
Preliminary Study of Trusted Execution

Environments on Heterogeneous Edge Platforms

Zhenyu Ning, Jinghui Liao, Fengwei Zhang, Weisong Shi

COMPASS Lab, Wayne State University

Detroit, Michigan, USA, 48202

{zhenyu.ning, jinghui, fengwei, weisong}@wayne.edu

Abstract—The recent edge computing infrastructure intro-
duces a new computing model that works as a complement
of the traditional cloud computing. The edge nodes in the
infrastructure reduce the network latency of the cloud computing
model and increase data privacy by offloading the sensitive
computation from the cloud to the edge. Recent research focuses
on the applications and performance of the edge computing,
but less attention is paid to the security of this new computing
paradigm. Inspired by the recent move of hardware vendors that
introducing hardware-assisted Trusted Execution Environment
(TEE), we believe applying these TEEs on the edge nodes would
be a natural choice to secure the computation and sensitive data
on these nodes. In this paper, we investigate the typical hardware-
assisted TEEs and evaluate the performance of these TEEs to help
analyze the feasibility of deploying them on the edge platforms.
Our experiments show that the performance overhead introduced
by the TEEs is low, which indicates that integrating these TEEs
into the edge nodes can efficiently mitigate security loopholes
with a low performance overhead.

I. INTRODUCTION

The wide deployment of cloud computing changes the

infrastructure of existing computing paradigms and facilitates

a number of service providers. However, the cloud computing

also involves penalties in terms of network latency which is

critical in some time-sensitive or performance-sensitive sce-

narios such as real-time monitoring for transportation [1] and

video analytics [2] for public safety. Moreover, the data owner

would prefer to process the sensitive data on the endpoint

devices instead of cloud due to privacy concerns [3].

In light of these problems, a complementary infrastructure

named Edge Computing [4] is proposed. The idea of Edge

Computing suggests the deployment of additional edge nodes

between the cloud server and the end-users, on which the

latency-sensitive or privacy-sensitive computation is executed.

Since the edge nodes are supposed to be as close as possible

to the end-users, the latency is greatly reduced and the

data privacy is improved to match the requirement of these

computations. Meantime, those non sensitive computations are

still on the cloud to take the advantage of cloud computing.

Recently, the usage scenarios [5], [6], [7], [8], [1], [2] and

performance of Edge Computing [9], [10] are well studied

by the researchers. However, less attentions are paid to the

security and privacy of the Edge Computing, which puts the

new-born Edge Computing infrastructure at risk. For example,

in the edge-based video monitoring system, the edge node pre-

processes the captured image to reduce the size of the uploaded

data and the required storage on the cloud, which indicates that

the edge node can actually access all the captured images.

Thus, the compromised edge node may lead to the critical

leakage of privacy. Another example would be the edge-

based smart traffic systems, in which the control commands

of the self-driving vehicles highly rely on the surrounding

information gathered by the edge node. Once the edge node

is hijacked, the self-driving vehicles may be induced to per-

form some risky actions, which would consequently introduce

destructive effects to the public safety.

The recent move of hardware vendors that designs dedicated

hardware-assisted Trusted Execution Environment (TEE) [11],

[12], [13], [14], [15] inspire us with the idea that applying

these TEEs to the Edge Computing infrastructure. The TEE

provides an isolated execution environment which remains

secure even the system software on the device is compro-

mised. In case of Edge Computing, the edge nodes are more

vulnerable than the cloud devices since they are dispersedly

distributed and have a large attack surface, and the deployment

of the TEEs would guarantee the security of the sensitive

information and computation on the compromised edge node.

Unlike the PC platform, which is dominated by the Intel

x86 architecture, the architecture of edge nodes in Edge

Computing is heterogeneous (e.g., Intel, AMD, ARM, MIPS,

PowerPC) Meantime, the hardware vendors with different

architectures provide a variety hardware-assisted TEEs. The

most popular TEEs include Intel Software Guard eXtension

(SGX) [12], [13], [14], ARM TrustZone Technology [11],

and AMD Memory Encryption Technology [15]. Intuitively,

applying these TEEs on the heterogeneous edge platforms

would be a natural choice to gain a higher security.

In this paper, we study the hardware-assisted TEEs provided

by the hardware vendors and evaluate the performance of these

TEEs to help analyze the feasibility of deploying them on the

edge platforms. Specifically, we first study the Intel SGX on a

fog node following the Intel Fog Reference Design [16]. Since

the infrastructure of Fog Computing is similar to the Edge

Computing, we consider the fog node as a suitable candidate

of the edge node. Meanwhile, the low-power consumption

makes the ARM architecture to be a serious competitor to

the x86 architecture on the edge platform. Thus, a study of

ARM TrustZone technology on the ARM Juno development

board [17] is presented in this paper. Finally, AMD processors

are well-known by their low price, which is also a critical



aspect in case of edge node due to its huge amount. Therefore,

we also analyze the recent AMD Secure Encrypted Virtualiza-

tion (SEV) technology for further comparison.

The results of our experiments show that the deployment

of Intel SGX, ARM TrustZone technology, and AMD SEV

introduces about 0.26%, 0.02%, and 4.14% performance over-

head, respectively. Apparently, the overhead of the SGX and

TrustZone technology are ignorable, and the overhead of SEV

is reasonable due to the slowdown of a virtual machine.

The main contributions of this paper are:

• We present a preliminary study of popular TEEs includ-

ing Intel SGX, ARM TrustZone, and AMD SEV. Our

study shows that adopting TEEs to heterogeneous edge

platforms is convenient.

• We conduct extensive experiments with the TEEs on

real physical platforms including Intel Fog Node. The

result shows that the performance overhead introduced

by existing TEEs is low.

• We show that deploying existing TEEs to Edge Comput-

ing can efficiently improve the security of the platform

with a low performance overhead.

The rest of the paper is organized as follows. Section III

presents the analysis of Intel SGX and the performance

evaluation on the Intel Fog Node. Section IV investigates

ARM TrustZone technology and the performance overhead

of TrustZone. Section V discusses AMD SEV and introduced

performance overhead. Section VI presents the future direction

of our research and Section VII concludes this paper.

II. RELATED WORK

Edge Computing. Shi et al. [3] provide a comprehensive

study on the vision of Edge Computing. Wu et al. [7] analyze

the opportunities and challenges of applying Edge Computing

to the smart firefighting. [6], [8], [18], [19] use the edge

infrastructure to achieve video analysis. Chen et al. [5] make

the attempt to deploy an edge-based robot system. [1], [20],

[21] discuss combing the Edge Computing with the vehicle

systems. The performance of the Edge Computing is analyzed

in [9] and [10].

Trusted Execution Environment. [22] performs a survey on

existing Trusted Execution Environments (TEEs), and [23]

presents the challenges of these TEEs. [24] surveys the

trustworthy computing on the mobile and wearable systems.

MemSentry [25] proposes a framework to harden modern

defense systems with the hardware features including TEEs.

VC3 [26] uses the Intel SGX to secure the data analytics,

and Ninja [27] leverages the ARM TrustZone technology to

improve the transparency of debugging and tracing.

III. INTEL SOFTWARE GUARD EXTENSION

The Intel Software Guard eXtension (SGX) is proposed via

three research papers in 2013 [12], [13], [14]. The proposed

extension enables the ring 3 user-level application to create an

isolated TEE, referred as enclave, and transplant the secure-

sensitive computation and data into this TEE. The hardware-

assisted TEE ensures that the memory inside enclave can-

Untrusted Application

Untrusted Components

Trusted Components

(Enclave)

ECalls OCalls

Fig. 1. An Application with SGX Enclave.

not be accessed by the operating system or the hypervisor.

Specifically, a hardware Memory Encryption Engine (MEE) is

applied to encrypt the enclave memory region which is called

the Enclave Page Cache (EPC). SGX allows the code inside

the enclave to access both EPC and the memory outside the

enclave. However, the memory access from the outside to the

EPC leads to a page fault. Note that the memory access from

the enclave to the outside still needs to follow the OS memory

management policies. For example, access to the memory in

kernel space from the enclave also leads to the page fault since

the enclave executes in user space.

Figure 1 is a typical example of an application running with

SGX enclave. The application consists of untrusted compo-

nents and trusted components, and the trusted components

are normally created via SGX enclave. The ECalls and

OCalls are used to switch between the untrusted and trusted

components, and provide a communication channel to transfer

parameters between them.

A. Experiments with Fog Node

The Fog Node is introduced by Intel from the OpenFog

Consortium [28], a consortium of high tech industry compa-

nies (e.g., Intel and Cisco) and academic institutions across

the world aimed at the standardization and promotion of fog

computing in various capacities and fields. The processor on

this node is 8-core Intel Xeon E3-1275 processor, which is a

high-performance SGX-enabled processor. The 32GB DDR4

memory also meets the requirement of usage scenario of fog

computing. In regard to the software, we leverage the open

source Tianocore BIOS and 64-bit Ubuntu 16.04 to setup the

node. Due to the similarity of the Fog Computing and Edge

Computing, we consider this machine also matches the design

of Edge Computing and can be directly used as an edge node.

Therefore, we use the fog node to simulate the edge node in

the performance analysis of Intel SGX.

In this section, we create applications based on the SGX

SDK 1.9 [29], and use them to conduct the experiments to

measure the performance overhead. Specifically, we evaluate

the time consumption of the context switch in SGX, the

performance slowdown of transplanting the computation into

enclave, and the slowdown of the overall system when SGX

is involved, respectively.

1) Context Switch: Regarding to the experiments in this

section, we use an empty ECALL function to achieve the con-

text switch. Once the function is called, the CPU will switch

to the enclave mode, while the exit of the function implies the

exit of the enclave mode. To measure the time consumption,

the RDTSC instruction is used to read the elapsed CPU cycles.



TABLE I
CONTEXT SWITCHING TIME OF INTEL SGX ON THE FOG NODE (µS).

Buffer Size Mean STD 95% CI

0 KB 2.039 0.066 [2.035, 2.044]
1 KB 2.109 0.032 [2.107, 2.111]
4 KB 2.251 0.059 [2.247, 2.254]
8 KB 2.362 0.055 [2.359, 2.366]

16 KB 2.714 0.036 [2.712, 2.716]

TABLE II
TIME CONSUMPTION OF MD5 (µS).

CPU Mode Mean STD 95% CI

Normal 4.734 0.095 [4.728, 4.740]
Enclave 6.737 0.081 [6.732, 6.742]

Note that the execution of this instruction is forbidden in

enclave mode, so we cannot measure the required time to

entering or quitting the enclave mode separately. Instead, we

calculate the time consumption of a complete context switch

cycle (i.e., enter and then quit the enclave mode). Moreover,

the parameter transferring between the enclave mode and nor-

mal mode depends on an additional buffer, and the size of the

buffer affects the efficiency of the context switch. Therefore,

we use different buffer sizes to conduct the evaluation. To

reduce the nondeterminacy of the experiments, we configure

the CPU frequency to be a fixed value (4GHz) and repeat the

experiment for 1,000 times.

Table I shows the context switching time of Intel SGX

on the Intel Fog Node. If no parameter is required, the

context switch requires 2.039 µs, this is the approximate time

consumption for the CPU mode switching. However, in most

usage scenarios, the parameter transferring is required. The

time consumptions come to 2.109 µs, 2.251 µs, 2.362 µs,

and 2.714 µs when the sizes of the parameters are 1KB, 4KB,

8KB, and 16 KB, respectively.

2) Sensitive Computation: Since the TEEs are used to

secure the sensitive computation, we are eager to know the

overhead of moving the sensitive computation into the TEEs.

In this experiment, we use an open-source MD5 implemen-

tation [30] following the RFC 1321 standard to simulate the

sensitive computation, and measure the time consumption of

calculating the MD5 inside and outside the enclave mode.

Without loss of generality, we use a pre-generated random

string with 1,024 characters as the target of the MD5.

As shown in Table II, the MD5 calculation requires 4.734 µs

in normal mode and 6.737 µs in enclave mode. We note that

the calculation in the enclave mode requires about 2.003 more

microseconds than the calculation in the normal mode, and this

difference is close to the context switching time measured in

Section III-A1. This result shows that the CPU performance in

normal mode and enclave mode are similar, and the overhead

of moving the sensitive computation to the TEEs depends on

the overhead of the context switch.

3) Overall Performance: While keeping the sensitive com-

putation running inside the TEE, we also want to make

sure that the performance of the non-sensitive computation

on the edge node would not be affected. To simulate the

frequent sensitive computation on the edge node, we switch

TABLE III
PERFORMANCE SCORE BY GEEKBENCH.

Sensitive
Computation

Mean STD 95% CI

No 4327.33 17.124 [4323.974, 4330.686]
Yes 4306.46 14.850 [4303.550, 4309.371]

Non-Secure Mode

Non-Secure

EL0

Non-Secure

EL1

Secure Mode

Secure

EL0

Secure

EL1

Secure

EL3

Trigger EL3

Exception

Exception Return

Fig. 2. ARM TrustZone Technology.

to the enclave mode every one second and calculate the

MD5 of a 1024-length string. A dedicated CPU benchmark,

GeekBench [31], is used to measure the performance of the

CPUs. To avoid the unpredicted affects from the other software

in the system, we make the sensitive computation and the

benchmark to be executed in the same core. The single-core

performance score with and without the sensitive computation

are compared to learn the overall performance overhead. The

experiment is repeated for 100 times to reduce the test errors.

Table III shows the performance score given by GeekBench.

The single-core performance scores with and without secure

computation are 4,327.33 and 4,306.46, respectively, and the

performance slowdown is 0.48%. Apparently, the performance

overhead of the computation inside the SGX enclave is ignor-

able even we switch to the enclave mode every one second.

IV. ARM TRUSTZONE TECHNOLOGY

ARM proposed the TrustZone Technology [11] since

ARMv6 around 2002. With TrustZone enabled, the processor

can switch between the secure and non-secure mode, which

provides two execution environments with different privileges.

A set of hardware extensions are applied to guarantee the

resources (e.g., memory, interrupts, peripherals and etc.) are

isolated between the secure mode and non-secure mode. The

software running in the secure mode owns higher privilege and

have access to both secure and non-secure resources, while

the software running in the normal mode can only access

the non-secure resources. As shown in Figure 2, the ARMv8

architecture introduces Exception Levels (EL) to indicate the

privilege of the processor, and the switch to the secure mode

can be triggered by an EL3 exception. Typically, the Secure

Monitor Call (SMC) instruction and the secure interrupts are

used as the source of an EL3 exception. The secure mode uses

the Exception Return (ERET) instruction to exit the exception

handler and resume the execution of the non-secure mode.

A. Experiments with ARM Juno Board

The ARM Juno Board [17] is an official software develop-

ment platform for ARMv8 architecture [32], and it represents



TABLE IV
CONTEXT SWITCHING TIME OF ARM TRUSTZONE (µS).

Step Mean STD 95% CI

Non-secure to Secure 0.135 0.001 [0.135, 0.135]
Secure to Non-secure 0.082 0.003 [0.082, 0.083]

Overall 0.218 0.005 [0.218, 0.219]

TABLE V
TIME CONSUMPTION OF MD5 (µS).

CPU Mode Mean STD 95% CI

Non-secure 8.229 0.231 [8.215, 8.244]
Secure 9.670 0.171 [9.660, 9.681]

the most recent hardware design of ARM. We consider the

further ARM-based edge node will follow this design and

thus perform our experiments on the Juno board. The Juno r1

development board contains a dual-core Cortex-A57 cluster

and a quad-core Cortex-A53 cluster, and all the processors

in the clusters are equipped with ARM TrustZone technology.

The main memory of the board is an 8GB DRAM. We also use

the ARM Trusted Firmware (ATF) [33] to enable the firmware

support for TrustZone. The Android deliverable image for Juno

board provided by Linaro [34] is used to be the operating

system of the non-secure mode.

Similar to the experiments running with the Intel SGX,

we evaluate the performance overhead of the context switch,

sensitive computation, and the overall system, respectively.

1) Context Switch: The SMC instruction is frequently used

to achieve the switch between the secure mode and non-secure

mode in many TrustZone-related systems. Thus, we also use

this instruction to trigger the switch. To accurately evaluate

the time consumption, we leverage the Performance Monitor

Unit (PMU) [32] to record the elapsed CPU cycles. Since

the PMU can be used in both the secure and non-secure

mode, we can learn the time consumption of the switching

from non-secure mode to secure mode as well as that of the

switching from secure mode to non-secure mode. Unlike the

SGX, the parameters transferring in TrustZone is achieved by

sharing the general purpose registers instead of using buffers.

Therefore, the parameters involve no additional overhead. In

the experiments, we configure the CPU to run at 1.15GHz and

repeat the context switch for 1,000 times.

Table IV shows the context switching time of secure and

non-secure mode. The switch from non-secure mode to secure

mode requires 0.135 µs while the switch from secure to non-

secure mode requires 0.082 µs, and the overall switching time

is 0.218 µs. The small standard deviations also show that the

time consumption of the context switch is stable.

2) Sensitive Computation: In this section, we integrate the

same MD5 implementation as the one used in Section III-A2

to both a kernel module and the ATF. In the kernel module,

we measure the time consumption of directly using the MD5

implementation and using the SMC instruction to invoke the

MD5 implementation inside the ATF. The other setups of the

experiments are similar to the experiments with the Intel SGX.

The result in Table V shows that it takes 8.229 µs to

calculate the MD5 in the non-secure kernel module while the

computation in the secure mode takes 9.670 µs. The increased

TABLE VI
PERFORMANCE SCORE BY GEEKBENCH.

Sensitive
Computation

Mean STD 95% CI

No 984.70 1.878 [984.332, 985.068]
Yes 983.44 3.273 [982.799, 984.082]

computation time is 1.441 µs, which is much larger than the

context switch discussed above (0.218 µs). Thus, we consider

that the CPU performance is decreased in the secure mode.

3) Overall Performance: Similar to Section III-A3, we use

an application to simulate the frequent sensitive computation

and leverage the GeekBench 4 application [35] from Google

Play Store to measure the CPU performance. The benchmark

is executed for 100 times to reduce test errors.

From the Table VI, we find that the single-core performance

score decreases from 984.70 to 983.44 when the sensitive

computation is involved. The decrease percentages is 0.13%,

which is ignorable. Therefore, we consider the slowdowns

would not affect the performance of the edge nodes.

V. AMD SECURE ENCRYPTED VIRTUALIZATION

AMD Memory Encryption Technology is the most re-

cent groundbreaking general purpose hardware-assisted TEE

achievement that encrypts and protects system memory. AMD

Memory Encryption Technology is focused primarily on pub-

lic cloud infrastructure and specifically public infrastructure

as a Service (IaaS). AMD Memory Encryption Technology

addresses two different classes of attacks: system software

level and physical access attacks [15], [36]. The former attack

includes a high-privileged entity that analyses the guest VM

memory space for malicious purposes or deploying attacks that

use hypervisor vulnerabilities to apply side-channel attacks to

other co-resident guest VMs [37]. The latter attacks include

hot memory I/O tapping attacks or cold boot attacks [38],

[15], [36]. AMD Memory Encryption Technology introduces

an AES 128 encryption engine inside the System on Chip

(SoC) that transparently encrypts and decrypts the data when

the data leaves or enters the SoC respectively. Based on the

Memory Encryption Technology, AMD proposed two main

security features referred to as Secure Memory Encryption

(SME) and Secure Encrypted Virtualization (SEV). Both SEV

and SME are managed by the OS or hypervisor, and no

application software changes are needed [15], [36]. Encryption

key management such as generating, storing, and delivering

the keys are carried out by the AMD secure processor and the

encryption keys are kept hidden from untrusted parts of the

platform. The AMD secure processor utilizes a 32-bit ARM

Cortex A5, and uses its memory and storage while executing

a kernel that is signed by AMD [15], [36].

AMD Secure Encrypted Virtualization (SEV). SEV is

a security feature that mainly addresses the high-privileged

system software class of attacks by providing encrypted VM

isolation. It encrypts and protects the VM’s memory space

with the VM’s specific encryption key from the hypervisor or

other VMs on the same platform [39], [15], [36]. In addition,

SEV does not require any modifications to user application



Traditional Model

Hypervisor

Guest OS

Hypervisor

AMD SEV Model

Guest OS

Fig. 3. AMD Secure Encrypted Virtualization.

software and memory encryption is transparent to the user

application software that is executed in the SEV-protected VM.

Figure 3 shows the difference between the traditional vir-

tualization model and AMD SEV model. In the traditional

model, the hypervisor is trusted and has the access to the

memory of the malicious guest OS. However, in the AMD

SEV model, we assume the hyperviosr may be compromised

and protect the memory of the guest OS via the SME.

SEV uses the AMD Memory Encryption Engine which

is capable of working with different encryption keys for

encrypting and decrypting different VM memory spaces on the

same platform. In SEV, a unique encryption key is associated

with each guest VM. When code and data arrives into the SoC,

SEV tags all of the code and data associated with the guest

VM in the cache and limits access only to the tag’s owner

VM. When data leaves the SoC, the VM encryption key is

identified by the tag value and data is encrypted with the VM

key [15], [36]. Additionally, initializing an SEV protected VM

requires direct interaction with the AMD secure processor. In

this paper, we focus on testing SEV and the next subsection

will provide more details on experiment results of SEV.

A. Experiment Results

To study the performance overhead of the AMD SEV, we

use a machine with an AMD EPYC-7251 CPU [40], which

contains 8 physical cores and 16 logic threads. As to the

software, the operating system we use is Ubuntu 16.04.5 LTS

with a customized SEV-enabled Linux kernel 4.15.10. The

hypervisor we use is KVM 2.5.0.

1) Context Switch: In the SEV-ES architecture, VMEXIT

events are splitted into two types, Automatic Exits (AE) and

Non-Automatic Exits (NAE). In the system where SEV-ES is

enabled, only AE can successfully trigger the VMEXIT event,

which will cause a full world switch and the control will be

transferred back to the hypervisor. During this process, the

CPU hardware will save and encrypt all guest register states

before loading the hypervisor.

To create an AE, we chose VMMCALL instruction. Though

other instruction exists, the KVM we use currently does not

support them. VMMCALL is meant as a way for a guest

to explicitly call the hypervisor, and no Current Privilege

Level (CPL) checks will be performed, thus the hypervisor

can decide whether to make this instruction legal at the user-

level or not, which also means we can add function by hooking

the VMMCALL handler [41].

Since we can know the total switch time by sending an

empty VMMCALL instruction, which is also the real thing

what we are interested in, we did not record the time con-

sumption of vmexit or vmentry event but record the total time

TABLE VII
TIME CONSUMPTION OF MD5 (µS).

CPU Mode Mean STD 95% CI

Guest OS 3.66 0.126 [3.602, 3.720]
Host OS 0.70 0.005 [0.697, 0.702]

TABLE VIII
PERFORMANCE SCORE BY GEEKBENCH.

Sensitive
Computation

Mean STD 95% CI

No 3425.05 41.016 [3417.011, 3433.089]
Yes 3283.15 32.772 [3276.727, 3289.573]

consumption instead. From our experiment, we find that the

average switch overhead is 3.09 µs, and this is because a

vmexit event is triggered every time, and the CPU has to save

and encrypt the guest state before switching to the hypervisor

mode to protect guest data. Meantime, when CPU returns to

Guest mode, it has to load and decrypt guest state.

2) Sensitive Computation: To evaluate the performance

overhead of the sensitive computation, we study the time

consumption of running sensitive computation software in

both host and guest OS respectively. The each experiment is

executed 1,000 times. We restart the host operating system

to make sure there is no other factor to impact our result. In

the Host OS, we simply run MD5 and measure the time. To

better simulate the real SEV executing environment, we call

VMMCALL instruction every time the MD5 finishes to trigger

the guest-hypervisor switch.

From Table VII we can see that executing MD5 in Guest

OS takes almost the same amount of time with running MD5

in the Host OS. Since we do not send any command with

VMMCALL, the hypervisor does not have to do any extra

calculation. Thus, we can see that the computation running

in an SEV-enable guest does not introduce extra overhead

compared to running in the Host OS.

3) Overall Performance: The same as Section III-A3, we

use GeekBench 4 to evaluate the influence of frequent sensitive

computation running in the SEV-ES enabled guest to the host.

To simulate this, we run MD5 in Guest OS every 1 second

and VMMCALL instruction is sent every time after MD5 hash

finishes. By comparing the performances of with and without

running sensitive computation in Guest OS, we can learn the

overall extra overhead. We execute benchmark for 100 times.

From the Table VIII, we can see that the performance score

drops from 3425.05 to 3283.15 in average, and the decrease

percentage is about 4.14%. Comparing with the experiments

on Intel SGX and ARM TrustZone technology, we consider

the AMD involves a higher performance overhead due to the

heavily context switch between the hypervisor and guest OS.

VI. FUTURE WORK

As mentioned, edge platforms involve with a variety com-

puting architectures (e.g., x86, ARM, and MIPS) and hardware

vendors (e.g., Intel, ARM, and AMD). Different architec-

tures or hardware vendors provide various TEEs that require

different programming languages. The current programming

mode for TEEs is architecture-specific and not user-friend.



In our future work, we will develop an “easy to use” and

“generic” programming mode interface that works for all

the hardware-assisted TEEs on heterogeneous edge platforms.

Specifically, we will use Asylo project [42] from Google, an

open framework for enclave applications, as a base to further

develop a generic framework for TEEs on edge platforms.

VII. CONCLUSIONS

In this paper, we perform an extensive study on the

hardware-assisted TEEs and discuss the feasibility of deploy-

ing these TEEs on the Edge Computing infrastructure. Specif-

ically, we study the Intel SGX, ARM TrustZone technology,

and AMD SEV, and analyze the performance overhead intro-

duced by them. Our investigation shows that the deploying of

hardware-assisted TEEs can efficiently improve the security of

the edge nodes with a low performance overhead.

VIII. ACKNOWLEDGEMENT

This work is supported by the National Science Foundation

Grant No. OAC-1738929 and IIS-1724227. Opinions, findings,

conclusions and recommendations expressed in this material

are those of the authors and do not necessarily reflect the views

of the US Government.

REFERENCES

[1] B. Qi, L. Kang, and S. Banerjee, “A vehicle-based edge computing
platform for transit and human mobility analytics,” in Proceedings of

the 2nd ACM/IEEE Symposium on Edge Computing (SEC’17), 2017.
[2] Q. Zhang, Z. Yu, W. Shi, and H. Zhong, “Demo abstract: Evaps: Edge

video analysis for public safety,” in Proceedings of the 1st IEEE/ACM

Symposium on Edge Computing (SEC’16), 2016.
[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision

and challenges,” IEEE Internet of Things Journal, 2016.
[4] W. Shi and S. Dustdar, “The promise of edge computing,” IEEE

Computer Magazine, 2016.
[5] Y. Chen, Q. Feng, and W. Shi, “An industrial robot system based on edge

computing: An early experience,” in Proceedings of USENIX Workshop

on Hot Topics in Edge Computing (HotEdge’18), 2018.
[6] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-

aware video analytics on edge computing platform,” in Proceedings of

the 2nd ACM/IEEE Symposium on Edge Computing (SEC’17), 2017.
[7] X. Wu, R. Dunne, Q. Zhang, and W. Shi, “Edge computing enabled

smart firefighting: opportunities and challenges,” in Proceedings of

the 5th ACM/IEEE Workshop on Hot Topics in Web Systems and

Technologies, 2017.
[8] G. Grassi, K. Jamieson, P. Bahl, and G. Pau, “Parkmaster: An in-vehicle,

edge-based video analytics service for detecting open parking spaces in
urban environments,” in Proceedings of the 2nd ACM/IEEE Symposium

on Edge Computing (SEC’17), 2017.
[9] B. Confais, A. Lebre, and B. Parrein, “Performance analysis of object

store systems in a fog and edge computing infrastructure,” 2017.
[10] X. Zhang, Y. Wang, and W. Shi, “pcamp: Performance comparison of

machine learning packages on the edges,” in Proceedings of USENIX

Workshop on Hot Topics in Edge Computing (HotEdge’18), 2018.
[11] ARM, “TrustZone security,” http://infocenter.arm.com/help/index.jsp?

topic=/com.arm.doc.prd29-genc-009492c/index.html, 2009.
[12] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,

V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.” in HASP@ ISCA, 2013, p. 10.

[13] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo,
“Using innovative instructions to create trustworthy software solutions.”
in HASP@ ISCA, 2013, p. 11.

[14] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. Rozas, “Intel R© software guard extensions (intel R© SGX)
support for dynamic memory management inside an enclave,” in Pro-

ceedings of the Hardware and Architectural Support for Security and

Privacy 2016. ACM, 2016, p. 10.

[15] D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,” White

paper, Apr, 2016.
[16] Intel, “Fog reference design overview,” https://www.intel.com/content/

www/us/en/internet-of-things/fog-reference-design-overview.html,
2017.

[17] ARM, “Juno ARM development platform SoC technical refer-
ence manual,” https://www.arm.com/files/pdf/DDI0515D1a juno arm
development platform soc trm.pdf, 2015.

[18] U. Drolia, K. Guo, and P. Narasimhan, “Precog: Prefetching for im-
age recognition applications at the edge,” in Proceedings of the 2nd

ACM/IEEE Symposium on Edge Computing, 2017.
[19] C. Streiffer, A. Srivastava, V. Orlikowski, Y. Velasco, V. Martin,

N. Raval, A. Machanavajjhala, and L. P. Cox, “eprivateeye: To the edge
and beyond!” in Proceedings of the 2nd ACM/IEEE Symposium on Edge

Computing, 2017.
[20] G. Kar, S. Jain, M. Gruteser, J. Chen, F. Bai, and R. Govindan,

“PredriveID: pre-trip driver identification from in-vehicle data,” in
Proceedings of the 2nd ACM/IEEE Symposium on Edge Computing,
2017.

[21] G. Kar, S. Jain, M. Gruteser, F. Bai, and R. Govindan, “Real-time
traffic estimation at vehicular edge nodes,” in Proceedings of the 2nd

ACM/IEEE Symposium on Edge Computing, 2017.
[22] F. Zhang and H. Zhang, “SoK: A study of using hardware-assisted iso-

lated execution environments for security,” in Proceedings of Hardware

and Architectural Support for Security and Privacy (HASP’16), 2016.
[23] Z. Ning, F. Zhang, W. Shi, and L. Shi, “Position paper: Challenges

towards securing hardware-assisted execution environments,” in Pro-

ceedings of 2017 Hardware and Architectural Support for Security and

Privacy (HASP’17), 2017.
[24] T. Peters, “A survey of trustworthy computing on mobile & wear-

able systems,” http://www.cs.dartmouth.edu/reports/abstracts/TR2017-
823, 2017.

[25] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos,
“No need to hide: Protecting safe regions on commodity hardware,”
in Proceedings of the 12th European Conference on Computer Systems

(EuroSys’17), 2017.
[26] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-

Ruiz, and M. Russinovich, “VC3: Trustworthy data analytics in the cloud
using SGX,” in Proceedings of The 36th IEEE Symposium on Security

and Privacy (S&P’15), 2015.
[27] Z. Ning and F. Zhang, “Ninja: Towards transparent tracing and debug-

ging on ARM,” in Proceedings of the 26th USENIX Security Symposium

(USENIX Security’17), 2017.
[28] OpenFog, “Consortium,” https://www.openfogconsortium.org/, 2017.
[29] Intel, “SGX SDK,” https://software.intel.com/en-us/sgx-sdk/, 2017.
[30] R. Rivest, “The MD5 Message-Digest Algorithm,” https://www.ietf.org/

rfc/rfc1321.txt, 1992.
[31] Primate Labs, “GeekBench,” https://www.geekbench.com/, 2016.
[32] ARM, “ARMv8-A reference manual,” http://infocenter.arm.com/help/

index.jsp?topic=/com.arm.doc.ddi0487a.k/index.html, 2015.
[33] ——, “Trusted firmware,” https://github.com/ARM-software/arm-

trusted-firmware, 2013.
[34] Linaro, “The Reference Linaro Confectionary Release for Juno,” http:

//releases.linaro.org/android/reference-lcr/juno/15.09/, 2015.
[35] Primate Labs, “GeekBench,” https://play.google.com/store/apps/details?

id=com.primatelabs.geekbench, 2018.
[36] D. Kaplan, “AMD x86 memory encryption technologies.” Austin, TX:

USENIX Association, 2016.
[37] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get

off of my cloud: exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM conference on Computer and

communications security. ACM, 2009, pp. 199–212.
[38] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,

J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest
we remember: cold-boot attacks on encryption keys,” Communications

of the ACM, vol. 52, no. 5, pp. 91–98, 2009.
[39] AMD, “Secure encrypted virtualization api version 0.16,” https://support.

amd.com/en-us/search/tech-docs, 2018.
[40] ——, “AMD EPYC 7251 processor,” https://www.amd.com/en/products/

cpu/amd-epyc-7251, 2018.
[41] AMD, “Architecture programmer’s manual volume 2: System program-

ming,” https://support.amd.com/TechDocs/24593.pdf, 2017.
[42] Google, “An open and flexible framework for enclave applications,”

https://asylo.dev/, 2018.


