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Abstract. Human cognitive control involves how mental resources are
allocated when the brain processes various information. The study of
such complex brain functionality is essential in understanding different
neurological disorders. To investigate cognition control, various cognitive
tasks have been designed and functional MRI data have been collected. In
this paper, we study uncertainty representation, an important problem
in human cognition study, with task-evoked fMRI data. Our goals are
to learn how brain region of interests (ROIs) are activated under tasks
with different uncertainty levels and how they interact with each other.
We propose a novel neural network architecture to achieve the two goals
simultaneously. Our architecture uses a 3D convolutional neural network
(CNN) to extract a high-level representation for each ROI, and uses a
graph neural network module to capture the interactions between ROIs.
Empirical evaluations reveal that our method significantly outperforms
the existing methods, and the derived brain network is consistent with
domain knowledge.
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1 Introduction

Cognitive control study learns how are mental resources allocated when the hu-
man brain processes various information. It involves how the brain selects and
prioritizes different information processing tasks, which is crucial in understand-
ing the mechanisms of different neurological disorders [17]. We study a particu-
lar perspective of cognitive control, the uncertainty representation. We design a
task called Choice Reaction Time task to study the uncertainty representation.
In our experiments, the human subjects are displayed with arrows of random
directions and colors and instructed to press buttons accordingly. Depending on
the number of possible directions and colors, the task may have different levels
of uncertainty, measured as Shannon entropy [18].

Since our cognitive control task spans a very short time, each fMRI image is
only a single 3D image (See Fig. 1 for more details), unlike resting-state fMRI or
fMRI taken under tasks with long duration which can be considered 4D data with
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Fig. 1: Left: Experiment setting. Human subjects are shown images of arrows
and click keys accordingly. The arrows may have one, two, or four possible direc-
tions, corresponding to uncertainty levels of zero, one, and two bits measured in
Shannon’s entropy [18]. Middle: More uncertainty is introduced by additional
colors and corresponding actions. Green arrows require buttons with correspond-
ing directions. Red buttons require buttons with the opposite directions. In total
there are six different tasks, with various uncertainty levels. Right: An example
of fMRI data.

one additional dimension for time sequences. The traditional brain functional
connectivity analysis methods [5, 1] designed for fMRIs with time-sequential in-
formation can not be applied to our data, which leaves us low flexibility for ana-
lyzing the networks. Recently, deep neural networks have been proved to be very
efficient in learning high-level representations for various types of data. Directly
applying neural networks to our data could improve the prediction performance.
For our setting, however, we are not only interested in predicting uncertainty
levels, but also want to learn how different brain regions interact with each other
at different uncertainty levels.

In this paper, we propose a new neural network architecture to solve the
two tasks jointly: one as a classification task, the other as a graphical model
learning task. Our architecture uses a 3D convolutional neural network (CNN).
It extracts high-level feature representation for the classification of fMRIs for
different uncertainties, and a graph neural network (GNN) layer for extracting
the edge representations. The edge representations are further converted into a
Markov Random Field (MRF) and learned through a loss derived from the likeli-
hood of the MRF. Our architecture learns both ROI representations for tasks of
different uncertainty levels and a graphical model to encode how different ROIs
interacts. We test our method on a task-evoked fMRI dataset, and found that
our model outperforms the existing state-of-the-art classifiers. In the meantime,
our model generates a brain network for uncertainty representation.

Related Work. The fMRI data are widely used for analyzing neurological dis-
orders and locating task-related key regions [7,14]. Recently, neural network
models have been broadly applied to fMRI data based study [4,2,24], and also
for learning brain networks [20, 2, 24]. Belilovsky et al. [2] use convolutional neu-
ral networks for learning brain networks. Their model takes pre-computed co-
variance matrices as inputs and outputs the same dimensional matrices. The
outputs can be viewed as adjacency matrices of the brain network. Nonetheless,
their method requires each region to be represented by one single value, which
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might lose a lot of information. Instead of using pre-calculated covariance matrix,
we take all the information from brain regions as inputs for our architecture and
extract high-level features for each region. In our architecture, valuable informa-
tion is leveraged by the neural networks and can be used for multitask learning.
Zhang et al. [24] apply Graph Convolutional Network to brain image analysis
for the prediction of Parkinson’s disease. However, their graph convolutional
network is not used for learning brain networks.

2 Method

2.1 Network Architecture

We propose a novel neural network architecture to classify fMRI images, and
learn a brain network at the same time (Fig. 2). For our input, each fMRI
image is a 3D volumetric image with uncertainty level ranging between 1 and 6.
Our architecture uses a 3D convolutional layer for extracting high-level feature
embeddings for brain ROIs, and a GNN layer with MRF for structure learning of
human brain networks. We use traditional cross entropy loss for the classifying
uncertainty levels and meanwhile a maximum-likelihood-loss for MRF learning.
For each fMRI image, we extract R ROIs. The size of each ROl is 7 x 7 x 7. The
size of the input for the model is Rx1x7 X7 x 7, which can be viewed as R single-
channel 3D images. Let the number of inputs be N, and the number of ROIs be
R. For each image k € {1,..., N}, we denote each ROI r as z¥,r € {1,..., R}.

Each image is labeled with an uncertainty level y* € {1,...,6}.
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Fig. 2: The architecture of our model.

Our model starts with feature extraction for each ROI. This is done with a
3D CNN layer of 16 channels with kernel size 3 x 3 x 3 (CNN(16@Q3 x 3 x 3))
followed by a fully connected layer (FC(16)). The output feature is a vector of
length 16 for each ROI. We perform two tasks on the output features:

— For the uncertainty classification task, we map the concatenation of the
output of all R ROIs to a 1D vector of length 6 with a fully connected layer
(FC(6)). The 1D vector is then fed to a softmax layer to calculate the label
probability. The loss from this task is the cross entropy loss Lcg.

— For brain network structure learning, we feed the R output features to the
graph neural network layer and then use MRF to estimate the connection
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between each ROI. More details will be discussed in Section 2.2. The loss
from this task is Lyvgrr.

Our overall loss to minimize is £ = Lcg + LMRE-
2.2 Graph Neural Network Layer for Brain Network Learning

Graph neural network (GNN) has been proposed for learning the efficient repre-
sentation for many graph-structured data [9]. GNN usually employs a message-
passing schema, which means each node aggregates the information of its neigh-
bors and transforms into new representation using the information. The gener-
ated new representation of the nodes captures the structured information of the
inherited graph [12,21].

In this work, we build a brain network learning layer based on an existing
graph neural network called Graph Isomorphism Network (GIN) [23]. The input
of the layer is a set of 16-dimensional vectors, each of which represents one ROI
in the human brain. The output is edge potentials for each possible edge between
the ROIs. GIN is used for helping with the message passing between nodes and
edges in the graph. We use multi-layer perceptrons (MLPs) as our message-
passing function in our model. We assume the initial graph is a fully connected
graph with all possible edges. Thus, we have M = R x (R — 1)/2 edges. We use
the initial graph as input for GNN layer. Let A (v) be the neighbours of node
v, ht, be the representation of node v at t*" iteration, and €, be an arbitrarily
small number, the GIN updates the node representation as

hiw = MLPt((l te) hiie b > ht,m) (1)
uweN (v)

where hg, is the high-level representation of v" ROI after feature extraction.
We denote the final output of GIN layer as hy, = hr,.
After the GIN layer, we construct the edge representation as

¢i>j = [hla hj]wcdgc + bcdgc;

where Wegge € R19%32 and beqge € R are the weights for the linear layer, and
[;-] is the concatenation operation.

For image k, the energy function E(z¥,...,2%) can be calculated as the sum
of potentials for each edge f; ;. Thus, the MRF probability of data z* can be
calculated as:

P(zF) = = exp(—E(z")) = = exp Z fij( hf,hf
(i,9)€€

1 k
= 7 eXp | — Z Wy, j5 <¢i,j»9i7j> )
(i,5)€E

where 0; ; € R'6 is used to map the edge representation to a real value potential,
w;,; € R is used to re-weight each edge, and Z is the partition function.
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In theory, Z should be calculated over all distribution space, which is imprac-
tical. To alleviate this problem, Z can be approximated using all samples of the
data, which is still very expensive to evaluate. In this paper, we approximate Z
with all examples in the same training batch. Z ~ Zszl exp (—E(x’“)), in which
B is the batch size. Our MRF learning module uses the negative log-likelihood
as the loss, for data k, the MRF learning loss is:

N N
Lygrr = —log H P(zF) = Z [E(z") +1og Z] . (2)
k=1 k=1

3 Experiments and Discussions

We apply our method to task-evoked fMRI images. Our dataset is collected when
the subjects are instructed to perform Choice Reaction Time (CRT) tasks [22].
At each CRT task, the subjects are presented with an arrow and instructed
to press the corresponding buttons. The details can be found in Fig. 1. There
are 6 uncertainty conditions manipulated by the directions and colors of the
arrows, corresponding to 6 labels for the classification task. Our data contains
16 subjects. Each subject is asked to perform around 1000 trials. Each CRT
task trial only lasts for two seconds, thus only one 3D image is collected for
each trial. We collect 17226 fMRI 3D images in total from the 16 subjects. The
images are preprocessed using SPMS8. Each gradient-echo planar imaging (EPI)
image volume was realigned to the first volume, registered with structural MRI,
and normalized to the Montral Neurological Institute (MNI) ICBM152 space.
Then all the images are resampled to a voxel size of 2 X 2 X 2mm, and spatially
smoothed. The dimension of the processed images is 79 x 95 x 68.

Neuroscience studies state that cognitive control network (CCN) and default
mode network (DMN) [11, 19, 15, 22] are two major networks in the human brain
that are related to uncertainty tasks. In this work, we focus on R = 19 regions
of interests (ROIs) from the two brain networks. Control network (CCN) [6] is
composed of anterior cingulate cortex (ACC), anterior insula (AI), and frontal
eye field (FEF), etc. Default mode network (DMN) [8] consists of domain-specific
networks such as visual, auditory, etc.. Each ROI is with dimension 7 x 7 x 7.

Our method is compared with Random Forest Classifier (RF), Linear Re-
gression Classifier (LG), and SVM with Linear kernel (SVM) [3]. To prove the
effectiveness of our graph neural network layer, we also conduct an ablation ex-
periment which uses a simple 3D CNN model. The 3D CNN model is similar to
our model, but did not use the GNN layer, and only trained on cross-entropy
loss. For each subject, we test all methods. For all methods, we reserve the same
80% of subject’s data as the training set, 10% as the validation set and 10% as
the testing set. The 3D-CNN model and our model are trained using stochastic
gradient descent optimizer (SGD) with learning rate = 0.001, ¢ = 0 for 1000
epochs. The classification results are summarized in Table 1. We can find from
Table 1 that 3D CNN model outperforms the traditional classifiers, and our
GNN layer further improves the classification performance.

For brain network learning, we visualize the results in Fig. 3. In Neuroscience
studies, the CCN is known as a network responsible for cognitive processes [10,
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Table 1: The average classification accuracy (%) for 16 subjects.
RF LG SVM 3D-CNN | Our Model
Accuracy 33.54 61.34 56.68 71.03 75.59
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Fig. 3: The brain network learned among the 19 ROIs. SMA/ACC: supplemen-
tary motor area extending to anterior cingulate cortex. Al: anterior insular cor-
tex. FEF: frontal eye find. IPS: area around and along the intraparietal sulcus.
TH: thalamus. vimnPFC: ventral medial prefrontal cortex. PCC: posterior cingu-
late cortex. MTG: middle temporal gyrus. ANG: angular gyrus. L: ROI located
in left hemisphere of the brain. R: ROI located in the right hemisphere. The
red box indicates positive connection and the blue box indicates the negative
connection. Darker color means stronger connection.

8]. The DMN is considered as the network handling human’s self-related activi-
ties such as emotion and autobiographical memory [16]. The two networks work
together for processing uncertainty tasks [13,8]. From Fig. 3, we can find quan-
titative proof for the above statements. That is, we observe both intra-network
and inter-network edges. We further visualize the network in CCN and DMN in
brain templates respectively as in Fig. 4. The positive and negative edges are
colored in warm and cool colors respectively. We can find from Fig. 4 clearly that
the more connections can be found from CCN than DMN. The stronger intra-
network connection in CCN means that CCN is more crucial in uncertainty
processing, which is consistent with neuroscience knowledge about uncertainty
representation [10,22]. Overall, the GNN not only helps with the classification
task but also generates meaningful brain network for uncertainty processing.

4 Conclusions

In this paper, we propose a novel neural network framework to classify the CRT
task-evoked fMRI data, and learn the brain network. Our framework integrates a
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(b)
Fig.4: The network in CCN (a) and DMN (b) in three views of brain templates.
The nodes in red are the ROIs in CCN and blue nodes are the ROIs in DMN.
The positive edges are in warm color, while the negative edges are in cool colors.

3D CNN for extracting high-level features for brain ROIs, a traditional softmax
block trained on cross-entropy loss for classifying the fMRI images at different
uncertainty levels, and a graph neural network layer trained on MRF loss for
learning the structures of the brain network. Our method outperforms the tra-
ditional classifiers and the plain 3D CNN model. Besides, our model also learns
the structure of the brain network, which is, how the brain ROIs interact with
each other during the uncertainty tasks. Our model provides a quantitative as-
sessment for cognitive control study and has the potential to be applied to any
other labeled data with underlying graph structures.
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