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Abstract—Accurately forecasting stress may enable people to
make behavioral changes that could improve their future health.
For example, accurate stress forecasting might inspire people to
make changes to their schedule to get more sleep or exercise, in
order to reduce excessive stress tomorrow night. In this paper,
we examine how accurately the previous N -days of multi-modal
data can forecast tomorrow evening’s high/low binary stress
levels using long short-term memory neural network models
(LSTM), logistic regression (LR), and support vector machines
(SVM). Using a total of 2,276 days, with 1,231 overlapping 8-day
sequences of data from 142 participants (including physiological
signals, mobile phone usage, location, and behavioral surveys),
we find the LSTM significantly outperforms LR and SVM with
the best results reaching 83.6% using 7 days of prior data. Using
time-series models improves the forecasting of stress even when
considering only subsets of the multi-modal data set, e.g., using
only physiology data. In particular, the LSTM model reaches
81.4% accuracy using only objective and passive data, i.e., not
including subjective reports from a daily survey.

Index Terms—Stress, Forecasting, Objective, Wearable, LSTM

I. INTRODUCTION

Stress is a complex and dynamic process that can help a
person in many beneficial ways to successfully confront a
challenge or threat, but also can cause a negative emotional
response when an individual feels that the environmental
demands exceed their adaptive capacity [1]. Researchers have
shown that stress increases susceptibility to infection and ill-
ness [2] and affects a diverse range of physical, psychological
and behavioral conditions, such as anxiety, depression, and
sleep disorders [3]. In addition, excessive stress, which is
widespread in today’s society, can decrease job productivity
and negatively affect overall well-being [4].

The ability to forecast stress levels could enable better self-
management of one’s behavioral choices in ways that might
prevent excessive stress. The ability to model and forecast
stress could be immensely beneficial, especially if such a
forecast could be made using data collected in an unobtrusive
and privacy-sensitive way. In this work, we show that wearable
sensors and mobile phones, coupled with machine learning,
can provide a significantly accurate forecast of future stress.
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Some technologies have been developed not only to estimate
current human well-being levels but also to forecast them [5],
[6]. Suhara et al. have shown that a depressed mood can
be predicted with a high accuracy using self-reported survey
data from the past several days [5]. This work used LSTM
to predict mood given two weeks of mood history reported
daily, learning the function p(yt+1|y1, ..., yt, z1, ..., zt), where
zt is all the data collected from behavioral surveys about a
person on day t, and yt+1 is a self-reported depressed mood
the following day. Using a large-scale dataset of 2,382 people
and a total of 345,158 days, they achieved an Area Under the
Curve of the Receiver Operating Characteristic (AUC-ROC)
of 0.886 forecasting severely depressed mood or not.

Taylor et al. used personalized multi-tasking neural network
models to predict tomorrow’s well-being (good/poor mood,
good/poor health and high/low stress) given multi-modal data
from today (p(yt+1|xt)), obtaining accurate predictions about
an individual’s next-day mood through personalization, with-
out requiring previous self-reported labels (e.g., yt) [6]. The
results have shown that tomorrow’s mood, stress and health
levels can be predicted with 78-82% accuracy using a person-
alized model based on today’s physiological, mobile phones,
and behavioral survey data. However, it has not yet been
examined whether stress forecasting accuracy can be improved
using the previous several days of only passively collected
data (i.e. physiological and mobile phone data), or whether
significant accuracy can be achieved without personalization.
Taylor et al.’s best results without personalization achieved
68% accuracy on forecasting tomorrow’s stress.

In this paper, we evaluated the stress forecasting accura-
cies from static models (support vector machine (SVM) and
logistic regression(LR)) and time-series models (long short-
term memory neural network models (LSTM)) using the
previous 1 to 7 days of physiological, mobile phone, and
behavioral survey data. Given that current and future human
mental conditions are affected by the past few days [2], we
hypothesize that an LSTM model, which can exploit long-term
memory, will improve the forecasts.

This paper contains two main contributions: First, we fore-
cast future stress using data collected from college student
participants (N = 142) in their daily lives, using wearable
sensors, mobile phones, and behavioral surveys; hence, the



LSTM model we build is directly relevant to daily-life stress
forecasting. Second, we found that, without requiring any
personalization, the LSTM model significantly outperforms the
LR and SVM with the best results reaching 83.6% accuracy
using 7 days of prior data to forecast tomorrow’s binary
high/low stress level. Furthermore, it can forecast tomorrow’s
stress with high accuracy (81.4%) using only objective and
passive data (i.e. data sensed directly from wearable sensors
and mobile phones). Thus, people do not have to be interrupted
to fill out surveys each day. These two contributions make
this work a valuable step towards developing a practical stress
forecasting system.

II. DATA

A. Dataset and Classification Labels

The data in this experiment were collected in a study to
measure Sleep, Networks, Affect, Performance, Stress, and
Health using Objective Techniques (SNAPSHOT) [7]. The
study gathered 30-day multi-modal data, including physiolog-
ical, mobile phone, and behavioral survey data from college
students at a US university. The study participants obtained
compensation based on their contribution to the study. Stress
scores were collected every morning and evening using self-
reported scores from 0 (stressed out) - 100 (calm).

We framed the problem as a binary classification; days on
which a participant reported a stress-calm score in the top 40%
of all stress-calm scores are labeled as a low-stress day, and
days in which participants reported a stress-calm score in the
bottom 40% are labeled as a high-stress day. We discarded
only the middle 20% of scores similar to Taylor et al. [6]. In
this paper, we used a total of 1,231 sequences of 8 consecutive
days of data from 142 participants (these 8-day-long sequences
are overlapping resulting in a total use of 2,276 days of data).

B. Feature Calculation

We computed 375 daily features including 37 behavioral
survey (excluding self-reported stress scores), 173 physiology,
150 mobile phone, and 15 mobility features. The feature
modalities are explained in detail below.

(a) Survey:
Participants filled out a survey about their daily behaviors
every evening. They self-reported the timing and duration of
a variety of activities, including sleep, academic activities,
extracurricular activities, and exercise. Whether the participant
engaged in social activity before bed, amount of caffeine
intake, and whether a positive or negative social interaction
was experienced were also self-reported.

(b) Physiology:
The physiological measurements collected by wrist-worn Af-
fectiva Q sensors at 8 Hz include 24-hour-a-day electrodermal
activity (EDA) measured as skin conductance (SC), skin
temperature (ST), and 3-axis accelerometer. Features such as
step count, stillness, and SC responses were calculated — all
of which relate to emotional arousal and stress. EDA, acceler-
ation and ST were collected to measure sympathetic nervous
activity, physical activity, sleep patterns, circadian rhythm,

and stress responses [8]–[10]. Following [11] and [6], for
each time span (all-day, midnight-3am, 3am-10am, 10am-5pm,
5pm-midnight) the following sets of features were computed:
EDA Peak features (for all detected peak features and for
only non-artifact peaks [12]), SC level features, accelerometer
features, temperature features, and various combinations of the
three physiological data streams.

(c) Phone:
The phone log data consist of information about the timing,
type, and duration of phone calls and SMS messages, and
times the screen was turned on and off. We assumed that
there are two main mechanisms through which screen logs
and communication information can affect wellbeing: (1) light
from the screen can disrupt circadian rhythms and therefore
sleep [13], and (2) the amount of social support in a person’s
life is strongly linked to resilience to depression [14], [15].
As with physiology, the features were computed over the time
intervals defined in the previous setion (II.B(b)) spanning the
course of the day.

(d) Mobility:
In addition to communication and screen events, the phone
app logged the participants’ GPS coordinates throughout the
day, as well as whether they were using Wifi or cellular data.
Previous studies have shown that mobility patterns are linked
with mental health states [16], [17]. We followed the method
of Jaques et al. [18] to down-sample the signal and compute
features such as the total distance traveled, statistical features
about distance traveled in 5 minutes, and the amount of time
spent on campus.

III. METHODS

We conduct a series of experiments to examine whether
we can improve the stress forecasting accuracy using non-
personalized temporal machine learning models.

A. Long Short Term Memory Networks (LSTM)

LSTMs [19] have the ability to learn long-term dynamics
while avoiding vanishing and exploding gradient problems
and have recently gained great success in sequence learning
tasks such as speech recognition and machine translation. We
designed our LSTM with a single LSTM layer with 32 nodes
and a dropout of 0.2. Drop-outs were used between the LSTM
and dense layers. The output of the last cell of the LSTM layer
was connected to a dense layer. Finally, a sigmoid activation
layer predicted the high/low stress levels. We trained our
LSTM using RMSprop [20] with binary cross-entropy loss
and an iteration number of 1000. The whole algorithm was
implemented using deep learning frameworks Keras 2.1.3 and
Python 3.5.4. Fig. 1 presents an overview of our method.

B. Static Methods

For comparison to the LSTM, we used an SVM classifier
with a radial basis function kernel and LR, because these static
methods are widely recognized as performing well, and were
used in previous studies for mood prediction [5], [6], [18].
Because SVM and LR cannot directly exploit temporal data,



Fig. 1. Overview of our method

we concatenated the time series feature values to create a

single feature vector, allowing SVM and LR to learn a forecast

model based on the same time-series information.

C. Experiments

We examine how accurately the previous N -day multi-

modal data can forecast a “tomorrow” high/low (binary) stress

level using time-series (LSTM) and two static models (SVM

and LR). We used accuracy and AUC-ROC as evaluation met-

rics. A baseline (random) classifier achieved 54.1% accuracy

(high/low stress data: 565/666).

The full dataset (1,231 sequences) was then used in a five-

fold cross validation with 80% of the data for training and

validating the models, and 20% for testing for each fold.

While it’s possible days could have been repeated within

the train/validation loops, the days in the test set were kept

completely independent of the train and validation data.

Specifically, within the training and validation set, we used

80% of the dataset for training and 20% as validation and

selected the hyperparameters (LSTM: dropout and iteration

number, SVM: C and gamma, LR: C) that yielded the highest

accuracy on the validation set. We calculated the average and

the standard deviation of the test set for the 5 folds when

reporting evaluation metrics.

Using the set up above, we conducted the following two

experiments:

(1) Forecasting tomorrow’s stress using all features:
We evaluated the three methods using different lengths of

previous history to forecast next-day stress. Specifically, the

model learned p(yt+1|xt, ..., xt−N+1), the probability of the

person’s stress tomorrow given various N of the previous days

(N = 1 - 7), where xt is all the data collected from behavioral

surveys, wearable sensors, and mobile phones on day t, and

yt+1 is the binary self-reported stress label the evening of the

following day. We also retrained models and computed metrics

for each model using only a single modality (e.g., survey only).

(2) Forecasting tomorrow’s stress using only objective data:
In this experiment, we evaluated the three methods using the

previous N days of only the objective data in forecasting

tomorrow’ stress. In other words, we excluded the 37 survey

features and used only the 338 objective features from wear-

ables and mobile phones to forecast tomorrow’s binary stress

level.

IV. RESULTS

(1) Forecasting tomorrow’s stress

The stress forecasting accuracies of the SVM, LR and

LSTM models using 1-7 days of data are shown in Fig. 2. The

results show that accuracy is improved by using the LSTM

instead of the static models (with LSTM accuracy > SVM

> LR) and by using a longer history in each modality (p
<0.05, Analysis of variance (ANOVA) and Tukey’s honest

significant difference (HSD) test). In LSTM, the model with

7 days of data showed significantly higher accuracy than the

model with only 1 day of data. In particular, we found that

4 days of data in the LSTM model is the smallest number

of days required to be significantly better than using only 1

day of data. This finding also holds when considering the four

different modalities (survey, physiology, phone, and mobility)

individually.

The best results overall were obtained using the LSTM with

all features (including the survey features), 83.6% accuracy

(AUC-ROC 0.831) using the previous 7 days. In addition,

we also evaluated a participant-independent model using all

features, and the accuracies are statistically similar to the

participant-dependent models (p>0.05, ANOVA, for N = 1, 2,

3, 5, and 7 days). Furthermore, we also evaluated forecasting

binary stress levels one week in the future, and obtained 80.1%

using data of the previous 7 days from today.

Nearly the same performance was achieved using the LSTM

with data only from the single modality of physiology, with

82.4% (AUC-ROC 0.820) using the previous 7 days of physi-

ology features. This performance is not significantly different

(p = 0.609, ANOVA) than using all features, while it requires

only a wearable sensor to collect the data. The improvement

of the LSTM time-series models over the static models was

most dramatic for the physiology features where the LSTM

was significantly better than the LR, which was significantly

better than the SVM. (For other cases, the SVM was usually

better than LR.)

We computed the top 10 of the mean absolute weights of

each feature across all connected nodes in the input layer of the

LSTM using all 7 days of features and all feature modalities.

Features with higher weights indicate a stronger influence on

forecasting stress. The top ten features were (1) whether or not

the participant slept (from the survey), (2) if the participant

had a memorable negative social interaction (survey), (3) a

mobility feature (distance within 5 minutes), (4) EDA peaks

during 3-10H, (5) EDA peaks during 17-24H, (6) missed call

timestamps of 0-24H, (7) EDA peaks during 10-17H, (8) the

number of minutes the participant spent awake after falling

asleep at night (survey), (9) overslept or not (survey), and (10)

EDA peaks during 0-3H. Therefore, all four of the modalities

were represented in the top 10 weighted features.

As we can see in Table I, the LSTM is relatively balanced in

misclassifying tomorrow as a stressed day when it is actually

calm and vice-versa. The static models, on the other hand,

are more imbalanced and tend to classify tomorrow as a calm

day even when it should be labeled as stressed. Specifically,



Fig. 2. Stress forecast accuracy for support vector machine (SVM), logistic
regression (LR), and long short-term memory neural network models (LSTM)
( * : One way ANOVA, Tukey’s HSD test, p <0.05)

TABLE I
CONFUSION MATRIX FOR THE 7-DAY ALL FEATURE MODELS

Predicted Label
LSTM SVM LR

Stress Calm Stress Calm Stress Calm
Actual Label Stress 438 127 334 231 152 413

Calm 75 591 55 611 32 634

54.1% of the days in our data set are calm; the LSTM model
labels a total of 58.3% of days as calm, whereas the SVM
and LR models label 68.4% and 85.1% of the days as calm.
These errors by the static models are particularly undesirable
if a goal of a supportive system is to help people take action in
preventing a forecasted stressed day from being so stressful;
the SVM and LR would miss many opportunities to help.

(2) Stress forecasting using only objective data

When using only the objective features the best accuracy
for tomorrow night’s stress, 81.4% (AUC-ROC 0.809), was
obtained with 7 days of data, which was found to be not
significantly different (p = 0.233, ANOVA) than using all
of the features. Thus, using LSTM maintained the same
accuracies without survey data as with adding survey data.
However, if survey data is not used in the SVM model, the
stress forecasting accuracy decreases significantly by about
5-9% (p < 0.05, ANOVA and Tukey’s HSD test). The best
results obtained using the LR with only objective features were
63.5% accuracy (AUC-ROC 0.608) using the previous 1 day,
and for the SVM were 69.4% accuracy (AUC-ROC 0.671)
using the previous 1 day. Therefore, we can forecast subjective
stress level more accurately using only objective features when
we use the LSTM. High accuracy forecasting of stress using
data collected in an unobtrusive way, such as using wearable
sensors and mobile phones, is an effective way to monitor the
stress in our daily life using only passive information; no extra
time or effort is required from the participants beyond keeping
their devices charged.

V. CONCLUSIONS

In this work, we applied LSTM to objective data including
physiological signals, mobile phone usage, and mobility pat-
terns, and to self-report data from behavioral surveys. We ex-
amined how accurately the previous N -day multi-modal data
can forecast tomorrow’s evening stress level using LSTM, LR,
and SVM. Using a total of 2,276 days, with 1,231 overlapping

8-day sequences of data from 142 students, we found the
LSTM outperforms the LR and SVM with the best results
reaching 83.6% using 7 days of prior data. We confirmed that
using LSTM improves the forecasting of stress across all the
modalities, individually or ensemble. In addition, we made
forecasts of tomorrow’s stress with 81.4% accuracy based on
using only objective and passive data such as physiology and
phone data, without having to use survey data.

In the future, we plan to examine other LSTM, deep
learning models and regression models to improve future stress
forecasting accuracies. We will also examine how this model,
and others, can help illuminate modifiable behavioral features
(e.g., bedtime) that contribute, in an evidence-based way, to
each individual’s wellbeing so that the model can be used as
a tool to help individuals improve their personal well-being.
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