
Appears in the Proceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques, 2018

In-DRAM Near-Data Approximate Acceleration for GPUs

Amir Yazdanbakhsh Choungki Song† Jacob Sacks Pejman Lotfi-Kamran‡ Hadi Esmaeilzadeh§ Nam Sung Kim�

Alternative Computing Technologies (ACT) Lab

Georgia Institute of Technology †University of Wisconsin-Madison ‡Institute for Research in Fundamental Sciences (IPM)
§University of California, San Diego �University of Illinois at Urbana-Champaign

a.yazdanbakhsh@gatech.edu csong38@wisc.edu jsacks@gatech.edu plotfi@ipm.ir hadi@eng.ucsd.edu nskim@illinois.edu

ABSTRACT
GPUs are bottlenecked by the off-chip communication band-

width and its energy cost; hence near-data acceleration is

particularly attractive for GPUs. Integrating the accelerators

within DRAM can mitigate these bottlenecks and additionally

expose them to the higher internal bandwidth of DRAM.

However, such an integration is challenging, as it requires

low-overhead accelerators while supporting a diverse set of

applications. To enable the integration, this work leverages

the approximability of GPU applications and utilizes the

neural transformation, which converts diverse regions of code

mainly to Multiply-Accumulate (MAC). Furthermore, to pre-

serve the SIMT execution model of GPUs, we also propose

a novel approximate MAC unit with a significantly smaller

area overhead. As such, this work introduces AXRAM—a

novel DRAM architecture—that integrates several approx-

imate MAC units. AXRAM offers this integration without

increasing the memory column pitch or modifying the in-

ternal architecture of the DRAM banks. Our results with

10 GPGPU benchmarks show that, on average, AXRAM

provides 2.6× speedup and 13.3× energy reduction over

a baseline GPU with no acceleration. These benefits are

achieved while reducing the overall DRAM system power by

26% with an area cost of merely 2.1%.

1 INTRODUCTION
GPUs are one of the leading computing platforms for a

diverse range of applications.However, this processing ca-

pability is hindered by the bandwidth wall [75, 84, 90]. Yet,

offering higher bandwidth with either conventional DRAM

or HBM is challenging due to package pin and/or power

constraints. Such a limitation makes near-data acceleration

alluring for GPUs. There are two main options for such

an integration: (1) 3D/2.5D stacking [24, 37, 78] and (2)

integration within DRAM. The former option may incur

a significant cost to expose higher internal bandwidth to

3D/2.5D-stacked accelerators than the external bandwidth

exposes to the GPU [6], as the TSVs for standard HBM

already consume nearly 20% of each 3D-stacked layer [50].

Copyright © 2018 ACM. This is the author’s version of the work. It is posted

here for your personal use. Not for redistribution. The definitive version

was published in the Proceedings of the 27th International Conference on

Parallel Architectures and Compilation Techniques (PACT), Article No.

34, November 2018.

PACT ’18, November 1–4, 2018, Limassol, Cyprus
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5986-3/18/11. . . $15.00

https://doi.org/10.1145/3243176.3243188

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad
average

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

O
ff-

ch
ip

D
at

a
Tr

an
sf

er
C

on
tr

ib
ut

io
n

Runtime Energy

(a) Baseline GPU

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad
average

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

O
ff-

ch
ip

D
at

a
Tr

an
sf

er
C

on
tr

ib
ut

io
n

Runtime Energy

(b) Accelerated GPU

Figure 1: The fraction of total application runtime and energy
spent in off-chip data transfer for (a) a baseline GPU and (b) an
accelerated GPU [89].

The latter option exposes the accelerators to the higher in-

ternal bandwidth of DRAM. Such a tight integration can

be attractive if it incurs little overhead while enables the

acceleration of a diverse range of applications. However,

integrating many complex accelerators within DRAM is not

practical, since DRAM is under tight area, power, and thermal

constraints [41, 53–56, 58]. Moreover, even the number of

metal layers for routing is limited [49, 66, 67], which severely

hinders integrating complex accelerators. Finally, it is highly

desirable to avoid changing the innards of DRAM banks, as

they have been optimized over decades of engineering.

This work tackles these challenges by exploiting the ap-

proximability of many GPU applications. We leverage the

neural transformation [5, 22, 29, 61, 89], which can ac-

celerate diverse applications by approximating regions of

GPU code and converting them into a neural representation

comprised of only two types of operations: Multiply-and-

Accumulate (MAC) and Look-Up Table (LUT) accesses for

calculating the nonlinear function. Hence, the accelerator

architecture becomes relatively simple. To further minimize

the power and area overhead and enable a low-overhead

integration of many in-DRAM accelerators, we further ap-

proximate the MAC units. Specifically, these approximate

MAC units convert the multiplication into limited iterations

of shift-add and LUT access operations with early termina-

tion by exploiting a unique property of neural transformation,

i.e., one of the operands for each MAC operation is fixed.

While the accelerators merely comprise simple shift, add,

mailto:a.yazdanbakhsh@gatech.edu
mailto:csong38@wisc.edu
mailto:jsacks@gatech.edu
mailto:plotfi@ipm.ir
mailto:hadi@eng.ucsd.edu
mailto:nskim@illinois.edu
https://doi.org/10.1145/3243176.3243188


and LUT access operations, they are able to support a wide
variety of applications. We attach these simplified units to
the wide data lines, which connect the DRAM banks to the
global I/O, to avoid altering the banks and memory column
pitch. Note that our approach, which significantly simplifies
the accelerator design, has merits even when accelerators are
placed on logic layers of 3D/2.5D-stacked DRAM. Specif-
ically, package-level power/thermal constraints get more
stringent with more stacked-DRAM dies while processors
powerful enough to fully exploit high-internal bandwidth will
consume high power. Also, the challenges of tying DRAM
design to accelerators that only cover few applications may
be limiting for DRAM manufacturers. AXRAM tackles this
dilemma by introducing a significantly simple and power-
efficient design while supporting diverse applications as well
as neural networks that are being adopted in various domains.
As such, this work defines AXRAM, a novel accelerated
DRAM architecture with the following contributions.

2 OVERVIEW
In this section, we first overview the challenges and op-
portunities of in-DRAM acceleration for GPUs and how
approximation plays an enabling role.

2.1 Challenges and Opportunities
Opportunity to reduce data transfer cost. Off-chip data
transfer imposes a significant energy cost relative to data pro-
cessing. With a 45 nm process, a 32-bit floating-point addition
costs about 0.9 pJ, while a 32-bit DRAM memory access costs
about 640 pJ [33, 36]. As such, off-chip data transfer con-
sumes over 700× more energy than on-chip data processing.
This cost becomes even more pronounced in GPU applica-
tions, since they typically stream data and exhibit low tempo-
ral locality (i.e., high cache miss rates) [7, 14, 43, 71, 76, 82].
Near-data processing provides an opportunity to cut down
this cost. To concretely examine the potential benefits of near-
data processing, we conducted a study which teases apart
the fraction of runtime and energy consumption spent on
off-chip data transfer1. As Figure 1a illustrates, on average,
applications spend 42% of their runtime and 39% of their
energy dissipation on off-chip data transfer on a GPU. In
Figure 1b, we further examine this trend with a neurally ac-
celerated GPU (NGPU [89]), to speed up the data processing
portion of each thread. The acceleration reduces the data
processing time of each thread, in turn increasing the rate of
accesses to off-chip memory. This increased rate exacerbates
the contribution of data transfer to the application runtime and
energy. Moreover, accelerating the GPU further compounds
the already significant pressure on the off-chip communica-
tion bandwidth [84, 89, 90]. On average, applications spend
83% (85%) of their runtime (energy) on off-chip data transfer
on neurally accelerated GPU (NGPU). These results indicate
a significant opportunity for near-data processing to address
the overhead of off-chip data transfer in GPUs.
Challenges of near-data processing on GPUs. GPUs
present unique challenges for near-data processing, as they
1Section 8 presents our experimental methodology and settings.

short	r	=	pixel[i][0];
short	g	=	pixel[i][1];
short	b	=	pixel[i][2];
short	result	=	0;

out[i]	=	result;

(a)

short	r	=	pixel[i][0];
short	g	=	pixel[i][1];
short	b	=	pixel[i][2];
short	result	=	0;
#pragma(begin_approx,
														“min_max”)
mi	=	__min(r,	__min(g,	b));
ma=	__max(r,	__max(g,	b));
result	=	((ma	+	mi)	
													>	127	*	2)	?	255	:	0;
#pragma(end_approx,
														“min_max”)
out[i]	=	result;

Neural Transformation converts complex
region  of code to simple operations

(i.e., multiplication, addition, and sigmoid)

×+

Simple
Operations

Prior work targets data processing

This work targets data transfer

Accelerated DRAMGPU

Accelerated GPU Unmodified DRAM

Th
is

 W
or

k
Pr

io
r W

or
k

(b)

SM
Accelerator

SM
Accelerator

SM
Accelerator

SM
Accelerator

SM SM

SM SM

Bank
Accelerator

Bank
Accelerator

Bank
Accelerator

Bank
Accelerator

Bank Bank

BankBank

Figure 2: (a) Neural transformation of a code segment from the
binarization benchmark. (b) Comparison of prior work (bottom
diagram) [89] and this work (top diagram).

comprise many cores simultaneously running many threads.
To preserve the SIMT execution model of GPUs, we need
to integrate many accelerator units near the data. There are
two options for where to integrate the accelerator units: (1)
the on-chip memory controller or (2) inside the DRAM itself.
Option (1) provides the accelerator units with no additional
bandwidth, as the on-chip memory controller receives the
same bandwidth from memory as the rest of the GPU. Further-
more, placing the accelerator units in the memory controller
only circumvents data transfer through the on-chip caches. In
addition, integration within the memory controller requires
large buffers for holding the accelerators’ data, which would
impose a significant area overhead. Option (2), which inte-
grates the accelerators in DRAM, reduces the data transfer
distance and exploits the high internal bandwidth of the
memory. Moreover, integrating the accelerators in DRAM
enables us to utilize DRAM as buffers for the accelerators’
data. However, this design point can introduce a substantial
area and power overhead to the space-limited and power-
constrained DRAM. In this work, we integrate the accelerator
units in DRAM and leverage the approximability of many
GPU applications to significantly simplify the accelerator
architecture. These simplifications enable the accelerator to
minimize changes to the underlying DRAM architecture and
overhead to the DRAM power consumption.

2.2 Approximation for Near-Data Processing
Among approximation techniques, the neural transforma-
tion [22] is an attractive, yet unexplored, approach for near-
data processing in DRAM. The neural transformation con-
verts a code segment into a neural representation comprising
only two operations: multiply-and-accumulate (MAC) and
sigmoid. Reducing computation to two operations provides
an opportunity to significantly simplify the accelerator. This
simplified design minimizes changes to the DRAM and can
be replicated many times to preserve the GPUs’ SIMT exe-
cution model.

The neural transformation trains a neural network to re-
place an approximable region of conventional code [5, 22,
29, 89]. Figure 2a illustrates the transformation of a code seg-
ment, where the approximable region is highlighted in gray.
An approximable region is a segment that, if approximated,
will not lead to any catastrophic failures (e.g., segmentation

2



fault). Its approximation will only gracefully degrade of the
application output quality. As is customary in approximate
computing [11, 69, 77, 88], the programmer only annotates
the code region(s) that can be safely approximated. The
compiler then automatically performs the transformation
and replaces the code segment with a neural hardware in-
vocation [89]. As shown in Figure 2b, prior work addresses
data processing by integrating neural accelerators within the
GPU cores and defines a neurally accelerated architecture
for GPUs (NGPU) [89]. This work, on the other hand, devel-
ops a neurally accelerated architecture for DRAM, dubbed
AXRAM, which addresses off-chip data transfer. Moving
the neural acceleration to DRAM enables AXRAM to reduce
the data transfer overhead and supply more bandwidth to the
accelerators. Moreover, we leverage the approximability of
the GPU applications to further simplify the architecture of
the accelerator units (Section 5).

3 AXRAM EXECUTION FLOW AND ISA
This section discusses the execution flow and instruction set
architecture (ISA) extensions which enable the seamless in-
tegration of AXRAM with the GPU’s SIMT execution model.
Unlike prior work [5, 22, 29, 61, 89], AXRAM is disjoint
from the processor core and is instead integrated into DRAM.
Hence, the ISA extensions must enable the on-chip memory
controller to configure and initiate the in-DRAM accelerator.

3.1 Neural Acceleration of GPU Warps
GPU applications consist of one or more kernels, which
are executed by each of the GPU threads. Threads are exe-
cuted on GPU processing cores called streaming multipro-
cessors (SMs), which divide the threads into small groups
called warps. A warp executes the same instruction of the
same kernel in lock-step but with different input data. The
neural transformation approximates segments of the GPU
kernels and replaces the original instructions of these seg-
ments with the computation of a neural network, as shown
in Figure 3. A neurally accelerated warp computes the same
neural network, one neuron at a time, across all the threads
for different inputs. Due to the neural transformation, this
computation only consists of MAC and lookup (sigmoid)
operations. Specifically, the output y of each neuron is given
by y=sigmoid(Σiwi×ini), where ini is the input to the neuron
and wi is the weight of the connection. The neural compu-
tation portion of the threads are offloaded to the in-DRAM
neural accelerator. Instructions which invoke and configure
the in-DRAM neural accelerator are added to the GPU’s ISA
(Section 3.3). These instructions are added by the compiler
to the accelerated kernel and are executed by the threads in
SIMT mode like other GPU instructions. Thus, the acceler-
ated warp comprises both the normal precise instructions of
the unmodified code segments and approximate instructions
which communicate with the in-DRAM accelerator. Before
explaining these ISA extensions, we provide a high level
picture of the execution flow of AXRAM.

3.2 Execution Flow with AXRAM
Figure 3 illustrates the execution flow of the neurally ac-
celerated warp and communication amongst the GPU, on-
chip memory controller, and in-DRAM neural accelerator
in one GDDR5 chip. We assume that all data for the neural
computation of a given warp is located on one GDDR5 chip.
This assumption is enabled by a series of data organization
optimizations discussed in Section 6. First, the SM fetches
the warp and begins the execution of the precise instructions
normally without any in-DRAM acceleration. The warp then
reaches the approximable region, which instructs the SM to
send an initiation request directly to the on-chip memory
controller. Once the initiation request has been sent, the
issuing warp goes into halting mode. This is not an active
warp waiting mechanism but is similar to a load miss in the
cache. The core may switch to the execution of another warp
while the in-DRAM neural computation proceeds, provided
the warp does not have any conflicts with the ongoing in-
DRAM computation.

Augmented logic in the on-chip memory controller first
sends invalidate signals to the on-chip caches and nullifies
dirty data to be modified by the neural computation. The
invalidate signals are sufficient to prevent GPU cores from
using stale data. As most GPU caches use a write-through
policy [80], it is guaranteed that in-DRAM accelerators have
access to the most up-to-date data. We explain the cache
coherency mechanism of AXRAM in Section 7. Then, the
on-chip memory controller configures and initiates the in-
DRAM accelerators (Figure 3). Specifically, the on-chip
memory controller translates the initiation request and in-
structs the in-DRAM accelerator where the inputs to the
neural network are located in memory and to where the
accelerator should store its final outputs. Furthermore, the on-
chip memory controller blocks any other memory commands
to that particular DRAM chip to ensure the atomicity of the
in-DRAM neural computation. The on-chip memory con-
troller also does not assign any other neural computations to a
GDDR5 chip with an ongoing neural computation. We added
a simple on-chip queue per memory controller to keep track
of in-flight requests for in-DRAM approximate acceleration.
The area overhead of these queues to the GPU die is mod-
est (≈1%). Similar to [24], the on-chip memory controller
allows critical memory operations such as refreshing to be
performed during in-DRAM neural computation.

During neural computation, the in-DRAM accelerator
takes full control of accessing and issuing commands to the
banks. The in-DRAM accelerator performs the MAC and
sigmoid operations (Figure 3). Neural computation for the
threads of the neurally accelerated warp is performed in lock-
step by the many integrated arithmetic units. Once neural
computation is completed, the in-DRAM accelerator writes
its results back to the banks in locations dictated by the mem-
ory controller. We consider two options for notifying GPU
that in-DRAM computation has completed: waiting a fixed
number of cycles and polling. The former approach requires
pre-determining the execution time of each invocation and
exposing that to the compiler. The memory controller would

3



Streaming 
Multiprocessor

On-chip 
Cache

Memory 
Controller AXRAM

Normal Execution

Normal Execution

In-DRAM
Neural Acceleration

…

Bypass
Invalidate
and

Translate

…

DRAM Banks DRAM Banks

DRAM Banks DRAM Banks

in0 = a + b;
…

c = 2 * out0;
…

…
…

Figure 3: Execution flow of the accelerated GPU code on the in-DRAM accelerator.

then wait for this pre-determined number of cycles before

notifying the warp to continue precise execution. However,

the execution time of an in-DRAM invocation depends on

the neural network topology and the accelerator’s DRAM ac-

cesses patterns. Anticipating the DRAM’s accesses patterns

necessitates exposing DRAM microarchitectural parameters

to the compile. These details are not always readily available,

making this design point less desirable. Instead, we choose

the polling approach, in which the accelerator sets the DRAM

memory-mapped mode register MR0 [39], similar to [24].

The on-chip memory controller periodically polls this register

to determine if the computation has finished. Once it detects

that the register has been set, the on-chip memory controller

notifies the GPU that the neural computation for the specific

warp is finished and the warp can continue precise execution.

To enable the controller to properly initiate and configure

the in-DRAM accelerator, we need to extend the ISA with

instructions that communicate the configuration data.

3.3 ISA Extensions for AXRAM
We augment the ISA with three instructionswhich bypass the

on-chip caches and communicate directly with the memory

controller. The proposed ISA extensions are as follows:

(1) config.axram [%start_addr], [%end_addr]

reads the preloaded neural network configuration from

the memory region [%start_addr] to [%end_addr]

and sends it to the in-DRAM accelerator. The configura-

tion includes both the weight values and the topology of

the neural network.

(2) initiate.axram [%start_addr], [%end_addr]

sends the start ([%start_addr]) and end ([%end_addr])

addresses of a continuous memory region which consti-

tutes the neural network inputs for the warp and then

initiates the in-DRAM accelerator.

(3) wrt_res.axram [%start_addr], [%end_addr]

informs the in-DRAM accelerator to store the computed

value(s) of the neural computation in a continuous mem-

ory region defined by the start ([%start_addr]) and end

([%end_addr]) addresses.

The dimensionality of the different neural network layers is

statically identified at compile time and used to configure

the in-DRAM accelerator. Thus, the in-DRAM accelerator

knows how many neurons to expect per layer, and specifying

sufficient memory regions to ensure proper execution. How-

ever, this means that input order is important and necessitates

a series of data organization optimizations to ensure correct

Left Half
Bank-Group #2

Right Half
Bank-Group #2

Left Half
Bank-Group #3

Right Half
Bank-Group #3

Left Half 
Bank-Group #0

Right Half
Bank-Group #0

Left Half 
Bank-Group #1

Right Half
Bank-Group #1

Control &
Command Logic

× 16
I/O Interface

× 16
I/O Interface

(a) High-level GDDR5 DRAM

Co
lum

n 
De

co
de

rsALeft
Row

Decoder

BLeft
Row

Decoder

ELeft
Row

Decoder

FLeft
Row

Decoder Co
lum

n 
De

co
de

rsCLeft
Row

Decoder

DLeft
Row

Decoder

GLeft
Row

Decoder

HLeft
Row

Decoder

Global
Sense Amplifier

Global
Sense Amplifier

I/O
Co

nt
ro

lle
r

× 16
I/O Interface

Accelerator

Accelerator

128 bits 128 bits

128 bits 128 bits

(b) Two Half Bank-Groups

Figure 4: (a) High-Level GDDR5 DRAM organization. (b) Layout
of two half bank-groups (Left Half Bank-Group #0 and Left Half
Bank-Group #1) and the accelerators. The black-shaded boxes
show the placement of the accelerators.

execution (see Section 6). As with other GPU instructions,

these ISA extensions are executed in SIMT mode. That is,

each thread in a warp will communicate its input/output data

regions to the in-DRAM neural accelerator. Additionally,

the weights and the topology of each neural network are

embedded by the compiler in the “.data” section of the ELF-

formatted CUDA binary code (cubin) [2] during compilation.

Along with the CUDA binary code, the weight values and

the topology of the trained neural network are copied in a

preallocated memory region. Using the config.axram in-

struction, the in-DRAM accelerator pre-loads these weights

and topology configuration of the trained neural network

from memory before starting the neural computation.

4 AXRAM MICROARCHITECTURE
To describe our design, we use a GDDR5 DRAM architec-

ture [48, 66, 67]. Since HBM generally stacks GDDR5-like

DRAM [42], our modifications can potentially be extended

to such memory architectures. Furthermore, AXRAM is ap-

propriate for these 3D-stacked structures, because, as our

evaluations show (see Section 8), our design does not increase

the DRAM power consumption due to data transfer. Our main

design objectives are to (1) preserve the SIMT execution

model while (2) keeping the modifications to the baseline

GDDR5 minimal and (3) leveraging the high internal band-

width of DRAM. AXRAM achieves these goals by integrating

many simple arithmetic and sigmoid units into GDDR5. To

describe the microarchitecture of AXRAM, we first present

an overview of the GDDR5 architecture.

4.1 Background: GDDR5 Architecture
While GDDR5 has a I/O bus width of 32 bits per chip, it

has a much higher internal bus width of 256 bits per bank.

4



This provides an 8× higher bitwidth that would significantly
benefit GPUs, which already place significant pressure on
the off-chip bandwidth [46, 84, 90]. Furthermore, the bank-
group organization of GDDR5 provides intrinsic parallelism
which can be leveraged to feed data to a large number of
arithmetic units. By exploiting the attribute of the bank-group
organization, we can further utilize 1024 bits of internal bus
width (32× higher bitwidth than the I/O bus).

Figure 4a shows the GDDR5 DRAM architecture, which
consists of four bank-groups, each with four banks. Each
bank-group can operate independently, meaning requests to
different bank-groups can be interleaved. The bank-groups
are organized into upper and lower pairs partitioned by the
I/O interface and control and command logic. Moreover,
each bank-group contains four banks, which are subdivided
into two half-banks. Subdividing the banks splits each bank-
group into a left and right half, each with four half-banks.
Two upper-left half bank-groups (i.e., Left Half Bank-Group #0
and Left Half Bank-Group #1) are depicted in Figure 4b. In each
half bank-group, the four half-banks are split into pairs (e.g.,
ALeft and BLeft vs. CLeft and DLeft) by a global sense amplifier
and shared I/O controller. Each half-bank has its own row
decoder, while column decoders are shared between the half-
bank pairs of the two adjacent half bank-groups. Both the
right and left half bank-groups provide a bus width of 128 bits
for a total of 256 bits. However, this higher internal bus width
is serialized out through the right and left 16-bit I/O interface.

For instance, when the DRAM receives a memory com-
mand to access Bank A in Bank-Group #0, both the half-banks,
ALeft and ARight, process the command in unison to supply
the data. For the sake of simplicity, we focus on the left
half of Bank-Group #0 shown in Figure 4b. The global row
decoder of the half-bank decodes the address and accesses the
data. The shared column decoder asserts the column select
lines, which drives the data onto a 128-bit global dataline
shared between half-banks ALeft and BLeft. Since the global
dataline is shared between the pairs of half-banks, only one
may send or receive data at a time. The global sense amplifier
then latches the data from the global dataline and drives the
data on the bank-group global I/O through the I/O controller.
The right and left I/O interfaces then serialize the 256-bit
(128-bit each) data on the Bank-Group #0’s global I/O before
sending them through the 32-bit data I/O pins. By placing the
accelerators inside the DRAM, we aim to exploit the higher
internal bandwidth instead of relying on the lower bandwidth
of the data I/O pins.

We next discuss how AXRAM integrates the accelera-
tors into the GDDR5. Additionally, we describe how the
accelerator uses the aforementioned GDDR5 attributes to
preserve the SIMT execution model and minimize changes
while providing data to all the arithmetic units each cycle.

4.2 In-DRAM Accelerator Integration
To minimize DRAM changes yet benefit from its high inter-
nal bandwidth, AXRAM integrates a set of arithmetic and
sigmoid units within each half-bank group (Figure 5). These
arithmetic and sigmoid units are connected to the half-bank

Sigmoid
LUT

Arithmetic
Unit

C
ol

um
n 

D
ec

od
er

s

B
an

k

Row
Decoder

Inputs / Weights
Temporary Results / Outputs 

Global Sense Amplifier

Weight Register

128 bits

Arithmetic
Unit

Arithmetic
Unit

Arithmetic
Unit

Acc. Reg.

Sigmoid
LUT

Sigmoid
LUT

Sigmoid
LUT

Acc. Reg. Acc. Reg. Acc. Reg.

32 bits 32 bits 32 bits 32 bits

32
 b

its

32
 b

its

32
 b

its

32
 b

its

128 bits

Figure 5: Integration of weight register, arithmetic units,
accumulation registers, and sigmoid LUTs.

groups’ global sense amplifiers. Below we discuss the design
choices, structure, and components of this integration.
Accelerator architecture. As mentioned, the accelerator is
a set of arithmetic and sigmoid units. Each pair of arithmetic
and sigmoid units is assigned to a thread of the neurally ac-
celerated warp. The sigmoid units are implemented as a read-
only LUT synthesized as combinational logic to minimize
the area overhead. We will further simplify the arithmetic
units in Section 5. Here, we discuss how we guarantee SIMT
execution of the neurally accelerated warp with these units.
Each arithmetic unit can execute one MAC operation each
clock cycle with a 32-bit input and 32-bit weight. The banks
need to be able to feed a 32-bit input to each of the integrated
arithmetic units at the same time, such that the arithmetic
units can perform the neural computation for all the threads
within a warp simultaneously. As mentioned before, each
bank-group in the baseline GDDR5 has a 256-bit wide global
I/O, 128-bit per each half bank-group. Since each bank group
can function independently, the DRAM can provide a total
of 1024 bits (32×32 bits) of data from the banks at a time.
Thus, we integrate 32 pairs of arithmetic and sigmoid units in
each GDDR5 chip, 8 pairs per each bank-group. In Section 6,
we describe a data organization which enables us to read and
write 1024 bits of data simultaneously.
Unit placement. There are multiple design points for inte-
grating arithmetic units within a GDDR5 chip. To minimize
changes to the DRAM architecture, we aim to avoid modi-
fying the underlying mat2 and bank design. One option is to
add arithmetic units close to each half-bank to utilize their
high internal bandwidth. However, this would require cutting
the global datalines shared between pairs of half-banks (Fig-
ure 4b) and adding a separate sense amplifier per half-bank.
Therefore, this design point imposes a large area overhead
and necessitates significant changes to each GDDR5 chip.
Another option is to add arithmetic units in a central manner
close to the I/O interface in Figure 4a. Although this option
does not suffer from the drawbacks of placing the accelerators
close to each half-bank, it requires extensive routing. Because
the aforementioned options require such extensive modifi-
cations, they are infeasible design points. Instead, AXRAM
adds four arithmetic units per half bank-group after the shared
sense amplifier within the I/O controller boundary, for a total
of eight arithmetic units per bank-group. The accelerators’
2A mat constitutes an array of 512×512 DRAM cells. Each mat comes with
its own row decoder, datalines, and sense amplifiers.

5



placement is illustrated in Figure 4b, while the specific accel-
erator logic layout, including the arithmetic units, is shown
in Figure 5. This design choice imposes minimal changes to
the DRAM architecture and avoids altering the design of the
mats or banks.
Design optimizations. Each of the arithmetic units imple-
ments the neural network MAC operations. However, to
properly supply and retrieve data from the arithmetic units,
we need storage for the (1) inputs, (2) weights, (3) temporary
results, and (4) outputs of the network. Generally, neural ac-
celerators use dedicated buffers as storage [22, 89]. However,
placing the arithmetic units near the data allows AXRAM to
perform a series of design optimizations which minimize the
modifications to the baseline GDDR5. As Figure 5 shows,
AXRAM is able to instead use the GDDR5 banks as buffers.
Input data is read directly from the GDDR5 banks and fed
to the arithmetic units for processing. AXRAM leverages the
large number of sense amplifiers within the DRAM banks
to store temporary results in pre-allocated memory regions
during in-DRAM computation. Outputs from the arithmetic
units are written directly back to the GDDR5 banks. By not
using dedicated buffers, we avoid adding large registers to
each GDDR5 chip and reduce the area overhead. We only
add dedicated weight registers to supply weights to all the
arithmetic units. This enables AXRAM to avoid having to
read the weights from the memory banks each cycle and
instead utilize the internal buses to supply all the arithmetic
units with inputs. Thus, we can simultaneously provide each
arithmetic unit with an input and weight each cycle.
Weight register. Since all threads within a warp perform the
computation of the same neuron in lock-step, the weights are
the same among all the threads for a given neural network.
Therefore, AXRAM can use one weight at a time and share it
among the arithmetic units within a half-bank group. We add
a weight register (shown in Figure 5) per half bank-group, or
for each group of four arithmetic units. As shown in Figure 5,
the weights are pre-loaded into the weight register before
the computation starts. If the number of weights exceeds the
capacity of the register, the next set of weights are loaded
after the first set has been depleted. This weight register has
8×32-bit entries per each half bank-group. Since each half
bank-group can provide 128 bits of data at a time, the weight
register should have at least four entries to fully utilize the
provided bandwidth. We increase the number of weight reg-
ister entries to allow computation to move forward while the
next set of weights are loaded and avoid unnecessary stalls.
GDDR5 timing constraints. Adding arithmetic units to the
half bank-groups increases the load to the half bank-groups’
global I/Os.The only timing constraint affected by the in-
creased load is the column access latency (tCL). To estimate
the timing impact of tCL by HSPICE simulation, we measure
the increase in load due to the accelerator on the GIOs after
the placement and routing. Based on our evaluation, the extra
loading on the half bank-groups’ global I/Os increases the
tCL by ≈ 20 ps. This increase is 0.16% of the typical value
for tCL, which is around 12.5 ns to 15 ns [39, 67], and is
less than the guardband which accounts for various design

variations [40]. Thus, the 20 ps increase has virtually no
effect on the timing of GDDR5.
Connection between DRAM banks and arithmetic units.
The internal half bank-groups’ global I/Os need to support
two different modes: (1) normal mode and (2) in-DRAM ac-
celeration mode. When the accelerator performs the compu-
tation, the half bank-group’s global I/Os are connected to the
arithmetic units to transmit input data. Once the computation
of a neuron completes, the arithmetic unit inputs arithmetic
units are disconnected from the half bank-group’s global I/Os.
The arithmetic units outputs are then connected to the global
datalines through the global I/Os for storing the computed
data into the memory banks. We use a series of pass transistors
to control the connection between the inputs and outputs
of the arithmetic units and the GDDR5 half bank-groups.
Supporting a direct connection between the arithmetic units
and the GDDR5 banks also requires additional routing paths
in the DRAM. To enable the in-DRAM accelerator to gain
access of the GDDR5 chip, we also modify the internal
address/command bus. In normal mode, the on-chip memory
controller has the full access of the address/command bus.
However, in in-DRAM acceleration mode, the accelerator
gains access to the address/command bus. A set of pass
transistors supports this functionality in memory as well. We
evaluate the overhead of pass transistors and routing paths in
Section 8. To orchestrate the flow of data in the banks to and
from the in-DRAM accelerator, we add an in-DRAM con-
troller. Furthermore, we augment the on-chip memory con-
troller with additional logic to translate the ISA extensions
and properly initiate and configure the in-DRAM accelerator.

4.3 Interfacing the GPU with AXRAM

Memory controller. We extend the on-chip memory con-
trollers to send invalidation signals to the on-chip caches upon
receiving AXRAM instructions. Moreover, we extend the on-
chip memory controller to translate the AXRAM instructions
(Section 3) to a sequence of special memory instructions.
These memory instructions (1) configure the in-DRAM accel-
erator and (2) initiate the in-DRAM neural computation. The
on-chip memory controller is augmented with customized
address mapping logic to perform this translation. Upon
receiving AXRAM instructions, the implemented address
mapping logic inside each on-chip memory controller sends
a series of special memory commands to the in-DRAM ac-
celerator to configure and initiate the in-DRAM acceleration.
We also add a one-bit flag inside each memory controller to
keep track of the status of its corresponding GDDR5 chip.
During in-DRAM neural computation, the flag is set so that
the memory controller knows not to issue any further memory
commands to the memory chip.

However, the memory controller may regain the owner-
ship of the memory chip for performing mandatory memory
operations such as refreshing [62]. Similar to prior work [24],
the memory controller sends a suspend command to the
in-DRAM controller if the GDDR5 chip is in neural com-
putation mode. Upon receiving the suspend command, the
in-DRAM control unit stores any temporary results in the

6



DRAM and stops computation. Once the refresh period fin-
ishes, the memory controller instructs the in-DRAM con-
troller to continue the suspended neural computation.
In-DRAM controller. Previous work [32] has proposed inte-
grating an on-DIMM controller and a handful of specialized
microcontrollers in memory to accelerator associative com-
puting. However, since the neural network does not require a
complicated controller [22, 89], we instead add a simple con-
trol unit inside each GDDR5 chip. This in-DRAM controller
(1) marshals data and weights between memory banks and
the in-DRAM accelerator and (2) governs the sequence of
neural network operations. Specifically, it fetches input data
from the banks and sends them to the arithmetic units, reads
weights from memory and loads them into the weight buffers,
and stores temporary results and neural output(s) into the
banks. When the in-DRAM controller receives instructions
from the on-chip memory controller, it gains full control of
the internal DRAM buses. As discussed, the memory con-
troller only re-gains ownership of the internal DRAM buses
when neural computation completes and for performing
mandatory memory operations such as random refreshing.

5 ARITHMETIC UNITS SIMPLIFICATION
There exist two options for the arithmetic units. The first
option is to use floating-point arithmetic units to perform
the neural computation. Another option is to use fixed-point
arithmetic units for energy gains and a smaller area overhead.
We propose a third option to approximate the arithmetic units
to further reduce the area overhead and keep the impact on
the overall DRAM system power low.

These simplified arithmetic units break down the MAC
operations into iterations of add and shift operations. More
iterations of this shift-add unit offers higher precision at the
expense of the throughput of the unit. Since the weights Wi
remain constant after training a neural network, the shift
amounts can be pre-determined based off the bit indices of
ones within the 32-bit weight value, starting with the most
significant one. Figure 6a shows an implementation of this
simplified shift-add unit. Xi represents the input of a neuron
and Wi j is the shift amount for the ith weight in its jth iteration.
The weight register stores these predetermined shift amounts.
Since the shift amounts are indices of bits within a 32-bit
weight value, the maximum shift amount is 32, which can be
represented by a 5 bit value. Thus, each 32-bit entry in the
weight register can hold a total of five shift amounts.

Figure 6 shows the design using an example in which Wi=

0101101029010 and Xi = 011111012 12510. Multiple itera-
tions of the simplified shift-add unit execution are shown in
Figure 6b and 6c. TheWi j shift amount can be pre-determined
by obtaining the bit index of the jth leading one of Wi. In this
example, the most significant one in Wi is in the sixth bit posi-
tion, meaning Xi is shifted by W00=610=1102. The result is
then accumulated to the sum, which is initialized to zero. The
first iteration (Figure 6b) yields 800010, which achieves 71%
accuracy to the actual sum 1125010. More iterations leads
to higher accuracy at the cost of higher energy consumption.
The second (Figure 6c), third, and fourth iterations achieve

 Simplified Unit(a)

Shifter

W
ei

gh
t R

eg
is

te
r

W00 =  (00110)2
W01 =  (00100)2

W02 =  (00011)2

W03 =  (00001)2

W10 =  (00111)2

W11 =  (00101)2

W12 =  (00100)2

W13 =  (00000)2

(125)10

(8,000)10

Xi

Shifter

+

W00 =  (00110)2

W01 =  (00100)2
W02 =  (00011)2

W03 =  (00001)2

W10 =  (00111)2

W11 =  (00101)2

W12 =  (00100)2

W13 =  (00000)2

(125)10

(10,000)10

Xi

W
ei

gh
t R

eg
is

te
r

Shifter

Input

Output

Xi

W
ei

gh
t 

Re
gi

st
er

Iteration #1(b) Iteration #2(c)

Wij
++

Figure 6: (a) Example of the simplified shift-add unit with pre-
loaded shift amounts. (b-c) Two iterations of the shift-add unit.

89%, 98%, and 100% (e.g. zero accuracy loss) accuracy, re-
spectively. We evaluate the trade-offs between different arith-
metic units for in-DRAM neural acceleration in Section 8.

6 DATA ORGANIZATION FOR AXRAM
The AXRAM architecture (Section 4) leverages bank-group
level parallelism to supply all arithmetic units with inputs
simultaneously. For this design to comply with the SIMT
execution model, we require data to be laid out in a specific
order on a single GDDR5 chip. Recent work [4, 35, 38] has
shown the benefits of data organization in improving the
efficiency of near-data processing for certain applications.
A neural network execution has consistent and predictable
memory access patterns [15, 27]. Similar to recent work [38],
we leverage the predictability of the memory access patterns
in neural network execution to perform a series of data organi-
zation optimizations to fully utilize the inherent bank-group
and bank-level memory parallelism in memory. Since the
weights of the network are shared amongst all the threads
and loaded into the weight register before in-DRAM neural
computation, we only need to ensure that the input data is
properly placed in memory.
Data partitioning. We logically divide a warp into four
partitions, each with eight threads. The data for all the
eight threads of each partition is allocated within each bank-
group. That is, the data for the first partition of threads (e.g.
thread0−7) is allocated to the first bank-group. Similarly, the
data for thread8−15, thread16−23, thread24−31 is allocated
to the second, third, and fourth bank-group, respectively. If
there is shared data between warps, we replicate it during
the data partitioning. On average, the overhead of duplicated
data is ≈2% in terms of storage.
Data shuffling. Within a partition, the data has to be orga-
nized in such a way that we can read and write all the data
for the 32 arithmetic units at a time and efficiently utilize
the bank-level parallelism. Specifically, AXRAM requires
two constraints to be met for the data layout: (1) the row and
column addresses of a given neuron’s inputs for all the 32
threads have to be the same across the bank-groups and (2)
the addresses of a neuron’s inputs for each thread in a given
partition have to be consecutive. As such, similar to address
mapping in baseline GPU [13], in AXRAM data for different
neurons for a given partition is distributed among the banks
to enable interleaving requests to different banks on the chip.
Memory management APIs. We adopt a memory model
similar to the AMD’s Accelerated Processing Units [10] to

7



provide a single physical memory space divided into two
separate and non-overlapping logical memory spaces for
the GPU and in-DRAM neural accelerator respectively. The
separation between the GPU and in-DRAM accelerator data
and the proposed data partitioning and shuffling schemes are
performed on-the-fly when the host transfers the data to the
GPU memory during kernel initialization using customized
memory management APIs. We use an approach similar to
prior work [25, 45] and modify the CUDA driver API (e.g.
cuMemCopyHtoD(), cuMemCopyDtoH()) to implement the
proposed data organization optimizations (e.g. data partition-
ing and shuffling) for in-DRAM neural acceleration. The
overhead of performing the proposed data organization is
amortized over the long CUDA kernel execution time and is
accounted for in Section 8.

7 MEMORY MODEL
Virtual memory. Modern GPUs support simple virtual mem-
ory [16, 60, 72, 73, 83, 86]. AXRAM instructions use virtual
addresses similar to CUDA instructions. Once a GPU core
issues an AXRAM instruction, the virtual addresses are trans-
lated to physical addresses through TLBs/page tables placed
in the on-chip memory controllers, similar to other CUDA
instructions [72, 73]. Then, the physical addresses are sent
to the memory for in-DRAM neural computation. Virtual ad-
dress support in AXRAM instructions expels the need to mod-
ify the underlying GPU virtual memory management system.

To fully utilize the inherent parallelism in memory (ex-
plained in Section 6), AXRAM requires the data to be allo-
cated in a consecutive memory region. Most CUDA-enabled
GPUs do not support on-demand paging [9, 85]. Thus, all
the virtual memory locations are backed by actual physical
memory before the kernel initialization. To guarantee that a
contiguous virtual memory is translated to a consecutive
physical memory, we use our proposed custom memory
management API to copy the allocated data to consecutive
physical pages before the kernel execution. Additionally,
AXRAM may be extended to HSA-enabled GPUs [34]. One
potential solution is to raise a page fault exception if the
data for an in-DRAM invocation is not in the memory. The
in-DRAM accelerator will then stall until all the demanded
pages are loaded into the memory. Exploring the challenges
and opportunities for integrating in-memory accelerators to
HSA-enabled GPUs is outside the scope of this paper.
Cache coherency. We adopt a similar technique as [38] to
guarantee the cache coherency in AXRAM. The AXRAM
instructions bypasses the on-chip caches and communicate
directly with on-chip memory controller. A GPU core always
pushes all of its memory update traffic to memory before
issuing any of the AXRAM instructions. Sending memory
update traffic along with write-through policy used in most
GPUs [80] ensure that the in-DRAM accelerators have ac-
cess to the most up-to-date data. wrt_res.axram is the only
AXRAM instruction that updates the data in memory. Upon
receiving this instruction and in order to guarantee cache
coherency, the on-chip memory controller sends a series of in-
validate signals to on-chip caches and nullify any cache block

that will be updated by the offloaded in-DRAM computation.
The invalidate signals ensure that GPU cores never consume
stale data. On average, it takes ten cycles to invalidate all
the cache lines related to one neural execution. Based on our
evaluation, the overhead of sending the invalidate signals to
guarantee cache coherency is, on average, only 1.9%.
Memory consistency. The neural transformation does not
introduce additional memory accesses to the approximable
region. Therefore, there is no need to alter the applications.
AXRAM simply maintains the same memory consistency
model as the baseline GPU.

8 EVALUATION AND METHODOLOGY
We evaluate AXRAM with our simplified shift-add units
(AXRAM-SHA), fixed-point arithmetic units (AXRAM-
FXP), and floating-point arithmetic units (AXRAM-FP).

8.1 Evaluation and Methodology
Applications and datasets. As Table 1 shows, we use a
diverse set of benchmarks from the AXBENCH suite [87]
to evaluate AXRAM. AXBENCH comprises a combination of
memory- (blackscholes, jmeint, and srad) and compute-intensive
applications and comes with annotated source code, the com-
piler for neural transformation, separate training and test data
sets, and quality measurement toolsets [87].
Neural networks and quality metric. Table 1 shows the
neural network topology automatically discovered by the
AXBENCH compiler [87] which replaces the annotated code
region. We use application-specific quality metrics (Table 1)
provided by AXBENCH [87] to assess the output quality of
each application after in-DRAM acceleration. This quality
loss is due to accumulated errors from repeated execution of
the approximated region.
Cycle-level microarchitectural simulation. We use the
GPGPU-Sim 3.2.2 cycle-level microarchitectural simula-
tor [7] modified with our AXRAM ISA extensions with the
latest configuration which closely models an NVIDIA GTX

480 chipset with a Fermi architecture.3 For the memory
timing, this configuration models the GDDR5 timing from
Hynix [39]. Additionally, we augmented the simulator to
model the microarchitectural modifications in the GPU, the
memory controller, and the GDDR5 for in-DRAM neural
acceleration. The overheads of the extra instructions and
logics in AXRAM, on-chip memory controller invalidate
signals, and the data partitioning and shuffling are faithfully
modeled in our simulations. For all the baseline simulations
that do not include any approximation or acceleration, we use
a plain version of GPGPU-Sim. Table 2 summarizes the mi-
croarchitectural parameters of the GPU and GDDR5 DRAM.
In all the experiments, we run the applications to completion.
Circuit and synthesis. We use the Synopsys Design

Compiler (J-2014.09-SP3) with a NanGate 45nm li-
brary [1] for synthesis and energy analysis of our architecture.
Additionally, we use Cadence SoC Encounter (14.2) for
3NVIDIA GTX 480 is the latest configuration in GPGPU-Sim as of time
of submission.

8



Table 1: Applications (from AXBENCH [87]), quality metrics, train and evaluation datasets, and neural network configurations.

Applications
Name

binarization
blackschole
sconvolution
inversek2j
jmeint
laplacian
meanfilter
newton-raph
sobel
srad

Domain Quality Metric

Image Processing
Finance
Machine Learning
Robotics
3D Gaming
Image Processing
Machine Vision
Numerical Analysis
Image Processing
Medical Imaging

Image Diff.
Avg. Rel. Error
Avg. Rel. Error
Avg. Rel. Error
Miss Rate
Image Diff.
Image Diff.
Avg. Rel. Error
Image Diff.
Image Diff.

Input Dataset
Training

Three 512  512 pixel images
8,192 options
8,192 data points
8,192 2D coordinates
8,192 3D coordinates
Three 512  512 pixel images
Three 512  512 pixel images
8,192 cubic equations
Three 512  512 pixel images
Three 512  512 pixel images

Evaluation

Twenty 512  512 pixel images
262,144 options
262,144 data points
262,144 2D coordinates
262,144 3D coordinates
Twenty 512  512 pixel images
Twenty 512  512 pixel images
262,144 cubic equations
Twenty 512  512 pixel images
Twenty 512  512 pixel images

Neural Network 
Topology

3 4 2 1
6 8 1
17 2 1
2 16 3
18 8 2
9 2 1
7 4 1
5 2 1
9 4 1
5 4 1

Table 2: Major GPU, GDDR5, and in-DRAM neural accelerator
microarchitectural parameters.

System Overview 15 SMs, 32 Threads/Warp, 6  32-bit P2P Memory Channels
Shader Core 1.4 GHz, 1,538 Threads (48 Warps), 32,768 registers, GTO Scheduler [84]  

Two Schedulers / SM

L1 Data Cache 16 KB, 128B Cache Line, 4-Way Associative, LRU Replacement Policy [44] 
Write Policy: Write-Evict (hit), Write No-Allocate (Miss)

Shared Memory 48 KB, 32 Banks
Interconnect 1 Crossbar/Direction (15 SMs, 6 MCs), 1.4 GHz

L2 Cache 768 KB, 128B Cache Line, 16-Way Associative, LRU Replacement Policy [44] 
Write Policy: Write-Evict (hit), Write No-Allocate (Miss)

Memory Model

6  GDDR5 Memory Controllers MCs), Double Data Rate 32 mode    
64 Columns, 4K Rows, 256 Bits/Column, 16 Banks/MC, 4 Bankgroups   
2KB Row Buffer/Bank, Open Row Policy, FR-FCFS Scheduling [81, 82]    
177.4 GB/Sec Off-Chip Bandwidth

GDDR5 Timing [40]

tWCK = 3,696 MHz, tCK = 1,848 MHz, tCL = 12, tRP = 12, tRC = 40         
tRAS = 28, tRCD = 12, tRRD = 6, tCDLR = 5, tWR = 12, tCCD = 2, tCCDL = 3 
tRTPL = 2, tFAW = 23, t32AW = 184

GDDR5 Energy RD/WR without I/O = 12.5 pJ/bit [40], Activation = 22.5 pJ/bit [40]          
DRAM I/O Energy = 2 pJ/bit, Off-Chip I/O Energy = 18 pJ/bit [70, 95]

Arithmetic Unit Energy [26, 34] 32-bit Floating-Point MAC = 0.14 nJ, 32-bit Fixed-Point MAC = 0.030 nJ     
32-bit Approximate MAC = 0.0045 nJ, 32-bit Register Access = 0.9 pJ

placement and routing. As DRAM technology has only

three metal layers, naïvely taking the area numbers from

the Synopsys Design Compiler underestimates the area.

To account for this, we restrict the number of metal layers

to three in Cadence SoC Encounter for I/O pins and rout-

ing. We measure and report the area overhead of the added

hardware components after the placement and routing stage

with three metal layers. Similarly, for the added registers, we

extract the area after the placement and routing stage while

restricting the number of metal layers to three. With this

infrastructure, we analyze the proposed arithmetic units, in-

DRAM controllers, routing multiplexers, bypass transistors,

and sigmoid LUTs.

Energy modeling. To measure the energy numbers, we use

GPUWattch [51]. We also modified the GPGP-Sim to gener-

ate an event log of the in-DRAM neural accelerator and all

the other added microarchitectural components. We use the

collected event logs to measure the energy of the in-DRAM

neural acceleration. Our energy evaluations use a NanGate

45nm [1] process node and 1.4GHz clock frequency for the

shader core (see Table 2). In-DRAM AXRAM changes are

modeled using McPAT [52] and CACTI 6.5 [63].

8.2 Experimental Results
Performance and energy benefits with AXRAM-SHA.
Figure 7 shows the whole application speedup and energy

reduction when all the warps undergo approximation, normal-

ized to a baseline GPU with no acceleration and an acceler-

ated GPU (NGPU) [22], respectively. The highest speedups

are in inversek2j and newton-raph, where a large portion of

their execution time is spent in the approximable region. The

speedup with AXRAM-SHA compared to NGPU is modest,

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean
0.0×
1.0×
2.0×
3.0×
4.0×
5.0×
6.0×
7.0×

Im
pr

ov
em

en
t

11
.8
×

17
.1
×

19
.0
×

14
7.

7×

8.
2×

11
9.

8×

8.
5×

13
.3
×

Speedup Energy Saving

(a) Baseline GPU

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean
0.0×
1.0×
2.0×
3.0×
4.0×
5.0×
6.0×
7.0×

Im
pr

ov
em

en
t

7.
8×

8.
1×

Speedup Energy Saving

(b) Accelerated GPU (NGPU)

Figure 7: AXRAM-SHA whole application speedup and energy
reduction compared to (a) baseline GPU and (b) an accelerated
GPU (NGPU) [89].

because in AXRAM-SHA, we use up to four iterations of shift

and add operations. On average, AXRAM-SHA provides

2.6× (1.1×) speedup compared to GPU (NGPU).

Figure 7 also shows the energy reduction benefit of

using AXRAM-SHA normalized to a baseline GPU and

NGPU, respectively. The maximum energy reduction are

in applications–inversek2j and newton-raph–with the highest

contribution of off-chip data transfer to the whole application

energy (cf. Figure 1). The off-chip data transfer contribution

in jmeint is also high (90%). However, this application has a

large neural network topology (cf. Table 1) which leads to a

higher number of accesses to the DRAM banks to read and

write temporary data, diminishing the energy reduction. On

average, the studied benchmarks enjoy 13.3× (4.8×) energy

reduction compared to a baseline GPU (NGPU).

Energy reduction breakdown. Figure 8 shows the energy

breakdown of the DRAM system, data transfer, and data

computation for AXRAM-SHA, normalized to NGPU [89].

The first bar shows the breakdown of energy consumption

in NGPU [89], while the second bar shows the breakdown

of energy consumption in AXRAM-SHA normalized to

NGPU [89]. As the first bar shows, the NPGU [89] signifi-

cantly reduces the contribution of the data computation in the

overall system energy. Therefore, the contribution of the other

9



Table 3: Area overhead of the added major hardware
components.

Hardware Units

AXRAM-SHA (32  32-bit Approximate MACs)
AXRAM-FXP (32  32-bit Fixed-Point MACs)
AXRAM-FP (32  32-bit Floating-Point MACs)
64  32-bit Weight Registers
32  Sigmoid LUT ROMs
In-DRAM Controller

Area (mm2)
8 Metal Layers 3 Metal Layers

0.09 0.15
0.40 0.76
0.54 0.97
0.03 0.06
0.19 0.34
0.23 0.40

main parts (e.g., data transfer and DRAM system) increases.

The second bar illustrates how AXRAM-SHA significantly

reduces the contribution of data transfer between the GPU

cores and memory to the overall energy consumption of

the system. On average, AXRAM-SHA reduces the energy

consumption of data transfer by a factor of 18.5 ×. AXRAM-

SHA also reduces the average energy consumption of the

DRAM system by a factor of 2.5 × due to (1) decreased I/O

activity and (2) a higher row-buffer hit rate. Based on our

evaluation, the proposed data organization improves the row-

buffer hit rate by 2.6×. Finally, the use of simplified shift-add

units reduces the average contribution of data computation

to the whole application energy consumption by a factor

of 1.7 × compared to NGPU. These results elucidate how

AXRAM reduces the overall energy consumption compared

to a neurally accelerated GPU (NGPU ) [22].

Design overheads. Table 3 shows the area overhead of the

major hardware components added to ea ch DRAM chips.

We implement the added hardware units in Verilog and

synthesize them with Design Compiler using the NanGate

45nm library. Similar to other DRAM architecture research

papers [12, 81], we use two or three generation older logic

technology to have conservative estimations. Then, we use

Cadence SoC Encounter to perform the placement and

routing on the synthesized designs using only three metal

layers, similar to the baseline DRAM layout, for both routing

and I/O pins. We increase the area up to a point where no

placement and routing violations are identified by Cadence

SoC Encounter. We also obtain the area overhead numbers

with 8 metal layers. On average, the area overhead with three
metal layers is ≈1.9× higher than with eight metal layers (Ta-

ble 3). In total (including extra routing for power distribution

and clock network), AXRAM-SHA consumes 1.28mm2 (2.1%)

per each GDDR5 chip with a 61.6mm2 area [66, 67]. AXRAM-

FXP and AXRAM-FP impose 2.0× and 2.4× higher area

overhead compared to AXRAM-SHA. Recent work [6, 24]

has proposed the integration of CGRA-style [28] accelerators

atop commodity DRAM, either through TSVs or to the global

I/Os. Based on our evaluation, such an integration on each

DRAM chip incurs ≈47.8% area overhead. This large area

overhead makes such integration an inefficient design point

in GPUs. In contrast, our work leverages approximation to

integrate many simplified shift-add units inside each GDDR5

chip to enable in-DRAM acceleration.

Quality loss. Figure 9 shows the quality loss of AXRAM-

SHA, AXRAM-FXP, and AXRAM-FP. The quality loss

is compared with that of the original precise application

executed on a baseline GPU with no acceleration and an

unmodified DRAM. Using fixed-point arithmetic units in

bin
ari
zat

ion

bla
cks

ch
ole

s

con
vo
lut

ion

inv
ers

ek2
j
jm
ein

t

lap
lac

ian

me
an
filt

er

ne
wt
on
-ra

ph
sob

el
sra

d

ave
rag

e
0%

20%

40%

60%

80%

100%

N
or
m
a
li
ze
d
E
n
er
g
y N

G
P
U

N
G
P
U

N
G
P
U

N
G
P
U

N
G
P
U

N
G
P
U

N
G
P
U

N
G
P
U

N
G
P
U

N
G
P
U

N
G
P
U

A
x
R
a
m
-S
h
A

A
x
R
a
m
-S
h
A

A
x
R
a
m
-S
h
A

A
x
R
a
m
-S
h
A

A
x
R
a
m
-S
h
A

A
x
R
a
m
-S
h
A

A
x
R
a
m
-S
h
A

A
x
R
a
m
-S
h
A

A
x
R
a
m
-S
h
A

A
x
R
a
m
-S
h
A

A
x
R
a
m
-S
h
A

DRAM System Data Transfer Data Computation

Figure 8: Breakdown of AXRAM-SHA’s energy consumption
between DRAM system, data transfer, and data computation
normalized to NGPU [89].

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad
average

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

Q
ua

lit
y

Lo
ss

AxRam-ShA AxRam-FxP AxRam-FP

Figure 9: Whole application quality loss with AXRAM-SHA,
AXRAM-FXP, and AXRAM-FP compared to a baseline GPU.

AXRAM-FXP has negligible impact on the quality loss com-

pared to using floating-point arithmetic units in AXRAM-FP,

commensurating with other work [5, 61]. Furthermore, the

quality loss due to AXRAM-FP and AXRAM-FXP are the

same as with NGPU. To achieve an acceptable output quality

in AXRAM-SHA, we use up to four iterations of shifts and

adds operations. On average, using AXRAM-SHA increases

the output quality loss by 2.1% compared to the two other

AXRAM microarchitectures.

Sensitivity study of AXRAM with different arithmetic
units. Figure 10a compares the whole application speedup

with AXRAM-SHA, AXRAM-FXP, and AXRAM-FP nor-

malized to NGPU. Since AXRAM-SHA performs multiple

iterations of shifts and adds for each MAC operations its

average speedup is less than the other two AXRAM microar-

chitectures. AXRAM-SHA, with multiple iterations per each

multiply-accumulate operation, still provides a 1.1× speedup

on average. We see the same speedup across the evaluated

applications for AXRAM-FP and AXRAM-FXP, which both

take the same number of cycles to compute an in-DRAM

neural accelerator invocation. On average, AXRAM-FP and

AXRAM-FXP provide 2.0× speedup for the evaluated bench-

marks. Figure 10b shows the whole application energy re-

duction of the three AXRAM options normalized to NGPU.

On average, AXRAM-SHA achieves 4.8× energy reduction,

which is 1.6× and 1.2× more than that of AXRAM-FP and

AXRAM-FXP, respectively. AXRAM-SHA achieves a higher

energy reduction by simplifying the integrated arithmetic

units and trading off the speedup and output quality loss.

Off-chip bandwidth utilization. In Figure 11 we com-

pare the off-chip bandwidth of AXRAM-SHA with a base-

line GPU with no acceleration and an accelerated GPU

(NGPU) [89]. NGPU can accelerate the data processing part

of GPU applications, but it increases the off-chip bandwidth

10



binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean
0.0×
0.5×
1.0×
1.5×
2.0×
2.5×
3.0×
3.5×

S
pe

ed
up

AxRam-ShA AxRam-FxP AxRam-FP

(a) Speedup

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean
0.0×
1.0×
2.0×
3.0×
4.0×
5.0×
6.0×
7.0×
8.0×

E
ne

rg
y

R
ed

uc
tio

n AxRam-ShA AxRam-FxP AxRam-FP

(b) Energy Reduction

Figure 10: AXRAM whole application (a) speedup and (b)
energy reduction with the different microarchitectural options
compared to a neurally accelerated GPU (NGPU [89]).

utilization by 2.2×. However, AXRAM-SHA significantly

can reduce the off-chip bandwidth pressure by performing

the neural computation in DRAM. This effectively eliminates

most of the data transfer of the approximable region between

GPU cores and DRAM. Yet, there is still a small amount of

communication between the GPU cores and memory for ini-

tializing the in-DRAM execution and transferring the control

messages. On average, AXRAM-SHA can effectively reduce

the off-chip bandwidth by a factor of 7.3× (16×) compared

to NGPU (baseline GPU).

DRAM power. In this work we aim to offset that the increase

in power due to integrating the arithmetic units with the

decrease in overall DRAM power due to the reduction in

memory I/O activity and increased row-buffer hit rate. To

determine if AXRAM is able to remain power neutral within

DRAM, we analyze DRAM power consumption with three

AXRAM options in Figure 12. The reduction in the data

communication and the increase in row-buffer hit rate for

all the three AXRAM options is the same (see Figure 11).

However, as we simplify the arithmetic units, the contri-

bution of the in-DRAM accelerators to the overall DRAM

power decreases. AXRAM-FP and AXRAM-FXP increase

the overall DRAM system power consumption by 70% and

5% on average, respectively. On the other hand, AXRAM-

SHA with its simplified shift-add units effectively decreases
the average overall DRAM power consumption by 26%.

9 RELATED WORK
AXRAM is fundamentally different from the prior studies on

PIM in two major ways: (1) instead of using 3D/2.5D-stacked

technology, we build on conventional graphics DRAM de-

vices and (2) we study the unexplored area of tightly integrat-

ing approximate accelerators in memory. AXRAM represents

a convergence of two main bodies of research, approximate

computing and processing in memory.

Neural acceleration. Several architectures have been pro-

posed for neural acceleration [5, 8, 19, 20, 22, 29, 30, 59,

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad
average

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%

O
ff-

ch
ip

B
an

dw
id

th
U

til
iz

at
io

n

AxRam-ShA Basline GPU Accelerated GPU (NGPU)

Figure 11: Off-chip memory bandwidth consumption for AXRAM-
SHA, a baseline GPU, and an accelerated GPU (NGPU) [89].

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean
0.0×
0.5×
1.0×
1.5×
2.0×
2.5×
3.0×

O
ve

ra
ll

D
R

A
M

S
ys

te
m

Po
w

er

AxRam-ShA AxRam-FxP AxRam-FP

Figure 12: AXRAM average DRAM system power with the differ-
ent microarchitectural options normalized to a baseline GPU.

61, 89]. For example, prior work tightly integrated such

neural accelerators with GPUs for significant improvement in

performance and energy efficiency [89], but the improvement

quickly diminishes due to limited off-chip DRAM bandwidth.

In contrast, we leverage the simplicity of the neural acceler-

ator architecture to tightly integrate them with conventional

DRAM devices. This makes in-DRAM acceleration more

practical and improves the gains from neural acceleration

by overcoming the off-chip memory bandwidth wall. Prior

to this work, the benefits, limits, and challenges of tight

integration of neural accelerators in the conventional graphics

DRAM devices was unexplored.

Processing in memory. Traditional PIM systems [17, 18,

21, 44, 57, 68, 70] integrate logic and memory onto a single

die to enable lower data access latency and higher memory

bandwidth, but they suffer from high manufacturing cost and

low yield. Recently, a wealth of architectures for PIM have

been proposed, ranging from fully programmable to fixed-

function, using 3D/2.5D stacking technologies [3, 6, 23, 24,

26, 27, 31, 38, 47, 64, 65, 74, 79, 91, 92].

10 CONCLUSION
PIM and approximate computing are two promising ap-

proaches for higher performance and energy efficiency. This

work developed AXRAM, a low-overhead accelerated mem-

ory architecture that represents the confluence of these two

approaches. AXRAM delivers 1.1× speedup and 4.8× higher

energy efficiency over even an accelerated GPU with with

less than 2.1% added area to each DRAM chip.

11 ACKNOWLEDGMENTS
Amir Yazdanbakhsh is partly supported by a Microsoft

Research PhD Fellowship. This work was in part sup-

ported by NSF awards CNS#1703812, ECCS#1609823,

CCF#1553192, Air Force Office of Scientific Research

(AFOSR) Young Investigator Program (YIP) award #FA9550-

17-1-0274, NSF-1705047, Samsung Electronics, and gifts

from Google, Microsoft, Xilinx, and Qualcomm.

11



REFERENCES
[1] 2015. NanGate FreePDK45 Open Cell Library. http://www.nangate.

com. (2015). http://www.nangate.com/?page_id=2325
[2] 2015. NVIDIA Corporation. CUDA Programming Guide.

http://docs.nvidia.com/cuda/cuda-c-programming-guide. (2015).
http://docs.nvidia.com/cuda/cuda-c-programming-guide

[3] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and
Kiyoung Choi. 2015. A Scalable Processing-in-Memory Accelerator
for Parallel Graph Processing. In ISCA.

[4] Berkin Akin, Franz Franchetti, and James C Hoe. 2015. Data
Reorganization in Memory using 3D-stacked DRAM. In ISCA.

[5] Renée St Amant, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites,
Hadi Esmaeilzadeh, Arjang Hassibi, Luis Ceze, and Doug Burger.
2014. General-Purpose Code Acceleration with Limited-Precision
Analog Computation. In ISCA.

[6] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam
Sung Kim. 2016. Chameleon: Versatile and Practical Near-DRAM
Acceleration Architecture for Large Memory Systems. In MICRO.

[7] A Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt.
2009. Analyzing CUDA Workloads using a Detailed GPU Simulator.
In ISPASS.

[8] Bilel Belhadj, Antoine Joubert, Zheng Li, Rodolphe Héliot, and
Olivier Temam. 2013. Continuous Real-World Inputs Can Open Up
Alternative Accelerator Designs. In ISCA.

[9] Tarun Beri, Sorav Bansal, and Subodh Kumar. 2015. A Scheduling
and Runtime Framework for a Cluster of Heterogeneous Machines
with Multiple Accelerators. In IPDPS.

[10] Pierre Boudier and Graham Sellers. 2011. Memory System on Fusion
APUs. AMD Fusion developer summit (2011).

[11] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. 2013.
Verifying Quantitative Reliability for Programs that Execute on
Unreliable Hardware. In OOPSLA.

[12] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O.
Mutlu. 2016. Low-Cost Inter-Linked Subarrays (LISA): Enabling
fast inter-subarray data movement in DRAM. In HPCA.

[13] Niladrish Chatterjee, Mike O‘Connor, Gabriel H. Loh, Nuwan
Jayasena, and Rajeev Balasubramonian. 2014. Managing DRAM
Latency Divergence in Irregular GPGPU Applications. In SC.

[14] Xuhao Chen, Li-Wen Chang, Christopher I Rodrigues, Jie Lv, Zhiying
Wang, and Wen-Mei Hwu. 2014. Adaptive Cache Management for
Energy-Efficient GPU Computing. In MICRO.

[15] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial
Architecture for Energy-Efficient Dataflow for Convolutional Neural
Networks. In ISCA.

[16] Radoslav Danilak. 2009. System and Method for Hardware-based
GPU Paging to System Memory. US7623134 B1.

[17] Michael F Deering, Stephen A Schlapp, and Michael G Lavelle. 1994.
FBRAM: A New Form of Memory Optimized for 3D Graphics. In
SIGGRAPH.

[18] Jeff Draper, Jacqueline Chame, Mary Hall, Craig Steele, Tim
Barrett, Jeff LaCoss, John Granacki, Jaewook Shin, Chun Chen,
Chang Woo Kang, et al. 2002. The Architecture of the DIVA
Processing-in-Memory Chip. In Supercomputing.

[19] Zidong Du, Avinash Lingamneni, Yunji Chen, Krishna Palem, Olivier
Temam, and Chengyong Wu. 2014. Leveraging the Error Resilience
of Machine-Learning Applications for Designing Highly Energy
Efficient Accelerators. In ASP-DAC.

[20] Schuyler Eldridge, Amos Waterland, Margo Seltzer, Jonathan
Appavoo, and Ajay Joshi. 2015. Towards General-Purpose Neural
Network Computing. In PACT.

[21] Duncan G Elliott, W Martin Snelgrove, and Michael Stumm. 1992.
Computational RAM: A Memory-SIMD Hybrid and its Application
to DSP. In Custom Integrated Circuits Conference, Vol. 30.

[22] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.
2012. Neural Acceleration for General-Purpose Approximate
Programs. In MICRO.

[23] A. Farmahini-Farahani, Jung Ho Ahn, K. Morrow, and Nam Sung
Kim. 2015. DRAMA: An Architecture for Accelerated Processing
Near Memory. CAL 14, 1 (2015).

[24] A. Farmahini-Farahani, Jung Ho Ahn, K. Morrow, and Nam Sung Kim.
2015. NDA: Near-DRAM Acceleration Architecture Leveraging Com-
modity DRAM Devices and Standard Memory Modules. In HPCA.

[25] Yusuke Fujii, Takuya Azumi, Nobuhiko Nishio, Shinpei Kato, and
Masato Edahiro. 2013. Data Transfer Matters for GPU Computing.
In ICPADS.

[26] M. Gao and Ch. Kozyrakis. 2016. HRL: Efficient and Flexible
Reconfigurable Logic for Near-Data Processing. In HPCA.

[27] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos
Kozyrakis. 2017. TETRIS: Scalable and Efficient Neural Network
Acceleration with 3D Memory. (2017).

[28] V. Govindaraju, C. H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K.
Sankaralingam, and C. Kim. 2012. DySER: Unifying Functionality
and Parallelism Specialization for Energy-Efficient Computing. IEEE
Micro 32, 5 (2012), 38–51.

[29] Beayna Grigorian, Nazanin Farahpour, and Glenn Reinman. 2015.
BRAINIAC: Bringing Reliable Accuracy Into Neurally-Implemented
Approximate Computing. In HPCA.

[30] Beayna Grigorian and Glenn Reinman. 2014. Accelerating Divergent
Applications on SIMD Architectures using Neural Networks. In ICCD.

[31] Q. Guo, N. Alachiotis, B. Akin, F. Sadi, G. Xu, T-M. Low, L. Pileggi, J.
Hoe, and F. Franchetti. 2014. 3D-Stacked Memory-Side Acceleration:
Accelerator and System Design. In WoNDP.

[32] Qing Guo, Xiaochen Guo, Ravi Patel, Engin Ipek, and Eby G.
Friedman. 2013. AC-DIMM: Associative Computing with
STT-MRAM. In ISCA.

[33] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained
Quantization, and Huffman Coding. In ICLR.

[34] Mark Harris. 2016. Inside Pascal: Nvidia’s Newest Computing
Platform. https://devblogs.nvidia.com/parallelforall/inside-pascal/.
(2016). https://devblogs.nvidia.com/parallelforall/inside-pascal/

[35] Syed Minhaj Hassan, Sudhakar Yalamanchili, and Saibal Mukhopad-
hyay. 2015. Near Data Processing: Impact and Optimization of 3D
Memory System Architecture on the Uncore. In MEMSYS.

[36] Mark Horowitz. [n. d.]. Energy Table for 45nm Process. ([n. d.]).
[37] Rui Hou, Lixin Zhang, Michael C Huang, Kun Wang, Hubertus

Franke, Yi Ge, and Xiaotao Chang. 2011. Efficient Data Streaming
with On-chip Accelerators: Opportunities and Challenges. In HPCA.

[38] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee,
Mike O‘Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W
Keckler. 2016. Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems. In
ISCA.

[39] Hynix. Hynix GDDR5 SGRAM Part H5GQ1H24AFR Revision 1.0.
2015. (2015).

[40] Krzysztof Iniewski. 2010. CMOS Processors and Memories. Springer
Science & Business Media.

[41] Jayesh Iyer, Corinne L Hall, Jerry Shi, and Yuchen Huang. 2006. Sys-
tem Memory Power and Thermal Management in Platforms Build on
Intel Centrino Duo Technology. Intel Technology Journal 10, 2 (2006).

[42] JEDEC. October 2013. High Bandwidth Memory DRAM. http:
//www.jedec.org/standards-documents/docs/jesd235. (October 2013).

[43] Hadi Jooybar, Wilson W.L. Fung, Mike O’Connor, Joseph Devietti,
and Tor M. Aamodt. 2013. GPUDet: A Deterministic GPU
Architecture. In ASPLOS.

[44] Yi Kang, Wei Huang, Seung-Moon Yoo, Diana Keen, Zhenzhou Ge,
Vinh Lam, Pratap Pattnaik, and Josep Torrellas. 2012. FlexRAM:
Toward an Advanced Intelligent Memory System. In ICCD.

[45] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott Brandt.
2012. Gdev: First-Class GPU Resource Management in the Operating
System. In USENIX.

[46] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco.
2011. GPUs and the Future of Parallel Computing. IEEE Micro 31,
5 (2011), 7–17.

[47] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay.
2016. NeuroCube: A Programmable Digital Neuromorphic
Architecture with High-Density 3D Memory. In ISCA.

12

http://www.nangate.com
http://www.nangate.com
http://www.nangate.com/?page_id=2325
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide
https://devblogs.nvidia.com/parallelforall/inside-pascal/
https://devblogs.nvidia.com/parallelforall/inside-pascal/
http://www.jedec.org/standards-documents/docs/jesd235
http://www.jedec.org/standards-documents/docs/jesd235


[48] K.W. Kim. 2004. Apparatus for Pipe Latch Control Cir-
cuit in Synchronous Memory Device. (2004). https:
//www.google.com/patents/US6724684 US6724684 B2.

[49] K. Koo, S. Ok, Y. Kang, S. Kim, C. Song, H. Lee, H. Kim, Y. Kim,
J. Lee, S. Oak, Y. Lee, J. Lee, J. Lee, H. Lee, J. Jang, J. Jung, B. Choi,
Y. Kim, Y. Hur, Y. Kim, B. Chung, and Y. Kim. 2012. A 1.2V 38nm
2.4Gb/s/pin 2Gb DDR4 SDRAM with Bank Group and x4 Half-Page
Architecture. In ISSCC. 40–41.

[50] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H.
Kim, D. S. Kim, H. B. Park, J. W. Shin, J. H. Cho, K. H. Kwon, M. J.
Kim, J. Lee, K. W. Park, B. Chung, and S. Hong. 2014. 25.2 A 1.2V
8Gb 8-Channel 128GB/s High-Bandwidth Memory (HBM) Stacked
DRAM with Effective Microbump I/O Test Methods using 29nm
Process and TSV. In ISSCC.

[51] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani,
Nam Sung Kim, Tor M Aamodt, and Vijay Janapa Reddi. 2013.
GPUWattch: Enabling Energy Optimizations in GPGPUs. In ISCA.

[52] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.
Tullsen, and Norman P. Jouppi. 2009. McPAT: An Integrated Power,
Area, and Timing Modeling Framework for Multicore and Manycore
Architectures. In MICRO.

[53] Jiang Lin, Hongzhong Zheng, Zhichun Zhu, Howard David, and
Zhao Zhang. 2007. Thermal Modeling and Management of DRAM
Memory Systems. In ISCA.

[54] Jiang Lin, Hongzhong Zheng, Zhichun Zhu, Eugene Gorbatov, Howard
David, and Zhao Zhang. 2008. Software Thermal Management of
DRAM Memory for Multicore Systems. SIGMETRICS 36, 1 (2008),
337–348.

[55] J. Lin, H. Zheng, Z. Zhu, and Z. Zhang. 2013. Thermal Modeling and
Management of DRAM Systems. IEEE Trans. Comput. 62, 10 (2013),
2069–2082.

[56] Song Liu, Brian Leung, Alexander Neckar, Seda Ogrenci Memik,
Gokhan Memik, and Nikos Hardavellas. 2011. Hardware/Software
Techniques for DRAM Thermal Management. In HPCA.

[57] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J Dally, and
Mark Horowitz. 2000. Smart Memories: A Modular Reconfigurable
Architecture. In ISCA.

[58] K Man. [n. d.]. Bensley FB-DIMM Performance/Thermal
Management. In Intel Developer Forum.

[59] Lawrence McAfee and Kunle Olukotun. 2015. EMEURO: A
Framework for Generating Multi-Purpose Accelerators via Deep
Learning. In CGO.

[60] Xinxin Mei and Xiaowen Chu. 2016. Dissecting GPU Memory
Hierarchy through Microbenchmarking. IEEE Transactions on
Parallel and Distributed Systems 99 (2016).

[61] Thierry Moreau, Mark Wyse, Jacob Nelson, Adrian Sampson, Hadi Es-
maeilzadeh, Luis Ceze, and Mark Oskin. 2015. SNNAP: Approximate
Computing on Programmable SoCs via Neural Acceleration. In HPCA.

[62] Janani Mukundan, Hillery Hunter, Kyu-hyoun Kim, Jeffrey Stuecheli,
and José F. Martínez. 2013. Understanding and Mitigating Refresh
Overheads in High-density DDR4 DRAM Systems. In ISCA.

[63] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi.
2007. Optimizing NUCA Organizations and Wiring Alternatives for
Large Caches with CACTI 6.0. In MICRO.

[64] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith
Kumar, and Hyesoon Kim. 2017. GraphPIM: Enabling Instruction-
Level PIM Offloading in Graph Computing Frameworks. In HPCA.

[65] R. Nair, S.F. Antao, C. Bertolli, P. Bose, J.R. Brunheroto, T. Chen, C.
Cher, C.H.A. Costa, J. Doi, C. Evangelinos, B.M. Fleischer, T.W. Fox,
D.S. Gallo, L. Grinberg, J.A. Gunnels, A.C. Jacob, P. Jacob, H.M. Ja-
cobson, T. Karkhanis, C. Kim, J.H. Moreno, J.K. O’Brien, M. Ohmacht,
Y. Park, D.A. Prener, B.S. Rosenburg, K.D. Ryu, O. Sallenave, M.J.
Serrano, P.D.M. Siegl, K. Sugavanam, and Z. Sura. 2015. Active
Memory Cube: A Processing-in-Memory Architecture for Exascale
Systems. IBM Journal of Research and Development 59, 2/3 (2015).

[66] T. Y. Oh, Y. S. Sohn, S. J. Bae, M. S. Park, J. H. Lim, Y. K. Cho, D. H.
Kim, D. M. Kim, H. R. Kim, H. J. Kim, J. H. Kim, J. K. Kim, Y. S.
Kim, B. C. Kim, S. H. Kwak, J. H. Lee, J. Y. Lee, C. H. Shin, Y. Yang,
B. S. Cho, S. Y. Bang, H. J. Yang, Y. R. Choi, G. S. Moon, C. G. Park,

S. W. Hwang, J. D. Lim, K. I. Park, J. S. Choi, and Y. H. Jun. 2011. A
7 Gb/s/pin 1 Gbit GDDR5 SDRAM With 2.5 ns Bank to Bank Active
Time and No Bank Group Restriction. JSSC 46, 1 (2011), 107–118.

[67] T. Y. Oh, Y. S. Sohn, S. J. Bae, M. S. Park, J. H. Lim, Y. K. Cho, D. H.
Kim, D. M. Kim, H. R. Kim, H. J. Kim, J. H. Kim, J. K. Kim, Y. S.
Kim, B. C. Kim, S. H. Kwak, J. H. Lee, J. Y. Lee, C. H. Shin, Y. S.
Yang, B. S. Cho, S. Y. Bang, H. J. Yang, Y. R. Choi, G. S. Moon, C. G.
Park, S. W. Hwang, J. D. Lim, K. I. Park, J. S. Choi, and Y. H. Jun. [n.
d.]. A 7Gb/s/pin GDDR5 SDRAM with 2.5ns Bank-to-Bank Active
Time and no Bank-group Restriction. In ISSCC’10.

[68] M. Oskin, F.T. Chong, and T. Sherwood. 1998. Active Pages: a
Computation Model for Intelligent Memory. In ISCA.

[69] Jongse Park, Hadi Esmaeilzadeh, Xin Zhang, Mayur Naik, and
William Harris. 2015. FlexJava: Language Support for Safe and
Modular Approximate Programming. In FSE.

[70] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm,
Kimberly Keeton, Christoforos Kozyrakis, Randi Thomas, and
Katherine Yelick. 1997. A Case for Intelligent RAM. Micro, IEEE
17, 2 (1997).

[71] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. 2014. Archi-
tectural Support for Address Translation on GPUs: Designing Memory
Management Units for CPU/GPUs with Unified Address Spaces. In
ACM SIGARCH Computer Architecture News, Vol. 42. 743–758.

[72] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. 2014.
Architectural Support for Address Translation on GPUs: Designing
Memory Management Units for CPU/GPUs with Unified Address
Spaces. In ASPLOS.

[73] Jason Power, Mark D Hill, and David A Wood. 2014. Supporting
x86-64 Address Translation for 100s of GPU Lanes. In HPCA.

[74] S.H. Pugsley, J. Jestes, R. Balasubramonian, V. Srinivasan, A.
Buyuktosunoglu, A. Davis, and Feifei Li. 2014. Comparing
Implementations of Near-Data Computing with In-Memory
MapReduce Workloads. Micro, IEEE 34, 4 (2014).

[75] Brian M. Rogers, Anil Krishna, Gordon B. Bell, Ken Vu, Xiaowei
Jiang, and Yan Solihin. 2009. Scaling the Bandwidth Wall: Challenges
in and Avenues for CMP Scaling. In ISCA.

[76] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2012.
Cache-Conscious Wavefront Scheduling. In MICRO.

[77] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. 2011. EnerJ: Approximate Data Types for Safe and
General Low-Power Computation. In PLDI.

[78] Richard Sampson, Ming Yang, Siyuan Wei, Chaitali Chakrabarti, and
Thomas F Wenisch. 2013. Sonic Millip3De: A Massively Parallel
3D-stacked Accelerator for 3D Ultrasound. In HPCA.

[79] C. Shelor, K. Kavi, and Adavally S. 2015. Dataflow based Near Data
Processing using Coarse Grain Reconfigurable Logic. In WoNDP.

[80] Inderjit Singh, Arrvindh Shriraman, Wilson WL Fung, Mike
O’Connor, and Tor M Aamodt. 2013. Cache Coherence for GPU
Architectures. In HPCA.

[81] Young Hoon Son, O. Seongil, Yuhwan Ro, Jae W. Lee, and Jung Ho
Ahn. 2013. Reducing Memory Access Latency with Asymmetric
DRAM Bank Organizations. In ISCA.

[82] Yingying Tian, Sooraj Puthoor, Joseph L Greathouse, Bradford M
Beckmann, and Daniel A Jiménez. 2015. Adaptive GPU Cache
Bypassing. In Proceedings of the 8th Workshop on General Purpose
Processing using GPUs.

[83] Peter C Tong, Sonny S Yeoh, Kevin J Kranzusch, Gary D Lorensen,
Kaymann L Woo, Ashish Kishen Kaul, Colyn S Case, Stefan A
Gottschalk, and Dennis K Ma. 2008. Dedicated Mechanism for Page
Mapping in a GPU. US20080028181 A1.

[84] Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek
Bhowmick, Rachata Ausavarungnirun, Onur Mutlu, Chita Das,
Mahmut Kandemir, and Todd C. Mowry. 2015. A Case for Core-
Assisted Bottleneck Acceleration in GPUs: Enabling Efficient Data
Compression. In ISCA.

[85] Nicholas Wilt. 2013. The CUDA Handbook: A Comprehensive Guide
to GPU Programming. Pearson Education.

[86] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi,
and Andreas Moshovos. 2010. Demystifying GPU Microarchitecture

13

https://www.google.com/patents/US6724684
https://www.google.com/patents/US6724684


through Microbenchmarking. In ISPASS.
[87] Amir Yazdanbakhsh, Divya Mahajan, Pejman Lotfi-Kamran, and

Hadi Esmaeilzadeh. 2016. AxBench: A Multi-Platform Benchmark
Suite for Approximate Computing: Acceleration for GPU Throughput
Processors. IEEE Design and Test (2016).

[88] Amir Yazdanbakhsh, Divya Mahajan, Bradley Thwaites, Jongse
Park, Anandhavel Nagendrakumar, Sindhuja Sethuraman, Kartik
Ramkrishnan, Nishanthi Ravindran, Rudra Jariwala, Abbas Rahimi,
Hadi Esmaeilzadeh, and Kia Bazargan. 2015. Axilog: Language
Support for Approximate Hardware Design. In DATE.

[89] Amir Yazdanbakhsh, Jongse Park, Hardik Sharma, Pejman Lotfi-
Kamran, and Hadi Esmaeilzadeh. 2015. Neural Acceleration for GPU

Throughput Processors. In MICRO.
[90] Amir Yazdanbakhsh, Gennady Pekhimenko, Bradley Thwaites, Hadi

Esmaeilzadeh, Onur Mutlu, and Todd C. Mowry. 2015. RFVP:
Rollback-Free Value Prediction with Safe to Approximate Loads. In
TACO.

[91] D.P. Zhang, N. Jayasena, A. Lyashevsky, J.L. Greathouse, L.F. Xu, and
M. Ignatowski. 2014. TOP-PIM: Throughput-Oriented Programmable
Processing in Memory. In HPDC.

[92] Qiuling Zhu, T. Graf, H.E. Sumbul, L. Pileggi, and F. Franchetti. 2013.
Accelerating Sparse Matrix-Matrix Multiplication with 3D-Stacked
Logic-in-Memory Hardware. In HPEC.

14


	Abstract
	1 Introduction
	2 Overview
	2.1 Challenges and Opportunities
	2.2 Approximation for Near-Data Processing

	3 AxRam Execution Flow and ISA
	3.1 Neural Acceleration of GPU Warps
	3.2 Execution Flow with AxRam
	3.3 ISA Extensions for AxRam

	4 AxRam Microarchitecture
	4.1 Background: GDDR5 Architecture
	4.2 In-DRAM Accelerator Integration
	4.3 Interfacing the GPU with AxRam

	5 Arithmetic Units Simplification
	6 Data Organization for AxRam
	7 Memory Model
	8 Evaluation and Methodology
	8.1 Evaluation and Methodology
	8.2 Experimental Results

	9 Related Work
	10 Conclusion
	11 Acknowledgments
	References

