Preliminary Study of Trusted Execution
Environments on Heterogeneous Edge Platforms

Zhenyu Ning, Jinghui Liao, Fengwei Zhang, Weisong Shi
COMPASS Lab, Wayne State University
Detroit, Michigan, USA, 48202
{zhenyu.ning, jinghui, fengwei, weisong} @wayne.edu

Abstract—The recent edge computing infrastructure intro-
duces a new computing model that works as a complement
of the traditional cloud computing. The edge nodes in the
infrastructure reduce the network latency of the cloud computing
model and increase data privacy by offloading the sensitive
computation from the cloud to the edge. Recent research focuses
on the applications and performance of the edge computing,
but less attention is paid to the security of this new computing
paradigm. Inspired by the recent move of hardware vendors that
introducing hardware-assisted Trusted Execution Environment
(TEE), we believe applying these TEEs on the edge nodes would
be a natural choice to secure the computation and sensitive data
on these nodes. In this paper, we investigate the typical hardware-
assisted TEEs and evaluate the performance of these TEEs to help
analyze the feasibility of deploying them on the edge platforms.
Our experiments show that the performance overhead introduced
by the TEEs is low, which indicates that integrating these TEEs
into the edge nodes can efficiently mitigate security loopholes
with a low performance overhead.

I. INTRODUCTION

The wide deployment of cloud computing changes the
infrastructure of existing computing paradigms and facilitates
a number of service providers. However, the cloud computing
also involves penalties in terms of network latency which is
critical in some time-sensitive or performance-sensitive sce-
narios such as real-time monitoring for transportation [1] and
video analytics [2] for public safety. Moreover, the data owner
would prefer to process the sensitive data on the endpoint
devices instead of cloud due to privacy concerns [3].

In light of these problems, a complementary infrastructure
named Edge Computing [4] is proposed. The idea of Edge
Computing suggests the deployment of additional edge nodes
between the cloud server and the end-users, on which the
latency-sensitive or privacy-sensitive computation is executed.
Since the edge nodes are supposed to be as close as possible
to the end-users, the latency is greatly reduced and the
data privacy is improved to match the requirement of these
computations. Meantime, those non sensitive computations are
still on the cloud to take the advantage of cloud computing.

Recently, the usage scenarios [5], [6], [7], [8], [1], [2] and
performance of Edge Computing [9], [10] are well studied
by the researchers. However, less attentions are paid to the
security and privacy of the Edge Computing, which puts the
new-born Edge Computing infrastructure at risk. For example,
in the edge-based video monitoring system, the edge node pre-
processes the captured image to reduce the size of the uploaded

data and the required storage on the cloud, which indicates that
the edge node can actually access all the captured images.
Thus, the compromised edge node may lead to the critical
leakage of privacy. Another example would be the edge-
based smart traffic systems, in which the control commands
of the self-driving vehicles highly rely on the surrounding
information gathered by the edge node. Once the edge node
is hijacked, the self-driving vehicles may be induced to per-
form some risky actions, which would consequently introduce
destructive effects to the public safety.

The recent move of hardware vendors that designs dedicated
hardware-assisted Trusted Execution Environment (TEE) [11],
[12], [13], [14], [15] inspire us with the idea that applying
these TEEs to the Edge Computing infrastructure. The TEE
provides an isolated execution environment which remains
secure even the system software on the device is compro-
mised. In case of Edge Computing, the edge nodes are more
vulnerable than the cloud devices since they are dispersedly
distributed and have a large attack surface, and the deployment
of the TEEs would guarantee the security of the sensitive
information and computation on the compromised edge node.

Unlike the PC platform, which is dominated by the Intel
x86 architecture, the architecture of edge nodes in Edge
Computing is heterogeneous (e.g., Intel, AMD, ARM, MIPS,
PowerPC) Meantime, the hardware vendors with different
architectures provide a variety hardware-assisted TEEs. The
most popular TEEs include Intel Software Guard eXtension
(SGX) [12], [13], [14], ARM TrustZone Technology [11],
and AMD Memory Encryption Technology [15]. Intuitively,
applying these TEEs on the heterogeneous edge platforms
would be a natural choice to gain a higher security.

In this paper, we study the hardware-assisted TEEs provided
by the hardware vendors and evaluate the performance of these
TEEs to help analyze the feasibility of deploying them on the
edge platforms. Specifically, we first study the Intel SGX on a
fog node following the Intel Fog Reference Design [16]. Since
the infrastructure of Fog Computing is similar to the Edge
Computing, we consider the fog node as a suitable candidate
of the edge node. Meanwhile, the low-power consumption
makes the ARM architecture to be a serious competitor to
the x86 architecture on the edge platform. Thus, a study of
ARM TrustZone technology on the ARM Juno development
board [17] is presented in this paper. Finally, AMD processors
are well-known by their low price, which is also a critical

aspect in case of edge node due to its huge amount. Therefore,
we also analyze the recent AMD Secure Encrypted Virtualiza-
tion (SEV) technology for further comparison.

The results of our experiments show that the deployment
of Intel SGX, ARM TrustZone technology, and AMD SEV
introduces about 0.26%, 0.02%, and 4.14% performance over-
head, respectively. Apparently, the overhead of the SGX and
TrustZone technology are ignorable, and the overhead of SEV
is reasonable due to the slowdown of a virtual machine.

The main contributions of this paper are:

« We present a preliminary study of popular TEEs includ-
ing Intel SGX, ARM TrustZone, and AMD SEV. Our
study shows that adopting TEEs to heterogeneous edge
platforms is convenient.

o« We conduct extensive experiments with the TEEs on
real physical platforms including Intel Fog Node. The
result shows that the performance overhead introduced
by existing TEEs is low.

o We show that deploying existing TEEs to Edge Comput-
ing can efficiently improve the security of the platform
with a low performance overhead.

The rest of the paper is organized as follows. Section III
presents the analysis of Intel SGX and the performance
evaluation on the Intel Fog Node. Section IV investigates
ARM TrustZone technology and the performance overhead
of TrustZone. Section V discusses AMD SEV and introduced
performance overhead. Section VI presents the future direction
of our research and Section VII concludes this paper.

II. RELATED WORK

Edge Computing. Shi et al. [3] provide a comprehensive
study on the vision of Edge Computing. Wu ef al. [7] analyze
the opportunities and challenges of applying Edge Computing
to the smart firefighting. [6], [8], [18], [19] use the edge
infrastructure to achieve video analysis. Chen et al. [5] make
the attempt to deploy an edge-based robot system. [1], [20],
[21] discuss combing the Edge Computing with the vehicle
systems. The performance of the Edge Computing is analyzed
in [9] and [10].

Trusted Execution Environment. [22] performs a survey on
existing Trusted Execution Environments (TEEs), and [23]
presents the challenges of these TEEs. [24] surveys the
trustworthy computing on the mobile and wearable systems.
MemSentry [25] proposes a framework to harden modern
defense systems with the hardware features including TEEs.
VC3 [26] uses the Intel SGX to secure the data analytics,
and Ninja [27] leverages the ARM TrustZone technology to
improve the transparency of debugging and tracing.

III. INTEL SOFTWARE GUARD EXTENSION

The Intel Software Guard eXtension (SGX) is proposed via
three research papers in 2013 [12], [13], [14]. The proposed
extension enables the ring 3 user-level application to create an
isolated TEE, referred as enclave, and transplant the secure-
sensitive computation and data into this TEE. The hardware-
assisted TEE ensures that the memory inside enclave can-

Untrusted Application

‘ Untrusted Components

T OCalls

Trusted Components
(Enclave)

ECalls J

Fig. 1.
not be accessed by the operating system or the hypervisor.
Specifically, a hardware Memory Encryption Engine (MEE) is
applied to encrypt the enclave memory region which is called
the Enclave Page Cache (EPC). SGX allows the code inside
the enclave to access both EPC and the memory outside the
enclave. However, the memory access from the outside to the
EPC leads to a page fault. Note that the memory access from
the enclave to the outside still needs to follow the OS memory
management policies. For example, access to the memory in
kernel space from the enclave also leads to the page fault since
the enclave executes in user space.

Figure 1 is a typical example of an application running with
SGX enclave. The application consists of untrusted compo-
nents and trusted components, and the trusted components
are normally created via SGX enclave. The ECalls and
OCalls are used to switch between the untrusted and trusted
components, and provide a communication channel to transfer
parameters between them.

An Application with SGX Enclave.

A. Experiments with Fog Node

The Fog Node is introduced by Intel from the OpenFog
Consortium [28], a consortium of high tech industry compa-
nies (e.g., Intel and Cisco) and academic institutions across
the world aimed at the standardization and promotion of fog
computing in various capacities and fields. The processor on
this node is 8-core Intel Xeon E3-1275 processor, which is a
high-performance SGX-enabled processor. The 32GB DDR4
memory also meets the requirement of usage scenario of fog
computing. In regard to the software, we leverage the open
source Tianocore BIOS and 64-bit Ubuntu 16.04 to setup the
node. Due to the similarity of the Fog Computing and Edge
Computing, we consider this machine also matches the design
of Edge Computing and can be directly used as an edge node.
Therefore, we use the fog node to simulate the edge node in
the performance analysis of Intel SGX.

In this section, we create applications based on the SGX
SDK 1.9 [29], and use them to conduct the experiments to
measure the performance overhead. Specifically, we evaluate
the time consumption of the context switch in SGX, the
performance slowdown of transplanting the computation into
enclave, and the slowdown of the overall system when SGX
is involved, respectively.

1) Context Switch: Regarding to the experiments in this
section, we use an empty ECALL function to achieve the con-
text switch. Once the function is called, the CPU will switch
to the enclave mode, while the exit of the function implies the
exit of the enclave mode. To measure the time consumption,
the RDTSC instruction is used to read the elapsed CPU cycles.

TABLE I
CONTEXT SWITCHING TIME OF INTEL SGX ON THE FOG NODE (us).

Buffer Size Mean STD 95% CI
0 KB 2.039 0.066 [2.035, 2.044]
1 KB 2.109 0.032 [2.107, 2.111]
4 KB 2.251 0.059 [2.247, 2.254]
8 KB 2.362 0.055 [2.359, 2.366]
16 KB 2.714 0.036 [2.712, 2.716]

TABLE 11
TIME CONSUMPTION OF MDS5 (us).

CPU Mode Mean STD 95% CI
Normal 4.734 0.095 [4.728, 4.740]
Enclave 6.737 0.081 [6.732, 6.742]

Note that the execution of this instruction is forbidden in
enclave mode, so we cannot measure the required time to
entering or quitting the enclave mode separately. Instead, we
calculate the time consumption of a complete context switch
cycle (i.e., enter and then quit the enclave mode). Moreover,
the parameter transferring between the enclave mode and nor-
mal mode depends on an additional buffer, and the size of the
buffer affects the efficiency of the context switch. Therefore,
we use different buffer sizes to conduct the evaluation. To
reduce the nondeterminacy of the experiments, we configure
the CPU frequency to be a fixed value (4GHz) and repeat the
experiment for 1,000 times.

Table I shows the context switching time of Intel SGX
on the Intel Fog Node. If no parameter is required, the
context switch requires 2.039 us, this is the approximate time
consumption for the CPU mode switching. However, in most
usage scenarios, the parameter transferring is required. The
time consumptions come to 2.109 us, 2.251 us, 2.362 us,
and 2.714 us when the sizes of the parameters are 1KB, 4KB,
8KB, and 16 KB, respectively.

2) Sensitive Computation: Since the TEEs are used to
secure the sensitive computation, we are eager to know the
overhead of moving the sensitive computation into the TEEs.
In this experiment, we use an open-source MDS5 implemen-
tation [30] following the RFC 1321 standard to simulate the
sensitive computation, and measure the time consumption of
calculating the MDS5 inside and outside the enclave mode.
Without loss of generality, we use a pre-generated random
string with 1,024 characters as the target of the MDS5.

As shown in Table II, the MDS5 calculation requires 4.734 us
in normal mode and 6.737 us in enclave mode. We note that
the calculation in the enclave mode requires about 2.003 more
microseconds than the calculation in the normal mode, and this
difference is close to the context switching time measured in
Section III-A1. This result shows that the CPU performance in
normal mode and enclave mode are similar, and the overhead
of moving the sensitive computation to the TEEs depends on
the overhead of the context switch.

3) Overall Performance: While keeping the sensitive com-
putation running inside the TEE, we also want to make
sure that the performance of the non-sensitive computation
on the edge node would not be affected. To simulate the
frequent sensitive computation on the edge node, we switch

TABLE III
PERFORMANCE SCORE BY GEEKBENCH.
Sensitive Mean STD 95% CI
Computation
No 4327.33 17.124 [4323.974, 4330.686]
Yes 4306.46 14.850 [4303.550, 4309.371]

Non-Secure Mode Secure Mode

Non-Secure Secure
ELO ELO

Non-Secure Secure
EL1 EL1
Exception Return l T

Trigger EL3 Secure
Exception [~~4—,] EL3

Fig. 2. ARM TrustZone Technology.

to the enclave mode every one second and calculate the
MDS5 of a 1024-length string. A dedicated CPU benchmark,
GeekBench [31], is used to measure the performance of the
CPUs. To avoid the unpredicted affects from the other software
in the system, we make the sensitive computation and the
benchmark to be executed in the same core. The single-core
performance score with and without the sensitive computation
are compared to learn the overall performance overhead. The
experiment is repeated for 100 times to reduce the test errors.

Table III shows the performance score given by GeekBench.
The single-core performance scores with and without secure
computation are 4,327.33 and 4,306.46, respectively, and the
performance slowdown is 0.48%. Apparently, the performance
overhead of the computation inside the SGX enclave is ignor-
able even we switch to the enclave mode every one second.

IV. ARM TRUSTZONE TECHNOLOGY

ARM proposed the TrustZone Technology [11] since
ARMVv6 around 2002. With TrustZone enabled, the processor
can switch between the secure and non-secure mode, which
provides two execution environments with different privileges.
A set of hardware extensions are applied to guarantee the
resources (e.g., memory, interrupts, peripherals and etc.) are
isolated between the secure mode and non-secure mode. The
software running in the secure mode owns higher privilege and
have access to both secure and non-secure resources, while
the software running in the normal mode can only access
the non-secure resources. As shown in Figure 2, the ARMvS8
architecture introduces Exception Levels (EL) to indicate the
privilege of the processor, and the switch to the secure mode
can be triggered by an EL3 exception. Typically, the Secure
Monitor Call (SMC) instruction and the secure interrupts are
used as the source of an EL3 exception. The secure mode uses
the Exception Return (ERET) instruction to exit the exception
handler and resume the execution of the non-secure mode.

A. Experiments with ARM Juno Board

The ARM Juno Board [17] is an official software develop-
ment platform for ARMv8 architecture [32], and it represents

TABLE IV
CONTEXT SWITCHING TIME OF ARM TRUSTZONE (uS).

Step Mean STD 95% CI
Non-secure to Secure 0.135 0.001 [0.135, 0.135]
Secure to Non-secure 0.082 0.003 [0.082, 0.083]

Overall 0.218 0.005 [0.218, 0.219]
TABLE V
TIME CONSUMPTION OF MD5 (us).
CPU Mode Mean STD 95% CI
Non-secure 8.229 0.231 [8.215, 8.244]
Secure 9.670 0.171 [9.660, 9.681]

the most recent hardware design of ARM. We consider the
further ARM-based edge node will follow this design and
thus perform our experiments on the Juno board. The Juno rl
development board contains a dual-core Cortex-A57 cluster
and a quad-core Cortex-AS53 cluster, and all the processors
in the clusters are equipped with ARM TrustZone technology.
The main memory of the board is an 8GB DRAM. We also use
the ARM Trusted Firmware (ATF) [33] to enable the firmware
support for TrustZone. The Android deliverable image for Juno
board provided by Linaro [34] is used to be the operating
system of the non-secure mode.

Similar to the experiments running with the Intel SGX,
we evaluate the performance overhead of the context switch,
sensitive computation, and the overall system, respectively.

1) Context Switch: The SMC instruction is frequently used
to achieve the switch between the secure mode and non-secure
mode in many TrustZone-related systems. Thus, we also use
this instruction to trigger the switch. To accurately evaluate
the time consumption, we leverage the Performance Monitor
Unit (PMU) [32] to record the elapsed CPU cycles. Since
the PMU can be used in both the secure and non-secure
mode, we can learn the time consumption of the switching
from non-secure mode to secure mode as well as that of the
switching from secure mode to non-secure mode. Unlike the
SGX, the parameters transferring in TrustZone is achieved by
sharing the general purpose registers instead of using buffers.
Therefore, the parameters involve no additional overhead. In
the experiments, we configure the CPU to run at 1.15GHz and
repeat the context switch for 1,000 times.

Table IV shows the context switching time of secure and
non-secure mode. The switch from non-secure mode to secure
mode requires 0.135 us while the switch from secure to non-
secure mode requires 0.082 us, and the overall switching time
is 0.218 ps. The small standard deviations also show that the
time consumption of the context switch is stable.

2) Sensitive Computation: In this section, we integrate the
same MD35 implementation as the one used in Section III-A2
to both a kernel module and the ATF. In the kernel module,
we measure the time consumption of directly using the MD5
implementation and using the SMC instruction to invoke the
MD?5 implementation inside the ATF. The other setups of the
experiments are similar to the experiments with the Intel SGX.

The result in Table V shows that it takes 8.229 us to
calculate the MDS5 in the non-secure kernel module while the
computation in the secure mode takes 9.670 us. The increased

TABLE VI
PERFORMANCE SCORE BY GEEKBENCH.
Senmsitive —pron STD 95% CI
Computation
No 984.70 1.878 [984.332, 985.068]
Yes 983.44 3.273 [982.799, 984.082]

computation time is 1.441 us, which is much larger than the
context switch discussed above (0.218 us). Thus, we consider
that the CPU performance is decreased in the secure mode.

3) Overall Performance: Similar to Section III-A3, we use
an application to simulate the frequent sensitive computation
and leverage the GeekBench 4 application [35] from Google
Play Store to measure the CPU performance. The benchmark
is executed for 100 times to reduce test errors.

From the Table VI, we find that the single-core performance
score decreases from 984.70 to 983.44 when the sensitive
computation is involved. The decrease percentages is 0.13%,
which is ignorable. Therefore, we consider the slowdowns
would not affect the performance of the edge nodes.

V. AMD SECURE ENCRYPTED VIRTUALIZATION

AMD Memory Encryption Technology is the most re-
cent groundbreaking general purpose hardware-assisted TEE
achievement that encrypts and protects system memory. AMD
Memory Encryption Technology is focused primarily on pub-
lic cloud infrastructure and specifically public infrastructure
as a Service (IaaS). AMD Memory Encryption Technology
addresses two different classes of attacks: system software
level and physical access attacks [15], [36]. The former attack
includes a high-privileged entity that analyses the guest VM
memory space for malicious purposes or deploying attacks that
use hypervisor vulnerabilities to apply side-channel attacks to
other co-resident guest VMs [37]. The latter attacks include
hot memory I/O tapping attacks or cold boot attacks [38],
[15], [36]. AMD Memory Encryption Technology introduces
an AES 128 encryption engine inside the System on Chip
(SoC) that transparently encrypts and decrypts the data when
the data leaves or enters the SoC respectively. Based on the
Memory Encryption Technology, AMD proposed two main
security features referred to as Secure Memory Encryption
(SME) and Secure Encrypted Virtualization (SEV). Both SEV
and SME are managed by the OS or hypervisor, and no
application software changes are needed [15], [36]. Encryption
key management such as generating, storing, and delivering
the keys are carried out by the AMD secure processor and the
encryption keys are kept hidden from untrusted parts of the
platform. The AMD secure processor utilizes a 32-bit ARM
Cortex A5, and uses its memory and storage while executing
a kernel that is signed by AMD [15], [36].

AMD Secure Encrypted Virtualization (SEV). SEV is
a security feature that mainly addresses the high-privileged
system software class of attacks by providing encrypted VM
isolation. It encrypts and protects the VM’s memory space
with the VM’s specific encryption key from the hypervisor or
other VMs on the same platform [39], [15], [36]. In addition,
SEV does not require any modifications to user application

Traditional Model AMD SEV Model
LivpEie Hypervisor
Guest OS l W
Guest OS

Fig. 3.
software and memory encryption is transparent to the user
application software that is executed in the SEV-protected VM.

Figure 3 shows the difference between the traditional vir-
tualization model and AMD SEV model. In the traditional
model, the hypervisor is trusted and has the access to the
memory of the malicious guest OS. However, in the AMD
SEV model, we assume the hyperviosr may be compromised
and protect the memory of the guest OS via the SME.

SEV uses the AMD Memory Encryption Engine which
is capable of working with different encryption keys for
encrypting and decrypting different VM memory spaces on the
same platform. In SEV, a unique encryption key is associated
with each guest VM. When code and data arrives into the SoC,
SEV tags all of the code and data associated with the guest
VM in the cache and limits access only to the tag’s owner
VM. When data leaves the SoC, the VM encryption key is
identified by the tag value and data is encrypted with the VM
key [15], [36]. Additionally, initializing an SEV protected VM
requires direct interaction with the AMD secure processor. In
this paper, we focus on testing SEV and the next subsection
will provide more details on experiment results of SEV.

AMD Secure Encrypted Virtualization.

A. Experiment Results

To study the performance overhead of the AMD SEV, we
use a machine with an AMD EPYC-7251 CPU [40], which
contains 8 physical cores and 16 logic threads. As to the
software, the operating system we use is Ubuntu 16.04.5 LTS
with a customized SEV-enabled Linux kernel 4.15.10. The
hypervisor we use is KVM 2.5.0.

1) Context Switch: In the SEV-ES architecture, VMEXIT
events are splitted into two types, Automatic Exits (AE) and
Non-Automatic Exits (NAE). In the system where SEV-ES is
enabled, only AE can successfully trigger the VMEXIT event,
which will cause a full world switch and the control will be
transferred back to the hypervisor. During this process, the
CPU hardware will save and encrypt all guest register states
before loading the hypervisor.

To create an AE, we chose VMMCALL instruction. Though
other instruction exists, the KVM we use currently does not
support them. VMMCALL is meant as a way for a guest
to explicitly call the hypervisor, and no Current Privilege
Level (CPL) checks will be performed, thus the hypervisor
can decide whether to make this instruction legal at the user-
level or not, which also means we can add function by hooking
the VMMCALL handler [41].

Since we can know the total switch time by sending an
empty VMMCALL instruction, which is also the real thing
what we are interested in, we did not record the time con-
sumption of vmexit or vmentry event but record the total time

TABLE VII
TIME CONSUMPTION OF MD5 (us).

CPU Mode Mean STD 95% CI
Guest OS 3.66 0.126 [3.602, 3.720]
Host OS 0.70 0.005 [0.697, 0.702]

TABLE VIII

PERFORMANCE SCORE BY GEEKBENCH.

Sensitive

. Mean STD 95% CI
Computation
No 3425.05 41.016 [3417.011, 3433.089]
Yes 3283.15 32.772 [3276.727, 3289.573]

consumption instead. From our experiment, we find that the
average switch overhead is 3.09 us, and this is because a
vmexit event is triggered every time, and the CPU has to save
and encrypt the guest state before switching to the hypervisor
mode to protect guest data. Meantime, when CPU returns to
Guest mode, it has to load and decrypt guest state.

2) Sensitive Computation: To evaluate the performance
overhead of the sensitive computation, we study the time
consumption of running sensitive computation software in
both host and guest OS respectively. The each experiment is
executed 1,000 times. We restart the host operating system
to make sure there is no other factor to impact our result. In
the Host OS, we simply run MDS5 and measure the time. To
better simulate the real SEV executing environment, we call
VMMCALL instruction every time the MDS5 finishes to trigger
the guest-hypervisor switch.

From Table VII we can see that executing MD5 in Guest
OS takes almost the same amount of time with running MD5
in the Host OS. Since we do not send any command with
VMMCALL, the hypervisor does not have to do any extra
calculation. Thus, we can see that the computation running
in an SEV-enable guest does not introduce extra overhead
compared to running in the Host OS.

3) Overall Performance: The same as Section III-A3, we
use GeekBench 4 to evaluate the influence of frequent sensitive
computation running in the SEV-ES enabled guest to the host.
To simulate this, we run MDS5 in Guest OS every 1 second
and VMMCALL instruction is sent every time after MD5 hash
finishes. By comparing the performances of with and without
running sensitive computation in Guest OS, we can learn the
overall extra overhead. We execute benchmark for 100 times.

From the Table VIII, we can see that the performance score
drops from 3425.05 to 3283.15 in average, and the decrease
percentage is about 4.14%. Comparing with the experiments
on Intel SGX and ARM TrustZone technology, we consider
the AMD involves a higher performance overhead due to the
heavily context switch between the hypervisor and guest OS.

VI. FUTURE WORK

As mentioned, edge platforms involve with a variety com-
puting architectures (e.g., x86, ARM, and MIPS) and hardware
vendors (e.g., Intel, ARM, and AMD). Different architec-
tures or hardware vendors provide various TEEs that require
different programming languages. The current programming
mode for TEEs is architecture-specific and not user-friend.

In our future work, we will develop an “easy to use” and
“generic” programming mode interface that works for all
the hardware-assisted TEEs on heterogeneous edge platforms.
Specifically, we will use Asylo project [42] from Google, an
open framework for enclave applications, as a base to further
develop a generic framework for TEEs on edge platforms.

VII. CONCLUSIONS

In this paper, we perform an extensive study on the
hardware-assisted TEEs and discuss the feasibility of deploy-
ing these TEEs on the Edge Computing infrastructure. Specif-
ically, we study the Intel SGX, ARM TrustZone technology,
and AMD SEV, and analyze the performance overhead intro-
duced by them. Our investigation shows that the deploying of
hardware-assisted TEEs can efficiently improve the security of
the edge nodes with a low performance overhead.

VIII. ACKNOWLEDGEMENT

This work is supported by the National Science Foundation
Grant No. OAC-1738929 and 1IS-1724227. Opinions, findings,
conclusions and recommendations expressed in this material
are those of the authors and do not necessarily reflect the views
of the US Government.

REFERENCES

[1] B. Qi, L. Kang, and S. Banerjee, “A vehicle-based edge computing
platform for transit and human mobility analytics,” in Proceedings of
the 2nd ACM/IEEE Symposium on Edge Computing (SEC’17), 2017.

[2] Q. Zhang, Z. Yu, W. Shi, and H. Zhong, “Demo abstract: Evaps: Edge
video analysis for public safety,” in Proceedings of the 1st IEEE/ACM
Symposium on Edge Computing (SEC’16), 2016.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, 2016.

[4] W. Shi and S. Dustdar, “The promise of edge computing,” [EEE
Computer Magazine, 2016.

[5] Y. Chen, Q. Feng, and W. Shi, “An industrial robot system based on edge
computing: An early experience,” in Proceedings of USENIX Workshop
on Hot Topics in Edge Computing (HotEdge’18), 2018.

[6] S.Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-
aware video analytics on edge computing platform,” in Proceedings of
the 2nd ACM/IEEE Symposium on Edge Computing (SEC’17), 2017.

[71 X. Wu, R. Dunne, Q. Zhang, and W. Shi, “Edge computing enabled
smart firefighting: opportunities and challenges,” in Proceedings of
the 5th ACM/IEEE Workshop on Hot Topics in Web Systems and
Technologies, 2017.

[8] G. Grassi, K. Jamieson, P. Bahl, and G. Pau, “Parkmaster: An in-vehicle,
edge-based video analytics service for detecting open parking spaces in
urban environments,” in Proceedings of the 2nd ACM/IEEE Symposium
on Edge Computing (SEC’17), 2017.

[9] B. Confais, A. Lebre, and B. Parrein, “Performance analysis of object

store systems in a fog and edge computing infrastructure,” 2017.

X. Zhang, Y. Wang, and W. Shi, “pcamp: Performance comparison of

machine learning packages on the edges,” in Proceedings of USENIX

Workshop on Hot Topics in Edge Computing (HotEdge’18), 2018.

ARM, “TrustZone security,” http://infocenter.arm.com/help/index.jsp?

topic=/com.arm.doc.prd29- genc-009492c/index.html, 2009.

F. McKeen, 1. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,

V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and

software model for isolated execution.” in HASP@ ISCA, 2013, p. 10.

M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo,

“Using innovative instructions to create trustworthy software solutions.”

in HASP@ [SCA, 2013, p. 11.

F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-

Hurd, and C. Rozas, “Intel®) software guard extensions (intel® SGX)

support for dynamic memory management inside an enclave,” in Pro-

ceedings of the Hardware and Architectural Support for Security and

Privacy 2016. ACM, 2016, p. 10.

(10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

(25]

[26]

[27]

(28]
[29]
[30]

[31]
(32]

[33]
[34]
[35]
[36]

[37]

(38]

[39]
[40]
[41]

[42]

D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,” White
paper, Apr, 2016.

Intel, “Fog reference design overview,” https://www.intel.com/content/
www/us/en/internet- of- things/fog-reference-design-overview.html,
2017.

ARM, “Juno ARM development platform SoC technical refer-
ence manual,” https://www.arm.com/files/pdf/DDI0515D1a_juno_arm_
development_platform_soc_trm.pdf, 2015.

U. Drolia, K. Guo, and P. Narasimhan, “Precog: Prefetching for im-
age recognition applications at the edge,” in Proceedings of the 2nd
ACM/IEEE Symposium on Edge Computing, 2017.

C. Streiffer, A. Srivastava, V. Orlikowski, Y. Velasco, V. Martin,
N. Raval, A. Machanavajjhala, and L. P. Cox, “eprivateeye: To the edge
and beyond!” in Proceedings of the 2nd ACM/IEEE Symposium on Edge
Computing, 2017.

G. Kar, S. Jain, M. Gruteser, J. Chen, F. Bai, and R. Govindan,
“PredrivelD: pre-trip driver identification from in-vehicle data,” in
Proceedings of the 2nd ACM/IEEE Symposium on Edge Computing,
2017.

G. Kar, S. Jain, M. Gruteser, F. Bai, and R. Govindan, “Real-time
traffic estimation at vehicular edge nodes,” in Proceedings of the 2nd
ACM/IEEE Symposium on Edge Computing, 2017.

F. Zhang and H. Zhang, “SoK: A study of using hardware-assisted iso-
lated execution environments for security,” in Proceedings of Hardware
and Architectural Support for Security and Privacy (HASP’16), 2016.
Z. Ning, F. Zhang, W. Shi, and L. Shi, “Position paper: Challenges
towards securing hardware-assisted execution environments,” in Pro-
ceedings of 2017 Hardware and Architectural Support for Security and
Privacy (HASP’17), 2017.

T. Peters, “A survey of trustworthy computing on mobile & wear-
able systems,” http://www.cs.dartmouth.edu/reports/abstracts/TR2017-
823, 2017.

K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos,
“No need to hide: Protecting safe regions on commodity hardware,”
in Proceedings of the 12th European Conference on Computer Systems
(EuroSys’17), 2017.

F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “VC3: Trustworthy data analytics in the cloud
using SGX,” in Proceedings of The 36th IEEE Symposium on Security
and Privacy (S&P’15), 2015.

Z. Ning and F. Zhang, “Ninja: Towards transparent tracing and debug-
ging on ARM,” in Proceedings of the 26th USENIX Security Symposium
(USENIX Security’17), 2017.

OpenFog, “Consortium,” https://www.openfogconsortium.org/, 2017.
Intel, “SGX SDK,” https://software.intel.com/en-us/sgx-sdk/, 2017.

R. Rivest, “The MDS5 Message-Digest Algorithm,” https://www.ietf.org/
rfc/rfc1321.txt, 1992.

Primate Labs, “GeekBench,” https://www.geekbench.com/, 2016.
ARM, “ARMv8-A reference manual,” http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.ddi0487a.k/index.html, 2015.

“Trusted firmware,” https://github.com/ARM-software/arm-
trusted- firmware, 2013.

Linaro, “The Reference Linaro Confectionary Release for Juno,” http:
/Ireleases.linaro.org/android/reference-lcr/juno/15.09/, 2015.

Primate Labs, “GeekBench,” https://play.google.com/store/apps/details?
id=com.primatelabs.geekbench, 2018.

D. Kaplan, “AMD x86 memory encryption technologies.” Austin, TX:
USENIX Association, 2016.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM conference on Computer and
communications security. ACM, 2009, pp. 199-212.

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest
we remember: cold-boot attacks on encryption keys,” Communications
of the ACM, vol. 52, no. 5, pp. 91-98, 2009.

AMD, “Secure encrypted virtualization api version 0.16,” https://support.
amd.com/en-us/search/tech-docs, 2018.

——, “AMD EPYC 7251 processor,” https://www.amd.com/en/products/
cpu/amd-epyc-7251, 2018.

AMD, “Architecture programmer’s manual volume 2: System program-
ming,” https://support.amd.com/TechDocs/24593.pdf, 2017.

Google, “An open and flexible framework for enclave applications,”
https://asylo.dev/, 2018.

