cycles.

The rotation, and thus, the entire multiplication, can be
significantly sped-up by introducing pipeline registers inside
of the rotator, as shown in Fig. 3. Rectangles with dotted
lines represent all possible positions of pipeline registers.
Rectangles with solid lines represent four positions (0, 3,
6, and 8), which were determined optimal for the ntru-pke-
443 RTL design. Thus, together with the combinational logic
following the rotator, the design contains 5 pipeline stages.
The Controller is responsible for generating suitable select
and enable signals, communication with the Input and Output
FIFOs, interpreting the input headers with instructions sent
by the respective driver, and generating the output header
containing the status and error codes that are sent back to
the driver, with the format shown in Fig. 4.

The RTL code was first verified using a comprehensive
testbench written in VHDL. This testbench applied not only
a correct sequence of inputs, but also an incorrect sequence,
generating error codes, such as missing public key, missing
private key, ENC after DEC-1 (DEC-2 expected), etc. The
RTL code of Poly Mult was then integrated with the remaining
components of the SW/HW codesign shown in Fig. 1, and
tested experimentally again for correct functionality.

D. Design of Hardware Using the HLS Methodology

The reference implementation of NTRUEncrypt in C, for
N=443 and N=743, is based on the Grade School algorithm
for multiplication (also known as Schoolbook, Paper-and-
Pencil, etc.) [6]. Only for N equal to a power of 2, the fully
recursive Karatsuba multiplication is used. When the Grade
School implementation of Poly Mult in C was provided at
the input of Vivado HLS, the resulting circuit required tens of
thousands of clock cycles to complete a single multiplication
(even after inserting multiple Vivado HLS directives in the
form of pragmas). The similar results were obtained by using
an earlier C implementation of Poly Mult, based on the
concept of Rotation, developed by OnBoard Security [21].

As a result, the decision was made to treat C like a
hardware description language, and implement Algorithm 1
from scratch, in such a way to infer the circuit from Fig. 2.
This attempt appeared to be successful, which was indicated
by reaching exactly the same number of clock cycles as that
required by the RTL implementation. Furthermore, introducing
pipeline stages inside of the rotator was easily controlled by
static variables. This way, multiple placements of pipeline
registers could be easily attempted, and led to an optimal
choice from the point of view of the total latency expressed
in ns. This choice appeared to be the same as in RTL.

Although heavy refactoring of the HLS code is not normally
considered acceptable for a widespread use of HLS, our use
scenario is much narrower. Our target audience are members
of other cryptographic engineering groups, including software
programmers already familiar with concurrent computing con-
cepts, e.g., through the use of special instructions, such as
AVX2, and special platforms, such as GPUs. The reference
code enhanced with HLS directives gave an execution time
in the range of N2 cycles. The VHDL RTL code gave an
execution time equal to approximately N cycles. The only way
to remove this inefficiency was to refactor the C code, by using
coding techniques aimed at inferring a circuit with a specific
structure. These techniques cannot be described in the paper
in full detail due to space constraints, but they should become
evident to all readers after the review of the full optimized
code [22]. The refactoring effort was still several times shorter
than the RTL design, mostly due to more efficient verification
phase, with testbenches written in C.

The C code used as an input to Vivado HLS was first verified
using a C testbench, based on the Grade School multiplication
method. The resulting HDL code was then verified using
exactly the same VHDL testbench which was used to verify
the RTL implementation. The implementation phase (logic
synthesis, mapping, placing, and routing) was identical for
both RTL and HLS approaches. In the HLS flow, the first result
estimates in terms of the number of clock cycles, maximum
clock frequency, and resource utilization were generated in
the form of reports by Vivado HLS. However, except for the
number of clock cycles, the remaining numbers did not match
the final post-place & route results. In this paper, only results
obtained after placing and routing are reported.
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V. RESULTS

Timing results for the best software and two SW/HW im-
plementations of Poly Mult are summarized in Table II for the
ntru-pke-443 and ntru-pke-743 parameter sets. In the SW/HW
implementations, software is responsible for converting an
array of polynomial coefficients to the corresponding positions
of ones and minus ones, passing instructions and positions to
the hardware accelerator, and receiving the obtained results
and/or status/error codes. All calculations described by Algo-
rithm 1 are performed in hardware. For each parameter set, one
of the hardware implementations is developed using RTL, and
the other using HLS. The results were generated for the case



TABLE II: Timing analysis of software and SW/HW imple-
mentations of Poly Mult operating at maximum supported
frequency reported in Table III. AXI DMA and remaining IPs
in the system operating at 200 MHz.

Poly Mult
Implementation

Total Exe.
Time
[us]

DMA Transfer
Overhead

[us]

Poly mult
latency

[us]

Speed up
over
Ref.

ntru-pke-443 - Encryption
SW Opt Ref 279.7 0.0 279.7 1.0
SW/HW RTL 20.1 10.2 3.1 89.1
SW/HW HLS 24.4 10.3 3.4 81.9

ntru-pke-443 - Decryption
SW Opt Ref 561.1 0.0 561.1 1.0
SW/HW RTL 41.0 16.7 6.8 82.8
SW/HW HLS 41.0 16.8 7.4 76.1

ntru-pke-743 - Encryption
SW Opt Ref 744.2 0.0 744.2 1.0
SW/HW RTL 29.6 14.0 5.8 128.5
SW/HW HLS 30.9 13.2 7.0 106.8

ntru-pke-743 - Decryption
SW Opt Ref 1488.7 0.0 1488.7 1.0
SW/HW RTL 55.8 21.5 12.4 119.8
SW/HW HLS 56.7 20.1 15.0 99.6

TABLE III: Comparison of the best achieved RTL and HLS
designs for Poly Mult in terms of the maximum supported
clock frequency and resource utilization determined using
Minerva [23].

Max Freq LUTs FFs Slices 36kb
BRAMs

ntru-pke-443
RTL 325 44,257 29,655 7,802 1
HLS 300 51,953 49,293 9,413 1
HLS/RTL 0.92 1.17 1.66 1.21 1.00

ntru-pke-743
RTL 300 76,972 49,674 11,425 1
HLS 250 95,329 82,221 16,686 1
HLS/RTL 0.83 1.24 1.66 1.46 1.00

of all hardware units operating at their respective maximum
clock frequencies after placing and routing. These frequencies
are summarized in Table III.

For the RTL-based SW/HW implementation, the speed-
up over the best software implementation were 89.1x for
Encryption and 82.8x for Decryption in case of ntru-pke-443,
and 128.5x for Encryption and 119.8x for Decryption in case
of ntru-pke-743. For the HLS-based SW/HW implementation,
the speed-ups were smaller by 8% for ntru-pke-443 and by
16% for ntru-pke-743. This drop was caused by a lower
frequency of the HLS Poly Mult Core. However the difference
was minimized by the predominant contribution of the Data
Transfer Overhead to the Total Execution Time (in the range
of 35-51%). This overhead was the same for RTL and HLS.

HLS implementations are bigger than RTL implementations
in terms of resource utilization, as shown in Table III. In
particular, the HLS implementation of ntru-pke-443 requires
1.17x more LUTs and 1.21x more slices. In case of ntru-pke-
743, the HLS design requires 1.24x and 1.46x more LUTs and
slices respectively. In terms of storage elements, the penalty
is bigger, 66%, for registers, but none in case of BRAMs.

The results for the entire encryption and decryption op-

TABLE IV: Timing analysis for the entire encryption and
decryption operations. Public and private keys are assumed
to be precalculated, and preloaded to the appropriate arrays
in software and appropriate memories and/or registers in
hardware.

Poly Mult
Implementation

Total Exe.
time [us]

Speed up over
Opt. SW

ntru-pke-443 - Encryption
SW Opt Ref 449.3 1.0
SW/HW RTL 189.7 2.4
SW/HW HLS 193.9 2.3

ntru-pke-443 - Decryption
SW Opt Ref 694.2 1.0
SW/HW RTL 174.1 4.0
SW/HW HLS 175.7 4.0

ntru-pke-743 - Encryption
SW Opt Ref 957.2 1.0
SW/HW RTL 242.6 3.9
SW/HW HLS 244.0 3.9

ntru-pke-743 - Decryption
SW Opt Ref 1678.5 1.0
SW/HW RTL 245.5 6.8
SW/HW HLS 246.5 6.8

erations are summarized in Table IV. For encryption and
decryption, for both parameter sets, the speed-up over the
software implementation is practically independent of using
HLS vs. RTL, and reaches 2.4x and 3.9x for the ntru-pke-443
and ntru-pke-743 encryption, respectively. Decryption speed-
up is higher compared to encryption for both parameter sets,
and reaches 4.0x and 6.8x for ntru-pke-443 and ntru-pke-743,
respectively. The higher speed-up for decryption is related to
the higher percentage of the total execution time in software
taken by operations offloaded to hardware, as shown in the
left portion of Table I. The right portion of Table I indicates
that accomplishing even higher speed-ups might be possible
by offloading to hardware the next most time-consuming
operations, such as generate r, pad msg, mask m, lift msg.

VI. CONCLUSIONS

Using SW/HW codesign allows the implementers of can-
didates for new cryptographic standards (such as NIST PQC
standards) to substantially reduce the development time com-
pared to the use of purely hardware implementations. The
implementers avoid reproducing in hardware the cumbersome
and mostly sequential operations required for input/output, as
well as multiple auxiliary operations that have a negligible
influence on the total execution time. Instead, they can focus
on major operations that are both most time-consuming and
most suitable for parallelization.

In this study, we have clearly demonstrated the viability of
this approach in case of the Round 1 NIST PQC candidate
NTRUEncrypt, and its major operation, Poly Mult. We have
also determined that the use of the HLS vs. RTL implementa-
tion approach had a negligible influence on the obtained speed-
ups vs. the best software implementation, while at the same
time providing quite substantial productivity gains.
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