
Amber*: Enabling Precise Full-System Simulation
with Detailed Modeling of All SSD Resources

Donghyun Gouk1, Miryeong Kwon1, Jie Zhang1, Sungjoon Koh1, Wonil Choi1,2,
Nam Sung Kim3, Mahmut Kandemir2 and Myoungsoo Jung1

Yonsei University,
1Computer Architecture and Memory Systems Lab,

2Pennsylvania State University, 3University of Illinois Urbana-Champaign,
http://camelab.org

Abstract—SSDs become a major storage component in modern
memory hierarchies, and SSD research demands exploring future
simulation-based studies by integrating SSD subsystems into a
full-system environment. However, several challenges exist to
model SSDs under a full-system simulations; SSDs are composed
upon their own complete system and architecture, which employ
all necessary hardware, such as CPUs, DRAM and interconnect
network. Employing the hardware components, SSDs also require
to have multiple device controllers, internal caches and software
modules that respect a wide spectrum of storage interfaces and
protocols. These SSD hardware and software are all necessary
to incarnate storage subsystems under full-system environment,
which can operate in parallel with the host system.

In this work, we introduce a new SSD simulation framework,
SimpleSSD 2.0, namely Amber, that models embedded CPU
cores, DRAMs, and various flash technologies (within an SSD),
and operate under the full system simulation environment by
enabling a data transfer emulation. Amber also includes full
firmware stack, including DRAM cache logic, flash firmware,
such as FTL and HIL, and obey diverse standard protocols by
revising the host DMA engines and system buses of a popular
full system simulator’s all functional and timing CPU models
(gem5). The proposed simulator can capture the details of
dynamic performance and power of embedded cores, DRAMs,
firmware and flash under the executions of various OS systems
and hardware platforms. Using Amber, we characterize several
system-level challenges by simulating different types of full-
systems, such as mobile devices and general-purpose computers,
and offer comprehensive analyses by comparing passive storage
and active storage architectures.

Index Terms—Full-system simulator, solid state drive, non-
volatile memory, memory system, storage, flash memory

I. INTRODUCTION

Non-volatile memories (NVMs) and flash-based storage are
widely used in many computing domains, and are changing
the role of storage subsystems in modern memory/storage
systems. For example, solid state drives (SSDs) have already
replaced most conventional spinning disks in handhelds and
general computing devices [1], [2]. Further, servers and high
performance computers leverage SSDs as a cache or as a burst
buffer in hiding long latencies imposed by the underlying disks
[3]–[5], or placing hot data for satisfying quality of service
(QoS) and service level agreement (SLA) constraints [6], [7].

While most of the time simulation-based studies are nec-
essary to explore a full design space by taking into account

*Amber is the project name for SimpleSSD 2.0. All the sources of our
simulation framework are available to download from https://simplessd.org.

different SSD technologies, it is non-trivial to put SSD-based
subsystems into a full-system simulation environment. First,
even though SSDs are considered as storage or memory
subsystems, in contrast to conventional memory technolo-
gies, they are in practice incarnated on top of a complete,
independent, and complex system that has its own computer
architecture and system organization. Second, SSDs consist
of not only a storage backend (by having multiple flash
packages through internal system buses), but also a computation
complex that employs embedded CPU cores, DRAM modules,
and memory controllers. As all these hardware components
operate in parallel with the host, the simulated evaluations
can be easily far from the actual performance. Third, SSDs
serve I/O requests and communicate with the host system
through different types of storage interfaces, including serial
ATA (SATA) [8], universial flash storage [9], NVM Express
(NVMe) [10], and open-channel SSD (OCSSD) [11]. Since
SSDs are subservient to the host system and OS decisions, SSD-
based subsystem or full-system simulations without considering
these storage interfaces and software stacks can result in ill-
tuned and overly-simplified evaluations. Lastly, SSDs also
employ different firmware modules optimized to reduce the
performance disparity between the host interface and the
internal storage complex, which also have a great impact
on user-level system behavior, based on different workload
executions on full-system environment.

Unfortunately, most SSD simulation infrastructures available
today have no full software stack simulation through emulation
of data transfers and they also lack SSD internal hardware
and/or software resource models, which makes them insufficient
to be put into a full-system environment. For example, [12],
which is widely used for SSD simulations in both academia
and industry, only captures the functionality of a specific
flash firmware, called flash translation layer (FTL) without
modeling any hardware resource in an SSD. Similarly, most
recent simulators [13]–[15] have no model for computation
complex and therefore, no detailed timing simulation for
firmware execution can be carried out. Further, to the best
of our knowledge, there exists no simulation model that can be
integrated into a full-system environment by implementing
all actual storage interfaces and data transfer emulations.
For example, [15] only mimics a pointer-based multi-queue
protocol (in storage) without modeling system buses and

469

2018 51st Annual IEEE/ACM International Symposium on Microarchitecture

978-1-5386-6240-3/18/$31.00 ©2018 IEEE
DOI 10.1109/MICRO.2018.00045

data movements. As a result, it cannot be integrated into
a full system setting that requires the emulating a real OS
and all relevant software/hardware components. Lastly, none
of the existing SSD simulators can be attached to different
storage interfaces by respecting both functional and timing
CPU modeled full-system infrastructures. For example, [13]
and [14] enable a full-system simulation, but they only work
on a functional CPU, which overly simplifies the host memory
subsystem and CPU execution timings.

Motivated by the lack of full system simulation tools
that can accommodate SSDs with all functional and timing
parameters as well as firmware, we introduce a new SSD
simulation framework, SimpleSSD 2.0, namely Amber, which
accommodates all SSD resources in a full system environment
and emulates all software stacks employed by both functional
and timing CPU models. The proposed simulation framework
modifies host-side system buses, and implements device-side
controllers and a DMA engine to emulate data transfers
by considering a wide spectrum of storage interfaces and
protocols, such as SATA, UFS, NVMe, and OCSSD. In addition,
Amber implements a diverse set of firmware modules on top
of detailed SSDs computation/storage complex models, and
applies different flash optimizations such as parallelism-aware
readahead [16] and partial data update schemes [17], which
allows it to easily mimic the performance characteristics of
real systems. While most existing SSD simulators evaluate the
performance of an underlying storage complex by replaying
block-level traces, we evaluate/validate Amber by actually
executing different microbenchmarks as well as user-level
applications on real OS-enabled systems.

To the best of our knowledge, Amber is the first SSD
simulation framework, that incorporates both computation and
storage complexes within an SSD and covers a large and
diverse set of storage interface protocols and data transfer
emulation, while considering a full-system storage stack. The
main contributions of this work can be summarized as follows:
• Hardware and software co-simulation for storage. For SSD’s
computation complex, we model and integrate embedded CPU
cores, DRAM modules/controller and system buses, which
can capture the detailed latencies and throughput of the
execution of flash firmware components based on ARMv8
ISA. Amber’s storage complex implements reconfigurable
interconnection networks that can simulate a wide spectrum
of flash technologies by considering detailed flash transaction
timing models. We integrate a full firmware stack on top of the
computation and storage complexes, thereby capturing diverse
SSD functionalities, such as I/O caching, garbage collection,
wear-leveling, and address translation. This co-simulation
framework offers realistic storage latency and throughput values
by incorporating all SSD resources into a full-system. Amber
can also be used to explore various dynamics of an SSD, which
are critical for monitoring power/energy usages of different
storage components under real application execution scenarios.
• Enabling SSDs in diverse full-system domains. Real systems
can attach an SSD over different locations based on their
platform and user demands. We enable both I/O controller
hub’s hardware-driven storage (e.g., SATA and UFS) and
memory controller hub’s software-driven storage (e.g., NVMe
and OCSSD) by implementing all their mandatory commands

and data transfer mechanisms. To this end, we integrate our
hardware/software co-simulation storage models into gem5
[18], and revise gem5 for tight integration with data transfer
emulation. Amber modifies gem5’s system bar and models a
host-side DMA engine that moves data between the OS system
memory and the underlying storage. This work also includes a
set of protocol-specific implementations such as host/device
controllers, system memory references over a pointer list, and
a queue arbitration logic. Amber works with all of gem5’s
CPU types such as timing and functional CPU models for
both in-order and out-of-order executions under different OS
versions.
• Holistic analysis for different storage subsystem designs.
Since Amber can emulate data transfers and execute a full
storage stack, including host’s system software and device’s
firmware, We implement a diverse set of SSD subsystems in
Amber, and analyze their system-level challenges. Specifically,
we characterize i) the performance impact of employing
different operating systems, ii) mobile system challenges
regarding UFS/NVMe, and iii) passive and active storage
architectures. We observe that OS-level ill-tuned I/O scheduling
and queue management schemes can significantly degrade
the overall system performance, and that user applications
in mobile computing should be revised by considering high
performance SSD designs. Specifically, even though NVMe
(attached ARM core) exhibits much better performance than
UFS, some applications cannot take advantage of NVMe due
to their default I/O operation mode. Our evaluations also reveal
that the CPU and memory utilization can be problematic issues
that a passive storage architecture (employing host-side FTL
over OCSSD) needs to address in the future. In particular, while
the active storage (having NVMe controller and full firmware
stack in an SSD) consumes only 7% of the host-side CPU, the
passive storage consumes most of host-side resources.

II. BACKGROUND

A. System Architecture

Overview. SSDs can be attached to modern systems by memory
controller hub (MCH) and/or I/O controller hub (ICH) via PCI
Express (PCIe) or serial I/O ports, respectively. As shown in
Figure 1a, MCH is directly connected to CPU via a front-side
bus, and usually manages high-speed I/O components, such as
DRAM, GPGPU and NVMe SSD devices. In contrast, ICH is
paired with MCH, but handles relatively slow devices, such
as spinning disks and conventional SSDs. Due to the different
purposes of I/O connection mechanisms of MCH and ICH, in
practice, SSDs and their interfaces can classified into two types
of storage subsystems: i) hardware-driven storage (h-type) and
ii) software-driven storage (s-type). h-type storage includes
serial ATA (SATA) and universal flash storage (UFS) SSDs,
whereas NVM Express SSDs (NVMe) and open-channel SSDs
(OCSSD) operate as s-type storage. Overall, h-type storage
is more efficient than s-type storage in terms of both I/O
management efficiency and host-side resource utilization, but
its latency and bandwidth are somewhat limited, preventing
it from taking full advantage of the underlying flash media,
due to frequent hardware interventions and queue/interrupt
management complexities.

470

����

�����		�

��
���������		�

�

�

�������

���������

���������

��

��

����

����������

���������

���������	

���
��������

(a) Overview.

�������������

��������	�
�

�����������		
�

���
����

	
�

	
�

�	

��������

����

���������������

����������

�����	
��

����

����

����

�	
��

���

���

	
�

�������������

��������	�
�

	
�

�	

��������

����

���������������

����

����

����

�	
��

���

���

��������

����������

���

�

�

�

�

�

�

�

�
�
�

������		
�

�����������		
�

���
����

(b) H-type.

���

������

����	�

�	

��������	���	

��������	�
�

���

���	
���

���

���
��	������	�

���

���

����

���

���
�

�����

���

��

�����������

���

����

��������	�

����

�

(c) S-type.
Fig. 1: System architecture.

��������	�
���

��
���������	�
���

�� �� ��

����

����

����

������	
��	

��

��������

�	�� �	�� �	��

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���� ����

������

	
��

������

����

����

	
��

�

�

	

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

Fig. 2: SSD internal architecture.
H-type storage. As shown in Figure 1b, this type of storage
employs both a “host” controller and a “device” controller
for data communication over the SATA or UFS interface
protocols. The host system’s CPU and device drivers can issue
an I/O request to the underlying storage and manage interrupt
service routine (ISR) only through the host controller. This
host controller resides in ICH, and unpacks/packs multiple
commands and payload data by using its own buffer. The host
controller sends/retrieves data to/from the device controller
that exists within an SSD over its physical layer (PHY)
on behalf of the host’s OS drivers. There are two main
architectural challenges behind modeling h-type storage. First,
the data transfers between the host and underlying storage
require multiple data copies since CPU only configures a set
of registers to issue an I/O request. Specifically, for data
communication, the drivers (running on CPU) construct a
pointer list (each entry indicating the target system memory
(DRAM) page), rather than transferring contents between the
host and the storage. Therefore, the host controller should
traverse all memory pointers and copy each system memory
page to its own buffer. During this phase, the host controller
issues a request by communicating with the target device
controller through different PHYs. Second, since only the host
controller manages data movements, the number I/O requests
controlled by its hardware queue and interrupt mechanism is
comparably small and limited. In addition, all the I/O queue
management and interrupt handling of the host should be
serialized with the h-type storage architecture. This single I/O
path is often considered as a major performance bottleneck in
many computing domains [19], [20].

S-type storage. This type of storage has no host controller,
and each component of the host is managed by software.
Specifically, s-type storage’s device controller exposes specific
parts of the internal DRAM to the host’s designated system
memory regions via PCIe, which is referred to as base line
address (BAR) [21]. The software modules in the host-side
storage stack, such as host NVMe or OCSSD drivers, can
directly configure such memory-mapped BAR spaces. Since
memory-mapped spaces are in parallel visible to the device
controller, SSD can also directly pull or push data over the
host-side system memory pages. In addition, interrupts in
the s-type storage are managed by a request packet, referred
to as message-signaled interrupt (MSI/MSI-X) [22]. Once
the device controller completes an I/O service, it directly
writes the interrupt packet into another memory-mapped region
(on the host DRAM), called the MSI/MSI-X vector. While

the OS driver and device controller can manage I/O request
submissions and completions through BARs and MSI vector, it
is non-trivial to make their I/O queues consistent and coherent
between the host and storage. To address this challenge, s-
type storage supports per-queue head and tail pointers, which
can be written into doorbell registers by OS drivers but
exposed by the device controller. With the head and tail
pointer mechanisms in place, the host device driver and device
controller can synchronize enqueue and dequeue status for
each I/O submission and completion. This data communication
method allows s-type storage to employ a large number of
queues and queue entries (referred to as rich queue), and
makes the host eliminate the I/O queue as well as the ISR
serialization issues. However, since the software modules are
now involved in data transfers, s-type storage requires more
host-side resources than h-type storage [23]–[25].

B. SSD Internals
Hardware architecture. Since the performance of flash media
is much lower than the bandwidth capacity of host storage
interfaces, most modern SSDs are designed based on a
multi-channel and multi-way architecture to improve internal
parallelism, with the goal of reducing the bandwidth gap
between the host interface and flash [26], [27]. As shown
in Figure 2, multiple flash packages, each containing multiple
dies, are connected to the interconnection buses, referred to
as channel. The set of packages across different channels can
simultaneously operate, and in practice, flash firmware spreads
a host request over multiple dies that have the same offset
address, but exist across different channels. Each set of flash
dies (or packages) is called a way. A group of multiple physical
pages and blocks that span over all internal channels or ways
is referred to as super-page or super-block, respectively. In this
multi-channel and multi-way architecture, the storage complex
(putting all flash media into the interconnection network) is also
connected to a computation complex that consists of embedded
CPU cores, internal DRAM, and device controller(s). Multiple
cores are allocated to flash firmware that controls all I/O
services and address translations within an SSD. Since the
operating frequency domains between the host and storage are
completely different, all data coming from the underlying flash
(e.g., reads) or the host-side driver or controller (e.g., writes)
should be first buffered in the internal DRAM and should then
be moved to the target device. Note that the flash media of the
storage complex allows no overwrite, due to the erase-before-
write characteristic/requirement. Specifically, at the flash-level,
writes/reads are served per page, whereas erases should be

471

10 15 20 25 30

400
800

1200
1600

FlashSimSSDSim
MQSim

SSD-Ext.

Real Device

Ba
nd

w
id

th
 (M

B/
s)

I/O Depth
(a) Sequential read.

10 15 20 25 30

400
800

1200
1600

FlashSimSSDSim

MQSim
SSD-Ext.

Real Device

Ba
nd

w
id

th
 (M

B/
s)

I/O Depth
(b) Random read.

10 15 20 25 30

200
400
600
800

1000

FlashSim SSDSim

MQSim

SSD-Ext.

Real Device

Ba
nd

w
id

th
 (M

B/
s)

I/O Depth
(c) Sequential write.

10 15 20 25 30

200
400
600
800

1000

FlashSim
SSDSim

MQSim
SSD-Ext.

Real Device

Ba
nd

w
id

th
 (M

B/
s)

I/O Depth
(d) Random write.

Fig. 3: Bandwidth comparison between a real device and existing SSD simulators.

10 15 20 25 30

100
200
300
400

La
te

nc
y

(
s)

I/O Depth

SSDSim
FlashSim

Real Device

SSD-Ext.

MQSim

(a) Sequential read.
10 15 20 25 30

100
200
300
400

La
te

nc
y

(
s)

I/O Depth

SSDSimFlashSim

Real Device

SSD-Ext.

MQSim

(b) Random read.
10 15 20 25 30

100
200
300
400

1300
1400

La
te

nc
y

(
s)

I/O Depth

SSDSim
FlashSim

Intel 750

SSD-Ext.

MQSim

(c) Sequential write.
10 15 20 25 30

400
800

1200
1600
6000

La
te

nc
y

(
s)

I/O Depth

SSDSim

FlashSim

Real Device

SSD-Ext.

MQSim

(d) Random write.
Fig. 4: Latency comparison between a real device and existing SSD simulators.

NAND Flash timing (µs)
tPROG 820.62 2250

tR 59.975 104.956
tERASE 3000

Storage back-end
Channel Package Die

12 5 1
Plane Block Page

2 512 512
Internal DRAM

Size Channel Rank
1GB 1 1
Bank Chip Bus width

8 4 8

TABLE I: Hardware config-
uration of real device.

processed per block. In practice, a flash block contains 128 ∼
512 pages, and the latency of an erase operation is 50 times
longer than that of a page write. In addition, the order of
writes in a block should be in-order to avoid page-to-page
interference/disturbance for the multi-level cell (MLC) and
triple-level cell (TLC) flash technologies.
Software organization. Due to the aforementioned erase-
before-write characteristic, all existing flash-based storage
today require employing a firmware that makes it compatible
with the conventional block storage and hides the complexity
of flash management. Flash Translation Layer (FTL) is a
key component of the flash firmware that prepares a number
of blocks, which are erased in advance (called reserved
block). FTL writes data into a reserved block by mapping
the input address (logical block address, LBA) to physical
page address/number (PPA/PPN). In cases where there is no
reserved block at runtime, FTL migrates valid physical pages
from old block(s) to a new block, erases the old block, and
remaps the addresses of the migrated pages, thereby securing
available block(s) to forward incoming write requests. This
process is called garbage collection (GC). Since the number
of erases per block is limited due to flash wear-out issues
[28], [29], when FTL performs a GC task, it tries to erase
flash blocks in an evenly distributed manner, referred to as
wear-leveling. In addition, flash firmware also implements
request parsing, protocol management, I/O scheduling, and
data caching. Specifically, the device controller that exists
for both h-type storage and s-type storage, manages the data
communication based on the interface/protocol defined by
the host. Then, host interface layer (HIL) transfers data and
performs I/O scheduling atop other flash firmware modules.
Since the data is buffered in the internal DRAM in an SSD,
the flash firmware can also cache the data to leverage DRAM
performance [30], [31]. This in turn can help us hide the long
latency imposed the underlying flash media.

III. ENABLING HARDWARE/SOFTWARE CO-SIMULATION

A. Challenges in Capturing Realistic SSD Performance

Figures 3 and 4 compare SSD bandwidth and latency of a
real device (Intel 750) and existing SSD simulators, namely,
MQSim [15], SSDSim [32], SSD Extension for DiskSim (SSD-
Extension) [12], and FlashSim [33]. To perform this analysis,
we disassemble an Intel 750 device and reverse-engineer the
number of channels, ways, flash dies, and DRAM sizes. We then

check the part number of flash and also extract the low-level
flash latencies for the read, write and erase operations from
datasheets. We then configure all simulators’ device parameters
by referring the datailed hardware configuration information
given in Table I. We extract 4KB-sized block traces from the
flexible I/O tester synthetic benchmark (FIO [34]) and replay
the traces on each simulator mentioned above, with I/O depths
varying from 1 to 32. Since none of these existing simulators
is suitable to execute FIO at user level by having full storage
stack over full-system environment, replaying or generating
traces within their simulation framework is the only way to
evaluate their performance with the same device configuration.
Bandwidth trend. One can observe from Figure 3 that, all
existing simulators’ bandwidths are far from the performance
of the real device. Specifically, Intel 750 keeps utilizing the
bandwidth, and its performance saturates with 8 ∼ 16 queue
entries (except for random reads). As the number of queue
entries increases, most existing simulators exhibit performance
curves that are completely different from that of the real device.
Specifically, the existing simulators’ bandwidth i) linearly
increases (MQSim and SSDSim), ii) exhibits just a constant
trend (SSD-Extension and FlashSim), or iii) shows a curve
but does not saturate (SSDSim). In contrast, the bandwidth
trend of the real device is sublinear as the number of queue
entries increases. In addition to these trend differences, all
the simulators tested exhibit significant performance disparity
between their models and the real device. With 16 queue
entries (i.e., steady-state), the error in MQSim’s reads and
writes ranges between 3% and 80%, compared to Intel 750.
Other simulators’ error ranges are even more serious. More
specifically, the resulting errors with SSDSim, SSD-Extension,
and FlashSim for reads and writes are as high as 54%, 176%,
and 54%, and 75%, 79%, and 94%, respectively.
Latency trend. As shown in Figure 4, the latency bahavior
is different from the aforementioned bandwidth trends. As
the I/O depth is increased, the latency exhibited by the real
device gets worse (due to the queueing delays). But, for
all random and sequential I/O patterns, its latency is lower
than 175 us. While the existing simulators also show an
increased latency as the number of queue entries increases,
their latencies range between 4 us and 6285 us, and exhibit
different performance curves, compared to the real device. The
existing simulators with varying I/O depths exhibit i) sublinear-
like latency trend (MQSim, SSDSim and SSD-Extension), ii)

472

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

��� ���

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

	

�

�

�

��� ���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���������

	
��

�����

���� �������������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�������

�������

������

���������

����

�

!

�

	

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

"

#

�

�

�

�

$

	

�

�

�

�

�

�

�

�

�

�

	

�

�

!

�

�

�

�

�

�

�

�

�

�

	

�

�

%

�

&

�

�

�

	

�

�

�

�

�

�

�

�

�

�

'

�

(

�

�

�

�

�

	

�

�

�

�

(a) Internal architecture.

����

����

�	�

�������

����	�

��

�	

���

������

�	�

	���

���

����	�

���

����

���� ����

���

����

���

������	��

���	����������

��������	�
��
��������������
����
��

���������	��
������

�����������

����
��

����	�

(b) Changes for gem5 system barbus and DMA.
Fig. 5: High-level view of Amber.

constant latency trend (SSD-Extension), and iii) linear trend
curved by unrealistic gradients (FlashSim). For example, for
sequential writes, MQSim offers a latency behavior similar
to that of the real device, and its latency on sequential reads
exhibits a sublinear-like behavior when increasing the I/O
depth. SSD-Extension shows a sublinear-like latency curve for
random writes, but it does not have any latency variance when
modulating the number of queue entries under the execution of
all other I/O workloads. The latency errors incurred by MQSim,
SSDSim, SSD-Extension and FlashSim for reads and writes are
as high as 816%, 518%, 627%, and 293%, and 388%, 495%,
8492%, and 7887%, respectively.

We believe that the main reasons why most of the existing
simulators exhibit significantly different performance trends
and values from the real device, with varying I/O depths, are: i)
lack of a computation complex, ii) incomplete firmware stack,
iii) omitted storage interface and protocol management, and
iv) absence of a host-side I/O initiator (e.g., host driver or
controller). In contrast, Amber can simulate both computation
and storage complexes, and execute FIO from user-level,
employing all hardware and software components on a full-
system environment. Overall, Amber exhibits performance
trends that are very similar to those of the real device when
varying the I/O depth, and further, its user-level latency and
bandwidth are different from those observed with the real
device by 20% and 14%, on average, respectively. A more
detailed analysis will be given later in Section V.

B. High-Level View of Amber

Internal architecture. Figure 5a depicts the internal architec-
ture that Amber models for an SSD. Amber models embedded
CPU cores based on ARMv8 instruction set architecture
(ISA) [35]; we decompose the instructions of each module’s
functions in a fine-granular manner, and allocate each firmware
component to different CPU core. The function call procedures
and control flow of SSD firmware stack can vary based on
the workloads and the OS decisions made by the software
emulation of higher full-system environment, Amber keeps
track of all dynamic call procedures for each run, and
measures instruction executions by considering arithmetic
instructions, branches, loads/stores, etc. Monitoring instruction-
level execution also considers the latency, overlapped with flash
operations, thereby capturing very detailed per-request and per-
transaction timing for both synchronous and asynchronous I/O
services. In addition, we modify and integrate multicore power
and area models [36] into the embedded CPU cores. This
integration enables Amber to estimate the dynamic power and

energy of firmware execution, based on the specific full-system
environment being executed at runtime.

We also model an internal DRAM and its memory controller,
which are connected to the CPU cores through the SSD system
port. This internal DRAM and memory controller can capture
detailed DRAM timing parameters, such as row precharge
(tRP), row address to column address delay (tRCD), and CAS
latency (tCL), considering all memory references made by
the various firmware components. Specifically, this memory
model contains cached data, metadata and mapping information
during the SSD simulation, which are dynamically updated by
flash firmware. To measure the internal power consumption
of an SSD, we also incorporate a DRAM power model [37],
[38] in our DRAM module and controller. This integrated
DRAM power model considers all different DDR memory
states, including the power-down and self-refresh states, and
also takes into account the memory controller’s open-page
and close-page policies and all levels of bank-interleaving
strategies.

As part of the storage complex, we modify and integrate a
multi-channel and multi-way architecture [13] that can capture
detailed timings, such as programming time (tPROG), flash
memory island access time (tR), as well as latencies for data
transfer (tDMA) and flash command operations. This integrated
design allows Amber to accommodate highly-reconfigurable
flash memory and controller models that can accurately mimic
a diverse set of state-of-the-art flash technologies such as
multi-level cell (MLC), triple-level cell (TLC), etc. Since this
physical flash model has no built-in power model, we also
modify and add a flash power measurement tool [39] into the
storage complex’s each flash package. This model can capture
the dynamic power and energy consumption of data movements
from the internal DRAMs to each package’s row buffer (flash
registers). In addition, it dynamically measures the actual flash
access power consumed to load or store data between the buffer
and flash die/plane.
Firmware stack. Figure 5a shows Amber’s firmware stack. At
the top of this firmware stack, HIL schedules I/O requests based
on the queue protocol that the host storage interface defines.
For example, HIL of h-type storage performs I/O scheduling
based on first-in first-out (FIFO). However, it schedules I/O
requests based on two I/O arbitration mechanisms for s-type
storage, namely, round-robin (RR) and weighted round-robin
(WRR). HIL fetches a host request from the device-level
queue by communicating with a device controller that manages
storage-side physical layer (PHY) and data movement. HIL
then splits the request into multiple page-based internal requests

473

by considering Amber’s cache entry size, which is the same as
the size of a super-page. The separated requests are cached into
a DRAM model of the computation complex by the underlying
internal cache layer (ICL). ICL buffers/caches the data from
the flash and/or host controller/driver. In cases where the
data should be evicted due to a page replacement or flush
command (coming from the host-side OS), ICL retrieves the
corresponding data from the internal DRAM, composes per-
page requests whose address indicates a super-page aligned
LBA, and issues it to the underlying FTL. FTL then translates
the request’s LBA to super-page basis PPN (S-PPN). If there
is no available reserved block to allocate S-PPN, Amber’s FTL
performs GC (and wear-leveling) by considering the number of
valid pages to migrate (e.g., Greedy [40]) and block’s access
time (e.g., Cost-benefit [41]). FTL then submits the super-page
requests to the underlying flash interface layer (FIL), which in
turn schedules flash transactions and parallelizes I/O accesses
across multiple channels and ways based on a parallelism
method [42] that the user defines. Further, we optimize ICL
and FTL by being aware of flash internal parallelism to enhance
overall performance, as will be explained later in Section IV-C.

Note that all the software modules in Amber’s firmware
stack are highly reconfigurable, so that our simulation model
can be incarnated as diverse storage devices under the full-
system simulation environment. ICL can be configured as a
fully-associative, set-associative, and direct-map cache; the
number of ways and sets, cache entry size, and replacement
policy (LRU, random, etc.) can all be reconfigured. Similarly,
FTL can realize different types of mapping algorithms, such
as block-level mapping, various hybrid mapping-algorithms,
and pure page-level mapping. The request schedulers of FIL
and flash controllers can also capture all possible parallelism
combinations by taking into account the internal SSD resources
such as a channel, way, die, and plane.
Data transfer emulation. In contrast to the existing SSD
simulators that only capture latency or throughput based on
timing calculator, Amber needs to handle the actual contents
of all I/O requests between the host and storage. This data
transfer emulation is necessary to be able to execute an OS and
user-level applications on a full-system environment. To this
end, we model a DMA engine and integrate it into gem5, which
transfers real data from the host’s system memory to the internal
DRAMs of Amber’s SSD architecture model. In practice, the
host driver and/or controller for both h-type storage and s-type
storage composes a pointer list whose each entry indicates a
system memory page, as shown in Figure 5a. The DMA engine
that we implement in gem5 parses the pointer list, whose actual
structure varies based on the interface protocol that a storage
types defines. More detailed discussion on this will be presented
later in Section IV. The DMA engine then performs the data
transfer from the host DRAM to the underlying storage.

One of the challenges behind this DMA engine imple-
mentation in a full system environment is that, the different
CPU models in gem5 require different memory access timings
and I/O service procedures for the software modules in the
storage stack. For example, a functional CPU model (i.e.,
AtomicSimpleCPU) requires to push/pull actual data at the
very beginning of an I/O service (per request), but before the
execution of any corresponding data communication activities.

This is because, such functional CPU employs a simplified
DRAM model and does not have any specific timing for OS
executions. However, all other timing CPU models, including
in-order and out-of-order pipelined executions, use the details of
the memory access timing for software emulations. Therefore,
whenever the host and device controllers of s-type and h-
type storage access the memory over the system bus, the
DMA engine should be involved in handling the start and
end of memory accesses. We define multiple DMA handlers
that service queue (mapped to system memory) accesses,
queue entry references, command compositions, and pointer
list traversing activities, and register them with the gem5’s
timing simulation engine. For the content transmission, timing
CPU models should be also involved in referring each system
memory page access, transferring the page between the host and
storage, and performing I/O completion based on MSI/MSI-X.
While the functional CPU model just aggregates data transfer
activities for each request into a single I/O task (as the pointer
list contains many system memory pages to transfer) in timing
CPU models, the DMA engine emulates finer-granular data
transfers per I/O request by arbitrating the memory references
of the device/host controllers and OS drivers as many times
as the number of entries that the pointer list has.

IV. DETAILS OF FULL-SYSTEM STORAGE

A. H-type Storage

Figures 6a and 6b illustrate our SSD implementations under
full system environment for SATA and UFS, respectively.
In SATA, the host’s functional and timing CPU models are
connected to processor controller hub (PCH), which integrates
MCH and ICH together via front-side bus, whereas the CPU
models directly communicate with the host controller in UFS.
SATA modeling. PCH attaches to the underlying SATA through
a PCI endpoint by using PCI configuration spaces [43]. Under
the PCI endpoint, a host block adapter (HBA) generates a set
of commands, pointer lists, queues and the corresponding data
payloads. We implement HBA as SATA’s host device controller
in gem5, based on advanced host controller interface (AHCI)
specification [44]. This HBA communicates with the OS device
driver (e.g., ATA and the SCSI libraries [45], [46]), which
exposes the underlying SSD simulation model to all upper-
layer OS components as an actual storage volume. Specifically,
HBA exposes two major sets of registers, which are mapped
to the system memory: one for a command list and another for
communication information [44]. The command list contains
32 entries, which is related to SATA’s native command queue
(NCQ) management, while the communication information
handles data transfer-related packets, referred to as frame
information structure (FIS). Each command in the command
list includes a pointer list that contains system memory page
addresses; in SATA, the pointer list is callled physical region
descriptor table (PRDT) [47]. Through HBA’s memory-mapped
register sets, OS drivers can manage the order of I/O requests
and set all the corresponding FIS and payload data. HBA then
fetches a command and FISs from the register sets, and issues
the I/O request through SATA PHY. In our implementation,
SATA PHY exists for both full system simulator and storage
simulator. Thus, the device controller parses the issued SATA

474

�

�

�

�

�

�

�

�

�

���� ����

���

����

���

�

�

�

�

�

�

�

�

�

	

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

	

�

��	

��

�

�

�

�

�����	�
�

��

������

�
�
����

������

�
�
����

�������������

������

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

(a) SATA.

�

�

�

�

�

�

���� ����

�����������

�	�

�
���
����

���

�

�

�

�

���

��	
������
����

������	
��

�����

�����

������

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

����
���

(b) UFS.
Fig. 6: H-type storage.

�

�

�

�

�

�

�

�

�

���� ����

����

����

�������

�	��

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

��
���

	
�

���

��������

������������

��������

�

�

�

�

�

�

�

	

�

�

�

(a) NVMe.

�

�

�

�

�

�

�������������

�����������	
�

�

�

�

�

�

	�
��
����������

������������������	�

����

�
���

���
��

�
���

��������� �������

�������!��"���#

�����
����#���$

%��������� %���������

(b) OCSSD.
Fig. 7: S-type storage.

requests, and pass them to HIL. During this phase, the DMA
engine in gem5 retrieves all the target page addresses in the
system memory through PRDT and emulates the data transfers,
while I/O completions and interrupts (for a host CPU) are
managed by both the device controller and HBA.
UFS modeling. Even though UFS employs h-type storage pro-
tocol management, which is very similar to the aforementioned
SATA, the UFS datapath between the host CPU and the host
controller is slightly different from that of SATA. Since UFS
is designed for handheld computing, the host controller resides
in CPU as an SoC, which is directly connected to the memory
system bus. As shown in Figure 6b, we implement the host
controller based on UFS transport protocol (UTP) [9], referred
to as UTP engine. UTP engine is connected to the system
bus, called advanced extensible interface (AXI), instead of
PCIe [48]. The host CPU can communicate with the UTP
engine through UFS host controller interface (UFSHCI) [49].
UTP engine and UFSHCI are functionally equivalent to SATA
HBAs and PCI endpoint, respectively. The physical layer of
UFS is defined by M-PHY [50], which exists both on the SoC
side and on the storage side. To address the issue of different
frequency domains between the UTP engine and the underlying
device controller, we also implement a small-sized FIFO queue
within those two controllers. The queuing and data transfer
methods are very similar to SATA’s NCQ and PRDT. Also,
similar to SATA, the UTP engine exposes a set of registers via
memory-mapped address spaces to the host CPU. Thus, OS
drivers (e.g., OS and UFS host controller drivers [51]) can issue
a command, referred to as UTP transfer request descriptor
(UTRD) [49], over the command list which has 32 queue
FIFO queue entries, similar to SATA/NCQ. Each queue entry
contains PRDT and two UFS protocol information unit (UPIU)
[9] for request and response. Once the I/O request is issued by
UTP engine, the device controller, parses all commands, data
payloads, and communication information, and then exposes
them to HIL. The DMA engine emulates data transfers, and
the corresponding I/O completion and interrupt are managed
by both the device controller and UTP engine.

B. S-type Storage

Figure 7 shows the s-type storage details that Amber
implements in a full-system environment. NVMe and OCSSD
employ the PCIe physical interface as opposed to the ICH
interface, and simplify the host-side datapath by removing the
host controller. PCH’s multiple PCIe lanes are connected to
a PCIe endpoint (that exists on the SSD-side). We model the
endpoint based on Xilinx’s FPGA Gen3 Integrated Block for
PCIe. Our endpoint employs inbound and outbound 8KB FIFO

queues, which convert PCIe PHY to SSD on-chip interconnect
system bus, called advanced microcontroller bus architecture
(AMBA) [52], by modeling a AXI4-stream interconnect core
that can connect multiple master/slave AMBA ports.
NVMe modeling. NVMe controller parses the PCIe and
NVMe packets as the device-side controller, and exposes the
corresponding information to HIL, so that HIL can handle the
I/O requests by collaborating with other firmware modules
such as ICL, FTL and FIL. We leverage a protocol/queue
management module [14], but significantly modify gem5’s
system barbus, DMA engine. We also implement the device
controller to support all mandatory NVMe commands and some
optional features (such as NVMe namespace management and
a scatter gather list (SGL)) for supporting diverse demands of
the host-side software. The communication strategies between
NVMe controller and OS driver (e.g., NVMe driver) are
functionally similar to h-type storage, but the queue mechanism
of NVMe (and OCSSD) is quite different from that of h-type
storage. As NVMe removes the host controller, instead of h-
type storage’s per-controller queue, OS can create 65536 rich
queues, each containing up to 65536 entries. Each queue logic
is coupled with a submission queue (SQ) and a completion
queue (CQ), which are synchronized between the OS drivers
and the NVMe controller. Specifically, OS drivers issue an
I/O service, compose 64 bytes NVMe request and put the
request into an SQ entry. This 64 bytes request includes an
op-code (i.e., NVMe command), metadata (e.g., namespace),
and a pointer list. In NVMe, the pointer list is implemented by
physical region page (PRP) List [10], which can contain more
than 512 system memory pages (4KB). In our implementation,
we also offer a conventional scatter-gather list (SGL) [53]
in cases where a different version of OS drivers needs SGL.
When the service is completed, an event of I/O completion is
delivered by the NVMe controller to the OS drivers through
16 bytes CQ request. The queue states between the NVMe
driver and controller are synchronized over MSI and a set of
registers (called doorbell) that we implemented. During this
time, the DMA engine emulates the transfer of all relevant
data (presented by PRP/SGL) and NVMe packets.
OCSSD modeling. Since OCSSD overrides the NVMe inter-
face/protocol to expose physical flash addresses to the host,
the datapath and hardware architecture (e.g., PCIe endpoint)
are the same as in NVMe. The difference between NVMe and
OCSSD is that OCSSD unboxes SSD’s storage complex and
exposes the low-level flash page addresses to the host software,
whereas NVMe still keeps all flash managements on the SSD
side as a kind of active device. Specifically, OCSSD allows
OS and user software to tune the underlying SSD subsystems

475

PC platform Mobile platform
CPU name Intel i7-4790K NVIDIA Jetson TX2

ISA X86 ARM v8
Core number 4 4

Frequency 4.4GHz 2GHz
L1D cache private, 32KB, 8-way private, 32KB
L1I cache private, 32KB, 8-way private, 48KB
L2 cache private, 256KB, 8-way shared, 2MB
L3 cache shared, 8MB, 16-way N/A
Memory DDR4-2400, 2 channel LPDDR4-3733, 1 channel

TABLE II: Gem5 system configurations.
Avg. read

length (KB)
Avg. write

length (KB)
Read

ratio (%)
Random
read (%)

Random
write (%)

Authentication Server (24HR) 10.3 8.1 10 97 47
Back End SQL Server (24HRS) 106.2 11.7 18 92 43
MSN Storage metadata (CFS) 8.7 12.6 74 94 94

MSN Storage FS (MSNFS) 10.7 11.2 67 98 98
Display Ads Payload (DAP) 62.1 97.2 56 3 84

TABLE III: Workload characteristics.
by employing FTL and ICL on the host side, and it considers
the underlying SSD as a passive device. To enable OCSSD
in a full-system simulation environment, we first implement
both OCSSD 1.2 [54] and 2.0 interfaces [55], and enable
pblk [56] and lightNVM [57] modules in gem5’s Linux
kernel, as a host-side FTL and OCSSD driver, respectively.
LightNVM is tightly coupled with the existing OS’s NVMe
driver to handle NVMe-like I/O services, but also handles the
overridden OCSSD command and feature management. We
also implement an OCSSD subsystem on the SSD-side, which
leverages NVMe’s device controller and HIL, but supports all
the features required for OCSSD specification, such as chunk
(similar to physical block) and other information that the host-
side OS requires (e.g., memory latency data and erase count
information). Since pblk manages flash addresses underneath
file systems, the OCSSD subsystem in SSD simulations disables
FTL and ICL from the datapath of the firmware stack.

C. Flash Firmware Optimizations
Internal caching. ICL can cover most of cache associativities
and page replacement schemes, but the read performance of
the simulated SSD can still be behind that of a real device.
While writes can be immediately serviced from the internal
DRAMs, reads should be serviced from the taget flash, and
therefore, performance can be directly impacted by different
physical data layouts and various levels of internal parallelism
[26], [27]. To address this, ICL performs a parallelism-aware
readahead that loads multiple super-pages, existing across all
physical dies, but having no resource conflict at flash-level, in
advance. This readahead is activated only if multiple incoming
requests exhibit a high degree of data locality. ICL keeps track
of multiple start offsets and page lengths of the requests, which
are cached in DRAM, and increases a frequency counter if
the incoming requests are sequentially accessed right after the
addresses of the previous ones (but no cache hit). When the
frequency counter becomes greater than a threshold, which is
reconfigurable, ICL performs the readahead.
FTL mapping. Even though a super-page based mapping
algorithm increases the level of internal parallelism, thereby
achieving higher bandwidth, we observed that small random
writes can significantly degrade overall performance. This is
because small-sized writes introduce many read-and-modify
operations, which give a burden on the storage complex.

Specifically, if the target cache line of ICL to evict/flush
is smaller than a super-page unit, ICL needs to first access
other physical pages associated with the target super-page,
and then write the pages (but still as a super-page) to storage
complex, which in turn introduces read-and-write intermixed
I/O workloads thereby making more resource conflicts. A
challenge behind this optimization is that, when ICL writes a
small-sized page from its eviction, the actual address of the
target page should be updated by FTL, due to the erasure-
before-write characteristic. If FTL maps the addresses based
on the physical page unit, it needs to search all page table
entries to find out other pages, which can be spread across
all other channels (or ways). Thus, if there is a small-sized
write, FTL selectively remaps the target page (but exists in a
same channel or way) within the corresponding super-page by
employing a super-page based hashmap.

V. EVALUATION

A. Methodologies
Simulation configurations. We configure the SSDs with 60
flash packages whose programming latency vary from 413 us
to 1.8 ms, and the range of read latency is between 57 us and
94 us. This latency variation fundamentally exists in most MLC
flash, due to the material-level nature of incremental step purse
programming (ISPP) [58]. The SSD interconnection between
storage complex and computation complex is implemented
via AXI (250MHz) and AMBA (250MHz), and the interface
linking the underlying flash is ONFi 3 (333MHz). 3 ARMv8
CPU cores are used for executing our SSD firmware. As default,
we use a page-level mapping for FTL, and ICL is configured
as a fully-associative cache. We model DDR3L for internal
DRAM, and for SSD interfaces, we use SATA 3.0, NVMe
1.2.1, UFS 2.1 and OCSSD 2.0. The default configuration of
storage complex (e.g., channels, packages, dies, etc.) is the
same as that of the real device we used in Table I of Section
III. To explore a full space of simulator evaluations, we also
apply different storage complex configurations similar to the
other testbeds that we used in Section V-B. Table II tabulates
the host system configuration and timing parameters for gem5.
Workloads. The important characteristic and corresponding
descriptions of our workloads [59] are listed by Table III. While
most of the workloads exhibit small-sized requests (8∼10 KB),
the average request sizes of 24HRS(W2) and MSNFS(W5) are
28KB and 74KB, respectively. All the evaluations presented
in this section are performed by running actual storage
applications at user-level with a full system stack, instead
of replaying or generating traces within the storage simulator.

B. Validation
Real devices. In addition to the real device (Intel 750),
we prepare three more real SSD devices and compare their
performance with simulation results: i) Samsung 850 PRO
(H-type), ii) Samsung Z-SSD prototype (S-type), and iii)
Samsung 983 DCT SSD prototype (S-type). We evaluated other
NVMe and SATA devices, but their performance significantly
fluctuate/untenable and is far away from the above, and
therefore, we carefully select those four devices as comparison
target testbeds. 850 PRO is composed by multiple MLC flash
over 8 interconnectors. 983DCT is similar to 850 PRO, but

476

10 20 30
0

400
800

1200
1600
2000

10 20 30Ba
nd

w
id

th
 (M

B/
s)

I/O Depth

Intel 750 (72%)

850 PRO (91%)

Solid: Amber
Dash: Real SSD

Z-SSD (88%)

983 DCT (72%)

(a) Sequential read.
10 20 30

0
400
800

1200
1600
2000

10 20 30

(81%)
Intel 750

Ba
nd

w
id

th
 (M

B/
s)

I/O Depth

850 PRO (78%)

Solid: Amber
Dash: Real SSD
Solid: Amber
Dash: Real SSD Z-SSD (96%)

983 DCT (88%)

(b) Random read.
10 20 30

0
400
800

1200
1600
2000

10 20 30Ba
nd

w
id

th
 (M

B/
s)

I/O Depth

Intel 750 (93%)

850 PRO (86%)

Solid: Amber
Dash: Real SSD

Z-SSD (83%)

983 DCT (94%)

(c) Sequential write.
10 20 30

0
400
800

1200
1600
2000

10 20 30Ba
nd

w
id

th
 (M

B/
s)

I/O Depth

Intel 750 (88%)

850 PRO (86%)

Solid: Amber
Dash: Real SSD Z-SSD (80%)

983 DCT (91%)

(d) Random write.
Fig. 8: Bandwidth trend and accuracy comparisons for real devices’ and Amber’s simulation results.

10 20 30
0

80
160
240
320

10 20 30

(72%)

La
te

nc
y

(u
s)

I/O Depth

Intel 750

850 PRO (86%) Solid: Amber
Dash: Real SSD

Z-SSD (92%)
983 DCT (86%)

(a) Sequential read.
10 20 30

0
80

160
240
320

10 20 30

(64%)
La

te
nc

y
(u

s)

I/O Depth

Intel 750 (76%)

850 PRO

Solid: Amber
Dash: Real SSD

Z-SSD (96%)
983 DCT (86%)

(b) Random read.
10 20 30

0
80

160
240
320

10 20 30

(92%)

La
te

nc
y

(u
s)

I/O Depth

Intel 750

850 PRO (72%)

(87%)

Solid: Amber
Dash: Real SSD

Z-SSD
983 DCT (94%)

(c) Sequential write.
10 20 30

0
80

160
240
320

10 20 30

(86%)

La
te

nc
y

(u
s)

I/O Depth

Intel 750

850 PRO (72%)

(84%)

(91%)

Solid: Amber
Dash: Real SSD

Z-SSD

983 DCT

(d) Random write.
Fig. 9: Latency trend and accuracy comparisons for real devices’ and Amber’s simulation results.

it supports the multi-stream feature (newly added in NVMe).
Z-SSD uses NVMe interface and protocol, but their backend
media is replaced with new flash that supports 3us and 100us
I/O latency for read and write, respectively [60]. Note that all
configurations of our Amber that we evaluate for this validation
will be available to download with the simulation source codes.
Bandwidth comparison. Figure 8 compares the user-level
performance trend of four different SSDs simulated by Amber
(solid lines) and real devices (dashed lines). The figure also
includes the average accuracy of our simulation for each real
target device. One can observe from these plots that, for all
micro-benchmark evaluations (e.g., reads, writes, sequential
and random patterns) the Amber’s bandwidth curve exhibits a
very similar trend compared to that of the real devices, as the
I/O queue depth increases. Specifically, the average accuracy of
Amber’s simulated bandwidth for Intel 750 ranges from 88%
and 93% for sequential and random writes, and for reads, it
also exhibits 72% ∼ 81% accuracy while closely following the
bandwidth curve of the real device. Even though real devices
exhibit different curve patterns with different bandwidth levels,
the accuracy of Amber is in the range of 72% ∼ 96%.
Latency comparison. Figure 9 shows the latency trend and
accuracy of simulated results compared to each real target
device when varying I/O queue depth. As shown in the
figure, the user-level latency curve simulated by Amber almost
overlaps with that of the real device under all micro-benchmarks
as the I/O depth increases, and the accuracy of simulation
ranges between 64% and 94% for all real devices. The
difference between simulation results and real device latency
(especially Intel 750 and 850 PRO) is relatively more notable
at a low I/O queue depth (1 ∼ 8), compared to the cases
with higher queue depths. We believe that this is because
Intel 750 and 850 PRO have several optimizations, which
operate at a specific I/O pattern. Even though the optimization
techniques such as caching data with battery-backed DRAM
[61] or dumping them to the underlying flash by only using
fastest pages of MLC are not published in a public domain, the
varying and unsustainable performance of such devices with a
specific I/O pattern are reported in various publicly available
articles [62], [63].
Validation with different block sizes. Figure 10 shows
bandwidths of the real device and Amber. In this evaluation,

we increase the block size from 4 KB to 1024 KB. The
figure also includes error rate results for each device and the
corresponding range (from minimum errors to maximum error
rates), as an evaluation summary. The error range is calculated
by |(Per freal −Per fsim)|/Per freal , where Per freal and Per fsim
are the real devices’ performance and Amber’s simulation
results, respectively. As shown in the figure, the performance
curve from simulation is very similar to the performance curves
of all real devices with the tests of varying block sizes. While
Amber simulation results catch up the trend of real device
performance, the error rates (measured at user-level of the
host) are in still reasonable range of 6% for all sizes of I/O
request blocks across all SSDs. In these sensitivity tests in
terms of different block sizes, Intel 750 shows higher error
rates than those of other real devices (14% in random read,
on average). We believe that this is because of the internal
optimizations that we mentioned in the latency comparisons.
Over-provisioning. Note that all of above validations are
performed after fully filling the target storage spaces with
sequential writes for each test set (e.g., STEADY-STATE).
Even though we perform all evaluations with the steady-state,
the write performance can vary based on the ratio of over-
provision (OP). Thus, we evaluate the write performance with
different block sizes (4KB ∼ 1024KB) by reducing the OP
ratio from 20% (default as same with Intel 750’s OP rate)
to 5%, and the results are plotted in Figure 11. To create a
worst-case scenario as a stress test, we randomly write data
for the entire space into the steady-state SSDs, which means
that the amount of written data is 2× greater than the actual
target volume. The simulation results with 15% and 10% and
5% OP rates show significant performance drops (by 87.9%,
62.1%, and 33.7%, respectively). This is mainly because of
too many invocations, which lead to frequent migrations of
data over different flash packages, thereby introducing not only
long I/O latencies but also frequent resource conflicts.

C. Operating System Impacts
Figure 12 shows the performance of real workloads (executed

at a user-level) when employing different versions of OS (4.4
and 4.14). Interestingly, the read and write performances of
Kernel 4.4 are worse than that of Kernel 4.14 by 63% and
69%, on average, respectively. The major difference between
those two versions of Linux kernel from the viewpoint of

477

4 64
0

1000
2000
3000
4000

64 1024

Solid: Amber Dash: Real SSD

Ba
nd

w
id

th
 (M

B/
s)

Block Size (KiB)

Intel 750

850 PRO

Z-SSD

983 DCT

0

25

85
0

PR
O

98
3

D
C

T
Z-

SS
D

Er
ro

r (
%

)

SSD

In
te

l 7
50

(a) Sequential read.

4 64
0

1000
2000
3000
4000

64 1024

Solid: Amber Dash: Real SSD

Ba
nd

w
id

th
 (M

B/
s)

Block Size (KiB)

Intel 750

850 PRO

Z-SSD

983 DCT

0

25

85
0

PR
O

98
3

D
C

T
Z-

SS
D

Er
ro

r (
%

)

SSD

75
0

(b) Random read.

4 64
0

1000
2000
3000
4000

64 1024

Solid: Amber Dash: Real SSD

Ba
nd

w
id

th
 (M

B/
s)

Block Size (KiB)

Intel 750

850 PRO
Z-SSD

983 DCT

0

25

85
0

PR
O

98
3

D
C

T
Z-

SS
D

Er
ro

r (
%

)

SSD

In
te

l 7
50

(c) Sequential write.

4 64
0

1000
2000
3000
4000

64 1024

Solid: Amber Dash: Real SSD

Ba
nd

w
id

th
 (M

B/
s)

Block Size (KiB)

Intel 750

850 PRO
Z-SSD

983 DCT

0

25

85
0

PR
O

98
3

D
C

T
Z-

SS
D

Er
ro

r (
%

)

SSD

In
te

l 7
50

(d) Random write.
Fig. 10: Performance validation with different block sizes ranging from 4KB to 1024KB.

4 64
0.0
0.2
0.4
0.6
0.8
1.0

1024

N
or
m
al
iz
ed

Ba
nd

w
id
th

Block Size (KiB)

5%10%

15%

20%

Fig. 11: OP.

W1 W2 W3 W4 W5 W1 W2 W3 W4 W5
A B A B A B A B A B A B A B A B A B A B

NVMe SATA

0

200

400

600

Ba
nd

w
id

th
 (M

B/
s) Read

 Write
W1: 24HR
W2: 24HRS
W3: DAP
W4: CFS
W5: MSNFS

A: Kernel 4.4 B: Kernel 4.14

Fig. 12: Performance impacts on OS.

N
VM

e
U

FS
N

VM
e

U
FS

N
VM

e
U

FS
N

VM
e

U
FS

N
VM

e
U

FS

0

200
400

600

M
SN

FS

D
APC
FS

24
H

R
S

Ba
nd

w
id

th
 (M

B/
s) Read Write

24
H

R

(a) Performance.

UFS NVMeReal
0
2
4
6
8

Po
w

er
 (W

)

Interface

 NAND DRAM
 CPU

In
te

l 7
50

(b) Power.

UFS NVMe
0M

20M
40M
60M
80M

In
st
ru

ct
io
n

Interface

 Branch Load
 Store Other
 FP Arithmetic

(c) Instruction.
Fig. 13: General computing vs. handheld computing

storage stack is the disk scheduler. The newer version of Kernel
(4.14) employs a refined Budget Fair Queueing (BFQ) [64],
which assigns a budget to each time slice for scheduling I/O
requests by considering the number of sectors (i.e., request
length). This refined BFQ is different from the original BFQ
as it employs per-process queues optimized for SSDs. BFS
also uses a unified mechanism to merge incoming requests to
improve the performance through sequential access patterns.
In contrast, the older version of Kernel (4.4) changes the
disk scheduler to Completely Fair Queuing (CFQ) [65], which
removes an anticipatory scheduling mechanism [66], and allows
the other kernel scheduler to dispatch the I/O requests thereby
improving throughput. Even though one would expect the
newer version of Kernel that reflects the latest features of
NVMe and SATA, compared BFQ, CFQ is not able to generate
enough I/O requests to saturate the SSD performance and
consumes CPU cycles in I/O scheduling. To dig deeper into
these OS-bound issues that prevent the system from serving
enough I/O requests, we increase Amber’s host-side CPU clock
frequency from 2 GHz to 8 GHz by employing the fastest SSD
(Z-SSD), and the results are given in Figure 14. Thanks to
the new flash technology, the performance at the device-level
now reaches at 4.3 GB/s. However, Kernel execution (User-
level) and protocol management (Interface-level) with 2 GHz
CPU degrades the performance by 41% compared to the device-
level performance. When we run the same Kernel with a higher
frequency (8GHz), the user-level performance is enhanced by
12%. Note that Kernel (with 8GHz operations) still slashes
device-level performance by 29%, but we believe that future
efforts that tune the Kernel and scheduler to make them better
aware of the storage stack can reduce the performance loss
more, and Amber can help such efforts as a research vehicle
with the full functionality of holistic system simulation.

D. Handheld vs. General Computing

Figure 13a compares the user-level performance of a mobile
system and that of a personal computing device, which use
UFS and NVMe protocols, respectively. One can observe from
this figure that NVMe shows 1.81 times better performance
than UFS. Even though the performance of NVMe exceeds
that of UFS, for 24HR, CFS and MSNFS workloads. The

difference between them is less than 15%. This is because of
the low computing power in the mobile system, as described
in the previous section; the low power mobile cores cannot
generate enough I/O requests to enjoy all potential benefits of
NVMe performance. As one would expect that several handheld
devices such as tablets will have higher computing power in the
future, NVMe might be a better solution to take off the storage
accesses from the critical path. However, to this end, NVMe
devices also require a significant technology enhancement.
Specifically, Figures 13b and 13c breakdown the power and
instruction sets for the SSD executions, respectively. The CPU
that exists at the SSD-side is the most power hungry component.
Considering the power budget of handheld computing, it
requires significantly optimization of the underlying SSD’s
power usage. As shown in Figure 13c, load and store are most
dominant instructions, which account for 60% of the total
executions executed. We also observe that NVMe can execute
more instructions than UFS within a same time period (by 5.45
times). This is because the core that handles NVMe queue
should be involved everytime the doorbell rings. Note that, as
shown in the figure, the power that Amber reports for NVMe,
including internal CPU, flash-backend (NAND) and DRAM,
is similar to that of the NVMe real device (Intel 750). While
the power simulated by UFS is around 2W, the majority of
such power is consumed by the internal CPU, and therefore,
it can be reduced to hundreds mW with hardware automation
in the mobile storage.

E. Passive vs. Active Storage

Figure 15a shows the performance of NVMe SSD (Active
approach) and OCSSD 2.0 (Passive approach). As it can be
observed, passive approach is better to service I/O requests
than active approach in case of small I/O accesses (4KB-sized)
with both random and sequential patterns. Specifically, OCSSD
shows a 30% better throughput than NVMe SSD for 4KB-sized
requests. This is mainly because OCSSD is in a better position
to utilize host-side buffer cache with better information, which
can in turn directly serve the request from the host rather
than going through the underlying storage. However, in case
of large-sized I/O accesses (64KB), NVMe exhibits a 20%
better average throughput, due to the limited system buffer

478

2GHz 4GHz 6GHz 8GHz
2000

3000

4000
41

%

Ba
nd

w
id

th
 (M

B/
s) Device-level User-level

 Interface-level

34
%

31
%

29
%

Fig. 14: Performance with
CPU frequency changes.

4 64 4 64 4 64 4 64
Rnd. Read Rnd. Write Seq. Read Seq. Write

0
50

100
150

Ba
nd

w
id

th
 (M

B/
s)

Block Size (KiB)

 NVMe OCSSD

(a) Overall performance.

0 1 2 3 4 5 6
0

30
60
90

120
Write end
Read begin

Ke
rn

el
 C

PU
U

til
iz

at
io

n
(%

)

Time (sec)

 NVMe OCSSD
pblk initialization

(b) Kernel CPU Utilization.

0 1 2 3 4 5 6
0

120
240
360
480
600

D
R

AM
 U

sa
ge

 (M
B)

Time (sec)

 NVMe OCSSD
Write end
Read begin

pblk initialization

(c) Total DRAM usage.
Fig. 15: Overall performance and system utilization of Active and Passive SSD.

Mode H-CPU(ARM) Host interface C-Cplx3 S-Cplx4 Cache FTL Power Dynamics Sup13

SA
1

FS

A
to

m
ic

Ti
m

in
g

M
in

or

H
PI

2

D
er

iv
O

3

O
3

v7
a

SA
TA

U
FS

N
V

M
e

O
C

SS
D

C
PU

D
R

A
M

Tr
an

x5

SP
/S

B
6

IS
PP

7

C
on

fig
8

R
A

9

Fu
ll10

H
yb

ri
d

Pa
ge

11

C
PU

D
R

A
M

N
A

N
D

E
ne

rg
y

E
xe

c12

Q
ue

ue

Amber 3

SimpleSSD 1.x [13] [14] 3 3 3 3 3 3 3 3 3 3 3 3 3 3

MQSim [15] 3 3 3 3 3 3 3 3 3 3

SSDSim [32] 3 3 3 3

SSD-Extension [12] 3 3 3

FlashSim [33] 3 3 3 3

1 Standalone 2 High perf. In-Order 3 Computation complex 4 Storage complex 5 Transaction scheduling 6 Super page/block 7 Incremental step pulse
programming 8 Configurable cache 9 Readahead 10 Fully associative 11 Page-level mapping 12 Dynamic firmware execution 13 Support

TABLE IV: Feature comparison across various simulators.

Am
be

r
Fl

as
hS

im
SS

D
Si

m
M

Q
Si

m
SS

D
-E

xt
.0

10
20
30
40
50
60 FS

Si
m

ul
at

io
n

Sp
ee

d
(s

) Standalone

ge
m

5
Am

be
r0K

5K
10K
15K
20K
25K

Fig. 16: Execution
time.

capacity that kernel-level drivers can use. Note that, in contrast
to user-level memory, kernel memory is not freely used as it
directly allocates the buffer from the physical memory address
space instead of virtual memory space.

Figures 15b and 15c plot the CPU utilization and memory
requirement of OCSSD and NVMe devices, respectively. At the
beginning of I/O processing, FIO consumes similar CPU cycles
for both OCSSD and NVMe SSD due to write initialization for
warming up processes. However, after the initialization, OCSSD
consumes 50% of all the cores (four) whereas NVMe SSD only
uses 10% of CPU. This is because, OCSSD requires to run
pblk and LightNVM drivers to perform address translations,
memory caching, and physical flash media management. On the
other hand, pblk and LightNVM drivers do not use DRAM
memory too much compared to NVMe SSD. As they are kernel
drivers, OCSSD allocates system memory at the initialization
phase, and reuses them for the entire execution phase (64 MB).
Since FIO and NVMe protocol management basically requires
about 280 MB of memory, the driver’s memory requirement
pressure can be ignored.

VI. SIMULATOR COMPARISONS AND RELATED WORK

In literature, only a few simulators exist for high-performance
SSD modeling. SSD Extension for DiskSim (SSD-Extension)
[12] is the most popular simulator, which extends DiskSim
[67] by adding SSD models. This simulator simulates a page
mapping FTL built upon a simplified flash model. FlashSim
[33] tries to extend the mapping algorithm from the page-
level to different associativities, but has no flash model or
queue at its storage complex. In contrast to SSD-Extension,
SSDSim [32] can capture the details of internal parallelism by
considering flash dies, planes and channel resources extracted
by an in-house FPGA platform. However, SSDSim has no
model for storage interface and the corresponding queue control
mechanisms. MQSim [15] models a storage complex and
enhances SSD simulation in comparison, by adding simple
DRAM/flash and protocol management latency models, which
partially consider the latency of the computation complexity.
However, it cannot capture any internal embedded core latency,

and has no capability of SSD emulation (that store/load actual
data). As real contents and data movements are omitted in its
model, MQSim cannot have a full storage stack on the host
side; a system emulation mode of gem5, which only captures
the system timing without having file system or storage stack
might be possible to execute, but an SSD-enabled full system
by having all software/hardware components for both host and
storage cannot be explored. We checked all the repositories of
their simulation framework and verified the unavailability of
full-system simulations. There are a few SSD simulations built
on QEMU [68], which allow the SSD simulators communicate
with a host emulation system. Unfortunately, FEMU [69]
removes many necessary components of the storage stack to
achieve a reasonable simulation speed, and VSSIM [70] only
supports IDE-based storage. In contrast, SimpleSSD [13] can
be attached to gem5 over IDE and emulate data transfers, and
its extension [14] employs NVMe queue protocols that handle
a pointer-based communication between host and storage-side
simulations. However, these simulators cannot accommodate
diverse storage interfaces and protocols atop different CPU
timing and detailed memory models, which require all re-
sponses for software/hardware modules in a very-fine granular
manner. In addition, none of the aforementioned simulators has
the capability of capturing the SSD’s computation complex,
including dynamic firmware executions, and power/energy
measurement.

Table IV summarizes the differences between the existing
SSD simulators and our proposed Amber. Amber can capture
embedded CPU cores’ performance such as CPI and break
down firmware executions into “branch”, “load/store” and
“arithmetic” operations, which none of the existing simulators
is able to perform. In addition, Amber can report dynamic
power consumption of firmware stack executions, by taking
into account the embedded cores, internal DRAMs, and flash
devices. By modifying system barbus and implementing a
DMA engine (that enables SSD emulation), Amber can operate
under both functional CPU and timing CPU models in full-
system environment. It also models different host controllers
(SATA/UFS) and drivers (NVMe/OCSSD), which can enable all

479

s-type storage and h-type storage under diverse computing from
mobile and general computing systems. Figure 16 compares
simulation speeds of diverse standalone simulators (left), and
pure gem5 and Amber (right). The simulation speed of Amber
is slightly better than that of MQSim, and it captures all SSD-
enabled full system characteristics with a reasonable simulation
speed.

VII. ACKNOWLEDGEMENT

This research is mainly supported by NRF
2016R1C1B2015312, DOE DEAC02-05CH11231, IITP-
2018-2017-0-01015, NRF 2015M3C4A7065645, Yonsei
Future Research Grant (2017-22-0105) and MemRay grant
(2015-11-1731). The authors thank Samsungs Jaeheon Jeong,
Jongyoul Lee, Se-Jeong Jang and JooYoung Hwang for their
SSD sample donations. N.S. Kim is supported in part by grants
from NSF CNS-1557244 and CNS-1705047. M. Kandemir is
supported in part by grants by NSF grants 1822923, 1439021,
1629915, 1626251, 1629129, 1763681, 1526750 and 1439057.
The simulator is designed, developed, and maintained by
Computer Architecture and MEmory systems Laboratory
(CAMELab). Myoungsoo Jung is the corresponding author.

VIII. CONCLUSION

We propose a new SSD simulation framework, Amber, which
incorporates a full-featured SSD model into a full system
environment and emulates all software stacks employed in
diverse OS and hardware computing platforms. Amber modifies
host buses, and implements plenty of storage interfaces and
protocols such as SATA, UFS, NVMe, and OCSSD.

REFERENCES

[1] D. E. Merry Jr and M. S. Diggs, “Solid state storage subsystem for
embedded applications,” Mar. 23 2010. US Patent 7,685,337.

[2] C. Dirik and B. Jacob, “The performance of pc solid-state disks (ssds)
as a function of bandwidth, concurrency, device architecture, and system
organization,” in ACM SIGARCH Computer Architecture News, vol. 37,
pp. 279–289, ACM, 2009.

[3] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the role of burst buffers in leadership-class storage
systems,” in Mass Storage Systems and Technologies (MSST), 2012 IEEE
28th Symposium on, pp. 1–11, IEEE, 2012.

[4] W. Bhimji, D. Bard, M. Romanus, D. Paul, A. Ovsyannikov, B. Friesen,
M. Bryson, J. Correa, G. K. Lockwood, V. Tsulaia, et al., “Accelerating
science with the nersc burst buffer early user program,” tech. rep.,
Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States),
2016.

[5] J. Bent, G. Grider, B. Kettering, A. Manzanares, M. McClelland,
A. Torres, and A. Torrez, “Storage challenges at los alamos national lab,”
in Mass Storage Systems and Technologies (MSST), 2012 IEEE 28th
Symposium on, pp. 1–5, IEEE, 2012.

[6] I. Ari, M. Gottwals, D. Henze, et al., “Performance boosting and workload
isolation in storage area networks with sancache,” in Proceedings of the
23rd IEEE/14th NASA Goddard Conference on Mass Storage Systems
and Technologies, pp. 263–273, 2006.

[7] G. Zhang, L. Chiu, and L. Liu, “Adaptive data migration in multi-tiered
storage based cloud environment,” in Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, pp. 148–155, IEEE, 2010.

[8] “Serial advanced technology attachment (sata).” http://sata-io.org/.
[9] “Universal flash storage (ufs).” https://www.jedec.org/standards-

documents/focus/flash/universal-flash-storage-ufs.
[10] “Nvm express.” http://nvmexpress.org/wp-content/uploads/NVM-

Express-1 3a-20171024 ratified.pdf.
[11] “Open-channel solid state drives.” https://openchannelssd.readthedocs.io/

en/latest/.
[12] V. Prabhakaran and T. Wobber, “Ssd extension for disksim simulation

environment,” Microsoft Reseach, 2009.

[13] M. Jung, J. Zhang, A. Abulila, M. Kwon, N. Shahidi, J. Shalf, N. S. Kim,
and M. Kandemir, “Simplessd: modeling solid state drives for holistic
system simulation,” IEEE Computer Architecture Letters, vol. 17, no. 1,
pp. 37–41, 2018.

[14] CAMELab, “Simplessd 1.0.” https://simplessd.org/.
[15] A. Tavakkol, J. G. Luna, M. Sadrosadati, S. Ghose, O. Mutlu, and G. Juan,

“Mqsim: A framework for enabling realistic studies of modern multi-
queue ssd devices,” in 16th USENIX Conference on File and Storage
Technologies (FAST 18), USENIX, 2018.

[16] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic
characteristics and system implications of flash memory based solid
state drives,” in ACM SIGMETRICS Performance Evaluation Review,
vol. 37, pp. 181–192, ACM, 2009.

[17] M. Abraham, T. Tanaka, K. Kawai, and Y. Einaga, “Partial page memory
operations,” Apr. 19 2016. US Patent 9,318,199.

[18] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, 2011.

[19] D. H. Walker, “A comparison of nvme and ahci,” The Serial ATA
International Organization, 2012.

[20] T. Y. Kim, D. H. Kang, D. Lee, and Y. I. Eom, “Improving performance by
bridging the semantic gap between multi-queue ssd and i/o virtualization
framework,” in Mass Storage Systems and Technologies (MSST), 2015
31st Symposium on, pp. 1–11, IEEE, 2015.

[21] I. Livny, “Storage over pcie protocol analysis and traffic generation
techniques.” https://www.flashmemorysummit.com/English/Collaterals/
Proceedings/2014/20140807 I31 Livny.pdf.

[22] Xilinx, “Introduction interrupt types in pci express.”
https://www.xilinx.com/Attachment/Xilinx Answer 58495 PCIe
Interrupt Debugging Guide.pdf.

[23] M. Jung, “Exploring design challenges in getting solid state drives closer
to cpu,” IEEE Transactions on Computers, vol. 65, no. 4, pp. 1103–1115,
2016.

[24] M. Jung and M. Kandemir, “Challenges in getting flash drives closer to
cpu,” Future, vol. 2, no. 4.00, pp. 8–00, 2013.

[25] J. Zhang, M. Shihab, and M. Jung, “Power, energy, and thermal
considerations in ssd-based i/o acceleration.,” in HotStorage, 2014.

[26] F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed data
processing,” in High Performance Computer Architecture (HPCA), 2011
IEEE 17th International Symposium on, pp. 266–277, IEEE, 2011.

[27] M. Jung and M. T. Kandemir, “An evaluation of different page allocation
strategies on high-speed ssds.,” in HotStorage, 2012.

[28] Y. Pan, G. Dong, and T. Zhang, “Exploiting memory device wear-out
dynamics to improve nand flash memory system performance.,” in Fast,
vol. 11, pp. 18–18, 2011.

[29] I. Super Talent Technology, “Slc vs. mlc: an analysis of
flash memory.” http://www.supertalent.com/datasheets/SLC vs MLC%
20whitepaper.pdf.

[30] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A large-scale study of
flash memory failures in the field,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 43, pp. 177–190, ACM, 2015.

[31] H. Shim, B.-K. Seo, J.-S. Kim, and S. Maeng, “An adaptive partitioning
scheme for dram-based cache in solid state drives,” in Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th Symposium on, pp. 1–
12, IEEE, 2010.

[32] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, “Performance
impact and interplay of ssd parallelism through advanced commands, al-
location strategy and data granularity,” in Proceedings of the international
conference on Supercomputing, pp. 96–107, ACM, 2011.

[33] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “Flashsim: A simulator
for nand flash-based solid-state drives,” in Advances in System Simulation,
2009. SIMUL’09. First International Conference on, pp. 125–131, IEEE,
2009.

[34] J. Axboe, “Flexible io tester.” https://github.com/axboe/fio.
[35] ARM, “Arm limited: Arm architecture reference manual (armv8, for

armv8-a architecture profile) (2013).” http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.ddi0487a.h/index.html.

[36] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in Microarchitecture,
2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium on,
pp. 469–480, IEEE, 2009.

[37] K. Chandrasekar, B. Akesson, and K. Goossens, “Improved power
modeling of ddr sdrams,” in Digital System Design (DSD), 2011 14th
Euromicro Conference on, pp. 99–108, IEEE, 2011.

480

[38] K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O. Naji,
B. Akesson, N. Wehn, and K. Goossens, “Drampower: Open-source
dram power & energy estimation tool.” http://www.drampower.info.

[39] M. Jung, W. Choi, S. Gao, E. H. Wilson III, D. Donofrio, J. Shalf, and
M. T. Kandemir, “Nandflashsim: High-fidelity, microarchitecture-aware
nand flash memory simulation,” ACM Transactions on Storage (TOS),
vol. 12, no. 2, p. 6, 2016.

[40] W. Bux and I. Iliadis, “Performance of greedy garbage collection in
flash-based solid-state drives,” Performance Evaluation, vol. 67, no. 11,
pp. 1172–1186, 2010.

[41] A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory based file
system.,” in USENIX, pp. 155–164, 1995.

[42] M. Jung and M. T. Kandemir, “Sprinkler: Maximizing resource utilization
in many-chip solid state disks,” in High Performance Computer Architec-
ture (HPCA), 2014 IEEE 20th International Symposium on, pp. 524–535,
IEEE, 2014.

[43] PCI-SIG, “Generic capability structure for sata host bus adapters.”
https://pcisig.com/sites/default/files/specification documents/SATA
CAP Ptr ECN - final.pdf.

[44] QEMU, “Qemu the fast! processor emulator.” https://www.qemu.org/.
[45] Linux, “libata developer’s guide.” https://01.org/linuxgraphics/gfx-docs/

drm/driver-api/libata.html.
[46] Linux, “Scsi interface guide.” https://01.org/linuxgraphics/gfx-docs/drm/

driver-api/scsi.html#scsi-lower-layer.
[47] D. A. Deming, The Essential Guide to Serial ATA and SATA Express.

CRC Press, 2014.
[48] PCI-SIG, “Pci express base specification revision 3.0,” 2010.
[49] “Ufs host controller interface specification.” https://www.jedec.org/sites/

default/files/docs/JESD223.pdf.
[50] mipi, “A performance-driven phy for multimedia and chip-to-chip

inter-processor communication (ipc) applications.” https://mipi.org/
specifications/m-phy.

[51] “Ufs 2.0 host stack and driver.” https://www.design-reuse.com/hds/ufs-2-
0-host-stack-and-driver-ip-790/.

[52] D. Flynn, “Amba: enabling reusable on-chip designs,” IEEE micro, vol. 17,
no. 4, pp. 20–27, 1997.

[53] “Microsoft sgl description.” https://docs.microsoft.com/en-us/windows-
hardware/drivers/kernel/using-scatter-gather-dma.

[54] “Open-channel solid state drives specificaion - revision 1.2.” http://
lightnvm.io/docs/Open-ChannelSSDInterfaceSpecification12-final.pdf.

[55] “Open-channel solid state drives specificaion - revision 2.0.” http://
lightnvm.io/docs/OCSSD-2 0-20180129.pdf.

[56] LightNVM, “pblk: Host-based ftl for open-channel ssds.” http://lightnvm.
io/pblk-tools/.

[57] LightNVM, “User space i/o library for open-channel ssds.” http://lightnvm.
io/liblightnvm/.

[58] K.-D. Suh, B.-H. Suh, Y.-H. Lim, J.-K. Kim, Y.-J. Choi, Y.-N. Koh, S.-S.
Lee, S.-C. Kwon, B.-S. Choi, J.-S. Yum, et al., “A 3.3 v 32 mb nand
flash memory with incremental step pulse programming scheme,” IEEE
Journal of Solid-State Circuits, vol. 30, no. 11, pp. 1149–1156, 1995.

[59] M. Kwon, J. Zhang, G. Park, W. Choi, D. Donofrio, J. Shalf, M. Kandemir,
and M. Jung, “Tracetracker: Hardware/software co-evaluation for large-
scale i/o workload reconstruction,” in Workload Characterization (IISWC),
2017 IEEE International Symposium on, IEEE, 2017.

[60] W. Cheong, C. Yoon, S. Woo, K. Han, D. Kim, C. Lee, Y. Choi, S. Kim,
D. Kang, G. Yu, J. Kim, J. Park, K. W. Song, K. T. Park, S. Cho, H. Oh,
D. D. G. Lee, J. H. Choi, and J. Jeong, “A flash memory controller for
15 µs ultra-low-latency ssd using high-speed 3d nand flash with 3 µs
read time,” in 2018 IEEE International Solid - State Circuits Conference
- (ISSCC), pp. 338–340, Feb 2018.

[61] J. W. Stockdale, S. G. LeMay, and D. R. Nelson, “High performance
battery backed ram interface,” Oct. 12 2004. US Patent 6,804,763.

[62] H.-J. Kim, Y.-S. Lee, and J.-S. Kim, “Nvmedirect: A user-space i/o
framework for application-specific optimization on nvme ssds.,” in
HotStorage, 2016.

[63] B. Nikkel, “Nvm express drives and digital forensics,” Digital Investiga-
tion, vol. 16, pp. 38–45, 2016.

[64] “The bfq i/o scheduler.” https://lwn.net/Articles/601799/.
[65] “Completely fair queuing (cfq).” https://www.kernel.org/doc/

Documentation/block/cfq-iosched.txt.
[66] S. Iyer and P. Druschel, “Anticipatory scheduling: A disk scheduling

framework to overcome deceptive idleness in synchronous i/o,” in
Proceedings of the Eighteenth ACM Symposium on Operating Systems
Principles, SOSP ’01, (New York, NY, USA), pp. 117–130, ACM, 2001.

[67] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger, “The disksim
simulation environment version 4.0 reference manual (cmu-pdl-08-101),”
Parallel Data Laboratory, p. 26, 2008.

[68] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceedings
of the Annual Conference on USENIX Annual Technical Conference,
ATEC ’05, (Berkeley, CA, USA), pp. 41–41, USENIX Association, 2005.

[69] H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjørling, and H. S.
Gunawi, “The CASE of FEMU: Cheap, accurate, scalable and extensible
flash emulator,” in 16th USENIX Conference on File and Storage
Technologies (FAST 18), (Oakland, CA), pp. 83–90, USENIX Association,
2018.

[70] J. Yoo, Y. Won, J. Hwang, S. Kang, J. Choil, S. Yoon, and J. Cha, “Vssim:
Virtual machine based ssd simulator,” in 2013 IEEE 29th Symposium on
Mass Storage Systems and Technologies (MSST), pp. 1–14, May 2013.

481

