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Abstract—Gene interaction network models from time course
gene transcript abundance data are algorithmically created
using a new aggressive genetic algorithm denoted by BCHC.
The BCHC algorithm rigorously integrates probabilistic hi-
erarchical likelihood and Bayesian methodology to produce
accurate posterior probabilities of interactions between genes
after observance of hierarchical gene transcript abundance data.
Forbidden pairwise gene relationships are incorporated into
the modeling process. This gene interaction model is compared
to a previous gene interaction model utilizing the same data
and Bayesian likelihood, however based upon an exponentially
slower, less aggressive, and less adaptive Metropolis-Hasting
search algorithm. In addition for a smaller data set, our gene
interaction model is compared to less rigorous non-probabilistic
Lasso estimated partial correlation models which do not fully
incorporate the hierarchical structure. A comparison is also made
between the smallest Bayesian model and tests for edges based
on a restricted non-Bayesian hierarchical technique. The BCHC
algorithm performs well when the number of genes is moderately
increased, both in terms of execution time and model quality.

Index Terms—Bioinformatics, Biological system modeling,
Computational systems biology, Genetic algorithms, Probability
Bayes methods

INTRODUCTION

Time course transcriptomic data sets provide important
information on how transcriptional changes drive develop-
ment, signaling, and other important biological processes.
The challenge with these data sets is finding patterns in
transcript abundance and relationships between genes that
can be experimentally tested. This manuscript introduces a
novel algorithm–based on fundamental statistical tools and a
modified genetic algorithm–that produces testable biological
hypotheses.

There are many different techniques for modeling non-
hierarchical single replication abundance data over a sparse
number of time points [13], [14]. Several of these involve
strictly deterministic, non-random techniques, and thus ignore
the random variabilities that commonly exist in natural sys-
tems. These include strictly algebraic techniques like [1], [19],
[33] which look for mathematical associations. Others use
deterministic (non-probabilistic) techniques such as Boolean
modeling [22] or differential equations [4]. Non-probabilistic
methods which allow for randomness include correlation or
partial correlation. With sparse gene data, complete partial
correlation usually cannot be determined, because the number

of genes exceeds the number of time points. However, both
regularized partial correlation [17], [21], and low-order partial
correlation (which adjusts for one or two other variables) [5],
[36] have been utilized, with some degree of success.

This current work is built on previous work by the cur-
rent authors on Bayesian posterior probabilities for a single
replicate (single level) [15] and for multiple replicate models,
having both independent [28] and hierarchical structures [29].
In these previous studies, the search technique was based
upon a Metropolis Hastings (MH) algorithm. In this paper,
we use a Bayesian version of the Cross generational elitist se-
lection, Heterogeneous recombination, Cataclysmic mutation
algorithm, traditionally denoted as CHC [7]. In its essence,
CHC is a type of a genetic algorithm that does not allow the
crossing of parents that are too similar. Our version, which
we denote by BCHC, uses Bayesian hierarchical statistical
methods in the evaluation of the models. The BCHC genetic
algorithm is exponentially faster, more adaptive, and more
rigorous for our network setting than the MH analogue. These
MH results are shown in [25] and [30], respectively. The
advantage of the MH algorithm is a body of mathematical
understanding of convergence. However, the disadvantage is
its doubly exponential execution time as a function of the
numbers of time points and genes.

Any effective algorithmic biological interaction modeling
technique must: provide reliable biological information; re-
quire reasonable run time resources; and yield probabilistic
interaction models that lead to testable biological hypotheses.
Such techniques should scale up linearly with the size of
the data set and the number of replicates. Genetic algorithms
provide such scalable and reliable procedures.

Our hierarchical posterior probability estimate models,
which use a genetic algorithm, is innovative and important
in several significant ways. First, the use of slope parameters
of multiple replicates of rigorously obtained laboratory data
in an hierarchical fashion allows for multiple examinations
of biological processes and accounts for similarities and dif-
ferences. Many different research disciplines emphasize the
important value of multilevel hierarchical modeling [9, Section
1.3]. The utilization of (hierarchical statistical) likelihood in
our work embodies the well-established likelihood principle of
statistics, which both Bayesian and non-Bayesian statisticians
agree is fundamental for obtaining optimal inferences. Even
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Fig. 1: A directed acyclic graph (DAG) showing 5 vertices
representing genes and 3 directed edges.

for a moderate number of genes, it is impossible to search over
all potential models; thus, we developed and utilized a genetic
algorithm, adapted from the CHC genetic algorithm. With this
new technique as well as other computational efficiencies, we
can easily examine 37 genes and with adaptive fine-tuning we
fully expect to scale up to an even larger set.

OVERVIEW OF THE DATA SETS

The long term biological focus of the time course data
sets examined in this manuscript is to understand the hor-
mone signaling networks that control root architecture in
the model plant species of Arabidopsis thaliana. This work
builds on published data sets that report the time course of
transcriptional response to the two hormones auxin (indole-
3 acetic acid; IAA) [20] or the ethylene precursor (1-
aminocyclopropane-1-carboxylic acid; ACC) [12]. The chal-
lenge with these data sets–that yield 1, 246 or 449 transcripts
with consistent and reproducible changes in response to the
hormone treatment, respectively–is identification of patterns
of transcriptional changes that predict functional relationships
that drive changes in root development.

MATHEMATICAL & STATISTICAL PRELIMINARIES

Two important mathematical concepts undergird this mod-
eling approach. The directed acyclic graph G = (V,E), or
DAG, is the mathematical structure that provides the building
blocks for the possible sets of gene interactions (i.e. networks).
Fig. 1 is an example of a DAG. The vertex set V represents
genes and the directed edges E are one-way relationships
between pairs of vertices. Secondly, a probabilistic likelihood
is used to compare two DAGs. This likelihood–and related
Bayesian model averaging–were developed in [25], [28]–[30]
and have been successfully used with a modified MH search
for small numbers of genes and times. Essentially, each DAG
D represents potential gene interactions, and the likelihood of
D is an indication of the agreement of D with the data.

In general, three types of temporal relationships between
vertices can be considered: cotemporal, next state one-step
and next state one-and-two-steps. A cotemporal relationship
between two vertices holds at every point in time. Tradition-
ally, correlation and estimated partial correlation computed
across all the measured data are non-rigorous measures of
cotemporal relationships. A next state one-step relationship
holds between the parents at time t−1 and child genes at

time t for every pair of adjacent times. Similarly a next state
one-and-two steps relationship holds between the parents at
times t− 1 and t− 2 and the respective child at time t. Only
cotemporal relationships will be considered in this manuscript.

Throughout this development, it is assumed that all the
DAGs have the same prior probability; ongoing and future
work will relax this uniformity assumption. The Norris-Patton
likelihood (NPL) is the density function of a set of gene
transcript abundance data d1, . . . , dk (with k replicates) being
described by a DAG D, [25], [29], [30]. Both independent
and hierarchical models over replicates of time course data
can be accommodated by the cotemporal NPL. For this work,
all the transcript data is assumed to be hierarchical; every
set of transcription measurements reflects, to some extent,
the underlying true biochemistry as well as the hierarchical
nesting of the data. Given two DAGs, D1 and D2, we say
that D1 more likely reflects the gene interactions as measured
in the transcript data than D2 if and only if the posterior
probability of D1 is greater than the posterior probability of
D2. In this work, since we assume there are equal priors on
the DAGs, the posterior probability for a DAG is proportional
to the likelihood for the DAG [6, page 390]. Thus, it suffices
to examine the DAG likelihoods.

GENETIC ALGORITHMS

A genetic algorithm is a heuristic computational proce-
dure used to search through mathematical spaces in order
to identify potential optimal results [10], [24]. Traditionally,
the algorithmic search is guided by the genetic algorithm
operators of selection, crossover and mutation. Furthermore,
information about a candidate solution is provided through a
fitness function. At time t−1, a population of a fixed number
of candidates uses the selection, crossover, and mutation
operators to produce, at time t, a new population of candidates.

For this research, the specialized BCHC algorithm is devel-
oped. This genetic algorithm is tuned to search through the
space of candidate DAGs to determine posterior probabilities
for associations between genes; its aim is to discover those
DAGs which have the highest hierarchical cotemporal NPLs
[18]. In the original CHC genetic algorithm, the crossover
operator is extensively and exclusively applied in the produc-
tion of the children from the parents. The next generation is
collected from the most fit of the current children and the
current generation. The mutation operator is only employed
when the members of the current population become too
similar, then cataclysmic mutation is performed which resets
the class of parents based on which parents are the best fit.

The flow of the BCHC algorithm is shown in Alg. 1. The
BCHC algorithm selection and crossover operators play an
important role in the creation of a new population from the
current population. Under the assumption of equal priors on
DAGs, the fitness of a DAG D is computed as the relative NPL
of D over the current population of DAGs. Selection (lines
10-11) randomly pairs candidates in the current population;
every DAG in the current population is paired with another.
This BCHC selection operator is significantly different from
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1: procedure BCHC(Bayesian-CHC)
2: t ← 0
3: Archive ← {}
4: multi-step initialization of 200 DAG(s) for P (0)
5: d ← 50
6: while t < 250 do
7: t ← t+ 1
8: X(t) ← P (t− 1)
9: Y ← {}

10: randomly reorder X
11: for all parent pairs (X(2i), X(2i+ 1)) do
12: if parent pair are disimilar then
13: Y ← Y ∪ crossover-repair of parent pair
14: end if
15: end for
16: d ← d− (|P (t− 1)| − |Y |)
17: P (t) ← fittest |P (t− 1)| of P (t− 1) ∪ Y
18: if d < 0 then
19: P (t) ← cataclysm(P (t))
20: d ← 50
21: end if
22: Append new DAG(s) in P (t) to Archive
23: end while
24: return Archive
25: end procedure

Alg. 1: The algorithmic flow of the BCHC algorithm which
searches the DAG space, explained by the phases of the
computation. The first phase, lines 2-5, initializes variables.
The next two phases, selection and crossover, lines 8-15, and
cataclysmic mutation, lines 16-21, are the basis for construct-
ing the new population of DAGs from the current population.

the selection operator in a simple genetic algorithm (SGA),
where pairing is most often based exclusively on fitness.
The BCHC crossover operator (line 13) allows for a pair of
dissimilar DAGs to exchange genetic information. The two
DAGs exchange edge connectivity information subject to a
probability of crossover. If two DAGs are overly similar (i.e.,
the Hamming distance between them is too small) then those
two DAGs are barred from exchanging information (line 12);
this is a significant difference from the SGA since the next
candidate class may have fewer members than the current
population. The result of the crossover of two DAGs are two
offspring. These offspring certainly will be directed graphs
(DGs), but not necessarily DAGs.

The BCHC mutation operator (cataclysmic mutation) is
applied only when the current population has reached a point
when many of the candidates are very similar, based on the
variable d in Alg. 1 (line 18). This mutation operator selects
the most fit 5% of the candidates and then creates a new
population of DAGs from these by changing the relationships
between genes. Existing directed edges can be removed or
reversed and currently non-existent edges can be added. As
with the crossover operator, when mutation is applied to a
DAG the result is a DG, but not necessarily a DAG.

A repair operator is often necessary to transform a DG into
a DAG. This operator is required since both the specialized
crossover and mutation operators have the potential to produce

DGs which are not DAGs. The repair operator uses the
Johnson-Tarjan algorithm [16] to identify the number of cycles
incident with each edge. Next, an edge occurring in the
largest number of cycles is removed from the DG. These edge
identification and removal processes continue until no cycles
exist. Intuitively, removing an edge belonging to the largest
number of cycles simultaneously breaks the maximum number
of cycles. This repair operator is algorithmically expensive.

Every execution of the BCHC algorithm requires certain
parameters to be specified. There are rules of thumb for a
reasonable assignment of parameter values; however, finding
best parameter values must be done on a case by case basis. In
our particular situation, the number of simultaneous executions
is 20, the number of generations is 250, the initial population
size is 200, and the probability of crossover is 0.3. Within
a DAG, the maximum number of parents is 3. The small
maximum number of parents is an extension of the concept
of low-order partial correlation. When cataclysmic mutation is
invoked, the top 5% of the population is used to repopulate
with 200 DAGs. For this research, these genetic algorithm
parameters are not varied. This allows for the study of how
the number of genes affects the consistency of solutions found.

Each run of the BCHC algorithm consisted of 20 simulta-
neous executions. This algorithm was implemented in python
3.0 and used the NetworkX package [11]. Parallel execution
was implemented using the dispy package [31].

GENE INTERACTION MODEL

The gene interaction model is a DG whose nodes represent
the genes and whose directed edges are labeled with the
posterior Bayesian probability of the parent node having an
edge going into the child node, as shown in Figs. 3, 5 and 6.
This gene interaction model is produced from the likelihoods
of the unique DAGs encountered during the BCHC search. It
is essential that the BCHC algorithm visit numerous distinct
DAGs during the search of the DAG space. Since we are
assuming the priors of all the DAGs are equal, the relative
posterior probability of a DAG is proportional to its likelihood.
The gene interaction model is created from all the unique
DAGs discovered during the parallel executions of the BCHC
algorithm, with the highest weights going to those with the
largest likelihoods. Specifically, the posterior probability M(e)
of a directed edge e is given by

M(e) =

∑
D∈AR χD(e)L(d1, d2, d3 | D)
∑

D∈AR L(d1, d2, d3 | D)

where AR is the Archive described in the BCHC algorithm,
D is a DAG, L(d1, . . . , dk | D) is the NPL of abundance data
d1, . . . , dk, and χD(e) = 1 if and only if e is a directed edge
in D, otherwise χD(e) = 0. This is classical Bayesian model
averaging under equal priors [13].

Arabidopsis thaliana DATA SETS

All three sets of the Arabidopsis thaliana transcript abun-
dance data were collected in a single laboratory and were
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Fig. 2: Micrographs of Arabidopsis thaliana roots illustrate the
induction of root hair formation after treatment with the plant
hormone ethylene (ACC). This image is modified from [12,
Figure 1] (Copyright American Society of Plant Biologists,
www.plantphysiol.org)

previously published [12], [20]. Each set of transcript abun-
dance measurements is derived from Arabidopsis thaliana
genes measured across 8 time points: 0, 0.5, 1, 2, 4, 8, 12 and
24 hours after treatment by either the plant hormone auxin
(IAA) or the ethylene precursor (ACC). These time points
were selected as they can be overlaid on root developmental
responses, including auxin-increased initiation of lateral roots
[20] or ethylene induction of root hairs [12], as shown in
Fig. 2. For these two data sets, transcript abundance was
measured in triplicate using an Affymetrix microarray. This
manuscript focuses on analysis of three subgroups of tran-
scripts from these two data sets, each with increasing size
complexity: IAA12, ACC26, and IAA37, with the abbreviation
indicating the dataset and the number indicating the number
of transcripts used for modeling.

The IAA12 transcript abundance data consists of 12 tran-
scripts which were previously selected and used in Bayesian
MH modeling [29] from the set of 1, 246 Arabidopsis thaliana
genes that reproducibly respond to IAA treatment [20]. The
Arabidopsis thaliana genes, IAA1, IAA2, IAA3, IAA4, IAA16
and IAA19, are transcriptional repressors from the AUX/IAA
family. The genes ARF19 and WRKY23 are transcriptional
activators. XLG1 is a G-protein involved in root morphogene-
sis. The PINOID kinase regulates auxin dependent root growth
and development and cyclin CYCB2 participates in the control
of the cell cycle by auxin.

The ACC26 transcript abundance data set consists of 26
genes measured across the same 8 time points as the IAA12
data set, in a parallel treatment with the ethylene precur-
sor, ACC [12]. This microarray identified 449 transcripts
with differential expression. This set of 26 transcripts is the
complete set of transcription factors (TFs) whose transcript
abundance changes after ACC treatment passed our rigorous
filtering approach. TFs are proteins that bind to DNA and
turn on expression of genes making RNA transcripts and the
set of ACC-responsive TFs define a gene regulatory network
that functions to control developmental changes. Unlike the
IAA12 data set, which can be compared to previous MH
based models and partial correlation, there is no MH model
available for comparison. No MH model is included since the

MH algorithm requires too much execution time for 26 genes.
To further refine the modeling, biological prior knowledge was
integrated. For the ACC26, forbidden relationships were based
on experimental data on transcription factor binding partners
from a method called DAP-Seq [27]. For TFs, for which this
data was available, genes not on the list of potential targets
were not allowed.

The labeled IAA37 transcript abundance data is a different
subset of 1, 246 IAA responsive transcripts [20]. These IAA37
transcripts were identified as their IAA-dependent transcrip-
tional changes are dependent on expression of the Auxin
Response Factor19 (ARF19) transcription factor. ARFs are
transcription factors that act as transcriptional activator or
repressors by binding to auxin-responsive promoter elements
[31]. The gene ARF19 plays an important role in the control
of root architecture [25], [36] and its transcript abundance
in roots increases rapidly after treatment of plants with the
hormone auxin [20]. In an unpublished RNA-Seq experiment,
the abundance of the IAA37 transcripts are no longer IAA
responsive in a mutant with a defective ARF19 gene (Muhle-
mann and Muday, unpublished data). The selected transcripts
are in two functional groups. The first is predicted to encode
either transcription factors (TF), which are proteins that bind to
DNA and turn on expression of genes making RNA transcripts.
The second group are enzymes that can remodel the cell wall
(CW) to allow IAA-mediated developmental changes. These
transcripts are labeled TF or CW, to denote the functional
group to which they belong.

For the IAA37 dataset, forbidden edges were identified
based on the fact that the gene ARF19 can never be a child,
while cell wall remodeling genes can only be children of
transcription factors and are never parent nodes.

COTEMPORAL GENE INTERACTION MODELS AND
COMPARISONS

For each of the three sets of Arabidopsis thaliana transcript
abundance data, the BCHC algorithm produces an hierarchical
cotemporal interaction model. The hierarchical cotemporal
NPL used the three replicates of transcript abundance mea-
surements across 8 time points. All three cotemporal models
were created using identical parameter settings for the BCHC
algorithm. Also, for all three the distribution of the priors
on the DAGs was uniform. However, for both the ACC26
and IAA37 data sets, additional edge information, relating
to the forbidden edges, was incorporated into the execution
parameters of the BCHC algorithm.

A cotemporal gene interaction model of the IAA12 genes
is shown in Fig. 3. The edges of the cotemporal model are
labeled with a+b. The a represents the posterior probability
following the directed edge and the b represents the posterior
probability of the reversed directed edge. The cotemporal rela-
tions should be modeled using an undirected graph; however,
viewing each undirected edge as two directed edges provides
some insight into the possible biological relationship between
the corresponding pair of genes. The actual cotemporal prob-
ability is a+b. Some of the values of a+b displayed in Fig.
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Fig. 3: The Bayesian hierarchical cotemporal model from the
BCHC algorithm of the IAA12 genes where the edge posterior
probabilities exceed 0.5. There are two posterior probabilities
associated with each directed edge, the first is in the direction
of the edge, and the second is in the opposite direction. The
sum is the posterior probability of the edge.

3 exceed 1.0; this is due to numerical roundoff. The total
execution time to create each IAA12 model is about 5 minutes.

Fig. 3 strongly suggests, with posterior edge probability
greater than 0.9, that, individually, the following pairs of genes
have cotemporal relations: IAA19 with ARF19, IAA19 with
IAA1, ARF19 with IAA2, and PINOID with IAA3.

The computational consistency of three hierarchical cotem-
poral IAA12 models is shown in Fig. 4a. Independently,
three hierarchical cotemporal gene interaction models were
constructed using the BCHC algorithm from the same data.
In Fig. 4a, the individual model’s posterior probabilities are
plotted against their averages. In the perfect world, all three
values would match their average. It is seen that there is high
agreement in all three cotemporal models. High agreement
does not ensure that the models are biologically correct, but
it does demonstrate the consistency of our rigorous complex
network development.

Comparison to MH Cotemporal Models

In a previous study of this IAA12 data set of Arabidopsis
thaliana genes, a MH search approach found hierarchical
cotemporal edge posterior probabilities [30, CH column of
Table 7]. The total execution time for the MH approach was
3.5 weeks. For these 12 MH edges, the hierarchical cotemporal

(a) IAA12 (b) ACC26

Fig. 4: Consistency plots for IAA12 and ACC26

Edge MH BCHC Alt. BCHC path
IAA16-WRKY23 0.975
ARF19-IAA2 0.913 0.895
IAA3-PINOID 0.904 1.0
ARF19-IAA19 0.895 0.914
IAA18-IAA14 0.849 0.876
IAA1-IAA19 0.784 1.0
IAA16-IAA2 0.675
IAA18-XLG1 0.620 0.864
IAA14-XLG1 0.576 IAA14-IAA18-XLG1
CYCB2-IAA1 0.544 CYCB2-IAA19-IAA1
PINOID-IAA19 0.525 0.809
CYCB2-PINOID 0.505 0.425

Tab. 1: The Bayesian cotemporal posterior probabilities from
the MH based technique [30] and those based upon the BCHC
algorithm are shown. As well, for two MH edges for which
no BCHC edge is shown, IAA14-XLG1 and CYCB2-IAA1, a
BCHC path of length two is shown. The three bolded edges
also have estimated partial correlation values that exceed 0.45.

edge posterior probabilities for the respective MH and BCHC
studies are shown in Tab. 1. Of these 12 edges, 7 are also
BCHC edges with posterior probability greater than 0.5, and
2 MH edges are cotemporally similar to short BCHC paths.

Comparison to Partial Correlation Models

The IAA12 BCHC edges were also compared with esti-
mated partial correlations for the same data set. All non-trivial
adaptive Lasso estimates of the partial correlations of the three
replicates are found in [30, CH column of Table 8]. From
Tab. 1, the cotemporal edges with absolute partial correlation
exceeding 0.45 for at least two of the three replicates are
ARF19-IAA2, ARF19-IAA19 and IAA18-XLG1. The MH-
based and BCHC-based algorithms also predicted these edges.

Comparison to SAS’s PROC MIXED

Furthermore, the IAA12 BCHC edges were compared to
non-Bayesian hierarchical mixed models, namely those uti-
lized in the Statistical Analysis System (SAS) PROC MIXED
procedure [23]. Like the BCHC procedure, PROC MIXED
allows for hierarchical slopes from replicate to replicate, but
does not utilize a fundamental multiple child and parent
network base. Many separate independent executions for each
possible child would be required by PROC MIXED to derive
a reasonable semblance of a gene interaction network.

For the IAA12 data set, comparisons between the BCHC
model of Fig. 3 with the PROC MIXED model were made.
First, separately for each of the eight directed edges of Fig. 3,
PROC MIXED was applied. A fixed p-value for the predictor
was less than 0.05 for five of these pairs, matching our
Bayesian claim of an edge. Two of the remaining edges had
a fixed p-value greater than 0.05, thus non-matching. For
the last edge, the PROC MIXED iterative algorithm did not
converge, resulting in no PROC MIXED conclusion. Then
25 one-predictor models were computed, where each did not
occur in the IAA12 BCHC model in Fig. 3. Of these, 13 were
also not claimed to have a significant relationship under PROC
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MIXED, 2 were claimed by PROC MIXED, while the other
10 PROC MIXED models did not converge.

Some two predictor (parent) IAA12 models were computed
using PROC MIXED. In Fig. 3 there are not two edges going
into any single gene; thus, there were no BCHC claimed two
predictors for a given gene. Nine PROC MIXED analyses
of two predictors were conducted. For 8 of these 9, PROC
MIXED did not converge; for the lone converging execution,
one predictor was claimed by PROC MIXED while the other
was not. For the other set of two predictor executions, one of
the predictors was also claimed by our BCHC model, while
the other was not. Eight such analyses were made. Of the 6
executions that converged, in 7 of the 12 (= 6∗2 predictors per
run) executions there was agreement between the two models
whether or not there was an edge.

Based on the 50 total PROC MIXED analyses and the 74
edge comparisons explored, the most consistent result was that
when a directed edge was not indicated in Fig. 3, then either
the PROC MIXED would not converge or would not claim
the edge. There are 12 genes associated with the IAA12 data
set, which yields a total of

(
12
2

)
= 66 possible edges. We

compared a non-trivial fraction of Bayesian claimed edges and
non-edges, with their corresponding PROC MIXED one and
two predictor models. However, for the ACC26 and IAA37
data sets, with substantially larger number of total genes, this
PROC MIXED analysis would be extremely labor intensive.

Biological Analysis of the IAA12 Models

Two cotemporal relationships predicted by both the BCHC
and MH modeling are particularly statistically and biological
well supported. ARFs and IAA proteins function in modules
of interacting proteins to control auxin-dependent developmen-
tal processes, with ARFs acting as transcriptional regulators
and IAA proteins binding to ARFs to block their function.
ARF19 and several of the IAA proteins illustrated in Fig. 3
have largely overlapping expression patterns across different
root tissues, suggesting that these proteins control similar
auxin-dependent developmental processes in root tissues [2],

Not Displayed: EDF1, LRP1, MYB55, MYB9, NF-YA7,
WRKY53
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Fig. 5: A cotemporal model of the ACC26 genes showing
edges whose cotemporal posterior probability exceeds 0.5.

[3]. In addition to having similar localization, ARF19 and
multiple IAA proteins, including IAA2 and IAA19, were
shown to interact in yeast-two hybrid assays, indicating that
these proteins function together to regulate auxin-dependent
transcriptional networks [8], [35]. Of particular interest is the
cotemporal nature ARF19 and IAA19 transcript abundance
after IAA treatment (Fig. 3). Mutants with a defect in ARF19
and with stabilized IAA19 (in a mutant named Massugu2 or
MSG2) have similar defects in lateral root development [26],
[34]. ARF19 was shown to be an activator of IAA19 in a
yeast synthetic biology model for measuring ARF transcription
factor function [32]. Examination of a mutant that does not
make ARF19 showed that auxin-dependent IAA19 expression
is regulated by ARF19, as well as ARF7 [37].

ACC26 Data Set Models

The ACC26 data set incorporates gene transcript abundance
information on 26 Arabidopsis thaliana genes, more than
double the number of genes in the IAA12 data set. The MH
approach cannot be applied to this data set, due to prohibitive
execution time. Since the number of genes is so much larger
than the number of time points, partial correlation estimates
would be even more unreliable. The hierarchical cotemporal
ACC26 models were created by the BCHC algorithm in about
20 minutes. Overall the posterior probabilities shown in Fig. 5
are less than those in the IAA12 models, reflecting the increase
in the number of genes. However, with posterior probabilities
as high as 0.997, the ACC26 cotemporal model inspires confi-
dence for some edges. The ACC26 forbidden edges do change
the labeling of the directed edges in Fig. 5. An edge is labeled
with a single posterior probability, such as the edge from NAM
to RAP2.10, when the reverse edge is one of the forbidden
edges. As seen in Fig. 4b, three independently generated
hierarchical cotemporal models for ACC26 are generally in
agreement but less so than the IAA12 models. Recall that the
3 ACC26 data sets were independently run with the BCHC
parameters tuned for IAA12. With additional parameter tuning
for ACC26 data sets, it is likely the BCHC genetic algorithm
will have improved performance.

Interestingly, an ACC26 interaction model was compared
to an ACC26 model with no forbidden edges. The posterior
probabilities of the two models had a correlation of 0.77. Even
without the specified forbidden edges, the BCHC algorithm
derived a model very similar to a regular ACC26 model.

IAA37 Data Set Models

The IAA37 data set consists of 37 genes, a significant
increase from the 26 genes in ACC26, and even more so
from the 12 genes of IAA12. As well, the IAA37 data set
incorporates forbidden edges, chosen according to the criteria
described above. A hierarchical cotemporal model produced
by the BCHC algorithm is shown in Fig. 6. As with the ACC26
model, the edge labels indicate the presence or absence of the
forbidden edges. There are a number of edges labeled with
posterior probabilities larger than 0.9. The consistency plot
for IAA37 (not shown) shows considerable variation across the
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Fig. 6: A cotemporal model of the IAA37 genes. For those edges labeled with exactly one posterior probability, the reverse
edge was forbidden.

three IAA37 models. Re-tuning the BCHC parameters should
significantly improve the performance of BCHC on IAA37.

CONCLUSIONS

The exploration of the DAG space by the BCHC algorithm
has been successful from several points of view. First, the
BCHC algorithm executes much faster than the Metropolis-
Hastings approach previously developed. For 12 genes, BCHC
runs in minutes instead of the weeks required for MH. For
26 genes, BCHC executes in 20 minutes, and execution
of MH is not feasible. It also aggressively explores many
different regions of the DAG space in search of diverse edges
and high posterior probability edges. Second, as the size
of the measured data increases (increased number of genes,
additional replicates, additional time points) the execution
time of the BCHC algorithm scales up polynomially. The
three gene interaction models for IAA37 show the variation
across the models has increased significantly with the number
of genes. Thus, the adjusting of the BCHC parameters for
data sets based on larger numbers of genes is mandatory
future work. The execution time, however, remains reasonable,
and the memory demands are also manageable. Third, the
BCHC algorithm operators engineered to work with DAGs
accomplish their tasks computationally efficiently. Certainly,
more work is needed to improve the performance of these
operators, especially the repair operator. However, even in their
current states, the selection, crossover and mutation operators
implement the DAG operations correctly.

NEXT STEPS

As the work on this gene interaction modeling project con-
tinues, there are at least four areas of future focus: the repair
operator; problems involving scaling up including BCHC pa-
rameter tuning; gene relationship guarantees and forbiddance;
and, the incorporation of nonuniform prior probabilities. The
use of the BCHC algorithm has now made it feasible to
consider creating gene interaction models using much larger
data sets. The comparisons of the gene interaction models
from the BCHC algorithm to those from other techniques,

when available, is most encouraging. Computational work will
continue to ensure that this approach can scale up comfortably,
in terms of execution time and model quality. As the biologists
find that certain edge relationships must be present or cannot
occur, it is important that the computational model incorporate
this information. It is planned to incorporate guaranteed
edges in addition to forbidden edges as is currently done in
ACC26 and IAA37. Biologists may also have experimental
evidence that could influence the prior probabilities. In the
work presented here all the DAG priors are uniform (except
for the forbidden edges associated with ACC26 and IAA37);
nonuniform priors can be introduced and investigations are
continuing with these. In effect, the algorithm should have the
capability to learn an edge probability that may differ from a
given prior probability, unless it is known to be 0, or forbidden.

The creation of next state models is important as the next
state paradigms capture the case-effect relationships between
pairs of genes. Both next state paradigms affect the dimension
of the data available for the creation of models. For many bi-
ological experiments in which gene transcript abundance data
are collected, the number of time points is small. Reducing
this number presents a challenge. The parameters of the BCHC
algorithm must be modified for next state modeling.

In this cotemporal modeling, all the BCHC algorithm pa-
rameters were fixed, based on what settings worked well for
the ACC12 data set. However, the consistency information
for ACC26 and IAA37 strongly suggest that the parameter
settings should adjust to the size and other properties of the
data sets. For example, the genetic algorithm population size
and the number of generations should increase as a function
of the number of genes. Effort must be invested in better
understanding what are reasonable parameter settings for the
modeling paradigms.

The BCHC algorithm has demonstrated that it has the
potential to produce high quality gene interaction models
in a reasonable amount of time. As the number of genes
increases certainly the genetic algorithm parameters must be
adjusted. It has demonstrated the flexibility to successfully
handle additional connection information such as the forbidden
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edges. The BCHC algorithm is a tool that is worthy for more
study and development.
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