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Abstract. Optimizing the performance of complex systems modeled by stochastic com-
puter simulations is a challenging task, partly because of the lack of structural properties
(e.g., convexity). This challenge is magnified by the presence of random error whereby an
adaptive algorithm searching for better designs can at times mistakenly accept an inferior
design. In contrast to performing multiple simulations at a design point to estimate the
performance of the design, we propose a framework for adaptive search algorithms that
executes a single simulation for each design point encountered. Here the estimation errors are
reduced by averaging the performances from previously evaluated designs drawn from
a shrinking ball around the current design point.We showundermild regularity conditions for
continuous design spaces that the accumulated errors, although dependent, form amartingale
process, and hence, by the strong law of large numbers for martingales, the average errors
converge to zero as the algorithm proceeds. This class of algorithms is shown to converge to
a global optimum with probability one. By employing a shrinking ball approach with single
observations, an adaptive search algorithm can simultaneously improve the estimates of
performancewhile exploring newandpotentially better design points. Numerical experiments
offer empirical support for this paradigm of single observation simulation optimization.
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1. Introduction
Stochastic optimization problems where an objective
function is noisy and must be estimated are finding
applications in diverse areas, spanning engineering,
economics, computer science, business, and biological
science. Simulation optimization algorithms that in-
tegrate search for the optimum with observations
from a noisy objective function have been proposed in
both continuous and discrete domains (Pasupathy
and Ghosh 2013, Fu 2015).

Striking a balance between exploration of new points
and estimation of potentially good points is critical for
computationally efficient algorithms.We present a class
of adaptive search algorithms that perform exactly one
simulation per design point, which we call single ob-
servation search algorithms (SOSA). This class of SOSA
algorithms combines exploration with estimation by
estimating the expectation of the objective function at
a point with an average of observed values from pre-
viously visited nearby points. The nearby points are
within a shrinking ball around the current point. The
challenge is to ensure that the errors associatedwith the
estimates of the expectation of the noisy objective

function do not bias the adaptive search algorithm and
potentially lead to mistakenly accepting inferior solu-
tions. We prove convergence to a global optimum for
this class of SOSA algorithms under some mild regu-
larity conditions. Then any adaptive search algorithm
that fits into this class can utilize single observations
within shrinking balls in contrast to multiple repe-
titions at a point to successfully search for a global
optimum.
The idea of simulating a single observation per de-

sign point was first used by Robbins and Monro for
estimating gradients in their classic stochastic ap-
proximation algorithm (see, for instance, Robbins and
Monro 1951, Kushner and Yin 2003, and Chau and Fu
2015). This class of stochastic approximation algo-
rithms have proven to be very successful at optimizing
noisy functions on continuous domains (see Chau and
Fu 2015). These classic stochastic approximation al-
gorithms are based on steepest descent and are shown to
converge to a local optimum. We consider the question
of whether there exists single observation per design
point algorithms that converge to a global optimum. The
insight of Robbins and Monro in their classic stochastic
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approximation algorithm with single observations, is
“. . . if the step sizes in the parameter updates are allowed
to go to zero in an appropriate way as (iterations go
to infinity) then there is an implicit averaging that elimi-
nates the effects of the noise in the long run.” (Kushner
and Yin 2003, p. viii). The random error associated with
the steepest descent type method can be shown to be
amartingale difference. Thismartingale property can be
used to prove the convergence to a local optimum of the
class of the steepest descent type methods. This paper
shows how to extend implicit averaging in a way that
provides convergence to a global optimum for our class
of SOSA algorithms on nonconvex, multimodal, noisy
optimization problems.

A necessary characteristic of our class of SOSA al-
gorithms is that the underlying adaptive algorithm
converges to a global optimal value when the objective
function is not noisy. There are many such adaptive
search algorithms for global optimization, for example,
simulated annealing, evolutionary algorithms, model-
based algorithms (Hu et al. 2007, 2014), nested partition
method (Shi and Ólafsson 2000a), and interacting
particle algorithms (Molvalioglu et al. 2009, 2010; Mete
and Zabinsky 2014). (See Zabinsky 2011 for an over-
view.) We characterize algorithms in SOSA by their
sampling distributions for generating sequential points.
Because many adaptive search algorithms for global
optimization maintain a sampling distribution that is
bounded away from zero on the feasible region, we
prove that this condition is sufficient to satisfy the
assumptions of the convergence analysis and, conse-
quently, that such an algorithm converges to a true
global optimum using single observations with the
shrinking ball approach.

The challenge in proving convergence to a global
optimum with the additional demand of estimation is
due to the complex dependencies among the observa-
tional errors introduced by an adaptive algorithm. An
adaptive algorithm is influenced by past errors as it
seeks new candidates and thus may be biased toward
design points that were observed to be better than their
true value. We show in this paper that underlying
martingale properties exhibited by these adaptive al-
gorithms can nonetheless be used to prove convergence
to a global optimum.

Baumert and Smith (2002) introduced the idea of
estimating the objective function at a specific design
point x by including other points within a shrinking
ball around x, thus never repeating a simulation at
a single design point. Their algorithm was based on
pure random search, which generates points in-
dependently and thus is not adaptive thereby avoiding
dependencies among subsequent errors.

Andradóttir and Prudius (2010) investigated three
methods, namely, Adaptive Search with Resampling
(ASR), deterministic shrinking ball, and stochastic

shrinking ball. They proved that the three algorithms
are strongly convergent to a global optimum, but
again, the deterministic and the stochastic shrinking
ball approaches are based on pure random search with
independent sampling.
Closely related works in the area of simulation op-

timization include: Stochastic Approximation (Spall
2003; Borkar 2008, 2013), Sample Average Approx-
imation (SAA) (Kleywegt et al. 2002, Kim et al.
2015), Gradient-based Adaptive Stochastic Search
for Simulation Optimization (Zhou et al. 2014), Nested
Partitions Method (Shi and Ólafsson 2000b), and Low-
Dispersion Point Sets (Yakowitz et al. 2000). These
works either employ a gradient-based approach, exploit
special structure of the feasible region, or use multiple
observations of sampled design points. Stochastic ap-
proximation (Robbins and Monro 1951; Kushner and
Yin 2003; Spall 2003; Borkar 2008, 2013; Chau and Fu
2015; Kim et al. 2015), starting with the seminal work
of Robbins and Monro (Robbins and Monro 1951), is
widely used for continuous problems with many ap-
plications. It is a first-order method with single or
multiple observations per point that typically con-
verges to a first-order stationary point. In contrast,
SOSA does not require gradient information, allows
a general continuous feasible region, and uses a single
observation per sampled design point. Sample average
approximation (Kleywegt et al. 2002, Homem-De-
Mello 2003, Kim et al. 2015) has been used in both
continuous and discrete stochastic optimization.
SAA takes a collection of draws of the random vectorU
(e.g., u1, . . . ,uN) that may be independent identically
distributed draws or possibly quasi-Monte Carlo
samples or Latin hypercube designs and then solves
an associated problem, minx∈S f̂ (x), where f̂ (x) !
(1/N)∑N

i!1 g(x,ui). Under certain conditions, SAA con-
verges to the global optimum as N→∞. Retrospective
approximation (Pasupathy 2010) and variable sample
size methods (Homem-De-Mello 2003) are efficient
variations of SAA. SAA is also related to scenario-based
stochastic programming (Shapiro et al. 2009), where the
random draws are performed before the optimization
over x is performed. Other simulation optimization
methods (ours included) consider each x and then draw
from U. Both methods have complex correlations and
dependencies.
Meta-models (Barton andMeckesheimer 2006, Pedrielli

and Ng 2015) are also commonly used in simulation
optimization. SOSA, in principle, can be viewed as
a meta-model and resembles Kriging (Pedrielli and Ng
2015) in that the objective function at nonsampled
design points are estimated based on weighted ob-
servations of the function at other sampled design
points. However, Kriging assumes conditions that are
different from ours.
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In this paper, we consider a broad class of adaptive
random search algorithms in a continuous domain and
prove that the accumulated error of the search process
looking forward from the current candidate point
follows a martingale process. Because the errors are
zero in expectation for each point, the average error
converges to zero from the strong law of large num-
bers for martingales (see “the impossibility of systems”
in the work of Feller 1971). This allows us to prove
convergence to a global optimum in probability for
a broad class of adaptive random search algorithms
with mild assumptions and using a single observation
per design point.

We provide numerical results using two algorithms;
both algorithms are run with single observations
(SOSA), as well as with multiple replications imple-
mented with ASR as by Andradóttir and Prudius
(2010). The two algorithms are (1) a sampler based
on amodified version of Improving Hit-and-Run (IHR)
(see Zabinsky et al. 1993, Zabinsky and Smith 2013) and
(2) a uniform local/global sampler originally used by
Andradóttir and Prudius (2010). Andradóttir and
Prudius (2010) demonstrated that ASR performed
better computationally than nonadaptive shrinking
ball approaches in high dimensions. In this paper, we
demonstrate on two test problems in 10 dimensions
that SOSA performs better computationally than ASR
for both sampling methods tested. This is an encour-
aging result, that implicit averaging over shrinking
balls can be very effective and can improve compu-
tational performance of stochastic searches in general.
The averaging of nearby points seems to have the effect
of discovering local and global trends in the objec-
tive function, thus enabling an adaptive algorithm to
sample effectively.

2. Single Observation Simulation
Optimization

The stochastic optimization problem we consider is

min
x∈S

f (x), (1)

where x ∈ S⊂Rd and

f (x) ! E[g(x,U)]. (2)

However, the objective function f (x) cannot be evalu-
ated exactly. Instead, we have a noisy evaluation
available; that is, the performance at a design point
x ∈ S⊂Rd is given by g : S×Ω→R, where U is a
random element over a probability space denoted (Ω,
!,P). In discrete-event simulation, randomness is
typically generated from a sequence of pseudo-random
numbers, therefore, we let U represent an independent
and identically distributed (i.i.d.) sequence of uni-
form random variables. We assume that f is continuous

and S is compact so that a minimum exists. Let -∗ !
argminx∈S f (x) denote the set of optimal solutions, and
let f ∗ be the optimal value.
A common approach in simulation optimization is to

estimate f (x) by observing the output of a simulation
run, g(x,u), where u is a realization of the random
variable U. The difference between the observed per-
formance and mean performance, denoted

Z(x) ! g(x,U) − f (x), (3)

represents the random observational error.
When the random observational errors are indepen-

dent across all iterations of the algorithm, and identically
distributed, then the strong law of large numbers can be
invoked to prove the error goes to zero as iterations in-
crease to infinity. The challenge with establishing con-
vergence to optimality for an adaptive algorithm for global
optimization is that the random errors are, in gen-
eral, neither identically distributed nor independent. An
adaptive algorithm that favors “better” design points in-
troduces complex dependencies among the errors. Also
because points that appear “better” influence the adap-
tive algorithm, the optimal value estimates tend to be
negatively biased.

Example: Illustration of Dependent Estimation
Errors. Suppose S is the union of two nonoverlapping
balls we will call ball L and ball R. Moreover, suppose
that the objective function values f (x), for x∈ L, are
better (less) than those in R. Suppose in the initial step
of an adaptive algorithm we begin by sampling a point
from ball L and we observe its objective function value.
Next we sample a point from the other ball R and
compare its value with that of our point in L. The third
point will be sampled from the ball with the smaller
observed value.
Suppose that the error associated with the first noisy

observation in L is negative, i.e., the observed value is
smaller than the true f (x). Now suppose the third point
is in R. In this case, a negative error at the first point
sampled means the error at the second point must also
be negative because its expected value is inferior to the first
point. This example illustrates that there is a dependency
between the errors from the first and the second obser-
vations. In general, there are subtle dependencies that can
be induced by adaptive search algorithms.
In Section 3, we show that, whereas errors looking

backward from the current iteration point are de-
pendent (e.g., looking at the first and second points,
having sampled the third), errors looking forward
when conditioning on the identity of the current iter-
ation point (e.g., looking at the fourth point, having
sampled the third) are independent of past errors.

In this paper, we rigorously analyze the accumulated
error associated with a class of adaptive random search
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algorithms. As suggested in the example above, while
the accumulated error of the entire process does not
form amartingale, the accumulated error of the process
after a point has been evaluated does form a martin-
gale. This insight allows us to prove convergence to
a global optimum with probability one for a broad
class of adaptive random search algorithms with
mild assumptions and using a single observation per
design point. The key is to “slow down” the search
so that it does not converge prematurely to a wrong
solution.

We make the following three assumptions regarding
the problem. These assumptions are relativelymild and
are typically satisfied in most continuous simulation
optimization problems.

Assumption 1. The feasible set S⊂Rd is a closed and
bounded convex set with nonempty interior.

Assumption 2. The objective function f (x) is continuous
on S.

We consider two versions of the next assumption,
namely, Assumption 3 andAssumption 3′. Assumption 3
requires that the random error be bounded and is sat-
isfied by many bounded distributions. However, it does
not include distributions having infinite support, such as
normal or gamma distributions. Assumption 3′ requires
that the random error has bounded variance, and the
normal and gamma distributions with finite variance
satisfy Assumption 3′. In the next section, we see that
Assumption 3 leads to a stronger convergence result
(convergence with probability one) than Assumption 3′

(convergence in probability).

Assumption 3. The random error ( g(x, U) − f (x)) is uni-
formly bounded over x∈ S; that is, there exists 0<α<∞
such that, for all x∈ S, with probability one,

| g(x,U) − f (x) |<α.

Assumption 3′′. The random error ( g(x,U) − f (x)) has
bounded variance over x∈ S.

3. A Class of Adaptive Random Search
Algorithms and Convergence Analysis

We propose a class of adaptive stochastic search al-
gorithms with single observations per design for the
continuous simulation optimization problem in Equa-
tion (1). We show that, under some regularity condi-
tions, an algorithm in this class will generate a sequence
of objective function estimates that converge to the true
global optimum with probability one.

In the course of the algorithm, design points are se-
quentially sampled from the design spaceS, according to
an adaptive sampling distribution, denoted by qn at it-
eration n. The objective function at a point is estimated

using the observed function values of nearby sample
points within a certain radius. The use of nearby points
allows for a strong law of large numbers type of con-
vergence by asymptotically eliminating the random
error associated with the sequence of observations. The
radius shrinks as the algorithm progresses, hence the
image of shrinking balls. This shrinking process as-
ymptotically eliminates the systematic bias of using
estimates of neighboring points because the objective
function f (x) is continuous in x.
For each x∈ S, let B(x, r) be the ball centered at xwith

radius r. Let -n and =n be, respectively, the set of
sample points obtained in the course of the Single
Observation Search Algorithms and their corresponding
function evaluations up to iteration n. For xi ∈-n, the
objective function estimate f̂ n(xi) of xi comes from the
average of the function evaluations of the sample points
that fall into the balls centered at xi. Let ln(xi) denote the
number of sample points that fall into the balls centered at
xi, called contributions to the estimate of xi.
Consider the following class of algorithms using the

shrinking ball concept. Note that, to guarantee con-
vergence to a true global optimum, regularity condi-
tions for the sampling density qn and the parameter
sequences rn and in are required. In what follows, let
|A| for a set A denote the number of elements in A.

3.1. Single Observation Search Algorithms (SOSA)
We are given
• A continuous initial sampling density for search

on S, q1(x), and a family of continuous adaptive search
sampling distributions on S with density

qn(x | x1, y1, . . . , xn− 1, yn− 1), n ! 2, 3, . . . ,
where xn is the sample point at iteration n and yn is its
observed function value.
• A sequence of radii rn > 0.
• A sequence in < n.
Step 0: Sample x1 from q1, observe y1! g(x1,u1) from

the simulation, where u1 is a sample value having
the same distribution as U and independent of x1. Set
-1 ! {x1} and =1 ! {y1}. Also, set f̂ 1(x1) ! f̂ ∗1(x1) ! y1,
l1(x1) ! 1, and x∗1 ! x1. Set n ! 2.
Step 1: Given x1, y1, . . . , xn− 1, yn− 1, sample the next

point, xn, from qn. Independent of x1, y1, . . . , xn− 1,
yn− 1, xn, obtain a sample value un having the same
distribution as U and evaluate the objective function
value yn ! g(xn, un).
Step 2: Update-n ! -n− 1 ∪ {xn} and=n ! =n− 1 ∪ {yn}.

For each x∈-n, update the contribution and the esti-
mate of the objective function value as

ln(x) ! |{k≤n : xk ∈B(x, rk)}|

!
{
ln− 1(x) if xn ∉B(x, rn)

ln− 1(x) + 1 if xn ∈B(x, rn), (4)
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and

f̂n(x) !
∑

{k≤n : xk∈B(x,rk)}yk
|{k≤ n : xk ∈B(x, rk)}|

!
{ f̂ n− 1 (x), if xn ∉B(x, rn),

((ln(x) − 1) f̂ n− 1(x) + yn)
/
ln(x), if xn ∈B(x, rn),

(5)

where B(x, rk) is a ball of radius rk centered at x. Esti-
mate the optimal value as

f̂ ∗n ! min
x∈-in

f̂ n(x), (6)

and estimate the optimal solution as

x∗n ∈ {x ∈-in : f̂ n(x) ! f̂ ∗n}, (7)

where -in is the subset of -n that only includes points 1
through in.

Step 3: If a stopping criterion is met, stop. Otherwise,
update n← n + 1 and go to Step 1.

Observe that the objective function estimate f̂ n(x) is
defined for all x∈ S. However, in the course of the
algorithm, we only compute the estimate for x∈-n. To
do this, the simplest way is to go through -n once in
each iteration and update the objective function esti-
mates through the recursive formula in Equation (5). By
doing so, up to iteration n, the estimates at sample
points x1, x2, . . . , xn will be updated n,n − 1, . . . , 1 times,
respectively, which will result in at most n(n + 1)/2
updates. At each iteration, the function estimate of
a sample point will get updated only when the new
sample point falls relatively close to a previously
sampled point (within its ball of radius rk). Therefore,
up to iteration n, the function estimates will be cal-
culated less than n(n + 1)/2 times.

Notice that the algorithm takes the estimate of the
optimal value on the nth iteration, f̂ ∗n(x), not from all n
function estimates, but from a subset of the function
estimates up to in. By slowing the sequence of estimated
values using in, we are able to ensure convergence of the
optimal value estimate f̂ ∗n(x) to the true optimal value f ∗.
The idea is that the shrinking balls around points used to
estimate a global optimumshrink slowly enough to allow
for the number of points in those balls to grow to infinity.

The main result of the paper is stated in Theorem 3,
where we prove that an adaptive random search
algorithm with single observations per design, using
a shrinking ball approach, converges to a global optimum
with probability one. The following corollary with the
relaxed Assumption 3′ proves convergence to a global
optimal value in probability. The convergence analyses
rest on the martingale property of the random error,
which we establish in Theorem 1.

To develop this martingale property, we investigate
the random error at a design vector, as in Equation (3),
Z(x) ! g(x,U) − f (x), and because

E[Z(x)] ! E[g(x,U)] − f (x) ! f (x) − f (x) ! 0, forallx∈S,
(8)

Z(x) is a random error with zero expectation. It is worth
noting that, rewriting Equation (3) as

g(x,U) ! f (x) + Z(x) (9)

now states that, given a design point x, a random
performance can always be decomposed into a sum of
its expected performance and a random error with zero
expectation.
To establish the convergence result for SOSA, it is

necessary that the sequence of random numbers used
as input to the simulation are independent of the past
information. To state this more formally, first, let Xn
and Yn denote the sample point and its corresponding
objective function evaluation at iteration n, for
n ! 1, 2, . . . . Then

Yn ! g(Xn,Un), (10)

where {Un,n ! 1, 2, . . .} are random elements, i.i.d.
and have the same distribution as U. Because Xn,
Un, and Yn are generated sequentially, we can con-
struct a filtration, starting with ^0 ! σ(X1), the
σ-field generated by X1, and, for n ! 1, 2, . . . , ^n !
σ(X1,U1, . . . ,Xn,Un,Xn+1), the σ-field generated by
X1,U1, . . . ,Xn,Un,Xn+1. Observe that Xn is ^n− 1 mea-
surable. Because Yn is a function ofXn andUn, Yn is^n
measurable. The process of (Xn,Yn) is then adapted to
the filtration {^n}∞n!0. It is crucial to the convergence
results that Un is generated so that it is independent
of ^n− 1.
We next establish that the expected random error

conditioned on the filtration is zero. This property will
induce amartingale process of accumulated errors and,
finally, enable the optimal value estimates generated by
the algorithm, {f̂ ∗n}, to converge to the true optimal
value f ∗.
Define the random error at iteration n by Zn, where

Zn ! Yn − f (Xn). (11)

Note that Zn, as well as Yn, depend on Xn and Un, but
we suppress the arguments in the notation to simplify
the presentation.
We now establish a crucial martingale property, that

E[Zn |^n− 1] ! 0. Because Xn is^n− 1 measurable andUn
is independent of ^n− 1,

E[Yn |^n− 1] ! E[g(Xn,Un) |^n− 1] ! E[g(Xn,Un) |Xn],
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and because Un is identically distributed as U,

! E[g(Xn,U) |Xn] ! f (Xn). (12)

Again, because Xn is ^n− 1 measurable,

E[Zn |^n− 1] ! E
[
Yn − f (Xn) |^n− 1

]

! E[Yn |^n− 1] − f (Xn) ! 0. (13)

The result in Equation (13) provides the basis of the
martingale property because the error on iteration n,
conditioned on the past information in ^n− 1, is zero.
Furthermore,

E[Zn] ! E[E[Zn |^n− 1]] ! E[0] ! 0, (14)

which establishes that, according to Equations (12)
and (14), we can decompose Yn into its conditional
expectation term and its error term,

Yn ! f (Xn) + Zn, (15)

where the random error Zn has zero expectation.
Nowwe express the accumulated error in estimating

f (Xi) associated with the sample pointXi in terms of the
error coming from the points in the balls around Xi.

At iteration n, and for a fixed sample point Xi, for
i≤ n, let Mn(Xi) be the accumulated error in estimating
f (Xi) using the function evaluations from the points Xk,
k ! 1, . . . ,n that fall into balls around Xi. We define an
indicator function to identify the sample points in balls
around Xi,

Ik(Xi) !
{
1 if Xk ∈B(Xi, rk)

0 if Xk ∉B(Xi, rk),

for k ! 1, . . . ,n. Using the indicator function, we have

Mn(Xi) !
∑n

k!1
Ik(Xi)Zk. (16)

It is important to note that {Mn(Xi), n ! 1, 2, . . .} for
i> 1 is not a martingale, owing to the dependencies
on early sample points in the sequence. In fact, when
n< i, Mn(Xi) depends on unrealized information of
Xi. To be exact, Mn(Xi), where n< i, is not ^n
measurable.

At each iteration, the best candidate X∗
n is chosen as

the point whose function estimate is the smallest so
far. Because the function estimate is formed by the
function observations of previous points in the ball
around X∗

n, these objective function observations tend
to be negatively biased. The errors from these points
tend to be concurrently negative and, hence, are
correlated.

We have discovered that we can decompose the
accumulated error into two parts (the error from the
sample points that preceded Xi and the error from
the sample points that were sampled after Xi) which

allows us to establish the martingale property for the
second part of the error. We let

Mi
n(Xi) !

∑n

k!i
Ik(Xi)Zk, n ! i, i + 1, . . . (17)

be the accumulated error from function evaluations
taken from iteration i onward to iteration n. Note that
Mi

n(Xi) is the sum of (n − i+ 1) error terms. Define
Mi

i− 1(Xi) ! 0. Now, using Equations (16) and (17), we
decompose Mn(Xi) into two parts

Mn(Xi) !
∑i− 1

k!0
Ik(Xi)Zk +Mi

n(Xi), (18)

where I0(Xi)Z0 ! 0 as a convention.
In Theorem 1, we show that the accumulated error

about a sample point Xi from function evaluations taken
from iteration i onward to iteration n is a martingale.

Theorem 1. For any i, i ! 1, 2, . . . , {Mi
n(Xi), n !

i, i + 1, . . .} is a martingale with respect to the filtration
{^n, n ! i, i + 1, . . .}.
Proof. Fix i. Define

M̃i
n !

∑n

k!i
Zk

as the accumulated error from all points sampled on
the iterations from iteration i through iteration n.
We first show that {M̃i

n,n ! i, i + 1, . . .} is a martingale
with respect to the filtration {^n,n ! i, i + 1, . . . , }. This
is equivalent to showing that E[ |M̃i

n| ]<∞ and
E[M̃i

n | ^n− 1] ! M̃i
n− 1 for all n≥ i. By Assumption 3,

E[ |Zn | ]<α<∞. By the triangular inequality of the
absolute value function, E[ | M̃i

n | ]≤ (n − i + 1)α<∞. In
addition,

E[M̃i
n |^n− 1] ! E[Zn + M̃i

n− 1 |^n− 1]
! E[Zn |^n− 1] + E[M̃i

n− 1 |^n− 1]
! M̃i

n− 1.

The last equation follows from Equation (13) and that
M̃i

n− 1 is ^n− 1 measurable for all n≥ i. Therefore,
{M̃i

n,n ! i, i + 1, . . .} is a martingale.
Observe that Ik(Xi) is ^k− 1 measurable for k ! i,

i + 1, . . . . Therefore, Ik(Xi) is a decision function with
respect to the filtration {^n,n ! i, i + 1, . . . , }. Now, for
n ! i, i + 1, . . . ,

Mi
n(Xi) !

∑n

k!i
Ik(Xi)Zk ! Mi

n− 1(Xi) + In(Xi)(M̃i
n − M̃i

n− 1).

Therefore, by the impossibility of systems (Feller 1971),
{Mi

n(Xi), n ! i, i + 1, . . .} is a martingale. □

We now express the estimate of the function value
at a sample point and the estimate of the optimal
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value in terms of Xi, f (Xi), andMn(Xi). For a fixed i, let
Ln(Xi) be the number of sample points that fall into
the balls B(Xi, rk) around Xi where k ! 1, . . . , n and
n≥ i; that is,

Ln(Xi) !
∑n

k!1
Ik(Xi).

The estimate of the function value at a sample point Xi
can be expressed as

f̂ n(Xi) !
∑n

k!1Ik(Xi)Yk

Ln(Xi)
!
∑n

k!1Ik(Xi)f (Xk)
Ln(Xi)

+Mn(Xi)
Ln(Xi)

, (19)

where the first term includes the systematic bias and
the second term is the accumulated error. The sys-
tematic bias is created by the fact that an estimate of the
function value at a point includes function value esti-
mates of points around it with different expectations.
The accumulated errorMn(Xi) can be decomposed (see
Equation (18)) into a nonmartingale accumulated error
term, ∑i− 1

k!0Ik(Xi)Zk, and a martingale process of the
accumulated errors, Mi

n(Xi), as a result of Theorem 1.
The estimate of the optimal value f ∗ is

f̂ ∗n ! min
i!1,. . . , in

{ f̂ n(Xi)}

! min
i!1, . . . ,in

{∑n
k!1Ik(Xi) f (Xk)

Ln(Xi)
+Mn(Xi)

Ln(Xi)

}
. (20)

Note that f̂ ∗n is the minimum taken not from all n
function estimates but from a subset of the function
estimates up to in, where in ≤n. The size of the subset in
is a control parameter required to ensure the conver-
gence of the optimal value estimate f̂ ∗ to the true op-
timal value f ∗ by slowing the search for an optimum.

Because f̂ ∗n, the estimate of the optimal value gen-
erated by SOSA, is taken from the minimum of
a growing number of estimated function values to
prove that f̂ ∗, in fact, converges to f ∗, the true optimal
value, we require some form of uniformity in the
convergence of these estimates. To establish the re-
quirements, we add one more assumption.

Recall that Ln(x) is the number of sample points that
fall in the balls around x. Given a function of natural
numbers L̃(n), we define D(n) to be the event that each
design vector x has at least L̃(n) sample points in the
balls around x; that is,

D(n) ! ⋂
x∈S

Ln(x)≥ L̃(n)
{ }

.

The objective function evaluations of these sample
points (one function evaluation per sample point)
around a design point will form the estimate of the
objective function of that design point.

The key idea is that the number of sample points
in the balls around x grows at least as fast as L̃(n) even

though the radii of the balls are shrinking. In other
words, the balls cannot shrink too quickly; the shrinking
ballsmustmaintain a threshold of sample points in them.

Definition 1. A function h(n) is called O(np), where
p∈R if there is a 0< κr <∞ such that for all n ∈N,
0≤ h(n)≤κrnp. A function h(n) is called Ω(np), where
p∈R if there is a 0< κL <∞ such that for all
n∈N, h(n)≥ κLnp. A function h(n) is called Θ(np) if it is
both O(np) and Ω(np).

Assumption 4. Assume there exists 1/2<γ< 1 and
a function L̃(n) that is Ω(nγ) such that

∑∞

n!1
P(D(n)c)<∞,

where D(n)c is the complement of event D(n) and γ is called
an order of local sample density.
Assumption 4 ensures that there are on the order of

nγ function evaluations used in the estimate of every
point in the design space.
The single observation search algorithms can satisfy

Assumption 4 if the sampling densities satisfy some
regularity conditions, and if the radii of the balls do not
shrink too quickly. In particular, if the search sampling
density qn, n ! 1, 2, . . . is uniformly bounded away
from zero on S and rn is of Ω(n− (1− γ)/d), then
Assumption 4 is satisfied. Many adaptive search al-
gorithms for global optimization do have their search
sampling density bounded away from zero, and in the
next section we consider two such algorithms and
prove that they satisfy Assumption 4 and hence con-
verge to a global optimum.
In leading up to Theorem 3, we expand the estimate

of the function value in Equation (19) as

f̂ n(Xi) !
∑n

k!1Ik(Xi) f (Xi)
Ln(Xi)

+
∑n

k!1Ik(Xi)( f (Xk) − f (Xi))
Ln(Xi)

+
∑i− 1

k!1Ik(Xi)Zk

Ln(Xi)
+
∑n

k!i Ik(Xi)Zk

Ln(Xi)

! f (Xi) +
∑n

k!1Ik(Xi) f (Xk)
Ln(Xi)

− f (Xi)
( )

+
∑i− 1

k!1Ik(Xi)Zk

Ln(Xi)
+
∑n

k!i Ik(Xi)Zk

Ln(Xi)
, (21)

to clearly identify the correct value in the first term, the
bias due to nearby points in the second term, the
nonmartingale accumulated error in the third term, and
the martingale accumulated error in the fourth term.
The second term, the bias, is created by the fact that an
estimate of the function value at a point is formed by
the function value of that point and other points around
it but within the balls. On the basis of the continuity of
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the objective function in Assumption 2, we employ
Cesàro’s Lemma (see Lemma EC.1 in the e-companion)
with the shrinking ball mechanism to show that the bias
term is washed away by averaging. The third term, the
nonmartingale random error of the estimated objective
function value of a specific sample point, is formed by the
errors corresponding to other points that are sampled
prior to that sample point. These nonmartingale random
errors can be highly correlated and may not cancel each
other out by averaging alone. However, it is considered
a fixed term once a specific point has been sampled.
Therefore, the slowing sequence, in, is employed to slow
the growth of this term, causing this nonmartingale
random error to diminish to zero when divided by the
number of points in the associated balls. The fourth term,
the martingale random error of the estimated objective
function value of a specific sample point, is formed by the
errors corresponding to points that are sampled from
that specific sample point onward. The slowing sequence
together with the martingale property through the
Azuma–Hoeffding inequality (see Lemma EC.2 in the
e-companion) causes the martingale random error to
disappear. Thus, in the limit, we are left with the correct
value for the estimate of the function value.

We next prove Theorem 2 showing that the proba-
bility that the estimate is incorrect by ε amount for the
early portion of the estimates goes to zero as n goes to
infinity, i.e.,

lim
n→∞

P ⋃
in

i!1
{| f̂ n(Xi) − f (Xi)| ≥ ε}

( )
! 0.

For notational convenience, define A(n, ε) as the event
that, when we consider only the early portion of the
sequence up to in, at least one objective function esti-
mate is incorrect by more than the target error ε
allowed for ε> 0; that is,

A(n, ε) ! ⋃
in

i!1
{| f̂ n(Xi) − f (Xi)| ≥ ε}.

Theorem 2 gives conditions under which, the proba-
bility of missing this error target for the early portion
of the estimates goes to zero as n goes to infinity.
Theorem 2 makes use of the martingale property
established in Theorem 1 and the slowing sequence in
in SOSA.

Theorem 2. If Assumptions 1, 2, 3, and 4 are satisfied, and
if in ↑∞ such that in ≤ ns, where 0< s<γ, then, for all ε> 0,

∑∞

n!1
P(A(n, ε))<∞.

Proof. See the e-companion. □

By Assumption 4, the algorithm generates sample
points that fill the feasible region. Once the estimated
objective function errors of all samplepoints are controlled

as described in Theorem 2 and the objective function is
continuous according to Assumption 2, the optimal value
estimates converge to the true optimal value. This
convergence property is formalized in Theorem 3.

Theorem 3. If Assumptions 1, 2, 3, and 4 are satisfied, and
if in ↑∞ such that in ≤ ns, where 0< s<γ, then f̂ ∗n → f ∗ with
probability one.

Proof. See the e-companion. □

If Assumption 3 is relaxed to Assumption 3′, we have
a weaker convergence in probability result.

Corollary 1. If Assumptions 1, 2, 3′, and 4 are satisfied, and
if in ↑∞ such that in ≤ns, where 0< s<γ, then, for all ε> 0,

lim
n→∞

P( | f̂ ∗n − f ∗ | ≥ ε) ! 0,

i.e., f̂ ∗n → f ∗ in probability.

Proof. See the e-companion. □

Note that Assumption 4 can also be relaxed but with
a weaker convergence result as in Corollary 1. A weaker
Assumption 4, requiring only that limn→∞P(D(n)c) ! 0,
produces the same effect through the last term of
Equation (EC.4), and thus, as in Corollary 2, f̂ ∗n converges
to f ∗ only in probability.
Now, in Corollary 2, we show that not only does

SOSA converge to the optimal value, but, under ap-
propriate conditions, it converges to an optimal solu-
tion. Let X∗

n represent the optimal solution estimate at
iteration n. In the case of multiple optima, it is possible
that the estimates jump within the set of optima,
depending on the underlying sampling distributions
qn; however, the distance between the optimal solution
estimate X∗

n and the set of global optima -∗ converges
to zero with probability one. For a solution x∈Rd and
a subset E⊂Rd, we define the distance from x to E as
ρ(x,E) ! infy∈E ∥x − y∥, where ∥ · ∥ denotes the Euclidean
norm on Rd. When there is a unique optimum, the
optimal solution estimate converges to the unique
global optimum.

Corollary 2. Suppose all the conditions in Theorem 3 are
satisfied. Then, with probability one,

ρ(X∗
n,-

∗)→ 0.

In addition, if there is a unique optimum, -∗ ! {x∗}, then
X∗

n → x∗ with probability one.

Proof. See the e-companion. □

4. An Application: Single Observation
Algorithms Based on Hit-and-Run

We compare four algorithms on two global optimi-
zation test problems with noisy objective functions.
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The four algorithms comprise two from the SOSA
framework and two from the ASR framework. In-
troduced by Andradóttir and Prudius (2010), ASR is an
adaptive search framework that advocates performing
repeated observations of objective function at sampled
design points, which is in contrast to SOSA. Within
each framework, we try two different samplers, one is
the Improving Hit-and-Run (IHR) sampler and the
other one is the sampler originally usedwith ASR in the
work of Andradóttir and Prudius (2010), which we call
the AP sampler. The four algorithms to be tested in this
study are

1. SOSA with IHR sampler (IHR-SO);
2. SOSA with AP sampler (AP-SO);
3. ASR with IHR sampler (IHR-ASR);
4. ASR with AP sampler (AP-ASR).
The IHR-SO algorithm modifies the improving hit-

and-run algorithm (IHR) (see Zabinsky et al. 1993,
Zabinsky 2003, Ghate and Smith 2008, Zabinsky and
Smith 2013) by incorporating the shrinking ball ap-
proach. The class of hit-and-run algorithmshas adesirable
property of efficiently converging to a target distribution
with very mild assumptions (Smith 1984, Zabinsky and
Smith 2013). IHR is a simplified version of Annealing
Adaptive Search (AAS) algorithm (Romeijn and Smith
1994, Zabinsky 2003)with zero temperature. AAS is later
shown to be approximated by Model-based Annealing
Random Search (MARS) (Hu et al. 2007, 2014). There-
fore, IHR can be considered a simple representative of
a global optimization search engine in this class.

An early version of improving hit-and-run with
single observation, but without shrinking balls, has
been applied to a simulation optimization problemwith
encouraging computational results in Kiatsupaibul et al.
(2015). A more extensive numerical study (Linz et al.
2017) showed a benefit of SOSA comparedwithmultiple
replications.

The AP sampler has been employed as the sampling
strategy for ASR in the study of Andradóttir and Prudius
(2010) with promising computational results. AP sam-
ples locally from the neighborhood of the current optimal
solution estimate and also globally from the whole
feasible region. In a sense, it is a simple version of the
nested partitions methods (Shi and Ólafsson 2000a) that
sample from a partition local to the current optimal
solution estimate and its complement. Therefore, AP can
be considered a simple representative of another class of
global optimization search engine. The original combi-
nation of AP and ASR is called AP-ASR in this study.
Herewe also combineAPwith SOSA, called AP-SO, and
compare it against the original AP-ASR.

The IHR-SO and AP-SO algorithms share the property
of having a positive probability of sampling anywhere
in the space. Thus, as shown in Theorem 4 and Cor-
ollary 3, they satisfy the four assumptions for continuous

optimization problems and converge to a global opti-
mal value.

4.1. SOSA with IHR Sampler (IHR-SO)
Parameters: κr, starting ball radius; γ, order of local
sample density; β, order of radius shrinkage; and s,
order of slowing sequence. The parameters specify the
following radii and slowing sequences:

{rn ! κrn− β,n ! 1, 2, . . .} and {in ! ⌊ns⌋,n ! 1, 2, . . .}.

Follow the steps of SOSA but replace Step 1 by the
following IHR sampler.
Step 1: Given x1, y1, . . . , xn− 1, yn− 1, let x̃n− 1 ∈

argminx∈-n− 1 f̂ n− 1(x). The IHR sampler obtains a new
design point xn by first sampling a direction v from the
uniform distribution on the surface of a d-dimensional
hypersphere, and second, sampling xn uniformly dis-
tributed on the line segment Λ where Λ ! {x̃n− 1+
λv :λ ∈R} ∩ S. Given xn, sample un having the same
distribution as U and evaluate yn ! g(xn,un).

4.2. SOSA with AP Sampler (AP-SO)
The same as IHR-SO but replace Step 1 by the following
AP sampler.
Step 1: Given x1, y1, . . . , xn− 1, yn− 1, let x̃n− 1 ∈ arg

minx∈-n− 1 f̂ n− 1(x). Sample from the AP sampler by
sampling xn uniformly on S with probability 0.5; other-
wise, sample xn uniformly on points that are within
R of x̃n− 1 on each dimension, i.e., {x∈ S: |xi − x̃in− 1|≤
R for all i ! 1, . . . , d}, where xi is the ith component of
x and the radius parameter R is the tuning parameter
of the sampler. Given xn, sample un having the same
distribution as U and evaluate yn ! g(xn, un).

4.3. ASR with IHR Sampler (IHR-ASR)
Parameters: b and sequence {M(i) ! ⌊ib⌋}; c and se-
quence {K(i) ! ⌈ic⌉}; δ, L, and T.
For each x∈ S, the algorithm keeps track of the fol-

lowing accumulators: Nk(x), the number of objective
function observations collected at x at iteration k; Sk(x),
the sum of these Nk(x) objective function observations;
and f̂ k(x) ! Sk(x)/Nk(x).
Step 0: Let i ! 1, k ! 0, and -0 ! ∅.
Step 1: Let k← k + 1. If k ! M(i), then go to Step 2.

Otherwise, go to Step 3.
Step 2: Sample a new design point by performing the

following steps.
Step 2.1: If i ! 1, sample xi uniformly on S. Otherwise,

sample xi from the IHR sampler.
Step 2.2: If i ! 1, accept xi. Otherwise, accept xi if

fL(xi)≤ f̂ k− 1(x
∗
k− 1) + δ, where fL(xi) is an average of L

observations of f (xi). If xi is accepted, then let -k !
-k− 1 ∪ {xi}. If xi is rejected, -k ! -k− 1. Update N(xi)
and S(xi).
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Step 2.3: For each x∈-k, if Nk(x)<K(i), obtain K(i) −
Nk(x) additional objective function observations of f (x)
and update N(xi) and S(xi) accordingly.

Step 2.4: Let i← i + 1. Go to Step 4.
Step 3: Resample from the existing design points by

performing the following steps. Let k′ be the last it-
eration that a new point is sampled.

Step 3.1: Sample x from -k− 1 according to probability
pk(x), where pk(x)}exp( f̂ k′ (x)/Tk′ ) and Tk′!T/log(k′+1).

Step 3.2: Obtain an estimate of the objective function
value at x. Update N(xi) and S(xi).

Step 3.3: Go to Step 4.
Step 4: Select an estimate of the optimal solution

x∗k from -∗
k ! argminx∈-k f̂ k(x).

Step 5: If stopping criterion satisfied, stop. Otherwise,
go to Step 1.

4.4. ASR with AP Sampler (AP-ASR)
The same as IHR-ASR but replace Step 2.1 by the AP
sampler.

Theorem 4 establishes that IHR-SO and AP-SO sat-
isfy Assumption 4 when the radii of the shrinking balls
are chosen appropriately. To satisfy Assumption 4,
basically, the algorithm needs to generate enough
sample points to fill all the balls and the balls cannot
shrink too fast. Sufficient conditions that allow the
algorithm to generate enough points are that the
sampling densities are bounded away from zero and
the feasible region is a convex set. Theorem 4 then
specifies an appropriate shrinking rate of the balls.

Theorem 4. If S is a bounded convex set, rn is of Ω(n− β),
where β ! (1 − γ)/d and 1/2<γ< 1, and the algorithm
based on SOSA employs sampling densities qn that are
bounded away from zero on S for all n, then the algorithm
satisfies Assumption 4.

Proof. See the e-companion. □

Corollary 3. If Assumptions 1, 2, and 3 are satisfied and we
choose rn to be Ω(n− β), where β ! (1 − γ)/d, 1/2<γ< 1,
and in ↑∞ such that in ≤ns, where 0< s<γ, then any al-
gorithm based on SOSA with sampling densities qn that are
bounded away from zero on S for all n generates a sequence of
optimal value estimates that converges to the optimal value f ∗
with probability one.

Proof. By Theorems 3 and 4, Corollary 3 follows. □

Observe that the sampling densities qn implied by
IHR-SO and AP-SO on a compact set are bounded
away from zero. Therefore, IHR-SO and AP-SO gen-
erate sequences of optimal value estimates that con-
verge to the global optimum with probability one.

From Theorems 3 and 4, the three parameters γ, β, and
s of IHR-SO and AP-SO cannot be chosen independently
if one would like to guarantee convergence because

β ! (1 − γ)/d and 0< s<γ. A value of s, the order of
slowing sequence, in, identifies how quickly we would
like to adopt new optimal value estimates. From pilot
experiments, a small value of s will slow down the
algorithm. Therefore, we adopt a large value of s close
to one, s ! 0.9. This choice of s dictates a large value of
γ, γ ! 0.91, and a small value of β, β ! 0.009 for the
10-dimensional test problems. Fortunately, a small
value of β makes the ball shrink slowly and, hence,
allows the algorithm to collect more observations of
the objective value at each design point, enhancing the
accuracy of the objective value estimates.
An appropriate value of the starting ball radius κr for

IHR-SO and AP-SO is problem dependent. It depends
on the size of feasible region, the smoothness of the
objective function, and the adaptive sampling strategy
qn. In this study, we experimented with several values
for κr for each test problem.
The two algorithms based on SOSA (IHR-SO and

AP-SO) use the parameter values

γ ! 0.91, β ! 0.009, s ! 0.9, and

κr ! 0.1 for Problem 1,
1 for Problem 2.

{

With this set of parameters, the shrinking ball radii and
the slowing sequence are set to

rn ! 0.1n− 0.009 for Problem1,
n− 0.009 for Problem2,

{
and in ! ⌊n0.9⌋.

The two algorithms based on ASR (IHR-ASR and AP-
ASR) use the same parameter values used in Andradóttir
and Prudius (2010),

b ! 1.1, c ! 0.5, δ ! 0.01, L ! 0.1, and T ! 0.01.

The tuning parameter R for AP sampler is set to 0.07 for
Problem 1, and 0.4 for Problem 2, for both AP-SO and
AP-ASR.
We apply the four algorithms to two problems. The

first problem is the shifted sinusoidal problem, fromAli
et al. (2005).

Problem 1 (Shifted Sinusoidal Problem).

min E f (x) + (1 + | f (x) | )U[ ]

s.t. 0≤ xi ≤π, i ! 1, . . . , 10,
where
f (x) ! − 2.5Π10

i!1 sin(xi − π/6) +Π10
i!1 sin(5(xi − π/6))

[ ]

+ 3.5,

x∈R10, and U~Uniform[− 0.1, 0.1]. According to Ali
et al. (2005), this problem contains 4,882,813 local
optima with a single global optimum at x∗ ! (4π/6, . . . ,
4π/6) and f (x∗) ! 0.
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The second problem is the Rosenbrock problem. This
problem is also employed as a test case for AP-ASR in
the work of Andradóttir and Prudius (2010).

Problem 2 (Rosenbrock Problem).

min E f (x) + (1 + | f (x)|)U[ ]

s.t. − 10≤ xi ≤ 10, i ! 1, . . . , 10,

where f (x) ! 10− 6 ×
∑d− 1

i!1
((1 − xi)2 + 100(xi+1 − x2i )

2),

x ∈R10, and U ~Uniform[− 0.1, 0.1]. The global mini-
mum is at (1, . . . , 1) and f ∗ ! 0.

We apply each algorithm to solve each problem 100
times. The initial point for each of these 100 replica-
tions is generated according to a uniform distribution
on the feasible region and used for each algorithm. Each
time we run the algorithms for 12,000 function evalu-
ations. Note that IHR-SO and AP-SO require only one
objective function evaluation per iteration. Therefore,
each optimization run requires exactly 12,000 iterations.
For IHR-ASR and AP-ASR, we count the objective
function evaluations as the algorithms progress and
stop once 12,000 function evaluations are reached,
which may require less than 12,000 iterations. We then
record the following four measurements averaged over
100 runs, at each iteration, for n ! 1, 2, . . . , 12,000:

• the optimal value estimate:

f̂ ∗n ! min
x∈-n

f̂ n(x),

• the (true) objective function of the optimal solution
estimate (the best candidate):

f (x∗n), where x∗n ∈ argmin
x∈-n

f̂ n(x),

• the contributions to the optimal solution estimate
(the counts of the sample points that contribute to the
objective function estimate of the optimal solution
estimate):

l∗n ! |{k≤ n : xk ∈B(x∗n, rn)}| ,

• the average noise of the optimal solution estimate:

ê∗n !
∑

{k≤n: xk∈B(x∗n ,r)}(1 + | f (x)|)Uk

l∗n
.

Figure 1 shows the four performance measurements of
the four algorithms (IHR-SO, AP-SO, IHR-ASR, and
AP-ASR) applied to Problem 1 and averaged over 100 runs
at selected number of function evaluations. Panel (a)
of Figure 1 also shows the 95% confidence intervals of
the optimal value estimates, represented by vertical bars.
The confidence interval represents the variation across
simulation runs. It is calculated as the mean estimate
plus and minus 1.96 times the standard deviation

divided by 10 (the square root of the number of sim-
ulation runs).
The two SOSA algorithms, IHR-SO and AP-SO,

outperform the two ASR algorithms, IHR-ASR and
AP-ASR. From panels (a) and (b) of Figure 1, we ob-
serve that the optimal value estimates and the objective
function value of the optimal solution estimates of
SOSA (IHR-SO and AP-SO) converge to the global
optimum (target) more quickly than those of ASR (IHR-
ASR and AP-SO). Panel (c) of Figure 1 shows how
objective function observations accumulate at the op-
timal solution estimates over the course of each of the
algorithms. The errors of the optimal value estimates
(panel (d) of Figure 1) decrease as more observations
accumulate. The two ASR algorithms are designed to
accumulate observations uniformly over the course of
the algorithms, as seen frompanel (c) of Figure 1. Panel (c)
of Figure 1 also shows that IHR-SO accumulates
more observations over the course of the run, although
adaptively. From panel (c) of Figure 1, IHR-SO and AP-
SO are more aggressive at the beginning stage of the
algorithms when the quality of the optimal value
estimates are poor, i.e., not spending too many obser-
vations at the early sample points. The SOSA algorithms
then adaptively accumulate more observations for
the optimal value estimates in the later stage of the
algorithms, when the quality of the estimates get higher.
Observe that the ASR algorithms accumulate more
observations for the optimal value estimates at the early
stage than SOSA algorithms do, slowing the algorithms
down. Consequently, as shown in panel (d) of Figure 1,
the average noises of the optimal value estimates reduce
more rapidly at the early stage in the case of ASR al-
gorithms. Toward the end, the average noises of the four
algorithms are not much different. Observe that the
errors at the optimal solution estimates are negatively
biased. This is a common behavior found in algorithms
whose optimal estimates are chosen as the minimum
among all the estimates, because the ones that un-
derestimate the true objective function value will be
more likely to be chosen, causing the average errors to be
negative.
Table 1 shows the statistics of the optimal value

estimates f̂ ∗n of the four algorithms at termination when
applied to Problem 1. As seen from Figure 1, the mean
estimates of IHR-SO and AP-SO are closer to the op-
timal value (zero) than those of IHR-ASR and AP-ASR.
For Problem 1, the mean squared errors of IHR-SO
and AP-SO are also significantly smaller than those of
IHR-ASR and AP-ASR. Furthermore, for Problem 1,
IHR-SO consistently outperforms IHR-ASR, and AP-
SO outperformsAP-ASR at the 50th and 75th percentiles
as well as the worst estimate encountered.
Figure 2 shows the four performance measurements

of the four algorithms (IHR-SO, AP-SO, IHR-ASR, and
AP-ASR) applied to Problem 2 and averaged over 100
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runs at each number of function evaluations up to 4,000
function evaluations. Panel (a) of Figure 2 also shows
the optimal value estimates with 95% confidence in-
tervals, which are quite tight.

Again, the two SOSA algorithms, IHR-SO and AP-
SO, outperform the two ASR algorithms, IHR-ASR

and AP-ASR. From panels (a) and (b) of Figure 2, we
observe that the optimal value estimates and the ob-
jective function value of the optimal solution estimates
of SOSA (IHR-SO and AP-SO) converge to the global
optimal value more quickly than those of ASR (IHR-
ASR and AP-ASR).

Figure 1. (Color online) Performance Diagnostics for IHR-SO, AP-SO, IHR-ASR, and AP-ASR with Respect to Problem 1

Notes. Panels (a) and (b) exhibit the optimal value estimate (with confidence intervals) and the true objective function value at the optimal
solution estimate (the best candidate), respectively. Panels (c) and (d) show the contributions to the best candidates and the average noises of the
optimal solution estimate as functions of objective function evaluations, respectively.
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Table 1. Statistics of the Optimal Value Estimates f̂ ∗n of the Four Algorithms at Termination

Problem Algorithm Mean Mean squared error Best

Percentile

25 50 75 Worst

Problem 1 IHR-SO 0.3181 0.5103 0.0631 0.0915 0.1073 0.1433 2.6569
AP-SO 0.5354 0.7961 0.1109 0.1211 0.1278 0.9007 2.5117
IHR-ASR 1.6085 3.8991 0.0751 0.2948 2.5052 2.5897 3.1575
AP-ASR 0.8905 1.6840 0.0436 0.0922 0.1780 1.8247 2.7173

Problem 2 IHR-SO −0.0402 0.0017 −0.0524 −0.0466 −0.0407 −0.0352 −0.0247
AP-SO −0.0079 0.0002 −0.0231 −0.0145 −0.0104 −0.0025 0.0615
IHR-ASR −0.0065 0.0002 −0.0274 −0.0144 −0.0070 −0.0010 0.0243
AP-ASR 0.0499 0.0035 −0.0020 0.0254 0.0471 0.0682 0.1593

Notes. The experiments for Problem 1 terminate with n ! 12,000. The experiments for Problem 2 terminate with n ! 4,000.

Figure 2. (Color online) Performance Diagnostics for IHR-SO, AP-SO, IHR-ASR, and AP-ASR with Respect to Problem 2

Notes. Panels (a) and (b) exhibit the optimal value estimate (with confidence intervals) and the true objective function value at the optimal
solution estimate (the best candidate), respectively. Panels (c) and (d) show the contributions to the best candidates and the average noises of the
optimal solution estimate as functions of objective function evaluations, respectively.
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Table 1 shows the statistics of the optimal value
estimates f̂ ∗n of the four algorithms at termination when
applied to Problem 2. At termination 4,000, the optimal
value estimates of all four algorithms are very close to
the true optimal value of zero. Themean squared errors
of AP-SO and IHR-ASR are the smallest, followed by
that of IHR-SO.

5. Conclusion
Wepropose a single observation adaptive search (SOSA)
framework for continuous simulation optimization.
Under this framework, an objective function value es-
timate of a sample point is formed by the average of the
observed function values within a neighborhood of that
sample point. The error of an estimate then consists of
a bias and a random error. We show that the accumu-
lated random error of each objective function estimate
can be decomposed into a nonmartingale fixed term and
a progressive martingale term. By slowing down the
reporting of the optimal value estimate, the martingale
property of the accumulated error ensures that the
random error will disappear in the limit. Additionally,
the bias is controlled by the shrinking ball mechanism
and converges to zero. In conclusion, the optimal value
estimate from an algorithmwithin the SOSA framework
converges to the true optimal valuewith probability one.

We also demonstrate the effectiveness and the effi-
ciency of the framework by modifying two adaptive
search algorithms, namely Improving Hit-and-Run
(IHR) and Andradóttir–Prudius (AP), to fit this frame-
work. We also show that any algorithm with sampling
density bounded away from zero on the feasible region,
in particular, IHR-SO and AP-SO, satisfy the four as-
sumptions and, hence, convergeswith probability one to
a global optimum. The two algorithms under the SOSA
framework outperform the same two algorithms under
the adaptive search with resampling (ASR) alternative,
as demonstrated on two noisy objective functions. The
performance confirms the theory developed and illus-
trates the potential of the new continuous simulation
optimization paradigm.
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Shapiro A, Dentcheva D, Ruszczyński AP (2009) Lectures on Stochastic
Programming:Modeling and Theory (Society for Industrial Applied
Mathematics, Philadelphia).

Kiatsupaibul, Smith, and Zabinsky: Single Observation Simulation Optimization
14 Operations Research, Articles in Advance, pp. 1–15, © 2018 INFORMS
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