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Mori dream spaces and blow-ups

Ana-Maria Castravet

Abstract. The goal of the present article is to survey the general theory of
Mori Dream Spaces, with special regards to the question: When is the blow-
up of toric variety at a general point a Mori Dream Space? We translate the
question for toric surfaces of Picard number one into an interpolation problem
involving points in the projective plane. An instance of such an interpolation
problem is the Gonzalez-Karu theorem that gives new examples of weighted
projective planes whose blow-up at a general point is not a Mori Dream Space.

1. Introduction

Mori Dream Spaces were introduced in [HK00] as a natural Mori theoretic
generalization of toric varieties. As the name suggests, their main feature is that the
Minimal Model Program (MMP) can be run for any divisor (not just the canonical
divisor class). In particular, as for toric varieties, one only has to look into the
combinatorics of the various birational geometry cones to achieve the desired MMP
steps.

As being a Mori Dream Space is equivalent to all (multi-)section rings being
finitely generated, it is not surprising that non-trivial examples may be hard to find.
It was not until the major advances in the MMP, that Hu and Keel’s original con-
jecture that varieties of Fano type are Mori Dream Spaces was proved [BCHM10].
Although there are many examples outside of the Fano-type range, these often have
an ad-hoc flavor. Certain positivity properties of the anticanonical divisor (such as
being of Fano type or Calabi-Yau type) of a Mori Dream Space are reflected in the
multi-section rings [Oka16], [GOST15], but no clear picture emerges in general.
More often than not, the usual operations of blowing up, taking projective bundles,
crepant resolutions, hyperplane sections, when applied to Mori Dream Spaces, do
not lead to Mori Dream Spaces.

Our current goal is to pay special attention to blow-ups of Mori Dream Spaces,
in particular, blow-ups at a single (general) point. More specifically, the following
is a question asked by Jenia Tevelev:

Question 1.1. Let X be a projective Q-factorial toric variety over an alge-
braically closed field k. When is the blow-up Blp X of X at a general point p not a
MDS?
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Using the action of the open torus T = (k∗)n, we may assume the point p is
the identity e of T . Currently, the only known examples of X toric such that Ble X
is not a MDS fall into the following categories:

(I) Certain (singular) toric projective surfaces with Picard number one;
(II) Certain toric varieties for which there exists a small modification that ad-

mits a surjective morphism into one of the toric surfaces in (I). (Note that
small modifications and images of Mori Dream Spaces are Mori Dream
Spaces [HK00], [Oka16]).

All known examples are in characteristic zero, since the only examples of sur-
faces in (I) are in characteristic zero. Eventually, blowing up (very) general points1

on a toric variety leads to non Mori Dream Spaces: for example, the blow-up of P2

at r very general points is toric if and only if r ≤ 3 and a Mori Dream Space if and
only if r ≤ 8.

A good portion of the examples in (I) are weighted projective planes P(a, b, c)
for a certain choice of weights (a, b, c). Until [CT15], [GK16], the only known
examples of varieties as in Question 1.1 were of this type [GNW94]. The question
whether Ble P(a, b, c) is a Mori Dream Space is equivalent to the symbolic Rees
algebra of a so-called monomial prime ideal being Noetherian, and as such, it has a
long history. Major progress was recently achieved by Gonzalez and Karu [GK16]
by using methods of toric geometry. However, the main question remains open:

Question 1.2. For which triples (a, b, c) the blow-up Ble P(a, b, c) of P(a, b, c)
at the identity point e is not a MDS?

With the exception of (a, b, c) = (1, 1, 1), in all examples where the Mori Dream
Space-ness of Ble P(a, b, c) is understood (one way or another), it happens that
Ble P(a, b, c) contains a negative curve C, different than the exceptional divisor E
above the point e. In positive characteristic, the existence of the negative curve C
implies that Ble P(a, b, c) is a Mori Dream Space by Artin’s contractability theorem
[Art62]. No triples (a, b, c) ̸= (1, 1, 1) are known for which Ble P(a, b, c) contains no
negative curve (other than E). If such an example exists (in any characteristic), it
would imply the Nagata conjecture on linear systems on blow-ups of P2

C at abc points
[CK11]. If

√
abc /∈ Z, such an example would have many important consequences:

new cases of the Nagata conjecture, examples of irrational Seshadri constants, new
examples when Ble P(a, b, c) is not a Mori Dream Space, etc.

The goal of the present article is two-fold. First, to survey some of the general
theory of Mori Dream Spaces, along with known results and open problems related
to Question 1.1. Second, to use the toric geometry methods of Gonzalez and Karu
in order to translate Question 1.2 (and more generally, Question 1.1 in the case of
surfaces of Picard number one) into an interpolation problem involving points in
the (usual) projective plane P2 (this translation is likely not new to the experts).
As an illustration of this approach, we reprove (or rather, present a shortcut in
the proof of) the main theorem in [GK16] (Thm. 8.7). The advantages are that
the interpolation problem is really equivalent to the original question, and there are
further potential applications towards Question 1.1 and Question 1.2. For example,
both of the following questions can be reformulated into interpolation problems:

1Recall that the blow-up of a toric variety along a torus invariant stratum is a toric variety.
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(a) whether Ble P(a, b, c) is a Mori Dream Space when in the presence of a negative
curve, or (b) whether Ble P(a, b, c) has any negative curves at all. The drawback is
that the interpolation problem seems to be almost equally difficult.

By interpolation, we simply mean to separate points lying in the lattice points
of a plane polytope (so in a grid!) by curves of an appropriate degree. For example,
to prove that Ble P(9, 10, 13) has no negative curve (other than E), it suffices to
answer affirmatively:

Question 1.3. Let ∆ be the polytope in R2 with vertices (0, 0), (10, 40), (36, 27).
For every q ≥ 1, let

mq = ⌊q
√
1170⌋+ 1.

Is it true that for every q ≥ 1 and any point (i, j) ∈ q∆ ∩ Z2, there exists a curve
C ⊂ R2 of degree mq passing through all the points (i′, j′) ̸= (i, j) in q∆ ∩ Z2, but
not (i, j)?

Structure of paper. The first three sections present a general survey on Mori
Dream Spaces: Section 2 reviews the basic definitions and properties, Section 3
presents several key examples, while Section 4 gives an overview of the “structure
theory”. The last four sections focus on blow-ups at a general point. Section
5 discusses generalities on blow-ups of (not necessarily toric) surfaces of Picard
number one, while Section 6 presents the special case of weighted projective planes.
Section 7 discusses blow-ups of higher dimensional toric varieties, with Losev-Manin
spaces playing a central role. Finally (the linear algebra heavy) Section 8 translates
Question 1.1 in the case of surfaces of Picard number one, into an interpolation
problem and proves Thm. 8.7 as an application.

Conventions and Notations. Unless otherwise specified, we work over an alge-
braically closed field k of arbitrary characteristic. For an abelian group Γ and a
field K, we denote ΓK the K-vector space Γ⊗Z K.

Acknowledgements. I am grateful to Jenia Tevelev who pointed out Question
1.1 and the surrounding circle of ideas. I thank Shinosuke Okawa for his questions
and comments, José Gonzalez and Antonio Laface for useful discussions, and the
anonymous referees for several useful comments. This work was partially supported
by NSF grant DMS-1529735. I thank Institut de Mathématiques de Toulouse for
its hospitality during the writing of this paper.

2. Mori dream spaces

Mori Dream Spaces are intrinsically related to Hilbert’s 14th problem. Many
of the results on finite generation of multi-section rings go back to Zariski and
Nagata (see [Mum76]). For a survey of Mori Dream Spaces from the invariant
theory perspective, see [McK10]. In what follows, we briefly recall the definitions
and basic properties from [HK00]. We found [Oka16] to be a useful additional
reference.

Let X be a projective variety over k. We denote by N1(X) the group of Cartier
divisors modulo numerical equivalence2. The cone generated by nef divisors in
N1(X)R is denoted Nef(X). Similarly, the closure of the cone of effective divisors
(resp., movable divisors) is denoted Eff(X) (resp., Mov(X)). Recall that an effective

2N1(X) is a finitely generated abelian group.
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divisor is called movable if its base locus has codimension at least 2. Similarly,
if N1(X) is the group of 1-cycles modulo numerical equivalence3, the Mori cone
NE(X) is the closure in N1(X)R of the cone of effective 1-cycles.

The closure operations in the definition of Eff(X), Mov(X) and NE(X) are
not necessary for Mori Dream Spaces (see Prop. 2.3 below). A small Q-factorial
modification (SQM for short) of a normal projective variety X is a small (i.e.,
isomorphic in codiemsnion one) birational map X !!" Y to another normal, Q-
factorial projective variety Y .

Definition 2.1. A normal projective variety X is called a Mori Dream Space
(MDS for short) if the following conditions are satisfied:

(1) X is Q-factorial, Pic(X) is finitely generated, with

Pic(X)Q ∼= N1(X)Q;

(2) Nef(X) is generated by finitely many semiample divisors;
(3) There are finitely many SQMs fi : X !!" Xi such that each Xi satisfies

(1) and (2), and Mov(X) is the union of f∗
i Nef(Xi)4.

Remarks 2.2. (a) If k is not the algebraic closure of a finite field, the condition
that Pic(X) is finitely generated is equivalent to the condition Pic(X)Q ∼= N1(X)Q,
but not otherwise (see [Oka16, Rmk. 2.4])5.

(b) Semiampleness and polyhedrality in conditions (2) and (3) are key, guar-
anteeing that all the MMP steps are reduced to combinatorics (finding the divisor
class with the desired numerical properties).

A birational map f : X !!" Y between normal projective varieties is called
contracting if the inverse map f−1 does not contract any divisors. If E1, . . . Ek

are the prime divisors contracted by f , then E1, . . . Ek are linearly independent in
N1(X)R and each Ei spans an extremal ray of Eff(X). The effective cone of a MDS
also has a decomposition into rational polyhedral cones:

Proposition 2.3 ([HK00, Prop. 1.11 (2)]). Let X be a MDS. There are
finitely many birational contractions gi : X !!" Yi, with Yi a MDS, such that

Eff(X) =
⋃

i

Ci,

Ci = g∗i Nef(Yi) + R≥0{E1, . . . , Ek},
where E1, . . . , Ek are the prime divisors contracted by gi.

The cones Ci are called the Mori chambers of X. Prop. 2.3 is best interpreted
as an instance of Zariski decomposition: for each effective Q-Cartier divisor D,
there exists a birational contraction g : X !!" Y (factoring through an SQM and a
birational morphism X !!" X ′ → Y ) and Q-divisors P and N , such that P is nef
on X ′, N is an effective divisor contracted by g and for m > 0 sufficiently large and
divisible, the multiplication map given by the canonical section xm

N

H0(X,O(mP )) → H0(X,O(mD))

3The dual of N1(X) under the intersection pairing.
4If f : X !!" Y is birational map, the pull back f∗D of a Cartier divisor D from Y is defined

as p∗(q∗D), where p : W → X, q : W → Y are given by a common resolution. If f is small, f∗D
is simply the push forward f−1

∗ (D) via the inverse map f−1.
5In the original definition in [HK00], only the condition Pic(X)Q ∼= N1(X)Q appears, but

as explained in [Oka16], adding both conditions seems more natural.
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is an isomorphism. To see this, simply take

P = g∗g∗(D), N = D − P.

Remarks 2.4. (a) If X is a MDS, all birational contractions X !!" Y with
Q-factorial Y , are the ones that appear in Prop. 2.3. In particular, any such Y is
a MDS.

(b) The SQMs in Def. 2.1 are the only SQMs of X. In particular, any SQM of
a MDS is itself a MDS.

Definition 2.5. Let X be a normal variety. For a semigroup Γ ⊂ WDiv(X)6

of Weil divisors on X, we define the multi-section ring R(X,Γ) as the Γ-graded
ring:

R(X,Γ) =
⊕

D∈Γ

H0(X,O(D))

with the multiplication induced by the product of rational functions. When Γ is a
group such that the class map ΓQ → Cl(X)Q is an isomorphism, we call R(X,Γ) a
Cox ring of X and denote this by Cox(X)7.

The definition of Cox(X) depends on the choice of Γ, but basic properties,
such as finite generation as a k-algebra, do not. Note that if Γ′ ⊂ Γ is finite index
subgroup, then R(X,Γ) is an integral extension of R(X,Γ′). For more details on
Cox rings see [ADHL15], [LV09].

Mori Dream Spaces can be algebraically characterized as follows:

Theorem 2.6 ([HK00, Prop. 2.9]). Let X be a projective normal variety
satisfying condition (1) in Def. 2.1. Then X is a MDS if and only if Cox(X) is a
finitely generated k-algebra.

Sketch of Proof. If Cox(X) is finitely generated, let V be the affine variety
Spec(Cox(X)). Since Cox(X) is graded by a lattice Γ ⊂ WDiv(X), the algebraic
torus T = Hom(Γ,Gm) naturally acts on the affine variety V . Let χ ∈ Γ be a
character of T which corresponds to an ample divisor in Γ. Then X is V//χT , the
GIT quotient constructed with respect to the trivial line bundle on V endowed with
a T -linearization by χ. Similarly, all small modifications of X can be obtained as
GIT quotients V//χT , for different classes χ in Γ (thus the Mori chamber decom-
position is an instance of variation of GIT). The “only if” implication follows from
the more general Lemma 2.7. #

Lemma 2.7. Let X be a MDS and let Γ be a finitely generated group of Weil
divisors. Then R(X,Γ) is a finitely generated k-algebra.

Proof. We follow the proof in [Oka16, Lemma 2.20]. The key facts used
are (i) R(X,Γ) is finitely generated if Γ is generated by finitely many semiample
divisors ([HK00, Prop. 2.8]); (ii) Zariski decomposition as in Prop. 2.3. When
R(X,Γ) is a Cox ring, this is immediate: as Nef(X) is a full cone inside N1(X)R, if
Γ is generated by Q-divisors that are generators of Nef(X) (hence, ΓQ ∼= Cl(X)Q),
the result follows by (i).

6WDiv(X) is the group freely generated by prime Weil divisors in X.
7The greater generality of working with Weil divisors rather than than Cartier divisors will

be essential in Section 6.
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For the general case, without loss of generality, we may replace Γ with a sub-
group of finite index. In particular, we may assume that Γ has no torsion. For a
Mori chamber C, denote ΓC = Γ∩C (a semigroup). As there are finitely many Mori
chambers and the support of R(X,Γ) is the union of ΓC , it is enough to prove that
R(X,ΓC) is finitely generated. We may assume that there is g : X → Y birational
morphism, with

C = g∗ Nef(Y ) + R≥0{E1, . . . , Ek},
where E1, . . . , Ek are the prime divisors contracted by g. Note that since C is a ra-
tional polyhedral cone, ΓC is a finitely generated semigroup. For a set of generators
D1, . . . , Dr we consider Zariski decompositions as in Prop. 2.3: Di = Pi+Ni, with
Q-divisors Pi in g∗ Nef(X) and Ni effective and supported on E1, . . . , Ek. Up to
replacing each Di with a multiple, we may assume Pi and Ni are Z-divisors. Then
R(X,ΓC) is isomorphic to an algebra over R(Y, P1, . . . , Pr) generated by the canon-
ical sections xN1 , . . . , xNk . By (i), it follows that R(X,ΓC) is finitely generated.

#

3. Examples

We give several examples and non-examples of MDS (along with all the possible
different ways in which the MDS property can fail). In Example 3.7 we show how
the property of being a MDS is neither an open, nor a closed condition.

Example 3.1. Projective Q-factorial toric varieties are MDS, as they have
Cox rings which are polynomial algebras generated by sections corresponding to
the 1-dimensional rays of the defining fan [Cox95].

Example 3.2. Q-factorial varieties of Fano type are MDS if chark = 0; see
[BCHM10]. A variety X is said to be of Fano type if there is a Kawamata log-
terminal (klt) pair (X,∆), such that −(KX +∆) is ample. Examples include toric
varieties, Fano varieties (∆ = ∅) and weak Fano varieties (−KX is big and nef) with
klt singularities. SQMs of varieties of Fano type are of Fano type in characteristic
zero (see for example [GOST15], [KO15]).

Example 3.3. Any projective Q-factorial variety with ρ = 1 is trivially a MDS.
Starting with ρ ≥ 2, there is no classification for MDS, not even for rational surfaces
(see Sections 6 and 8).

Example 3.4. A projective, normal, Q-factorial surface X is a MDS if and only
if the Mori cone NE(X) is rational polyhedral and every nef divisor D is semiample.
By Zariski’s theorem [Laz04, Rmk. 2.1.32], every movable divisor on a projective
surface is semiample. In particular, Mov(X) = Nef(X). Hence, a nef divisor D is
semiample if and only if a multiple mD is movable for some m > 0.

Example 3.5. Let X be the blow-up of P2 at points p1, . . . , pr in general
position. If r ≤ 8, X is a del Pezzo surface NE(X) is generated by the (finitely
many) (−1)-curves if r ≥ 3. It follows by induction on r that every nef divisor is
semiample.

If r ≥ 9 and the points p1, . . . , pr are in very general position, then X has
infinitely many (−1)-curves (hence, Eff(X) has infinitely many extremal rays and
X is not a MDS). It is enough to prove that there are infinitely many (−1)-classes
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when r = 9 and the points are the base points of a general cubic pencil. In this
case

φ|−KX | : X → P1

is an elliptic fibration whose sections are the (−1)-curves on X. Sections of φ
correspond to k(t)-points of the generic fiber E = Xk(t) (an elliptic curve over

k(t)). The Mordell-Weil group Pic0(E) is the group of sections of π, once we fix
one section as the identity. It follows that Pic0(E) is infinite if for a smooth cubic
C containing p1, . . . , p9 if O(pi − pj) ∈ Pic0(C) is non-torsion line bundle for some
i ̸= j.

When X contains only finitely many (−1)- curves (an extremal rational elliptic
surface), X is a MDS [AL11]. There is a complete classification extremal rational
elliptic surfaces, by Miranda-Persson in characteristic zero [MP86] and Lang in
positive characteristic [Lan91,Lan94]. For example, it follows from this classifi-
cation that if chark ̸= 2, 3, 5 then the blow-up X of P2 at distinct points p1, . . . , p9
which are the base points of a cubic pencil, is extremal if and only if the points are
the 9 flexes of a smooth cubic in the pencil, i.e., this is the Hesse configuration in
P2 (unique, up to PGL3).

Example 3.6. Let X be the blow-up of Pn at very general points p1, . . . , pr
and let E1, . . . , Er be the corresponding exceptional divisors. Generalizing the case
of del Pezzo surfaces, the following are equivalent [Muk05], [CT06]:

(a) X is a MDS
(b) Eff(X) is rational polyhedral8;
(c) The following inequality holds:

1

n+ 1
+

1

r − n− 1
>

1

2
.

The Weyl groupW associated to the three-legged Dynkin diagram T2,n+1,r−n−1

acts on Pic(X) preserving effective divisors. Every element in the orbit W .E1

(which contains all Ei’s) generates and extremal ray of Eff(X). The group W
is finite if and only if the above inequality holds, which for n ≥ 5 translates to
r ≤ n+ 3.

Assume r = n + 3. Let C be the unique rational normal curve in Pn passing
through p1, . . . , pn+3. Then X is a moduli space of parabolic rank 2 vector bundles
on (C, p1, . . . , pn+3) [Bau91], [Muk03], [Muk05]. Varying stability gives rise to
all the SQMs of X. In particular, X has an SQM which is a weak Fano, hence, X
is of Fano type (see also [AM16]).

Example 3.7. Generalizing Ex. 3.6 for r = n + 3, let X be the blow-up of
Pn at any number r of points lying on on a rational normal curve. Then X is a
MDS [CT06]. Hence, being a MDS is not an open condition. We now give an
example (due to Hassett and Tschinkel) that shows that being a MDS is not a
closed condition either.

Consider a family of blow-ups Xt of P3 along points pt1, . . . , p
t
9 lying on some

rational normal curve (hence, Xt is a MDS). Such a family admits a degeneration
to the blow-up X0 of P3 at nine points which are the intersection points of two
smooth cubics contained in a plane Λ ⊂ P3 (we may assume that the nine points

8Nef(X) is rational polyhedral, generated by semiample divisors for r ≤ 2n.
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are not the nine flexes of the cubics). Let E1, . . . , E9 be the exceptional divisors on
X0 and let S be the proper transform of the plane. As X0 is an equivariant Ga-
compactification of P3 \Λ = G3

a, it follows that Eff(X0) is generated by E1, . . . , E9,
while NE(X0) is generated by curves in S. As the restriction map Pic(S) → Pic(X0)
is an isomorphism, it follows that NE(X0) = NE(S) via this identification. As seen
in Ex. 3.5, NE(S) is not a rational polyhedral cone if the cubic pencil is not the
Hesse pencil. Hence, X0 is not a MDS.

Example 3.8. If X is a Calabi-Yau variety of dimension at most 3, then X is
a MDS if and only if Eff(X) is rational polyhedral, generated by effective divisor
classes. (The abundance conjecture implies the same statement in higher dimen-
sions [McK10, Cor. 4.5].) This is clearly the case if ρ(X) = 1. If X is a K3
surface with ρ(X) ≥ 3, Eff(X) is rational polyhedral if and only if Aut(X) is finite
([Kov94, Thm. 1, Rmk. 7.2], [PŠŠ71]). In this case, Eff(X) is generated by
smooth rational curves. If ρ(X) = 2, although Eff(X) is rational polyhedral, it
may not be generated by effective classes [Kov94, Thm. 2].

Example 3.9. Rational normal projective varieties with a complexity one torus
action are MDS by [HS10]. Such varieties X admit a faithful action of a torus of
dimension dim(X) − 1. Examples include projectivizations of toric rank 2 vector
bundles (see 4.1.2) and several singular del Pezzo surfaces.

By [Bri07], wonderful varieties are MDS. Wonderful varieties admit an action
of a semi-simple algebraic groupG which has finitely many orbits. Examples include
toric varieties, flag varieties G/P and and the complete symmetric varieties of De
Concini and Procesi [DCP83].

4. Structure theory

As for log-Fano varieties, there is little “structure theory” for MDS:

• If X is a MDS, any normal projective variety which is an SQM of X, is
also a MDS. This follows from the fact that the fi of Def. 2.1 are the only
SQMs of X (see Rmk. 2.4).

• [Oka16, Thm. 1.1] If f : X → Y is a surjective morphism of projective
normal Q-factorial varieties and X is a MDS, then Y is a MDS. When f
is birational, this follows from [HK00] (see Rmk. 2.4).

4.1. Projective bundles. The projectivization P(E) of a vector bundle E on
a MDS may or may not be a MDS.

4.1.1. If L1, . . . , Lk are line bundles on a MDS X, then P(L1⊕ . . .⊕Lk) is also
a MDS [Bro13, Thm. 3.2], [CG13, Prop. 2.6] (see also [Jow11]).

4.1.2. Toric vector bundles. A vector bundle E on a toric variety X is called
toric if E admits an action of the open torus of X that is linear on fibers and
compatible with the action on the base. For example, a direct sum of line bundles
is a toric vector bundle. By [GHPS12], a projectivized toric bundles P(E) is a
MDS if and only if a certain blow-up Y of the fiber of P(E) → X above the identity
point of the torus is a MDS. Hence, toric P1-bundles are always MDS (see also Ex.
3.9). In fact, any blow-up of a projective space along linear subspaces can appear
as the variety Y [GHPS12, Cor. 3.8] (in particular, Ex. 3.6, Ex. 3.7). Moreover,
there is an example of a toric vector bundle on the Losev-Manin space LMn such
that Y = M0,n [GHPS12, p. 21] (see 7.3 for details on Losev-Manin spaces).
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The question whether P(E) is a MDS seems difficult for non-toric vector bundles
E, even when rkE = 2 [MOSC14].

4.2. Ample divisors. An ample divisor in a MDS may or may not be a MDS.
A question of Okawa: does every MDS have a (not necessarily ample) divisor which
is a MDS?

4.2.1. Lefschetz-type theorems [Jow11]. If X is a smooth MDS of dimen-
sion ≥ 4 over C which satisfies a certain GIT condition, then any smooth ample
divisor Y ⊂ X is a MDS. Moreover, the restriction map identifies N1(X) and
N1(Y ). Under this identification, every Mori chamber of Y is a union of some
Mori chambers of X and Nef(Y ) = Nef(X). The GIT condition is stable under
taking products and taking the projective bundle of the direct sum of at least three
line bundles. The GIT condition is satisfied by smooth varieties of dimension at
least 2 and with ρ = 1. For toric varieties, the GIT condition is equivalent to the
corresponding fan Σ being 2-neighborly, i.e., for any 2 rays of Σ, the convex cone
spanned by them is also in Σ. See also [AL12] for examples of non-ample divisors
which are MDS.

4.2.2. Hypersurfaces in Pm×Pn [Ott15]. If X ⊂ Pn×Pm is a hypersurface
of type (d, e), the cones Nef(X), Mov(X) and Eff(X) are rational polyhedral. If
m,n ≥ 2, X is a MDS (as proved also in [Jow11]). If m = 1 and d ≤ n or e = 1,
then X is a MDS. However, a very general hypersurface X ⊂ P1 × Pn of degree
(d, e) with d ≥ n + 1 and e ≥ 2 is not MDS, as Nef(X) is generated by H1 and
neH2−dH1 (whereHi = p∗iO(1) and p1, p2 are the two projections), and the divisor
neH2 − dH1 has no effective multiple. As noted in [Ott15], it is the value of d,
rather than −KX , that determines whether a general hypersurface of degree (d, e)
is a MDS or not. In particular, it is not true that a sufficiently ample hypersurface
in a MDS is again a MDS.

4.3. Smooth rational surfaces. A smooth rational surface X whose anti-
canonical class −KX is big (the Iitaka dimension κ(−KX) is 2) is a MDS [TVAV11,
Thm. 1]9. There are examples of smooth rational surfaces with −KX big, which
are not of Fano type [TVAV11]. Smooth rational surfaces X with κ(−KX) = 1
are MDS if and only if Eff(X) is rational polyhedral [AL11]. It is not clear what
this condition means in practice. By Ex. 3.5, if X = BlP2

p1,...,p9
, where p1, . . . , p9

are the base points of a cubic pencil, then X is a MDS if and only if p1, . . . , p9 are
the 9 inflection points of the cubics in the pencil (the configuration is unique up to
Aut(P2)). When the points are not the base points of a cubic pencil, it is not clear
what the precise condition should be for X to be a MDS.

When κ(−KX) ≤ 0, the question is less settled. There exist smooth rational
surfaces (of arbitrarily large Picard number) with κ(−KX) = −∞ which are MDS
[HP15].

4.4. Surfaces with ρ(X) = 2. The classification of singular rational MDS
surfaces with ρ(X) = 2 is far from settled (see Sections 6 and 8). In general,
understanding when the blow-up Blp X of a surface X with ρ(X) = 1 at a general
point p is a MDS, is related to the rationality of Seshadri constants (see Section 5)
and is not understood in most cases.

9There is evidence that the same result holds for all projective Q-factorial rational surfaces;
see Thm. 6.6.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

152 ANA-MARIA CASTRAVET

4.5. Singularities of Cox rings and positivity of −KX . Assume chark =
0 and let X be a MDS. Then X is of Fano type (resp., Calabi-Yau type) if and only
if Spec(Cox(X)) has klt singularities (resp. log canonical singularities) [KO15] (see
also [GOST15], [Bro13]). Recall that X is said to be of Calabi-Yau type if there
exists a log-canonical pair (X,∆) such that (KX +∆) is Q-linearly trivial. It would
be interesting if the condition −KX ∈ Eff(X) is also reflected in Cox(X).

5. Blow-ups of surfaces of Picard number one

Let X be a projective, Q-factorial, normal surface with ρ(X) = 1. Let H be
an ample Q-divisor on X and let

w := H2.

If p ∈ X is a general point, let Blp X denote the blow-up of p and E be the
exceptional divisor. The Mori cone of Blp X has the form

NE(Blp X) = R≥0{E,R}, R = H − ϵE, ϵ ∈ R>0.

There are two possibilities: either R2 = 0, or R2 < 0. Assume that R2 = 0. Then
ϵ =

√
w and we have

Nef(X) = R≥0{H,R}.

In particular, ϵ is the Seshadri constant ϵ(H, p) of H at the point p. Then Blp X
is a MDS if and only if R is semiample (in particular, ϵ ∈ Q). There are no
known examples (in any dimension) of irrational Seshadri constants at points. For
example, if X ⊂ P3 is a general quintic surface, it is expected that ϵ(O(1), p) =

√
5

for a general point p. We discuss other conjectural examples of irrational Seshadri
constants in Section 6.

Assume now R2 < 0. Then there exists an irreducible curve C on Blp X such
that C2 < 0 and C spans the same ray as R. Then Blp X is a MDS if and only if
the class

R⊥ := H − w

ϵ
E

is semiample, or equivalently, using Zariski’s theorem, the ray spanned by R⊥

contains a movable divisor. As E and C span NE(Blp X) and R⊥ is the extremal
ray of Nef(X), it follows that R⊥ is semiample if and only if C is not contained in
the base locus of d(R⊥), for some d > 0. We state this observation as a Lemma:

Lemma 5.1. Let X be a projective, Q-factorial surface with Picard number
ρ(X) = 1 and let p ∈ X be a general point. Let Blp X be the blow-up of X at p
and let E be the exceptional divisor. Assume that Blp X contains an irreducible
curve C ̸= E such that C2 < 0. Then Blp X is a MDS if and only if there exists
an effective divisor D on Blp X such that D ·C = 0 and the linear system |D| does
not contain C as a fixed component. Equivalently, there exists a curve D̄ on X that
intersects the image C̄ of C in X only at p and with multiplicity one.

Remark 5.2. Assume the situation in Lemma 5.1 and chark > 0. If X and p
can be defined over the algebraic closure of a finite field, then a divisor D as in the
Lemma always exists. This follows from [Art62] if X is smooth. In general, one
can consider the desingularization of X and the same conclusion holds.
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6. Blow-ups of weighted projective planes

Let a, b, c > 0 be pairwise coprime integers and consider the weighted projective
space

P = P(a, b, c) = ProjS,

where S = k[x, y, z] and x, y, z have degrees

deg(x) = a, deg(y) = b, deg(z) = c.

Then P is a toric, projective, Q-factorial surface with Picard number one. Note that
P is smooth outside the three torus invariant points, but singular at some of these
points if (a, b, c) ̸= (1, 1, 1). If D1, D2, D3 are the torus invariant (Weil) divisors,
let

H = m1D1 +m2D2 +m3D3,

for some integers m1,m2,m3 such that m1a+m2b+m3c = 1. Then

Cl(P) = Z{H}, Pic(P) = Z{abcH},

H2 =
1

abc
.

Moreover, OProjS(d) ∼= O(dH) for all d ∈ Z and H0(P,O(d)) can be identified with
the degree d part Sd of S. If π : Ble P → P is the blow-up map, let E = π−1(e).
We abuse notations and denote by H the pull-back π−1(H) (note that e does not
belong to the support of H). We have Cl(Ble P) = Z{H,E} and hence a Cox ring
of Ble P is

Cox(Ble P) =
⊕

d,l∈Z
H0(X,O(dH − lE)).

It was observed by Cutkosky [Cut91] that finite generation of Cox(Ble P) is equiv-
alent to the finite generation of the symbolic Rees algebra Rs(p) of the prime ideal
p of S defining the point e, or equivalently p is a monomial prime, i.e., the kernel
of the k-algebra homomorphism:

φ : k[x, y, z] → k[t], φ(x = ta, φ(y) = tb, φ(z) = tc.

The symbolic Rees algebra of a prime ideal p in a ring R, is the ring

Rs(p) :=
⊕

l≥0

p(l), where p(l) = plRp ∩R.

In our situation, symbolic Rees algebra Rs(p) can be identified with the following
subalgebra of Cox(X): ⊕

d,l∈Z≥0

H0(X,O(dH − lE)),

which is clearly finitely generated if and only if Cox(Ble P) is finitely generated (or
equivalently Noetherian).

The study of the symbolic Rees algebras Rs(p) for monomial primes has a long
history: [Hun82], [Hun87], [Cut91], [GNS91a], [GNS91b], [Sri91], [GM92],
[GNW94], [KM09], [CK11], [GK16]. Prior to [GK16], the only non-finitely
generated examples known were the following:

Theorem 6.1 ([GNW94, Cor. 1.2, Rmk. 4.5]). Assume (a, b, c) is one of the
following:

• (7m− 3, 5m2 − 2m, 8m− 3), with m ≥ 4 and 3 ! m,
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• (7m − 10, 5m2 − 7m + 1, 8m − 3), with m ≥ 5, 3 ! 7m − 10 and m ̸≡
−7(mod 59).

Then Ble P(a, b, c) is not a MDS when chark = 0.

The original proof of Theorem 6.1 involved a reduction to positive characteris-
tic. Using methods of toric geometry, Gonzalez and Karu [GK16] gave a different
proof to Theorem 6.1, which allows allows for many more examples of toric sur-
faces X with Picard number one for which Ble X is not a MDS in characteristic
zero (Thm. 8.7 - to be discussed in detail in Section 8). In particular:

Theorem 6.2 ([GK16]). If chark = 0 Ble P(a, b, c) is not a MDS if (a, b, c) is
one of the following:

(7, 15, 26), (7, 17, 22), (10, 13, 21), (11, 13, 19), (12, 13, 17).

The above are all the triples (a, b, c) with a + b + c ≤ 50 that satisfy the
conditions in Thm. 8.7. Key in all the examples in [GK16] is that Ble P has a
negative curve, other than E (hence, Lemma 5.1 applies).

Question 6.3. Are there any triples (a, b, c) for which
√
abc /∈ Z and

Ble P(a, b, c) contains no curves C ̸= E with C2 < 0?

As explained in Section 5, if
√
abc /∈ Z and Ble P(a, b, c) has no negative curves,

then Ble P is not a MDS (in any characteristic), as NE(Ble P) and Nef(Ble P) have
an irrational extremal ray generated by H− 1√

abc
E. In particular, Seshadri constant

ϵ(H, e) is irrational. Furthermore, if k = C, the Nagata conjecture for P2 and abc
points holds [CK11, Prop. 5.2.].

If chark > 0 and Ble P is not a MDS, then Ble P has no negative curve, other
than E (see Rmk. 5.2). In particular, either

√
abc /∈ Z or H − 1√

abc
E is not

semiample. If Ble P(a, b, c) has no negative curve in characteristic p, by standard
reduction p methods, it follows Ble P(a, b, c) has no negative curves in characteristic
zero.

Question 6.4 ([KM09]). Does Ble P(9, 10, 13) contain a curve C ̸= E with
C2 < 0?

In Section 8 we discuss an approach (for chark = 0) to the classifcation problem
1.2 by reducing the question to an interpolation problem. In particular, Question
6.4 has a negative answer (in chark = 0, hence, also in chark = p for all but finitely
many primes p) if and only if there is an affirmative answer to the following:

Question 6.5 (Question 1.3). Let ∆ be the polytope in R2 with coordinates
(0, 0), (10, 40), (36, 27). For every q ≥ 1, let

mq = ⌊q
√
1170⌋+ 1.

Is it true that for every q ≥ 1 and any point (i, j) ∈ q∆ ∩ Z2, there exists a curve
C ⊂ R2 of degree mq passing through all the points (i′, j′) ̸= (i, j) in q∆ ∩ Z2, but
not (i, j)?

Computer calculations show that the answer is affirmative for q ≤ 5.

Most known affirmative results are covered by the following:
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Theorem 6.6 ([Cut91]). If the anticanonical divisor of Ble P(a, b, c)
−K = (a+ b+ c)H − E

is big, then Ble P(a, b, c) is a MDS. In particular, if (−K)2 > 0, i.e., if

a+ b+ c >
√
abc,

then Ble P(a, b, c) is a MDS.

Note that if (a, b, c) ̸= (1, 1, 1) and −K is big, Ble P(a, b, c) has a negative
curve, other than E. Several particular cases of Thm. 6.6 were proved previously
by algebraic methods [Hun82], [Hun87]. Srinivasan [Sri91] gave examples of
triples (a, b, c) for which Ble P(a, b, c) is a MDS, but −K is not always big:

(a) (6, b, c), for any b, c
(b) (5, 77, 101) (in this case κ(−K) = −∞).

A particular case of Theorem 6.6 is when one of a, b, c is ≤ 4. As noted in
[Cut91], when compared with (b) above, this raises the question whether Ble P(5, b, c)
is always a MDS.

7. Blow-ups of higher dimensional toric varieties

Recall that a toric variety X corresponds to the data (N,Σ) where N is a
lattice (a finitely generated free Z-module) and a fan Σ ⊂ NR. Then X = X(N,Σ)
is Q-factorial if and only the fan Σ is simplicial. Two toric varieties X = X(N,Σ)
and X ′ = X(N ′,Σ′) are isomorphic in codimension one if and only if Σ and Σ′ have
the same rays. To reduce dimensions when considering Question 1.1, one has the
following result:

Proposition 7.1 ([CT15, Prop. 3.1]). Let π : N → N ′ be a surjective map
of lattices with kernel of rank 1 spanned by a vector v0 ∈ N . Let Γ be a finite set
of rays in NR spanned by elements of N , such that the rays ±R0 spanned by ±v0
are not in Γ. Let Σ′ ⊂ N ′

R be a complete simplicial fan with rays given by π(Γ).
Suppose that the corresponding toric variety X ′ is projective. Then

(1) There exists a complete simplicial fan Σ ⊂ NR with rays given by Γ ∪
{±R0} and such that the corresponding toric variety X is projective and
π induces a surjective morphism p : X → X ′.

(2) There exists an SQM Z of Ble X such that the rational map Z !!" Ble X ′

induced by p is regular. In particular, if Ble X is a MDS then Ble X ′ is a
MDS.

Corollary 7.2. Assume X = X(N,Σ) is a toric variety of dimension n.
Assume there exists a saturated sublattice

N ′ ⊂ N, rkN ′ = n− 2

with the following properties:

(1) The vector space N ′ ⊗ Q is generated by rays R of Σ with the property
that −R is also a ray of Σ.

(2) There exist three rays of Σ with primitive generators u, v, w whose images
generate N/N ′ and such that

au+ bv + cw = 0 (mod N ′)

for some pairwise coprime integers a, b, c > 0.
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Then there exists a rational map Ble X !!" Ble P(a, b, c) which is a composition of
SQMs and surjective morphisms between normal, projective, Q-factorial varieties.
In particular, if Ble X is a MDS, then Ble P(a, b, c) is a MDS.

7.3. Losev-Manin spaces. Let LMn be the Losev-Manin space [LM00].
The space LMn can be described also as the blow-up of Pn−3 at points p1 . . . , pn−2

in linearly general position and the proper transforms of all the linear subspaces
spanned by the points, in order of increasing dimension. The space LMn is a toric
variety and its fan Σ is the barycentric subdivision of the fan of Pn−3. It has lattice

N = Z{e1, . . . , en−2}/Z{e1 + . . .+ en−2},

and rays generated by the primitive lattice vectors
∑

i∈I

ei, for all I ⊂ {1, . . . , n− 2}, 1 ≤ #I ≤ n− 3.

Notice that rays of this fan come in opposite pairs. To construct, for all n, a
sublattice N ′ ⊂ N satisfying the conditions in Cor. 7.2, we can proceed as follows:
we partition

{1, . . . , n− 2} = S1

∐
S2

∐
S3

into subsets of size a+2, b+2, c+2 (so n = a+ b+ c+8). We also fix some indices
ni ∈ Si, for i = 1, 2, 3. Let N ′ ⊂ N be the sublattice generated by the following
vectors:

eni + er for r ∈ Si \ {ni}, i = 1, 2, 3.

If π : N → N/N ′ is the projection map, then we have the following:

(1) N ′ is a lattice generated by the vectors π(eni), for i = 1, 2, 3;
(2) aπ(en1) + bπ(en2) + cπ(en3) = 0.

Corollary 7.4. Let n = a+b+c+8, where a, b, c are positive pairwise coprime
integers. If Ble LMn is a MDS then Ble P(a, b, c) is a MDS.

Cor. 7.4 and Theorems 6.1 and 6.2 give examples of integers n when Ble LMn

is not a MDS (for n ≥ 134 if ones uses Theorem 6.1 and n ≥ 50 if one uses Theorem
6.2). A smaller n for which Ble LMn is not a MDS was subsequently obtained in
[GK16], using Cor. 7.2 and projecting from a different sublattice N ′ used in the
proof of Cor. 7.4:

Theorem 7.5. [GK16] If chark = 0, Ble LM13 is not a MDS.

Cor. 7.2 is used to prove that if Ble LM13 is a MDS, then Ble P(7, 15, 26) is
a MDS. However, Ble P(7, 15, 26) is not a MDS (Thm. 6.2). The smallest known
n (as of the time of this writing) for which Ble LMn is not a MDS was recently
obtained in [HKL16] by again using Cor. 7.2 and projecting from a yet different
sublattice:

Addendum 7.6 ([HKL16]). If chark = 0, Ble LM10 is not a MDS.

Cor. 7.2 is used to prove that if Ble LM10 is a MDS, then Ble P(12, 13, 17) is a
MDS. However, Ble P(12, 13, 17) is not a MDS (Thm. 6.2).

Lemma 7.7. If Ble LMn+1 is a MDS, then Ble LMn is a MDS.
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Proof. Note that although there exist forgetful maps LMn+1 → LMn, in
general it is not clear whether one can resolve the rational map

Ble LMn+1 !!" Ble LMn

by an SQM followed by a surjective morphism. However, if Ble LMn+1 is a MDS,
this is always the case, and we are done by [Oka16]. #

As Ble LM6 is a MDS in any characteristic (follows from [Cas09] - see 7.9;
moreover, it is a threefold of Fano type), we are left with:

Question 7.8. Is Ble LMn a MDS for 7 ≤ n ≤ 9, chark = 0?

7.9. Losev-Manin spaces and the moduli spaces M0,n There is a close
connection between the blow-ups Ble LMn of the Losev-Manin spaces and the mod-
uli spaces M0,n of stable, n-pointed rational curves. By Kapranov [Kap93], M0,n

is the blow-up of Pn−3 at points p1 . . . , pn−1 in linearly general position and the
proper transforms of all the linear subspaces spanned by the points, in order of
increasing dimension. Up to changing coordinates, we may assume that

p1 = [1, 0, 0, . . . , 0], p2 = [0, 1, 0, . . . , 0], . . . , pn−2 = [0, 0, 0, . . . , 1],

pn−1 = e = [1, 1, 1, . . . , 1].

Note that pn−1 is the identity of the open torus in LMn. Moreover, M0,n is
the blow-up of LMn along e, and the (proper transforms of the) linear susbpaces
spanned by e and {pi}i∈I , for all the subsets I of {1, . . . , n−2} with 1 ≤ #I ≤ n−5.
In particular, there is a projective birational morphism M0,n → Ble LMn.

Theorem 7.10 ([CT15]).

(1) If M0,n is a MDS, then Ble LMn is a MDS;
(2) If Ble LMn+1 is a MDS, then M0,n is a MDS.

The existence of forgetful maps M0,n+1 → M0,n implies that if M0,n+1 is a
MDS, then M0,n is a MDS. Combined with Cor. 7.4 and the resuts in 7.3, Thm.
7.10 gives a negative answer to the question of Hu and Keel [HK00] whether M0,n

is a MDS.

Theorem 7.11 ([CT15],[GK16],[HKL16]). If n ≥ 10, M0,n is not a MDS
in characteristic 0.

Note that M0,6 is a MDS in any characteristic [Cas09] (moreover, it is a
threefold of Fano type). The range 7 ≤ n ≤ 9 is still open.

Part (1) of Thm. 7.10 follows from [HK00] (see Rmk. 2.4). Part (2) follows
from:

Theorem 7.12 ([CT15]). Let Xn be the toric variety which is the blow-up of
Pn−3 along points p1, . . . , pn−2 and (all the proper transforms of) the linear sub-
spaces of codimension at least 3 spanned by the points p1, . . . , pn−2. Then Ble Xn+1

is an SQM of a P1-bundle over M0,n which is the projectivization of a direct sum
of line bundles.

Hence, M0,n is a MDS if and only if Ble Xn+1 is a MDS. In particular:

• If n ≥ 11, then Ble Xn is not a MDS if chark = 0;
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• If n ≤ 7, then Ble Xn is a MDS.

7.13. Further questions.

(1) Are there other examples of toric varieties besides Losev-Manin spaces, to
which Cor. 7.2 applies?

(2) What are the simplest smooth toric varieties X for which Ble X is not a
MDS? Any smooth Fano varieties?

If X is a projective, Q-factorial toric variety such that all the torus invariant
divisors are not movable, then Ble X is not toric. It may or may not be a MDS
(for example, when X is LM6 or LMn with n ≥ 10). If some of the torus invariant
divisors are movable, then Ble X may be toric (for example when X = Pn), but
may not even be a MDS (for example, when X = Xn from Thm. 7.12). It would
be interesting to find a geometric criterion for Ble X to not be a MDS.

8. Blow-ups of toric surfaces

In this section we assume
chark = 0.

Let (X∆, H) be a polarized toric projective surface with H an ample Q-Cartier
divisor on X∆ corresponding to the rational polytope ∆ ⊂ N∗

R = R2. If X∆ has
Picard number ρ, then ∆ is a rational polytope with ρ + 2 vertices. If d > 0 is
an integer such that d∆ has integer coordinates, then global sections of OX∆(dH)
can be identified with Laurent polynomials (considered as regular functions on the
open torus):

f =
∑

(i,j)∈d∆∩Z2

a(i,j)x
iyj ∈ H0(X,O(dH)).

The vertices of ∆ correspond to the ρ + 2 torus invariant points of X. A section
f vanishes at a torus invariant point if and only if the coefficient aij of the corre-
sponding vertex in d∆ is zero. We fix a vertex (x1, y1) of ∆ and and let p1 be the
corresponding torus invariant point. For simplicity, we assume this is the “leftmost
lowest” point of ∆.

We now translate into linear algebra the condition that a global section of
OX∆(dH) has a certain multiplicity at the point e. Let Nd be the number of lattice
points (i, j) ∈ d∆ ∩ Z2 and let Rm be the number of derivatives δaxδ

b
y of order

≤ m− 1 in two variables:

Rm = 1 + 2 + . . .+m =
m(m+ 1)

2
.

Definition 8.1. We order the pairs (i, j) and the pairs (a, b) lexicographically
(so the first (i, j) corresponds to the leftmost point (dx1, dy1) of d∆). We define
two Nd × Rm matrices A = Ad,m and B = Bd,m, whose entries for the pairs (i, j)
and (a, b) as are given as follows:

A(i,j),(a,b) = δaxδ
b
y(x

iyj)(1, 1) = a!

(
i

a

)
b!

(
j

b

)
,

B(i,j),(a,b) = iajb.

where we denote for any integers n, k (k ≥ 0, but n possibly negative)
(
n

k

)
=

n(n− 1)(n− 2) . . . (n− k + 1)

k!
.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

MORI DREAM SPACES AND BLOW-UPS 159

We write N = Nd, R = Rm, A = Ad,m, B = Bd,m, whenever there is no risk
of confusion.

Lemma 8.2. The matrix Bd,m can be obtained from Ad,m by a sequence of
reversible column operations.

Proof. We claim that for every column (a, b) of A, starting from left to right,
we can do (reversible) column operations on A involving only previous columns, and
end up with the column that has entries iajb for every row (i, j). For simplicity,
we may first ignore the j’s and consider the situation when one matrix has entries
a!
(i
a

)
and the other ia (with rows indexed by i and columns by a). It is easy to

see that one can do reversible column operations from one matrix to the other: use
induction on a and expand the product

i(i− 1)(i− 2) . . . (i− a+ 1).

The general case is similar. #
Lemma 8.3. Let A be an N × R matrix with entries in Q. The following are

equivalent:

(a) Any linear combination
∑

αjRj of the rows Rj of the matrix A that is
zero, must have αi = 0.

(b) There exists a linear combination of the columns of A that equals the
vector ei = (0, 0, . . . , 1, 0 . . . 0) ∈ RNd .

In particular, A has rank N if and only if for every 1 ≤ i ≤ N , there exists a
linear combination of the columns of A which equals ei.

Proof. May assume i = 1. Consider the pairing (, ) : V ×W → Q with V a
Q-vector space with basis e1, . . . , eN and W a Q-vector space with basis f1, . . . , fR
and (eu, fv) = auv. Let

φ : V → W ∗, φ∗ : W → V ∗

be the induced linear maps. Condition (b) is equivalent to the dual vector e∗1 ∈ V ∗

being in the image of the map φ∗. Condition (a) is equivalent to the kernel K of
the map φ being contained in the span of e2, . . . , eN . Let I = Im(φ) ⊂ W ∗. Hence,
there is an exact sequence

0 → K → V → I → 0.

Consider the inclusion map u : K → V . Dualizing, it follows that Im(φ∗) = I∗ =
ker(u∗). Hence, e∗1 ∈ Im(φ∗) if and only if u∗(e∗1) = 0. As u∗(e∗1) is the linear
functional K → Q given by k 4→ e∗1(k), for k ∈ K, it follows that u∗(e∗1) = 0 if
and only if e∗1(k) = 0, for all k ∈ K, or equivalently, K is contained in the span of
e2, . . . , eN . #

Lemma 8.4. Let Ble X∆ be the blow-up of X∆ at the identity point e and let E
denote the exceptional divisor. The following are equivalent:

(i) The linear system |dH −mE| is empty.
(ii) The matrix Ad,m has linearly independent rows.
(iii) The matrix Bd,m has linearly independent rows.
(iv) For every (i, j) ∈ d∆ ∩ Z2, there exists a polynomial f(x, y) ∈ Q[x, y] of

degree ≤ m− 1, such that f(i, j) ̸= 0 and

f(i′, j′) = 0 for all (i′, j′) ∈ d∆ ∩ Z2, (i′j′) ̸= (i, j).
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Equivalently, condition (iv) says that one can separate any lattice point in d∆
from the rest by degree m− 1 plane curves.

Proof. A non-zero section of OX∆(dH) has multiplicity m at the point e if
and only if there exists a non-zero linear combination of the rows of Ad,m which
is zero. Hence, (i) is clearly equivalent to (ii). By Lemma 8.2, (ii) is equivalent to
(iii). By Lemma 8.3, (iii) is equivalent to (iv). #

Lemma 8.5. Let Ble X∆ be the blow-up of X∆ at the identity point e and let E
denote the exceptional divisor. The following are equivalent:

(i) All non-zero sections of the linear system |dH−mE| (if any) define curves
that pass through the torus invariant point p1.

(ii) There exists a linear combination of the columns of the matrix Ad,m that
equals the vector (1, 0 . . . , 0) ∈ RNd .

(iii) There exists a linear combination of the columns of the matrix Bd,m that
equals the vector (1, 0 . . . , 0) ∈ RNd .

(iv) There exists a polynomial f(x, y) ∈ Q[x, y] of degree ≤ m − 1, such that
f(dx1, dy1) ̸= 0 and

f(i, j) = 0 for all (i, j) ∈ d∆, (i, j) ̸= (dx1, dy1).

Equivalently, condition (iv) says that there exists a plane curve of degree ≤
m− 1 that passes through all the lattice points in d∆, except the lefmost point.

Proof. Condition (i) is equivalent to the fact that any non-zero section of
OX∆(dH) which has multiplicitym at the point e, must have the coefficient a(dx1,dy1)

is zero. Equivalently, any linear combination
∑

αiRi of rows Ri of the matrix A
that is zero, must have α1 = 0. By Lemma 8.3 this is equivalent to condition
(ii). Lemma 8.2 implies that (ii) and (iii) are equivalent. Condition (iv) is just a
reformulation of (iii). #

Consider now the situation when ρ(X∆) = 1 (i.e., ∆ is a triangle) and Ble(X∆)
has a curve C ̸= E with C2 < 0. As in [GK16], we assume that the point (0, 0)
is one vertex of ∆, the point (0, 1) lies in the interior of a non-adjacent edge, and
moreover, C is the proper transform of the closure C̄ of the curve defined by the
section 1− y of OX∆(H). Then C̄ = H in Cl(X∆) and

C = H − E in Cl(Ble X∆).

The condition C2 < 0 is equivalent to

w := H2 = 2(Area(∆)) < 1.

Denote by (x1, y1) the leftmost point of ∆ and by (x2, y2) the rightmost point of
∆. Let p1, respectively p2, be the corresponding torus invariant points. Note that
C̄ contains p1 and p2. Moreover, w = H2 = x2 − x1 is the width of ∆.

The main theorem in [GK16] becomes an instance of the following more general
statement, which shows that the question of Ble X∆ not being a MDS is equivalent
to solving an interpolation problem for points in the (usual) affine plane.

Proposition 8.6. Let (X∆, H) be a polarized projective toric surface with
ρ(X∆) = 1 corresponding to a triangle ∆ as above. Assume

w = H2 < 1.
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Then Ble X∆ is not a MDS if and only if for any sufficiently divisible integer d > 0
such that d∆ has integer coordinates, there exists a curve C ⊂ A2 of degree dw− 1
that passes through all the lattice points d∆ ∩ Z2 except the point (dx1, dy1).

Proof. By Lemma 5.1, Ble X∆ is not a MDS if and only if any non-zero
effective divisor D with class dH − dwE (d > 0) contains C in its fixed locus, or
equivalently, the image D̄ of D in X∆ contains some other point of C̄ than e (for
example p1). Hence, Ble X∆ is not a MDS if and only if for any sufficiently large
and divisible d, any element of the linear system |dH − dwE| contains p1. The
result now follows from Lemma 8.5. #

The difficult part is of course to solve the interpolation problem posed in Prop.
8.6. We claim that the main theorem in [GK16] gives sufficient (but not necessary)
conditions for this.

Theorem 8.7 ([GK16, Thm. 1.2]). Let (X∆, H) be a polarized projective toric
surface with Picard number one, corresponding to a triangle ∆ as above and assume

w = H2 < 1.

If s1 < s2 < s3 are the slopes defining the triangle ∆, let

n = #([s1, s2] ∩ Z).

Assume that

#((n− 1)[s2, s3] ∩ Z) = n, and ns2 /∈ Z.
Then for any integer d > 0 such that d∆ has integer coordinates, there exists a curve
C ⊂ A2 of degree dw − 1 that passes through all the lattice points d∆ ∩ Z2 except
the leftmost point (dx1, dy1). In particular, Ble X∆ is not a MDS by Proposition
8.6.

As mentioned in [GK16], #([s1, s2] ∩ Z) represents the number of points in
d∆∩Z2 (for any d such that d∆ has integer coordinates) lying in the second column
from the left, i.e., the column with x coordinate mx1 + 1. Similarly, for any k ≥ 1,
the number

#((k − 1)[s2, s3] ∩ Z)
is the number of points in d∆ ∩ Z2 lying in the k-th column from the right, i.e.,
the column with x coordinate mx2 − (k− 1). None of these numbers depend on d.
The condition ns2 /∈ Z is equivalent to the (n + 1)-th column from the right not
containing a lattice point on the top edge (see Rmk. 8.9).

Proof of Theorem 8.7. As in [GK16], we first transform the triangle d∆
by integral translations and shear transformations (i, j) 4→ (i, j + ai) for a ∈ Z.
Clearly, the assumptions still hold for the new triangle. To see that the conclusion
is also not affected, recall that the conclusion is equivalent to the fact that any
section f of H0(X∆, dH)

f(x, y) =
∑

(i,j)∈d∆∩Z2

a(i,j)x
iyj

that vanishes to order dw at e = (1, 1) has the coefficient a(dx1,dx2) = 0 (i.e., f
vanishes at the torus invariant point p1). The translation operation multiplies f
with a monomial, and the shear transformation performs a change of variables on
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the torus. The two operations do not affect the order of vanishing of f at e or
whether f vanishes at p1.

We first apply a shear transformation, so that −2 < s2 < −1 (possible since
s2 /∈ Z). We then translate the triangle so that the leftmost point moves to a point
with x-coordinate −1 and the rightmost point moves to a point on the x-axis. As
there are precisely n lattice points in the n-th column from the right, it follows
from −2 < s2 < −1 and that the n points are, in coordinates

(α, 0), (α, 1), (α, 2), . . . , (α, n− 1), for some α ≥ 0,

along with 0 ≤ s3. Note ns2 /∈ Z implies α > 010. It also follows that for all
0 ≤ i ≤ n−1, the column in d∆ with x-coordinate α+ i has exactly i lattice points:

(α+ i, 0), (α+ i, 1), (α+ i, 2), . . . , (α+ i, n− 1− i).

We denote these points {Qj} (a total of n2+n
2 points). Let the n lattice points in

d∆ in the second column from the left be

P0 = (β, 0), P1 = (β + 1, 0), , . . . , Pn−1 = (β + n− 1, 0),

for some β ≥ 0. As −2 < s2 < −1, the rightmost point must be

L = (−1,β + n+ 1).

As the width of d∆ is dw, the integers α,β are related to w, s2 by

α = dw − n, β = −s2(dw)− n− 1, −s2 =
β + n+ 1

α+ n
·

Lemma 8.8. There is a unique curve C of degree ≤ n passing through the
n2+3n

2 points {Pi} and {Qi}. The curve C passes through the point L if and only
if nβ = (n+ 1)α (or, equivalently, −s2 = 1 + 1

n).

Remark 8.9. It is not hard to see that the condition ns2 /∈ Z is equivalent
to −s2 = 1 + 1

n , which in turn says that (n + 1)-th column from the right not
containing a lattice point on the top edge.

Assuming Lemma 8.8, Theorem 8.7 follows by considering the union C ′ of the
curve C with all the vertical lines

x = 1, x = 2, . . . x = (α− 1).

Note that the degree of C ′ equals dw − 1. Clearly, if ns2 /∈ Z, Lemma 8.8 implies
that C ′ does not pass through L.

Proof of Lemma 8.8. We first write down a basis G0, . . . , Gn for the vector
space of polynomials in Q[x, y] of degree ≤ n that vanish at the points {Qj} as
follows. For all 0 ≤ i ≤ n, let

Gi(x, y) =

(
x− α

i

)(
y

n− i

)
.

Consider now the equation of a curve C that passes through {Qj}:

f(x, y) =
n∑

i=0

ciGi(x, y), ci ∈ Q.

10We may also take α > 0 at the expense of proving the statement only for sufficiently large
and divisible d.
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LetM be the (n+1)×(n+1) matrix with rows indexed by points P0, P1, . . . , Pn−1, L
(hence, the last row corresponds to L) and columns indexed by G0, . . . , Gn, such
that the entry corresponding to the row Pi (resp. L) and column Gj is Gj(Pi)
(resp. Gj(L)), i.e.,

MPi,Gj = Gj(0,β + i) =

(
−α

j

)(
β + i

n− j

)
, 0 ≤ i ≤ n− 1,

ML,Gj = Gj(−1,β + n+ 1) =

(
−1− α

j

)(
β + n+ 1

n− j

)
.

Let M ′ be the n× (n+1) matrix obtained by taking the first n rows of M . Clearly,
there is a unique curve C passing through {Qj} and {Pj} if and only if there is a
unique solution c = (ci) (up to scaling) to the linear system M ′ · c = 0, i.e.,

rkM ′ = n.

To prove this, successively substract row Pn−2 from row Pn−1, row Pn−3 from row
Pn−2, etc, row P0 from row P1. The result is that the last column of M ′ has the last
(n− 1) entries 0. Substracting row Pn−2 from row Pn−1, row Pn−3 from row Pn−2,
etc, row P1 from row P2 leaves the second column of M ′ with the last (n−2) entries
0. Continuing in the same fashion (and using the relation

(k+1
l+1

)
=

( k
l+1

)
+
(k
l

)
) we

obtain an “upper diagonal” matrix n× (n+ 1) matrix M ′′ with entries:

M ′′
Pi,Gj

=

{ (−α
j

)( β
n−i−j

)
if i+ j ≤ n,

0 if i+ j > n.

Hence, rkM ′ = rkM ′′ = n.
We now prove that detM = 0 if and only if nβ = (n+ 1)α. Clearly, the curve

C passes through the point L if and only if detM = 0, hence, this would finish the
proof. Let M̃ be the matrix obtained by adding to the matrix M ′′ the last row of
M , i.e.,

M̃Pi,Gj =

{ (−α
j

)( β
n−i−j

)
if i+ j ≤ n,

0 if i+ j > n,

M̃L,Gj =

(
−1− α

j

)(
β + n+ 1

n− j

)
.

Clearly, detM = det M̃ . Let M̃ (1) be the matrix obtained from M̃ by first dividing
the column corresponding to Gj by

(−α
j

)
(for every j) and multiplying the last row

with α. Using that
(−1−α

j

)
=

(−α
j

)α+j
α , the entries of M̃ (1) are given by

M̃ (1)
Pi,Gj

=

{ ( β
n−i−j

)
if i+ j ≤ n,

0 if i+ j > n,

M̃ (1)
L,Gj

= (α+ j)

(
β + n+ 1

n− j

)
.

Let M̃ (2) be the matrix obtained from M̃ (1) by first multiplying the last row with
(−1), then adding to the last row the sum of rows:

(
n+ 1

0

)
(row P0) +

(
n+ 1

1

)
(row P1) + . . .+

(
n+ 1

n

)
(row Pn−1),



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

164 ANA-MARIA CASTRAVET

then finally dividing the last row by ( 1
β+n+1 ). Using the identities

n−j∑

i=0

(
β

n− i− j

)(
n+ 1

i

)
=

(
β + n+ 1

n− j

)
, l

(
n

l

)
= n

(
n− 1

l − 1

)

it follows that the entries in the last row of M̃ (2) are:

M̃ (2)
L,Gj

=

(
β + n

n− j − 1

)
, 1 ≤ j ≤ n,

M̃ (2)
L,G0

=

(
β + n

n− 1

)
− (α+ n)(n+ 1)

(β + n+ 1)
.

Finally, let M̃ (3) be the matrix obtained from M̃ (2) by substracting from the last
row, the following sum of rows:

(
n

0

)
(row P1) +

(
n

1

)
(row P2) + . . .+

(
n

n− 2

)
(row Pn−1).

The matrix M̃ (3) has entries

M̃ (3)
L,Gj

= 0, 1 ≤ j ≤ n,

M̃ (3)
L,G0

= n− (α+ n)(n+ 1)

(β + n+ 1)
.

Note that M̃ (3)
L,G0

= 0 if and only if nβ = (n+ 1)α. As M̃ (3) is an upper triangular

matrix with det M̃ (3) = M̃ (3)
L,G0

, the result follows. #

#

There are other possible applications of Prop. 8.6 that are not covered by
Theorem 8.7 towards the classification problem 1.2 (see also [He16]). For toric
surfaces of higher Picard number, we expect that solving an interpolation problem
analogous to the one posed in Prop. 8.6 will lead to examples of non Mori Dream
Spaces. An interesting question is whether there is higher dimensional version of
Prop. 8.6.
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