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Online resources can help novice developers learn basic programming skills, but few resources support pro-
gressing from writing working code to learning professional web development practices. We address this gap
by advancing Readily Available Learning Experiences, a conceptual approach for transforming all profes-
sional web applications into opportunities for authentic learning. This article presents Isopleth, a web-based
platform that helps learners make sense of complex code constructs and hidden asynchronous relationships in
professional web code. Isopleth embeds sensemaking scaffolds informed by the learning sciences to (1) expose
hidden functional and event-driven relationships, (2) surface functionally related slices of code, and (3) sup-
port learners manipulating the provided code representations. To expose event-driven relationships, Isopleth
implements a novel technique called Serialized Deanonymization to determine and visualize asynchronous
functional relationships. To evaluate Isopleth, we conducted a case study across 12 professional websites and
a user study with 14 junior and senior developers. Results show that Isopleth’s sensemaking scaffolds helped
to surface implementation approaches in event binding, web application design, and complex interactive fea-
tures across a range of complex professional web applications. Moreover, Isopleth helped junior developers
improve the accuracy of their conceptual models of how features are implemented by 31% on average.
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1 INTRODUCTION

Aspiring web developers are turning to online resources to teach themselves to code. Online
learning platforms such as Codecademy, Khan Academy, and CodeSchool attract millions of
learners and significantly increase the number of advanced beginners. However, these platforms
primarily teach syntax or provide practice on constrained tutorial examples; they lack the
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authenticity required to support the progression from writing functional code to writing
professional-quality software. Aspiring web developers can learn to set up, read, and write ba-
sic JavaScript web applications, but they still lack conceptual knowledge of design patterns used
in professional web solutions. As a result, significant gaps in knowledge and experience remain
between advanced beginners and professional developers.

With few resources to support authentic learning of professional web development practices,
we consider the use of professional web applications as a potential resource to support authentic
learning. All professional web applications can be inspected using modern browser developer tools
to reveal their underlying implementation. They offer rich details missing from training examples.
They embed the programming concepts and implementation techniques that are used by profes-
sionals, and are continually updated as new solutions arise. But despite the abundant availability
of front-end code, professional examples are complex and difficult for learners to understand.

We are interested in developing tools and approaches that can transform such examples into
a learning resource that empowers aspiring web developers to learn professional practices and
fill gaps in their knowledge. We envision the creation of Readily Available Learning Experiences
(RALE) that empower learners to leverage the entire web of professional examples as a resource
for learning programming concepts, practicing concept implementations, and applying concepts
across problems. To accomplish these goals, our work on RALE seeks to bridge the knowledge
gap between novice and expert web developers by creating software supports for self-directed
learning from professional examples so that learners can leverage the richness and diversity of the
web to support continual advancement of knowledge and skills. RALE has the potential to vastly
increase the number of professional examples for learning; improve the breadth, depth, and quality
of learners’ conceptual understanding; and train more novice developers to tackle programming
challenges in professional work.

As afirst step toward RALE, this article focuses on addressing the challenge of learning program-
ming concepts in professional web code. Specifically, we are interested in helping learners make
sense of complex code constructs and hidden asynchronous relationships to understand how code
components work together to implement features in professional web applications. For instance,
a learner may be interested in understanding how Zillow’s homepage search supports populat-
ing the user’s previous home searches into its autocomplete search bar, or what code constructs
were responsible for the hover effect upon mousing over buildings in National Geographic’s New
York Skyline article. Features in professional web applications such as these often contain many
small components working together asynchronously, and learners lacking the conceptual knowl-
edge required to make sense of the undocumented code may fail to see these relationships and
connections. One challenge is the abundance of dynamic callbacks typical of front-end JavaScript
implementations. Existing tools are limited in linking function invocations to their declaration con-
text; learners cannot easily expose where functions are bound, passed, or set as callbacks. Another
challenge is that connections among code components responsible for core aspects of function-
ality are often hidden deep in the code, e.g., in lower level functions and in library code. Hiding
these details provides a limited view of how code components coordinate to achieve a feature, but
revealing all relevant source code to include such details can easily overwhelm the learner given
the large codebases typical of professional web applications.

To address these challenges, we introduce Isopleth, a web-based platform that helps learn-
ers navigate and filter call relationships in front-end JavaScript implementations interactively so
that they can develop conceptual models of complex code examples (see Figure 1). First, Isopleth
highlights how solutions are structured by exposing hidden functional and event-driven relation-
ships between code components through a condensed call graph and detailed source frames. These
affordances help learners understand how functions are bound, passed, returned, and invoked
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Fig. 1. Isopleth is a sensemaking platform that supports learners studying the call graphs of complex inter-
active websites. It provides automated and interactive supports for exposing hidden functional and asyn-
chronous relationships, surfacing functionally related slices of code, and manipulating the provided code
representation as learners make sense of complex JavaScript in professional websites. In this example, a
learner is using Isopleth to understand the source code of the New York Skyline feature from National Geo-
graphic, which interactively displays information about buildings in the skyline as a user mouses over them
(left). Using facets to hide setup code and to isolate code related to mouse hover events (top right), the learner
examines the condensed call graph (bottom right) and finds an asynchronous binding (purple line) between
the yellow selected node and a green AJAX callback node. By re-labeling nodes, examining source frames
(middle right), and adding comments to the source code, Isopleth allows the learner to make sense of the
code and uncover the elegant approach this web application uses to load data dynamically and bind hover
events only once the data is loaded. The AJAX callback loads JSON data containing coordinate locations and
metadata for each building in the skyline, and binds all the hover events to add “active” classes to display
the relevant information.

asynchronously. Second, Isopleth extracts programming concepts for learners by leveraging au-
tomated techniques to surface facets, or code constructs defined by inputs and outputs. Instead
of requiring developers to conceive of their own queries of the call graph, facets provide default
patterns that allow learners to easily identify or exclude code for handling setup, mouse, and key-
board events, AJAX calls, and DOM changes. Third, Isopleth enables learners to manipulate the
provided representations of code by rearranging invocations and composing their own invocation
labels on the call graph, and adding comments and editing code in source frames. These affor-
dances provide further support for learners to understand the various components of a complex
code example and their connections, and to use the understanding they have built to further their
investigation.

The core conceptual contribution of this work is the idea of designing sensemaking scaffolds
to help learners build conceptual models of how components coordinate to produce functional-
ity in complex professional code. Isopleth embeds sensemaking scaffolds—or supports and affor-
dances specifically designed to aid the sensemaking process—to help learners produce their own
understanding of code components and their relationships as they interactively explore, label, and
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filter code. Existing approaches for learning from complex, professional web examples [10, 28,
29, 43] help to surface the most relevant code (e.g., Telescope [29], Unravel [28]), and provide
methods for walking through code in execution order (e.g., Scry [10] and fireCrystal [43]). These
tools reduce the complexity of exploring professional code, but in doing so, they make it difficult
for learners to discover the structure of how code constructs work together to implement a fea-
ture. While experts may be able to recover this structure using their existing conceptual models—
thereby benefiting from the simplicity of presentation afforded by such tools without loss—learners
who do not have this structure in mind can struggle to make sense of professional examples with-
out sensemaking scaffolds that are explicitly designed to help them build such conceptual models.
This article contributes a set of sensemaking scaffolds that are grounded in research from the
learning sciences and program comprehension to address these conceptual knowledge gaps for
learners.

The core technical contribution of this work is a Serialized Deanonymization (SD) technique that
places unique identifiers in all functions in a web application’s JavaScript source to trace how func-
tions are bound, passed, returned, and invoked asynchronously. SD contributes a general method for
tracing dynamic callbacks that is distinct from existing precise heap tracing techniques for call
graph analysis (e.g., see [31]). While related toolkits can already fully instrument JavaScript code
in professional web applications [24, 29, 35], they do not capture asynchronous bindings and do
not link a function invocation to its declaration context. SD identifies these missing links and adds
them to the call graph, which reveals a complete picture of code activity between declaration and
invocation to the learner to support their understanding how web features are implemented. In
addition to SD, the article contributes techniques for reliably detecting and visualizing facets that
connect function chains across time that are responsible for particular aspects of functionality.
Since function names, function bodies, and variable names are often unreliable or misleading de-
terminants of facets, we introduce a facet detection approach that uses inputs and outputs to test
for arguments or return values in function invocations. We further introduce techniques for bub-
bling up detected facets so that they can be properly visualized even when library internals are
hidden from learners to reduce complexity.

To evaluate Isopleth, we conducted a case study across 12 popular professional websites and
a user study with 14 developers (10 junior, 4 senior). Case study results illustrate how Isopleth’s
sensemaking scaffolds can help to surface implementation approaches in event bindings, web ap-
plication design, and complex interactive features across a diverse set of complex professional web
applications. Case study results further revealed how Isopleth can provide a broad understanding
of the various ways in which the same features can be implemented across professional web ap-
plications. User study results show that Isopleth helped junior developers improve the accuracy
of their conceptual models of how features on professional websites are implemented by 31% on
average. Further, we found that both junior and senior developers leveraged Isopleth’s sensemak-
ing scaffolds to support a variety of program comprehension strategies, demonstrating Isopleth’s
flexibility in allowing users to approach sensemaking in intuitive ways. These study results pro-
vide exciting evidence for the effectiveness and potential of RALE for supporting learning from
professional code.

2 RELATED WORK

Isopleth presents a new method for scaffolding a learner’s sensemaking process as they work to
understand complex professional web applications. Before detailing our specific approach, we first
highlight unmet needs that are not supported by current approaches that we aim to support with
Isopleth.
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2.1 Existing Tools for Professionals and for Learning from Simpler Examples

One class of tools has been designed to support professional developers foraging code from re-
sources provided continuously via the web. Brandt et al. explored how programmers leverage on-
line resources to support the development process, opportunistically transitioning between web
foraging, learning, and writing code [6]. They built on this work to develop Blueprint, a web search
interface integrated into a development environment to support searching for relevant code ex-
amples from forums, blogs, and tutorials [5]. Fast and Bernstein designed Meta, a Python language
extension that allows programmers to share and compare their implementations of utility func-
tions [19]. These approaches support developers finding and reusing code snippets (i.e., foraging),
but are not explicitly designed to support learning the underlying programming concepts and de-
sign patterns. Specifically, they do not provide affordances to help learners build on their existing
understanding [37] or reason about the structure of code [46]. Moreover, in an effort to make
examples easier to find and reuse, these tools generally support foraging from curated examples
(e.g., tutorials) and utility functions. They do not make RALE out of professional web applica-
tions, which are more difficult to understand in the absence of additional sensemaking scaffolds
but which embed a richer and more diverse set of professional web development practices.

Another class of tools has been designed to help aspiring developers understand localized
snippets of code during the learning process. Systems such as Tutorons [27], Gidget [34], We-
bCrystal [11], Whyline [31], and Dinah [25] provide question-answer workflows to help learn-
ers resolve questions about a program’s state or effects. Source visualization approaches such as
Gliimpse [18], PyTutor [26], and Bret Victor’s learnable programming [61] contribute techniques
to expose cause-and-effect relationships and state actualization. While many of these tools pro-
vide effective sensemaking scaffolds for supporting aspiring web developers, they are designed
for supporting learning from curated or simplified examples. These tools can help with learning
to write functional code, but progressing further requires learners to engage with more complex,
professional examples that provide opportunities for learners to think in the modes of the disci-
pline, e.g., by reasoning about how multiple code components coordinate to achieve a feature that is
beyond the scope of these tools.

2.2 Existing Tools for Learning from Complex, Professional Examples

Closest to our work, tools such as fireCrystal [43], Scry [10], Unravel [28], and Telescope [29]
are designed to help (experienced) developers discover how features in complex professional ex-
amples are implemented. FireCrystal, Scry, and Unravel support developers performing feature
location tasks, that is, identifying code most responsible for producing an interactive visual effect
on a website. Built for examining complex web applications, these tools make it easier to reference
the specific JavaScript, HTML, and CSS involved in changing the DOM. For example, FireCrystal
and Scry allow users to record Ul interactions of interest, and provides a timeline visualization
for users to explore how state changes in response to JavaScript calls. Unravel takes a different
approach, whereby users scope which elements to observe and the system automatically reduces
observations by aggregating and displaying most likely to be relevant sources first, as ordered by
call counts. While useful for finding entry points into features of interest, these tools are insuffi-
cient for helping developers uncover the conceptual structure of web programs. First, these tools
only instrument code that queries the DOM, but much of what makes a feature work lies beyond
DOM-touching code in events, timing, data-retrieval, and data management code. Second, by slic-
ing code by points in time during execution, these tools hide how functions are bound, passed,
returned, and invoked asynchronously across time, which is necessary for learning how to im-
plement the feature. Finally, complex interactive behaviors on professional websites can contain
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visual effects that produce hundreds or thousands of visual changes in a split second (e.g., see
histography.io); for such behaviors, the task of locating a particular change through navigating a
timeline is akin to locating a needle in a haystack.

Overcoming some of these shortcomings, Telescope [29] identifies all code relevant for a feature
to provide developers with a comprehensive yet condensed view of the code. Telescope collates
top-level invocations across source files into a single view, and provides affordances for tuning this
view to see details beyond DOM-touching code. While this approach makes it possible for more ex-
perienced developers to understand features in complex professional examples by making visible
all of the most relevant code, it hides the lower level functions that provide the necessary bridges
for less experienced developers to understand how components work together to produce a feature
that more experienced developers can readily infer based on their prior knowledge. While Tele-
scope can also be used to surface lower level details, the resulting sea of “relevant” source code can
quickly become overwhelming without additional scaffolds to help learners identify meaningful,
functional components, and understand how they connect.

We expand below on the challenges in learning implementation techniques across three specific
areas of web development with these existing tools: event bindings, web application design, and
dynamic interactive features. While these areas represent different classes of problems in fron-
tend web development, they all require composing an understanding of the relationships among
functions and components that together realize a feature:

— Event bindings: Event bindings in JavaScript are used to realize a wide variety of interac-
tive behaviors (e.g., show-picture-on-scroll), and can vary in complexity from simple DOM
event listeners to complex constructs like async callback queues. Understanding these con-
cepts in unfamiliar code is difficult with existing tools. First, the relevant source code can be
spread across many files, making it difficult to find. Second, async bindings are not appar-
ent, making it difficult to determine if one component is related to another. Tools such as
Telescope [29] surface the source code that were invoked during a Ul interaction, but they
do not provide the relational links between constructs (i.e., async bindings) to help users
make sense of the source.

— Web application design: Modern web applications implement design patterns with architec-
tural decisions that are difficult to discover in unfamiliar code without helpful sensemaking
scaffolds. For example, a search feature may populate previous searches into its autocom-
plete bar by issuing queries to a server tied to a user’s history, or adopt a lightweight, per-
user caching strategy that queries a user’s localStorage. One challenge to surfacing software
design patterns such as these is the separation of concerns; a pattern may be implemented as
classes and methods distributed across files, and referenced in many distinct file locations.
Another challenge is that understanding a software’s design often involves not only find-
ing logical components, but understanding their relationships to form a conceptual idea of
a larger pattern. Existing tools such as Scry [10] provide ways to step through code execu-
tion, walk through files, and see what code is being called as the web UI changes, but these
tools primarily support localized feature location tasks (i.e., finding the code that changes
the DOM) but do not support making sense of relationships across multiple components
such as setup code, event bindings, AJAX calls, and DOM queries. Last, the inspection in-
terface of Scry and other related tools are mostly read-only, limiting the learner’s ability to
manipulate the underlying representation while forming a mental model of the code under
inspection as would be helpful.

— Dynamic interactive features: Websites such as Histography.io, the New York SkyLine arti-
cle, the Making it Big Article, and Stripe’s landing page make use of dynamic interaction
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and visualization techniques that interleave graphic transitions and content transformation
that often prove to be the most difficult to reverse engineer. First, such complex features of-
ten integrate several technologies, including HTML, Canvas, CSS, WebGL, visual media,
and JavaScript. Given each technology’s ability to make objects appear to move dynami-
cally in a web view, a learner’s starting assumptions about how the interactive feature is
implemented could vary greatly from its actual implementation, both due to its complexity
and the fact that there are often many logical ways to achieve the same effect. Second, com-
plex interactive behaviors on professional websites can contain visual effects that produce
hundreds or thousands of visual changes in a split second (e.g., on scroll or drag), and each
function invocation may only reveal a small portion of the larger purpose of the function.
While existing tools such as Telescope, Scry, Unravel, and fireCrystal [10, 28, 29, 43] provide
affordances to follow JavaScript and see its links to HTML modification, it remains difficult
to see how dataflows through the functions and how functions relate to one another amid
large numbers of function invocations.

3 THEORETICAL FRAMEWORK AND DESIGN ARGUMENTS

In order for aspiring web developers to understand and learn from complex professional web ap-
plications, we argue for a set of sensemaking scaffolds missing in existing tools that novices need
to discover how components work together to produce a feature of interest. We present in this sec-
tion a theoretical framework for designing sensemaking scaffolds that help learners make sense of
complex code that draws on research from the learning sciences and in program comprehension.
We then present our design arguments that use this theoretical framework to inform a set of core
characteristics that Isopleth implements which embed these sensemaking scaffolds.

3.1 Theoretical Framework for Making Sense of Complex Code

Sensemaking refers to the process of building understanding by generating representations that
explain what is known or understood [63]. Early work on sensemaking from information sci-
ence [17, 42, 47, 51] focused on how individuals develop complex and accurate representations,
often in the context of information-seeking and search tasks. As an extension of these early ideas,
later work considered the specific challenges that learners may face in making sense of examples
and artifacts, not only for seeking information but also for building conceptual knowledge in a
domain.

In the context of understanding code examples, a rich body of work in program comprehen-
sion [9, 45, 56, 58, 60, 62] examines how programmers make sense of the structure of code and
its functionality. While experts leverage templates and formal representations of programming
constructs to make sense of and solve problems, these patterns are not apparent to novices [1,
12, 13, 16, 38, 40, 64]. Learning from complex code examples is particularly challenging because it
requires understanding not only individual components, but also how they coordinate to solve a
problem [32]. Novices not only lack conceptual knowledge, but also the expert strategies for con-
structing an understanding of a problem by examining evidence, testing hypotheses, and reflecting
on findings [65, 66].

The learning sciences provide guidelines for scaffolds (supports and affordances) that can help
novices bridge this knowledge gap and adopt more effective strategies in order to make sense of
complex examples. This literature suggests that tools should be organized around the semantics
of the discipline to help learners adopt expert strategies and approaches [48]. Tools should also
build on a learner’s intuitive understanding by using representations and language that connect to
their knowledge and provide expert guidance to overcome gaps in conceptual knowledge [37, 48].
Finally, tools should provide opportunities for learners to inspect the underlying representation
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in different ways [48]. Providing multiple ways to visualize the underlying data helps learners
build dense, interconnected conceptual representations [3, 7, 53]. Through the design of Isopleth,
we considered how guidelines for designing sensemaking scaffolds, originally designed to sup-
port sensemaking during scientific inquiry [48], can be applied to support learning from complex
professional code examples.

In addition to drawing on theories for scaffolding sensemaking from the learning sciences, Iso-
pleth is designed to support learners applying a flexible set of program comprehension strategies.
Several comprehension theories describe how programmers understand new code, using strategies
such as (1) top-down from domain to source code [9], (2) bottom-up from statements to abstrac-
tions [56], (3) beacons from familiar code with plan decomposition in unfamiliar code [58], and
(4) bottom-up through control-flow abstraction from microstructures to macrostructures to form a
situational model [45]. Isopleth supports learners adopting such strategies to understand complex
call relationships as they interactively navigate a JavaScript call graph to make sense of complex
code constructs and hidden asynchronous relationships in professional web code.

3.2 Design Arguments

In this work, we present a tool called Isopleth that is specifically designed to support novices
in making sense of complex professional websites. As described in the previous section, existing
tools, primarily designed for experts, are not effective at helping novices build the conceptual
knowledge required to make sense of complex code. To overcome these obstacles, we designed
Isopleth around the set of design guidelines and theories presented in our theoretical framework.
In particular, we incorporate a subset of the relevant guidelines proposed by Quintana et al. [48]
for designing software scaffolds to support sensemaking in the domain of scientific inquiry. We
also incorporate ideas from theories of program comprehension to support sensemaking in this
particular learning domain [45, 58].

In this section, we describe each of these guidelines, discuss the related obstacles for novices,
and present the high-level design characteristics that we incorporate into Isopleth to overcome
these challenges.

3.2.1 Guideline: Organize Tools and Artifacts Around the Semantics of the Discipline. Quintana
et al. recommend that software systems organize tools and artifacts around the semantics of the
discipline to help shape the learner’s understanding of disciplinary knowledge and practices [48].
Since expert practices rely on domain knowledge that learners lack, they need support in un-
derstanding, recognizing, and applying these practices during sensemaking [48, 50]. As a result,
effective scaffolds organize information in disciplinary ways to help learners approach problems
the way experts would.

Most tools designed to support the exploration of complex professional code target experts
rather than novices, and as a result they do not focus on making disciplinary information explicitly
visible to users. Connections such as asynchronous relationships are not visualized in systems such
as Telescope [29], Unravel [28], fireCrystal [43], and Scry [10], making it challenging for novices
to uncover the structure of a web program and build a conceptual understanding of how the pieces
fit together. Even without asynchronous functionality, novices may lack effective expert strategies
for examining how functions connect to one another, e.g., by carefully examining the input and
output values between connected functions. Moreover, while existing tools aim to surface the most
relevant code by hiding certain details, the “irrelevant” code hidden by Telescope and the back-
end functionality hidden by fireCrystal, Unravel, and Scry are often crucial for understanding how
components coordinate to achieve functionality.
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These challenges highlight a need for tools to surface and help learners understand the hidden
and asynchronous relationships among code components. This helps to expose the disciplinary
information required to build an accurate understanding of professional code.

CHARACTERISTIC 1. Expose hidden functional and event-driven relationships between code
components.

Isopleth implements Characteristic 1 through a condensed call graph and detailed source frames.
The condensed call graph colors nodes and edges according to their semantic meaning and makes
all connections, including asynchronous ones, visible to the learner. For example, this can help a
learner understand the end-to-end logic involved in the infini-scroll feature of a blog website where
photos are continually added to the bottom of the page by discovering the exact functions that
bind DOM modifications as an asynchronous response to mouse scrolling. To avoid overwhelming
the learner, library code is hidden by default but connections and links among code components
through library code are preserved by bubbling the links up to the nearest non-library components
for display in the call graph.

The source frames further organize information around the semantics of the discipline by show-
ing the input, output, and bindings of each individual function. Learners can also view connected
source frames side-by-side to study how two functions connect to one another. In this way, source
frames construct the expert practice of thinking about functions in terms of their inputs and out-
puts by making them visible and explicit to learners. Together, these affordances make disciplinary
knowledge and practice accessible to learners to help novices build a conceptual understanding of
web program structure.

3.2.2 Guideline: Use Representations and Language that Bridge Learners’ Understanding. The
previous guideline focused on helping learners adopt expert conceptual models and approaches.
In contrast, this guideline focuses on helping learners connect their prior knowledge to the sense-
making task at hand. Quintana et al. recommend that software scaffolds use representations and
language that connect to a learner’s intuitive understanding, and embed expert guidance in sit-
uations when learners lack the background knowledge required to engage in a particular prac-
tice [48]. Effective scaffolds describe complex concepts in ways that build on what learners know
from their own experience. They also use visual representations that organize content and func-
tionality in ways that encourage learners to focus on conceptual understanding rather than surface
details.

While existing tools are effective at reducing code complexity by providing access to relevant
snippets, they are not designed to bridge from learner understanding or embed expert guidance.
Unravel [28] and Telescope [29] surface relevant code, but do not help novices reason about the
core aspects of functionality and how they relate upon locating the code. Experts may use their
conceptual understanding to quickly identify these aspects and effectively explore how the code
example is structured, but novices do not have the knowledge needed to apply these strategies.
This highlights a need to help novices bridge between their intuitive understanding and expert
approaches. FireCrystal [43] and Scry [10] provide an entry point into code based on visual outputs,
which is intuitive to novices and may help bridge understanding. However, these systems do not
provide affordances to help users learn how the identified code snippets connect and interact with
other code in the web application. Learners can easily struggle to reason about how bindings and
callbacks interact and cannot effectively trace program flow through a complex example using
these tools.

These challenges suggest that web inspection tools should help learners use their intuitive
understanding of how interactions cause visual effects (e.g., mouse and keyboard events), and
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organize code into functional slices that reflect how experts think about functionality (e.g., where
events are bound and where AJAX calls are made). To do this, we propose to:

CHARACTERISTIC 2. Provide visual organizers that allow learners to view slices of code that are
functionally related.

Isopleth implements Characteristic 2 through facets, visual organizers that give novices an entry
point into complex code that is based on their own intuitive understanding of the functionality.
For example, a novice who is interested in understanding which code constructs are used to react
to her keyboard strokes on a search bar or clicks on the search button could use a facet filter to
surface code associated with a mouse or keyboard event. These facets help bridge beyond the
novice’s understanding by displaying a functional slice that includes all functionality associated
with the event, showing not just how an event was triggered, but also where it was bound and
what functions were called in response. This encourages novices to think conceptually about how
multiple components connected through the same facet interact to create a given feature. Facets
also embed expert guidance by providing slices that surface concepts like setup code and AJAX
calls, and by displaying facet labels on nodes in the call graph. This encourages novices to explore
functionality using expert approaches they might not know to consider. For example, a novice
may expect the search autocomplete to query for data using AJAX, and use facet labels to identify
AJAX-related code and how it connects to other code components. In these ways, facets bridge
from a novice’s intuitive understanding and provide affordances that help guide novices to explore
code according to expert strategies.

3.2.3 Guideline: Use Representations that Learners can Inspect in Different Ways to Reveal Im-
portant Properties of Underlying Data. Finally, Quintana et al. recommend that software scaffolds
allow learners to view and interact with multiple representations of data to help them reveal its
underlying properties and understand cause and effect relationships [48]. In the domain of sci-
entific inquiry that Quintana et al. study, learners work with representations like tables, graphs,
equations, simulations, and diagrams to make sense of scientific phenomena, often editing the un-
derlying data to explore cause-and-effect relationships. In our domain of program comprehension,
developers instead leverage representations like the textual display of the code, call graphs that
show program flow, and diagrams that show relationships between classes [60]. Echoing Quintana
et al., program comprehension researchers have also recommended that program comprehension
tools should provide multiple views of the code [60].

Extending Quintana’s guideline, we consider the need for learners to manipulate representations
directly as they build their understanding of how a professional code example works. Previous
research has shown that the process of building mental models of code functionality is iterative;
understanding is build up in progressive layers and changes over time [56]. However, we are not
aware of any tools that allow users to directly manipulate code representations by grouping related
functionality or adding comments and labels to reflect their current understanding. Tools like
Unravel [28], Telescope [29], fireCrystal [43], and Scry [10] help users locate or isolate relevant
code, but do not support representation manipulation.

This highlights a need for tools to allow novices to externalize their mental models of code
structure and functionality by manipulating representations to reflect their current understanding:

CHARACTERISTIC 3. Support iterative manipulation of code representations to reflect a learner’s
understanding as it develops.

Beyond providing multiple representations of professional web code—including facets, the con-
densed call graph, and source frames—Isopleth implements Characteristic 3 by allowing users to
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manipulate these representations to further support the sensemaking process. As they explore the
condensed call graph, novices can label nodes to signal their purpose and drag nodes to group
them in ways that are semantically meaningful. Novices can also edit labels and code comments
in source frames to externalize their understanding of functionality. Finally, novices can create
custom facets to define new code slices that surface functionality of interest. These affordances
allow novice learners to not only explore complex professional websites using multiple represen-
tations, but also to manipulate those representations to express their current understanding of the
functionality and provide beacons [58] to help them externalize their mental models. For example,
a learner attempting to understand how a game timer causes a game-over action may discover
components such as game view updates and game timing throughout their sensemaking process,
and add node labels and reorganize the call graph to describe these components and support their
ongoing sensemaking process.

4 ISOPLETH

Isopleth is a web-based platform designed to scaffold novices as they make sense of complex
JavaScript in professional websites. At Isopleth’s heart is the JavaScript call graph that is pro-
duced by the learner’s interaction with a feature on a professional website. In this graph, a node
represents a set of collated invocations of a function, and an edge represents a parent—child call
relationship or an asynchronous binding. The Isopleth interface, shown in Figure 2, supports the
following three central activities that correspond to the three characteristics presented in the De-
sign Arguments section: (1) learners can explore functional and event-driven relationships using
the condensed call graph and source frames, (2) learners can view functionally related slices of the
call graph using facets, and (3) learners can manipulate these representations to reflect their cur-
rent understanding. We describe each of these activities from the user perspective in the sections
below.

4.1 Exploring Hidden Relationships Through the Condensed
Call Graph and Source Frames

Isopleth helps learners make sense of complex relationships in JavaScript program flow through
the condensed call graph and source frame views, shown in the bottom and middle panels of the
Isopleth interface in Figure 2. Program flow is particularly challenging for learners to understand
because JavaScript functions can execute asynchronously and often appear in a different runtime
order than their initial source order [2, 35]. Further, JavaScript’s functional nature means that
functions can be passed by reference in arguments, return values, and closures. No previous system
directly visualizes a JavaScript function’s journey from declaration to binding during runtime, but
this information is crucial for making sense of the conceptual design of web applications. Isopleth
provides the first interface for visualizing and exploring these hidden conceptual relationships.

In Isopleth’s condensed call graph, call trees are ordered from left to right by root-level invo-
cation over time. Each node in the call graph represents an invocation of a function or a set of
repeated invocations of a function in a unique call chain that have been collated into their most
recent occurrence in the tree. Edges represent relationships among function invocations, and are
colored to denote the relationship between the nodes. Parent—child (or caller—callee) relationships
are shown in yellow; asynchronous parent—child (or declaration context, invocation) relationships
in orange; and asynchronous binding sites that denote how functions are passed through call
chains to produce an asynchronous effect in purple. To control what portion of the call graph
is displayed, a learner can zoom and pan to identify code constructs of interest and use controls to
show/hide library nodes and repeat nodes.
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Fig. 2. A learner is using Isopleth to understand JavaScript code constructs related to moving and scrolling
their mouse on National Geographic’s New York Skyline article. Once activated, Isopleth opens in a new
window and continuously updates with JavaScript activity. The condensed call graph (bottom) and source
frame views (middle) allow learners to explore functional and event-driven relationships between code com-
ponents. The condensed call graph (bottom) displays a collated, filtered, labeled, and color-coded JavaScript
runtime call graph that includes asynchronous links. Learners can manipulate these representations to re-
flect their current understanding by dragging and labeling nodes, editing and commenting on source code in
source frames, and adding custom facet filters. By clicking on a node in the call graph, users can open source
frame views (middle) which display specific function invocation states in the runtime with their inputs and
outputs, parent and child calls, asynchronous declaration context, asynchronous binding, and asynchronous
effect if present. Facets (top) allow learners to view functionally related slices of code in the call graph; pre-
defined facet filters include Mouse, Keyboard, Setup, AJAX, and DOM. Users can apply or and not operators
to engage multiple facets to expose desired views. In this example, the learner added a custom “Hover Effect”
facet, comments to the source code, and node labels as they made sense of components in the call tree.

When the learner clicks on a node in the condensed call graph, Isopleth displays the function
body in the source frame view (Figure 2, middle). The interface displays navigational buttons on
the perimeter of the source frame view, which provides snapshots of related functions, arguments,
and return values. Users can access a function’s parent caller, child calls, asynchronous declaration
context, asynchronous binding locations, as well as other functions the frame binds as effects.
These affordances allow users to quickly access semantic information about each node in the call
graph to make sense of their functionality and their relationships to other functions. When a
learner clicks on an edge, both nodes touching the edge are highlighted and their respective source
frames are displayed side-by-side so that learners can readily examine their source code next to
one another.

As an example scenario, consider a learner Cindy who wants to understand the end-to-end logic
involved in the infini-scroll feature of a blog website, where photos are continually added to the
bottom of the blog after scrolling to the end of the page. Using Isopleth, Cindy sees nodes on the
right side of the condensed call graph that modify the DOM. Clicking the nodes and examining
the source frame shows how JavaScript queried and appended some elements. Following purple
lines to nodes on the left (an asynchronous link to an invocation earlier in time), Cindy discovers
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Fig. 3. Acluster of related collated function invocations (with their invoke-counts) in a condensed call graph,
manually organized here for display. Nodes are colored green for top-level calls and yellow for currently
selected; other nodes are colored based on the facets they match: purple for DOM, white for AJAX, and
blue for Setup. Edges in the graph are color-coded yellow for call relationships, orange for asynchronous
declaration, and purple for asynchronous bind locations. In this toy example of a lazy-loaded image, a click
handler is bound on #test4. Upon clicking #test4, the handler makes an AJAX JSON request and binds
jsonResponsHandler as the callback. The jsonResponsHandler queries the DOM for #appendShipHere,
and adds the image.

the exact function that binds DOM modification as an asynchronous response to mouse scrolling,
which helps her form a more complete understanding of the feature’s implementation.

4.2 Viewing Functionally Related Code Slices Through Facets

Facets provide methods for viewing functionally related code slices of the condensed call graph,
exposing conceptual relationships between JavaScript functions. Isopleth includes a set of prede-
fined facets that are shown by default, including Mouse, Keyboard, Setup, AJAX, and DOM (see
Figure 2, top). Facets enable two affordances to support learner sensemaking: (1) facet labels and
coloring on the nodes in the call graph that denote their functionality, and (2) facet filters that can
be used to view functionally related slices of the call graph.

Nodes in the condensed call graph are labeled and colored according to the default facets they
match, e.g., purple for DOM, white for AJAX, and blue for Setup. Top-level calls and currently
selected nodes are colored green and yellow, respectively. Nodes with multiple facets take the color
of the last invocation type. Figure 3 illustrates a cluster of related, collated function invocations
whose nodes are colored by their facets and whose edges are colored based on the relationship
among the nodes they connect. Facet labels and coloring are designed to help learners quickly find
nodes related to intuitive concepts like mouse and keyboard events, and also notice features like
AJAX and setup nodes that experts find important.

To further reduce the complexity of the call graph, Isopleth provides facet filters that allow
learners to view functionally related slices of code. When a facet filter is selected, the call graph
at the bottom of the Isopleth interface is filtered to display a subgraph that includes functions
related to the selected facet, along with their parent and child relationships. This allows learners
to quickly see all functions related to mouse and keyboard events, all setup code and AJAX calls,
and all functions that modify the DOM. To avoid overwhelming learners, all library code related to
a given facet is hidden by default. Learners can engage multiple facets to expose desired views by
joining facet filters with or operators (upon left-clicking) and not operators (upon right-clicking).

ACM Transactions on Computer-Human Interaction, Vol. 26, No. 3, Article 16. Publication date: April 2019.



16:14 J. Hibschman et al.

Facet filters are designed to highlight conceptual relationships between related functions that are
not apparent in tools that visualize execution order exclusively.

As an example scenario, consider a learner Alice who wants to discover which code constructs
are triggered when interacting with a search bar. Using the facet filters, Alice left-clicks the mouse
and keyboard facet filters to activate an or condition and right-clicks the DOM filter to activate a
not condition on DOM-querying nodes to focus on backend functionality. The call graph updates
to show Alice keyup and click handlers as top-level nodes that, respectively, correspond to func-
tions that react to her keystrokes into the search bar and clicks on the search button. Examining
these nodes and their descendants allows Alice to quickly see the distinct code constructs that
support interactions with the search bar as well as any code that is shared and reused between
these constructs.

4.3 Manipulating Representations to Reflect Understanding

In addition to providing learners with multiple representations to support sensemaking (facets, the
condensed call graph, and source frames), Isopleth supports learners manipulating these represen-
tations to reflect their current understanding. While exploring the condensed call graph, a learner
can drag nodes to rearrange them in ways that have meaning to the learner. Node labels and source
frame views are also editable, and update referentially. When examining source frames, learners
can label the node, add comments to the code, name anonymous functions, and even refactor
code. To support learners’ building on their existing understanding, Isopleth referentially updates
learner-inputted changes throughout the graph so that they appear whenever the source is refer-
enced by other nodes. Moreover, Isopleth’s interface provides edit cues, such as placeholder boxes
and blinking code cursors, that signal such changes are possible and that encourage learners to
make edits as would support their program comprehension strategy.

Isopleth also allows learners to create custom facet filters that help them explore functional slices
beyond the set of default facets (see Figure 4). Dynamic interactions with websites are initiated by
either user inputs or scheduled inputs, and can produce corresponding changes to the DOM as
outputs. Since the set of possible inputs and outputs is unbounded, it is infeasible to automatically
identify all facets that might be relevant to a learner’s sensemaking process on a particular profes-
sional example. Custom facet filters thus give learners the flexibility to create filters on inputs and
outputs as would support their specific sensemaking process. For example, a learner can type the
text “dog” into an autocomplete field on a professional website, and then create a custom facet that
filters for “dog” as an input to a function to trace how the string “dog” is passed from an input, to
an AJAX request, and finally into a result list to understand how the autocomplete search works.

As an example scenario, consider a learner Mark who wants to understand how the game timer
causes the game-over action in an HTML Tetris game. He first defines a custom facet for timer
events. He then finds the final timer event on the right of the call graph and notices 15 nodes
underneath. He does not immediately understand the functionality of the top-level node, so he
clicks a few other nodes in the tree to find familiar code. Mark finds a node three nodes down and
works through the source, adding comments about an object state being updated and labels the
node “Game State Update.” He explores and labels two other related nodes, and identifies a link
between the game state and the timer methods. This helps him understand the higher order design
pattern of separating concerns, such as game view updates and game timing.

5 TECHNIQUES FOR EXPOSING HIDDEN LINKS AND IDENTIFYING FACETS

Isopleth supports sensemaking of web applications by automatically (1) exposing hidden links
among code components and (2) identifying functionally related facets that can be used to filter
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Facet Name *Hover Effect (.skyline)
Filter Type Return Value Argument

Node Color #85ff97

Aspect Test Function

1 function argTest (arg) {
2 // Enter your test on “arg  here.
3 // Return a boolean.

5 return arg.type === "mouseenter" &&
6 arg.target.classList
7 .contains("skyline");

Cancel Save

Fig. 4. Alearner is creating a custom facet filter through the facet creator view. Facets are functional input-
output schemas; creating a custom facet thus involves writing a test for arguments and return values to
identify function invocation nodes that match such conditions on the argument or return value. Learners
also assign a node color for display in the condensed graph. In this example, the learner creates a custom
facet to filter for code constructs responsible for the hover effect upon mousing over buildings in the National
Geographic’s New York Skyline visualization (the effect on the left of Figure 2).

the call graph for the learner. In this section, we present the technical methods that support these
two core functionalities.

5.1 Exposing Hidden Links with Serialized Deanonymization

Tracking the lifecycle of a function from creation to invocation is especially difficult in JavaScript,
which allows for functions to be declared, passed, invoked, and manipulated during runtime both
synchronously or asynchronously. For instance, a function could be created and passed by ref-
erence through a complex library event system before being bound to a Ul event. While related
toolkits can already fully instrument JavaScript code in professional web applications [24, 29, 35],
they do not capture asynchronous relationships to fully link a function invocation to its declaration
context. Current tools can identify the declarative scope of the function and its calling scope [24,
35], but the function’s journey from creation to invocation is missing. For instance, this makes it
difficult to see the entire scope of code in popular event-binding callbacks common in JavaScript,
e.g.,object.on(‘ ‘some event’’, anonymousCallback).

The goal of SD is to trace the lifecycle of anonymous functions. Our strategy is to add unique
ID’s to each function at instrumentation time, then record all instances of the function that appear
in serialized arguments and return values at run time (i.e., from the Function.toString prototype,
which provides the string representation of the function—including our injected UUID).

We detail SD in the steps below (See Figure 5):

(1) Initiate public website instrumentation using the Sleight of Hand (SoH) technique [29] to
instrument a website’s source code.

(2) Extract the source for instrumentation via website-instrument-swap-and-trace (Wisat) ar-
chitecture [29].
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Fig. 5. The Serialized Deanonymization technique pictured above is a seven-step process for tracing an
anonymous JavaScript function’s path from creation to invocation. (1) Website JavaScript is extracted and
(2) sent to an instrumentation server. (3) UUID’s are injected into all function bodies. (4) The source is in-
jected into the page and (5) re-rendered, sending trace activity continuously to a database. (6) Isopleth queries
traces for call graph calculation, and (7) mines arguments and return values for function serials to discover
how functions were passed and bound.

(3) While applying Fondue tracer code [35] to the JavaScript source, for each function body in
the JavaScript abstract syntax tree, prepend a unique ID as a terminated string expression
to the function body.

(4) Reinsert the source via Wisat architecture and complete the SoH technique, rendering the
instrumented source.

(5) Collect function trace activity, including logs of our newly added serials if present in ar-
guments or return values.

(6) Load trace activity for call graph calculation.

(7) Make purple SD graph edges (See Figure 3) by backtracing function invocations through
the logs of arguments and return values from other function traces.

5.2 Identifying Facets with Facet Tree Decoration and Node Collation

With current tools [10, 35, 43], we can see source code, individual variable states, and active lines
at certain points of time, but this does not reveal meaningful facets that connect function chains
across time or code constructs responsible for particular aspects of functionality. In order to sup-
port exploring a call graph based on facets (such as DOM, Setup, or AJAX), we need a reliable
method for determining whether a function is related to a facet. Function names, function bodies,
and variable names are often unreliable or misleading determinants of facets because program-
mers may struggle to create well-named variables [23] and minifiers swap variable names with
short system-generated names that hold no semantic meaning [4, 52, 59].
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Fig. 6. This figure shows how Serialized Deanonymization allows for a DOM-modifying facets to be bubbled
up out of a library call. After removing library code filtering from the condensed call graph, we can see DOM-
modifying functions existing inside the library (grey nodes; and the currently selected yellow node). The
facet is bubbled out of library code to the green node that initiated the DOM changes (outside of jQuery) by
following the asynchronous links (purple lines).

To reliably identify facets, we define facet filters based on inputs and outputs through tests of
arguments or return values in function invocations. For example, Isopleth’s predefined facet filters
look for EventTarget arguments for the Mouse facet, onload arguments for the Setup facet, and
XHR objects in return values for the AJAX facet. Invocations that pass these tests are labeled in the
call graph, and displayed along with their parents and descendants when a facet filter is applied.

Since JavaScript libraries typically wrap API concepts deep within legacy-supporting con-
structs [30] such as XHR formation (for AJAX) and MouseEvent binding (for Mouse), defining
facet filters in the manner we described means that facets are often detected through library code.
While Isopleth’s frontend interface needs to hide such library internals from the learner to avoid
unnecessary complexity, our facet filters must operate on these constructs in the backend to re-
liably identify facets. For example, learners need to know that calls to $.ajax are AJAX facets,
even though internally these facets are often hidden in library wrappers around the JavaScript
XMLHTTPRequest APIL.

To address this need, Isopleth propagates facet labels from high-level nodes to descendants and
low-level nodes to ancestors; this helps users to see the responsibilities of a particular branching
path in the call graph regardless of their search strategy. When Isopleth detects a facet in a return
value or argument, it traverses the call graph to label nodes in a call-chain (i.e., a DOM query).
For argument values, it begins the search at the node with the argument, and if the node is library
code, it traverses descendents until finding non-library root nodes to mark with the facet, e.g., an
AJAX response. Similarly with return value facet identification, if Isopleth detects the return value
within library code, it bubbles the facet up the tree until finding non-library code to label with the
facet. Figures 6 and 7 provide two examples that show how facets are bubbled out of library code
through asynchronous links (using SD) and through function invocations, respectively.

5.3 Implementation

Activating Isopleth follows the same workflow as Telescope [29]. A user navigates to a website of
interest in a browser (i.e., currently supported in Google Chrome), activates source instrumen-
tation via a browser extension, and explores Isopleth at a newly launched URL. Isopleth then
communicates with the instrumented website to gather traces and generate a call graph. To do
this, Isopleth uses the Wisat architecture [29] to instrument websites and extends Fondue [35] by
adding unique identifiers through the SD technique.

1Github: Isopleth’s Fondue API https://github.com/NUDelta/Isopleth/tree/master/fondue-api.
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Fig. 7. This figure demonstrates how facets are bubbled out of library code through function invocations.
During call graph calculation, if a facet is detected in a library, we bubble the facet up to the first occurrence
of non-library code to help learners identify the facet roles of library API calls. After removing library code
filtering, we can see how the jQuery library API surfaces a getJSON wrapper method (green node, not inside
library code) which is decorated with the AJAX facet that was actually detected at a lower level through
the yellow node in the library code (i.e., getJSON actually delegates to the XMLHTTPRequest API through
which we detect the facet).

To streamline source instrumentation on more public websites than was supported by Tele-
scope, we also extended the Wisat architecture to block Content Security Policy (CSP) headers via
Chrome network intercept requests.” CSP headers are sent in advance of the HTML and enforced
by a web browser to prevent the modification of JavaScript outside of predefined domains or rules
specified. Isopleth needs to modify the JavaScript in order to instrument the runtime on the page,
and CSP headers block this functionality. By blocking CSP headers, we allow Isopleth to alter the
source code and instrument the JavaScript for analysis prior to appearing in the call graph.

To produce the condensed call graph, we implemented the following techniques for detecting,
collating, and throttling repeat call branches in the call graph. We collate nodes into their most
recent call if they have identical source, identical parent source, and identical children source. Call
links (direct and async) from each collated node are appended to the most recent called node.
Arguments and returns values are collected in order and are viewable through the argument and
return value buttons in the source frame view. In some feature-rich applications such as the New
York Skyline article, we throttled the volume of collated nodes from thousands to tens to improve
performance. A common use case is to decrease the volume of function calls from a mouse scroll
binding, where each pixel scrolled yields a function call.

We wrote flexible serializers for non-serializable JavaScript types such as Events, DOM elements,
and Abstract types like Object and Array for display in Isopleth’s source frame views as inputs
and outputs. We also used a “beautify” process to unwind minified JavaScript and format it into
readable code.?

5.3.1 Technical Limitations. By extending Fondue [35] and the Wisat architecture [29] for in-
strumenting source code on public websites, Isopleth and its SD technique inherits the limitations
of these approaches. For instance, the system only tracks source activity from top-level website
frames; scripts loaded dynamically during a Ul interaction will not be instrumented, and functions
invoked from string via eval are not traced. Other browser rendering techniques such as Canvas,
OpenGL, and Flash are not captured. However, JavaScript calls to these APIs are captured and are
surfaced to support sensemaking.

Isopleth’s SD technique does not capture the path of functions passed via closured variable
reference, string key reference, global object reference, or DOM element invocation reference (e.g.,

2Github: Isopleth’s CSP Modifier https://github.com/NUDelta/Isopleth/blob/master/chrome-extension/background.js.
3Github: Uglify]S beautifier https://github.com/mishoo/Uglify]S2.
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onclick=*‘MyFunction();’’). Function invocations and asynchronous declaration context are
still traced, but Isopleth’s purple lines will not draw connections for functions passed this way.
One way to overcome this limitation is to additionally track the state of variables over time using
Fondue’s instrumentation technique, which is currently not supported.

With our current implementation, Isopleth generally performs well on less complex web interac-
tions (fewer than 5K function calls) with minimal interruptions to framerate or website usability.
Performance starts to degrade from 5-15K function calls, as each function’s arguments and re-
turn values are being stored in memory. Beyond 15K function calls, we added filters in Isopleth’s
runtime source to debounce redundant events and function calls (e.g., older library techniques
of querying the URL hash every 200ms to detect hash change). Persisting these invocations to a
database instead of memory could alleviate some of the bottleneck with memory pressure.

Many websites are using minification techniques when publishing their code, which can de-
tract from Isopleth’s usability because names often help clarify the role of properties, objects, and
functions during sensemaking. While there is currently no standard for minification, we observed
three primary categories of minification in the sites we studied:

(1) Minification renames JavaScript variables and functions, but object attribute names,
HTML property names, and CSS class names are still available. JavaScript API methods
such as document.queryselector are unmodified.

(2) Minification extends category 1 by “mangling” properties in objects, meaning that meth-
ods and shared properties defined in objects become obfuscated. HTML properties, CSS
class properties, and JavaScript API methods are still unmodified.

(3) Minification extends category 2 by also replacing HTML properties and CSS class names,
which obscures DOM queries. JavaScript API methods are aliased and references to those
methods are replaced with the alias. Only string constants in templates and static content
are still readable.

Given what is preserved through the minification process, we expect Isopleth to perform rea-
sonably well with category 1 and category 2 minification but not with category 3 minification.
Most of the websites in our studies fall into category 1, except Histography and Stripe in cate-
gory 2. None of our evaluated websites were category 3, which we found were mainly used by
larger product organizations such as Google and Facebook that have the resources to build in-
house minification engines for obfuscating property names across HTML and CSS. To help make
sense of heavily minified code, future work on Isopleth may integrate tools such as JSNice [49],
which uses machine learning to rename variables based on their usage and context.

Isopleth traces all interactions between JavaScript and HTML/CSS, such as manipulating the
DOM, adding classes, and manipulating CSS property values (e.g., translate3d). However, Iso-
pleth does not support learners understanding concepts in HTML or CSS, which, given modern
advances to these languages, can themselves be used to create working Ul interactions. Our re-
cent work on Ply [36] addresses this limitation by providing a visual web inspector that supports
novices learning professional web page features in CSS.

6 CASE STUDY

To better understand Isopleth’s capabilities, we conducted a case study to illustrate how Isopleth
can be used to surface programming patterns and implementation techniques on complex profes-
sional websites. We selected 12 websites from a diversity of industries based on Alexa popularity
rankings, the Webby awards, and personal interest; see Figure 8. As this case study is conducted by
an expert JavaScript developer (one of the authors), our goal is to assess whether Isopleth provides
the desired sensemaking scaffolds to surface a range of concepts and implementation approaches
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Fig. 8. We studied Isopleth’s ability to support sensemaking and elicit design patterns across 12 websites
selected from a diversity of industries based on Alexa popularity rankings, the Webby awards, and personal
interest. From top left to bottom right: Tesla, The Pudding’s “Making it Big,” BBC America, 500px, Stripe,
ArsTechnica, Zillow, Starbucks, HashTagsUnplugged’s “#PlutoFlyBy” article, National Geographic’s “New
New York Skyline” article, Histography.io, and DarkSky.net.

across diverse, complex websites, and not how novices may then use these scaffolds to build new
understanding (which we will address via a user study with junior and senior developers that fol-
lows). In other words, we sought to first provide an understanding of the breadth of examples that
Isopleth can potentially help a learner explore through its core characteristics, before studying
how novices can learn new concepts when they use Isopleth.

As a reminder, Isopleth’s core characteristics are as follows:

— Characteristic 1: Expose hidden functional and event-driven relationships between code
components (Condensed Call Graph and Source Frames).

— Characteristic 2: Provide visual organizers that allow learners to view slices of code that are
functionally related (Facets).

— Characteristic 3: Support iterative manipulation of code representations to reflect a learner’s
understanding as it develops (Moving Nodes, Node Labels, Code Comments, and Custom
Facets).

This case study aims to address the following research questions:
—RQ1 How do Isopleth’s core characteristics support the process of making sense of complex

code artifacts?
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Fig. 9. Isopleth’s condensed call graph representation of BBC America’s lazy-image-loading strategy. By
reading predefined node labels and following functional (yellow lines) and asynchronous links (purple lines),
we see that the scroll event (top-left node) was passed to an event handler responsible for the callback (top-
right node). While examining source frames, we had renamed the scroll events’ child calls to better describe
what the functions do, such as implementing the scroll (doScroll), handling a race condition (lazyRace), and
pushing an image load request to the browser (pushLoader). The crucial asynchronous link connects the
disparate parts of code, which helped us to elicit the design pattern of appending images only when the user
scrolls below the fold.

—RQ2 What programming patterns/concepts can be surfaced (by an expert) through Isopleth
across professional examples sharing similar and different features?

In order to address these two research questions, we used Isopleth to understand implementa-
tion techniques across three areas of web development: event bindings, web application design,
and dynamic interactive features. While these areas represent different classes of problems in fron-
tend web development, they all require composing an understanding of the relationships among
functions and components that together realize a feature and may thus be more easily examined
using Isopleth’s core characteristics.

6.1 Result 1: Support Sensemaking of Complex Web Applications with Isopleth

We discuss in this section how Isopleth supported understanding techniques in event bindings,
web application design, and dynamic interactive features in professional web applications across
three respective cases.

6.1.1  Understanding Event Bindings. We used Isopleth to understand the event-binding pat-
terns on websites including BBC America, 500px, ArsTechnica, Pluto Fly-By, and Starbucks while
tracking the features implementing the sensemaking scaffolds that helped us. As an illustrative
example of a common strategy we used, we describe the process by which we used Isopleth’s core
characteristics to examine BBC’s show-picture-on-scroll feature.

We loaded the initial view of the call graph to find function nodes organized by run time, colored
by facet type, and collected by repeat occurrence. Facet labels and coloring on nodes in the call
graph provide a visual organizer that helped us to immediately distinguish between setup, mouse,
and DOM code and to consider what roles they each may play. From here, we explored DOM-
modifying and Mouse facets first, which matched our intuitive understanding of the interaction
on the page (i.e., the page changes as the mouse scrolls).

During the exploration, we used Isopleth to expose hidden functional and event-driven rela-
tionships between code components; see Figure 9. We found a lazybeforeunveil node on the
rightmost portion of the graph, and worked from this node outward to discover BBC’s asynchro-
nous image-loading strategy. By reading the function labels on its children (linked via yellow lines),
we deduced that this node must be responsible for handling an async callback. Curious how the
async activity worked together with mouse scrolling, we clicked on the purple line that linked
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Fig. 10. A source frame view found while learning about Zillow’s recent search results feature in its auto-
complete. The construct for loading previous searches is on the left and the captured return value is on the
right. We were surprised to find recent searches stored in the browser’s local store rather than the user’s
profile, or synced with the server.

this node to a node in a different call tree. This revealed connected source frames that showed
bind-setter and bind-callback functions side-by-side, which helped us to understand how certain
scroll points triggered an AJAX call to fetch an image, then inserted it into the DOM. By working
backwards from the response to the request, we were able to discover how separate functions in
different areas of the source code worked together to achieve this lazy loading strategy.

We also used Isopleth to iteratively label and organize code by our own understanding as we
went along. For instance, we discovered that some functions were anonymous, so we manipu-
lated the representation to match our understanding by renaming nodes according to their inputs,
outputs, and function bodies as we understood them, like 1azylLoadImage.

6.1.2  Understanding Web Application Design. We used Isopleth to understand the web applica-
tion design of the Zillow homepage, Starbucks’ login, Tesla’s car picker, and DarkSky’s city finder.
As an illustrative example of a common strategy we used, we describe the process by which we
used Isopleth’s core characteristics to understand the design of the Zillow homepage, specifically
how its home search autocomplete feature populates the user’s previous home searches into the
search bar. Our starting assumption was that after a number of keystrokes, a query would be issued
to a server to fetch home results tied to a user’s history. However, with Isopleth we discovered a
more elegant caching pattern.

We first used Isopleth’s facets to conceptually organize the call graph to highlight AJAX activity
and Keyboard activity to see whether links exist between server requests and keyboard events. We
imagined that Zillow might save searches in a user’s history on the server, but after seeing no AJAX
activity linked to keyboard events, we wondered what other implementation approach it may have
employed. Using a different view of the same data, we ignored the DOM, AJAX, and Setup facets
to focus closely on calls directly related to keyboard events.

We then used Isopleth to expose hidden functional and event-driven relationships between code
components. We found calls linked to keyup handlers and used Isopleth’s source frame views
to reveal underlying properties of arguments and return values for these method calls. In ex-
amining these calls, we discovered that typing characters into the search box queried the user’s
localStorage for recent user search queries, thereby revealing an unexpected lightweight per-
user caching strategy (see Figure 10).
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Fig. 11. The most complex Ul we tested was histography.io, which triggers thousands of function invoca-
tions in response to mouse movements. On hover, historical events on a timeline bubble up with randomly
decaying dots.

To help expose the macrostructures in this example, we labeled nodes as we examined their
sources and reshaped the call graph into common functional clusters to distinguish nodes respon-
sible for storage, queries, and view updates. We realized that the recent search history feature is
encapsulated in a component that is only available if the user’s localStorage is enabled. Other-
wise, it is simply ignored. The ability to reshape the call graph and label methods as we built our
understanding helped us to work through large sets of invocations in Zillow’s view, storage, and
query code, a task which would have otherwise been daunting and tedious.

6.1.3  Understanding Dynamic Interactive Features. We used Isopleth to understand dynamic in-
teractive features on Histography.io, the New York SkyLine article, the Making it Big Article, and
Stripe’s landing page. As an illustrative case, we describe the process by which we used Isopleth’s
core characteristics to understand Histography.io’s highly dynamic Ul, particularly its visual ef-
fects in response to mouse movement (see Figure 11). When moving the mouse, (1) a number of
dots denoting historical events follow the cursor; (2) a vertical line indicates the date of events;
and (3) a pop-up displays featured historical events. Using Isopleth, we were surprised to find that
much of Histography’s Ul is rendered in WebGL via bindings to a JavaScript library called Pixit]S.

Initially receiving a large set of events in the Isopleth call graph, we began by filtering the
call graph using the Mouse facet. By quickly skimming through nodes and their sources (seeing
“image” or “title” in the source), we were able to distinguish between code responsible for different
aspects of the feature. Based on this functional understanding, we rearranged nodes into groups
(i.e., “dots,” “vertical lines,” or “popup”) that correspond to these aspects. Examining nodes related
to popups, we learned that the popup was rendered in WebGL after fetching a cover image after a
settimeout relative to the last mouse-mouse event timestamp.

Still unclear on how the vertical lines or dots were drawn, we needed to see some of the un-
derlying logic in the corresponding nodes. Using source frames, we inspected their arguments
and return values and found numeric primitives repeatedly used in their clusters of nodes. These
numerics were tied to Ul positioning, as they were passed to Pixit configuration variables like
position.x and position.y. We created a new facet to detect numeric types in return values,
and this enabled us to surface functions that were operating (or not operating) on numeric data.
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By studying and labeling each of the smaller number of remaining numeric positioning node, we
discovered that the vertical line was rendered in WebGL similar to the popup’s positioning hook.
The dots following the cursor used a simple random number generator, with values between 0
and 1 to simulate a messy cluster of dots around the cursor. Without Isopleth, it would have been
difficult to distinguish and examine the various aspects of code responsible for the feature, and to
learn about the interplay between JavaScript and WebGL across components that together realize
the feature.

6.2 Result 2: Surfacing Design Patterns

Having described how Isopleth’s core characteristics can be used to support the process of making
sense of complex code artifacts, we discuss in this section the range of features and implemen-
tations approaches across websites that we (as expert users) were able to surface using Isopleth.
Specifically, we describe how we used Isopleth to find (1) common patterns across similar features,
(2) common patterns across different features, and (3) different patterns across common features.

6.2.1  Common Patterns across Similar Features. Isopleth’s facet filtering, call graph, and source
frames helped us discover consistent design patterns across similar features. For example, by ex-
amining the relational links among DOM Query and Setup facets in the call graph, we found that
Starbucks, ArsTechnica, Zillow, and 500px used the same content swapping technique based on
logged-in state. After filtering the call graph using the DOM Query facet, we inspected the argu-
ments in Isopleth’s source frame views to find that ArsTechnica, DarkSky, NatGeo, and Stripe add
and remove a class “hidden” to DOM elements to toggle their visibility. We also found 500px and
PlutoFlyBy’s animated scrolling technique when simply looking into the latest occurring invoca-
tion with a Mouse facet.

6.2.2 Common Patterns across Different Features. Isopleth’s facet filters and source frames also
helped us elicit consistent design patterns across websites with different features. Tesla’s car picker
and BBC’s landing page each listen for a Ul event that triggers an AJAX call, which loads JSON
containing image URL’s, which are appended to a template and rendered to the DOM. This lazy-
load pattern emerged through an iterative sensemaking process between DOM, AJAX, and Mouse
facets for both pages. 500px, MakingltBig, and NatGeo’s scroll-based CSS transform animations
were surfaced by using Isopleth’s Mouse facets, then inspecting arguments and return values in
source frame views. We identified loops operating on values modifying CSS translate3d positions
to achieve a smooth GPU-enabled transition.

6.2.3 Different Patterns across Common Features. Isopleth’s default and custom facet filters
helped us to discover contrasting implementations for the same feature. Different patterns may
be equally valid, but often the pattern highlighted the needs of the application domain, such as a
socially integrated login on the BBC America site compared to a simple form-post login on Stripe.
DarkSky, BBC, and Zillow’s autocomplete search techniques were surfaced through Isopleth’s Key-
board, AJAX, and DOM facet filters, and each of their implementations fits their domain. DarkSky’s
autocomplete searches local storage for previous searches and builds a URL query otherwise, fit-
ting the site’s simple design. BBC issues AJAX calls and populates templated results, fitting the
site’s reactive design. Zillow’s search populates a result list, but builds a URL redirect to their
map interface, fitting their real estate shopping design. Each website’s login technique varied, and
while Isopleth helped reveal insights, some sites did not use JavaScript to support user login. 500px,
Stripe, Tesla, Starbucks, and ArsTechnica simply redirected login actions without JavaScript. Iso-
pleth revealed BBC’s use of the social Janrain platform for an AJAX social login through its DOM
and AJAX filters, however on successful AJAX login, BBC oddly refreshes their page. Isopleth’s
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DOM, Keyboard, and AJAX facets along with a customized facet filter for login arguments showed
that Zillow uses a refreshless login strategy via secure AJAX post and view update.

6.2.4  Surfacing Architectural Decisions. Isopleth’s call graph helped us surface unexpected
lower level characteristics of websites such as identifying their JSON API, or revealing large
amounts of dormant code from framework bloat or analytics packages. 8 of the 12 websites have
mouse-tracking analytic packages, which we noticed through high call counts in collated superflu-
ous invocations related to mouse events. Three of the sites use large frameworks including Angu-
lar, YUI, and React, with thousands of invocations in Isopleth’s unfiltered call graph views during
simple UI changes. Isopleth revealed excessive polling activity in un-collating its call graph, where
four websites contain library code that polls window.location every 20ms for hash changes. Fi-
nally, by showing library code and filtering for AJAX facets, Isopleth streamlines the ability to
surface how applications structure their interaction with a remote API.

7 USER STUDY

After demonstrating that Isopleth can surface a wide variety of design patterns used in profes-
sional websites through our case study, we evaluated the system’s ability to support learners as
they explore and make sense of professional code. We conducted a lab study with ten novice “ju-
nior” developers and four more experienced “senior” developers. While we were most interested
in determining whether Isopleth effectively supports novices, we were also interested in under-
standing how learners with different levels of experience interact with the core Isopleth features.
We aimed to address three core research questions through this study:

e RQ1 Are learners’ conceptual models of complex professional web features more accurate
after exploring the code with Isopleth?

e RQ2 How do learners use the Isopleth features during the sensemaking process?

e RQ3 How do the sensemaking strategies used by junior and senior web developers differ?

7.1 Methods

Our lab study had a single condition; participants completed a pre-test, completed a sensemaking
task with Isopleth, completed a post-test, and responded to questions about the experience of
interacting with Isopleth. We describe the study methods in detail below.

Participants. Our participants included 10 junior web developers with less than one year of pro-
fessional web development experience but at least one professional internship, and four senior
web developers with more than 3 years of professional experience. The 10 junior web developers
(seven male, three female) were undergraduate students at our university recruited through uni-
versity email and Slack channels. The four senior web developers (all male) worked in industry in a
large midwestern city, and were recruited through referrals. We evaluated the experience on each
participant’s CV to ensure they met our “junior” and “senior” inclusion criteria. All participants
gave informed consent for participation in the study.

Professional Examples. As part of the study, each participant explored the source code for an
interactive feature on one of four popular websites: the National Geographic NY Skyline Article,
Histography.io, BBC, and XKCD’s big map. We selected these websites because we explored them
in depth as part of our case study, and we knew that each involves a simple and intuitive inter-
action with a clever and complex underlying implementation. In the National Geographic New
York Skyline article, scrolling horizontally causes a zoom effect on the skyline, and hovering over
new buildings yields information about them. On hover in the Histography.io site, little dots fol-
low the cursor indicating historical events and dates change for which year the user is navigating
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over. When clicking the header on BBC America’s landing page, it expands and reveals images
not present before. XKCD’s big map strings images together to form a draggable map, allowing
users to explore an extremely large comic through a normal browser-sized viewport. These exam-
ples provided nice opportunities for participants to take advantage of Isopleth’s affordances, while
each has a seemingly obvious implementation on first look, deeper exploration reveals clever and
scalable design patterns that may be counterintuitive to novices.

Procedure. First, we confirmed each participant’s degree of comfort with web development con-
cepts by asking a series of basic questions such as “What is one way you can hide a DOM ele-
ment?” The goal of these questions was to ensure that the level of experience reported on each
participants’ CV accurately captured their degree of understanding. Next, participants completed a
10-minute tutorial during which a researcher taught them how to use the Isopleth interface. After
learning about the interface, participants were asked to explore and interact with a toy example
to demonstrate advanced features in Isopleth such as finding asynchronous bindings or creating
custom facet filters.

Next, the participants selected one of the four professional websites to explore during the study.
Participants were told which interactive feature to study, and were asked to play with the UI for
that feature until they understood its functionality. Participants spent around 5 minutes interacting
with the feature on average. After interacting with the website, we asked each participant to spend
5 minutes drawing a diagram of how they thought the feature was implemented, from responding
to a user interaction through creating a visual effect on the webpage. This diagram served to
externalize the participants’ conceptual model of the feature functionality, and was used as a pre-
test that reflected their understanding prior to interacting with Isopleth.

After this pre-test, participants were asked to use the Isopleth interface to explore the source
code for this feature. We told participants their goal was to accurately describe how the feature
was implemented. We gave each participant 25 minutes to complete the task, and told them they
could stop whenever they were confident that they understood how the feature was implemented.
During iterative user tests, we found that most people completed this task in under 20 minutes,
indicating that participants would have enough time to explore sufficiently. Participants were free
to take notes on paper or in a text editor during the exercise and ask clarifying questions about
how to use Isopleth.

Upon completing the sensemaking task, participants were given 10 minutes to describe their
new understanding. We first asked users to write pseudocode to describe program flow from the
start to the end of the interaction. Then, participants drew a diagram of their conceptual model
of the feature implementation, which served as a post-test. During the drawing task, participants
were shown their original diagram (pre-test) and were allowed to either draw a completely new
diagram or modify and extend their existing diagram. After drawing the diagram, participants
were asked to verbally describe (1) any differences between their prior and current understanding
of the feature, (2) which Isopleth features were most helpful during their sensemaking process,
(3) any programming concepts or design patterns they discovered that they did not know about
previously, and (4) any features or functionality they wished Isopleth included.

Measures. To measure changes in participants’ understanding of the interactive features after
using Isopleth, we scored the accuracy of their pre-test and post-test diagrams, and then com-
pared the accuracy scores for each participant. These diagrams externalized participants’ concep-
tual models of the feature implementation at that point in time. To measure the accuracy of their
conceptual models, one of the authors created ground-truth diagrams that represented the true
implementation of each of the four web features. The author has more than 5 years of professional
web development experience and produced the ground truth diagrams through a deep review of
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Fig. 12. Graphs show the change in the accuracy of junior and senior developers’ conceptual models before
and after using Isopleth. The Overall graph shows the average change in accuracy, while the Code Compo-
nents, Functional Relationships, and Dataflow graphs show the changes in accuracy for elements relating to
those specific concepts. Overall, junior developers increased the accuracy of their mental models by 31%,
and senior developers reached a near-perfect 97% accuracy.

the source code, during which he relied on both Isopleth and his own conceptual knowledge of
JavaScript. This author then evaluated participants’ pre- and post-test diagrams by comparing
them to the ground truth diagrams and counting the number of the correct components, relation-
ships, and dataflow elements that were present. This produced a score (percentage correct) for
each pre-test and post-test diagram. To measure changes in accuracy over time, we calculated the
difference in scores between each participant’s pre- and post-test diagrams.

We made a distinction between participants who rejected, changed, or accepted their original
model of the feature functionality as presented in their pre-test diagram. We considered partici-
pants to have rejected their original model as incorrect or invalid if they drew a completely new
diagram or significantly altered more than half of their original diagram. Those who expanded
their original diagram or changed less than half of the content changed their model. Finally, we
considered participants to have accepted their original model after verifying that it was correct as
those who added details but did not substantially change the content in their diagram.

To measure participants’ usage of Isopleth features, we captured screen recordings during the
study and logged all clicks during their interactions with the Isopleth interface. We used the log
and video data to count the number of times each participant used each Isopleth feature during the
sensemaking task. To capture participants’ responses to the initial questions about web develop-
ment and the final questions about the experience of interacting with Isopleth, we audio-recorded
each session in full and transcribed all spoken text for analysis.

We analyzed our user study data to evaluate our three core research questions, first measuring
changes in the accuracy of participants’ conceptual models before and after using Isopleth, then
exploring how participants used the Isopleth features to support their sensemaking process, and
finally identifying differences in the behavior of junior and senior web developers. We present the
results of each of these analyses in the sections below.

7.2 Result 1: The Accuracy of Developers’ Conceptual Models Improved
After Using Isopleth

All of our participants improved their conceptual understanding of the feature implementations
through interacting with Isopleth. The accuracy of junior developers conceptual models improved
by 31% between the pre- and post-test, and the accuracy of senior developers models improved
by 17%. A repeated measures ANOVA shows that the difference between pre- and post-test scores
across all of our participants is statistically significant (F(1,13) = 4.72, p < 0.0001) despite our
small sample size. As shown in Figure 12, participants more accurately described code compo-
nents, functional relationships, and dataflow in their post-test diagrams. Unsurprisingly, senior
developers performed better than junior developers on both the pre- and post-test. When drawing
their post-test diagrams, nine out of ten junior developers either rejected or changed their original
model, while all senior developers accepted their model.
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Most junior developers’ conceptual models changed substantially after interacting with Iso-
pleth; of the 10 junior developers, 4 rejected their pre-test model, 5 changed their model, and 1
accepted their model. First, this indicates that the junior developers were not able to construct
accurate conceptual models of the functionality during the pre-test. As expected, spending a brief
period of time interacting with the web feature was not sufficient to help these developers under-
stand how it might be implemented. More importantly, we found that the accuracy of the junior
developers’ models improved substantially between the pre- and post-test; their post-test mod-
els were 31% more accurate on average. In addition to looking at overall accuracy, we separated
out each diagram’s accuracy according to the number of components, relationships, and dataflow
attributes each participant successfully identified. As shown in Figure 12, we saw large improve-
ments across all three categories, demonstrating that Isopleth helped participants understand not
only the components involved in the implementation of a feature, but also the relationships be-
tween components and the dataflow attributes that help them coordinate. These substantial gains
in conceptual understanding suggest that professional examples can provide an avenue for novice
developers to learn authentic implementation practices.

The senior developers performed substantially better than the junior developers on the pre-test,
and all four accepted their original models of the feature implementation. This indicates that the
senior developers had sufficient background knowledge to predict how a feature might be imple-
mented from the pre-test activity, highlighting the differences between junior and senior develop-
ers. However, Isopleth still helped senior developers improve the accuracy of their diagrams. Their
post-test diagrams were 17% more accurate than their pre-test diagrams, reaching an impressive
final accuracy of 97% on average. Again, the improvements were distributed across components,
relationships, and dataflow attributes, as shown in Figure 12. This demonstrates that even though
senior developers had a good initial understanding of the feature implementations, Isopleth was
able to help them fill in the details needed to build a fully accurate conceptual model.

7.2.1 Rejected Model. Four junior developers rejected their original conceptual models after
using Isopleth. In general, these developers presented vague and ambiguous conceptual models
during the pre-test, but overcame misconceptions and provided much more detail in the post-test.
As an example, consider the pre- and post-diagrams one junior developer drew for the XKCD
click-and-drag map, shown in Figure 13. Before using Isopleth, this participant thought that the
site tracks drag events, calculates the viewport change, re-tiles the images, and renders with clip-
ping. Through Isopleth, the participant discovered an elegant technique where coordinates are
transformed into center offsets, which are then used to load and unload map tiles dynamically
based on filename. This more detailed and accurate representation of the website functionality is
clearly visible in the post-test diagram.

7.2.2  Changed Model. Five junior developers changed their original conceptual models after
using Isopleth. In general, these developers described their hypotheses about the possible general
architecture for the feature during the pre-test, and then used Isopleth to discover the details of
how the website implemented this high-level approach. Consider the example diagram shown in
Figure 14, where the original pre-test diagram is shown in black ink and the post-test additions
are shown in blue ink. During the pre-test, this participant thought that the New York Skyline
website listened to hover events to trigger an animation to show a building. After using Isopleth,
the participant found that the website listened to mouseenter and mouseleave instead of hover.
They also discovered that instead of an animation, there was a DOM visibility attribute that was
toggled based on querying a building’s ID. This junior developer had a basic understanding of the
high-level pattern used to implement this feature (listen for an event, trigger a change in the UI),

ACM Transactions on Computer-Human Interaction, Vol. 26, No. 3, Article 16. Publication date: April 2019.



Isopleth: Supporting Sensemaking of Professional Web Applications to Create RALE 16:29

Fig. 13. A junior developer diagrams their conceptual model before (left) and after (right) using Isopleth.
The developer rejected their conceptual model in favor of a new model formed using Isopleth. Before using
Isopleth, the developer thought that XKCD tracks a drag, calculates the viewport change, re-tiles the images,
and renders with clipping. After using Isopleth, the developer found that drag coordinates are transformed
into center offsets which are used to load and unload map tiles dynamically based on filename.

Fig. 14. A junior developer diagrams their conceptual models before (black) and after (blue) using Isopleth.
The developer changed their conceptual model by exchanging some components and relational attributes
with more accurate representations. Before Isopleth, the developer thought that the New York Skyline web-
site listened to hover events to trigger an animation to show a building. After using Isopleth, the developer
found that the website listened to mouseenter and mouseleave instead of hover. They also discovered that
instead of an animation, there was a DOM visibility attribute that was toggled based on querying a building’s
ID.

but was able to improve their conceptual model by exchanging some components and relational
attributes with more accurate ones after using Isopleth.

7.2.3  Accepted Model. The five remaining developers (four senior, one junior) accepted their
original conceptual models after using Isopleth. These participants all provided accurate depictions
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Fig. 15. Asenior developer diagrams their conceptual models before (left) and after (right) using Isopleth. The
developer validated their jQuery-style pseudocode model and added specific details about Histography.io’s
cursor movement found in Isopleth’s source frame views. Prior to Isopleth, they described a DOM query and
binding on mouseevent of the DOM item which triggers a function drawEffect; this function would then
call functions to render a circle and pixels. With Isopleth, they discovered actual bindings to mousemove that
were close to their pseudocode along with greater detail including validating the range of mouse movement,
tying mouse speed to scaling, and cleaning up pixels when complete. The developer validated their key
components, relationships, and dataflow and added clever implementation details to their prior model.

of the logical components, how they coordinated, and how the dataflow functioned for their cho-
sen website. As an example, consider the pre- and post-test diagrams one senior developer drew for
Histography.io, shown in Figure 15. This participant used Isopleth to validate their jQuery-style
pseudocode model and added specific details about Histography.io’s cursor movement that they
found in Isopleth’s source frame views. Prior to Isopleth, they described a DOM query and bind-
ing on mouseevent of the DOM item which triggers a function drawEffect; this function would
then call functions to render a circle and pixels. With Isopleth, they discovered actual bindings to
mousemove that were close to their pseudocode along with greater detail including validating the
range of mouse movement, tying mouse speed to scaling, and cleaning up pixels when complete.
Through using Isopleth, this participant was able to validate their key components, relationships,
and dataflow, and added implementation details that were missing from their original model.

7.3 Result 2: The Developers Used Isopleth’s Features to Support
their Sensemaking Processes

After seeing that interacting with Isopleth improved developers’ conceptual models, we were inter-
ested in learning how the developers used Isopleth features to support their sensemaking process.
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Feature Junior Senior Total

Call Graph 10 4 14
Click Node 10 4 14
Drag Node 10 4 14
Click Async Lines 4 3 7
Click SD Lines 4 3 7
Node Label Change 8 1 9
Begin on Right 7 1 8
Source Frame 10 4 14
Read Source Code 10 4 14
Edit Source Code 7 2 9
Inputs Button 5 3 8
Outputs Button 1 3 4
Parent Call Button 2 3 5
Binding Fn Button 0 1 1
Fn Calls Button 4 0 4
Async Delegate Button 0 0 0
Facets 4 2 6
Mouse 3 2 5
Keyboard 0 2 2
Setup 0 2 2
AJAX 0 1 1
DOM 1 1 2
Custom Input Facet 3 2 S
Custom QOutput Facet 2 2 4

Fig. 16. The number of junior, senior, and total developers that used different Isopleth features to make sense
of the provided professional code examples.

In particular, we wanted to discover whether Isopleth’s core characteristics supported participants
in the ways we expected. In the following sections, we describe how each Isopleth feature was used;
Figure 16 summarizes feature usage by junior and senior developers.

7.3.1  Condensed Call Graph and Source Frames. The condensed call graph and source frames
were designed to expose hidden functional and event-driven relationships between code compo-
nents to help learners understand how the components coordinate to implement a feature of inter-
est. We also provide affordances that allow users to iteratively manipulate these representations,
with the goal of helping them articulate their understanding as it develops. As shown in Figure 16,
all 14 participants interacted with both the call graph and the source frames, and 9 changed node
labels and edited source code during their sensemaking process.

All 14 participants began their sensemaking process by exploring the condensed call graph and
looking for nodes of interest, as 1 participant put it in general I just looked around [the call graph] for
functions or classes that looked familiar and dove in from there. Many users started by looking at the
most recent invocations on the far right of the graph; as one noted I really liked that it is timeline-
based so I can retrace what happened and know some locations to start looking. Upon identifying
potentially relevant nodes, all users clicked on the nodes to study the associated code in the source
frame view. A junior developer noted that you can see the parent, inputs, and calls; eight developers
clicked on the input, output, and call buttons as a convenience to quickly find connected nodes. We
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observed that all developers moved back and forth between scanning the call graph for relevant
nodes and reading code in the source frames during sensemaking, exploring how nodes connect
and then diving into their code to better understand their roles. These usage patterns show how
exposing disciplinary information about the relationships between code components helped our
participants explore and make sense of complex professional code.

The majority of our participants manipulated the call graph and source frame representations
during sensemaking. Nine developers (seven junior, two senior) edited the code displayed in the
source frames by adding comments or renaming variables, and nine developers (eight junior, one
senior) edited node labels. The two senior developers who made edits to source frames and la-
bels only made a few updates, spending most of their time skimming code and verifying prior
assumptions. Two of the junior developers also made only a small number of edits; these develop-
ers had lower pre-test scores (average 23%) and spend most of their time working to understand
the code they were reading in the source frames. The remaining five junior developers with higher
pre-test scores (average 53%) regularly manipulated the representations throughout their explo-
rations, adding comments and renaming variables. Some of these participants also updated node
labels as a way of marking completion (e.g., with the label “done”) when they had finished reading
and understanding the node source. After updating a node label, one developer said now that one’s
done, I just have three others I need to look at before I know what’s going on. This demonstrates that
these junior developers were using labels to represent their current understanding, the central aim
of our manipulatable representations.

Most of the participants who manipulated the representations (seven junior) not only added
labels and source comments, but also referenced these annotations at a later point during their
sensemaking process, showing that these labels and comments served to document and commu-
nicate their current understanding of the code. These users all followed an iterative sensemaking
process, but adopted a variety of different strategies. We observed (1) top-down iteration, refer-
encing each parent call then jumping back to the top after reaching the bottom, (2) bottom-up
iteration, visiting each child node then reviewing and comprising the parent until reaching the
top, and (3) skim-and-save iteration, navigating connected nodes and only editing nodes of inter-
est. There was no clear evidence of a single strategy being more effective over the other, and some
users mixed strategies, for example, starting with strategy (3) and then focusing in on a specific
logical branch with strategy (1).

Overall, these usage patterns demonstrate that Isopleth’s sensemaking scaffolds helped our par-
ticipants build their conceptual understanding of the feature implementations. The developers
used the call graph and source frames to explore relationships between code components, and
many manipulated these representations to externalize their understanding as it developed.

7.3.2  Facets: Colors, Labels, and Filters. Facets were designed to provide learners with a way
to view functionally related slices of code. Facets are conveyed both through the coloring and la-
beling of nodes in the call graph and the facet filter buttons that allow users to view the subset
of nodes related to a given facet. We also provided affordances for users to create custom facets
to define and explore functional slices of interest, with the goal of helping users manipulate the
provided representations to support their understanding. As shown in Figure 16, all of the partici-
pants interacted with the colored nodes in the call graph. In addition, six developers used the facet
filter buttons during their explorations, and five explored building their own custom facets.

The participants who used the facet filter buttons fell into two groups: those who used the filters
with intention to explore a hypothesis, and those who used the filters to gain entry points into the
code. Three developers (one junior, two senior) clicked on facet filter buttons with a stated goal
in mind, for example, clicking the AJAX filter to show only nodes which exist in callstacks that
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either issued or responded to an async HTTP request. These users made thoughtful choices about
when to apply a filter to view a different slice of functionality in the call graph. Furthermore, these
were the only three users to successfully define and use a custom facet filter; the two other juniors
developers who tried to define facets gave up quickly. The custom facets these three developers
created included filtering for return values in a range, filtering variable types from the arguments,
and filtering for attributes in JSON objects. These filters allowed the users to significantly reduce
the call graph complexity and hone in on nodes of interest. These three users had high pre-test
scores (average 74%), indicating that had the background knowledge required to take advantage
of the predefined and custom facet filters to explore hypotheses.

The three other developers (all juniors) clicked on facet filter buttons without a clear hypothesis
related to the filter. Instead, these developers used the filters to gain entry points into the code;
one commented at the beginning, there were a lot of nodes, then I applied the filters and with the
coloring it got a lot easier. These users appeared to follow the behavior that was modeled during
the Isopleth study at the beginning of the demo, clicking on DOM and Mouse filters to see asso-
ciated code. For example, while exploring the BBC header open—close effect, one user clicked the
DOM facet filter stating an abstract goal I want to figure out the place where [the header] opens.
The user explored the filtered call graph for a while, then clicked the Mouse facet filter, and found
a node that showed the source code querySelector(.header-secondary), and exclaimed this
looks promising! In contrast to the developers who used filters to explore a specific facet-related
hypothesis, these users used facet filters to reduce the complexity of the call graph and help them
explore the source code. These three users had lower pre-test scores (average 34%), and most likely
lacked the background knowledge needed to form clear hypotheses at the beginning of their sense-
making process. However, the facet filters were still able to support their sensemaking process by
providing intuitive entry points into the code.

The remaining eight developers (six juniors, two seniors) did not use the facet filter buttons
during their exploration. However, we observed that these users referred to the facet labels and
coloring on nodes in the condensed call graph during their sensemaking process. For example, we
saw users move their mouse from node to node in the call graph, reading the facet labels without
clicking. We also saw some users scan the call graph for colors of interest (e.g., green for top-level,
purple for DOM, etc.) before exploring a section of the call tree. During exploration, one junior
developer said I'm looking for a node, probably purple [DOM], because there will be a click then a
DOM something. In the interview at the end of the study, one junior developer said the colors in the
[call] graph are very useful, because JavaScript is a mess and helps to see what returns from where
and what gets passed to where. Given that developers were able to see functional slices of the code
through the node labels and colors, the eight developers who did not use facet filter buttons may
have found all the information needed to support their sensemaking in the call graph itself.

7.4 Result 3: The Developers Used a Variety of Different Strategies
During Sensemaking

In addition to understanding how participants used Isopleth’s features to improve their conceptual
models of interactive web features, we were also interested in studying whether junior and senior
developers used different strategies during sensemaking. We found that they do adopt distinct
program comprehension strategies. Senior developers were more likely to approach the inspection
task with concrete hypotheses about how the feature was implemented. We therefore observed
them scanning the call graph to find particular components and using custom facet filters to hone
in on particular functionality. In contrast, junior developers were more likely to approach the task
with vague ideas about the implementation. We observed them tracing backwards from the most
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recent invocations to the right of the call graph, and working through nodes systematically as they
built up their conceptual models.

However, beyond these general differences between junior and senior developers, we also found
that the participants used a wide range of sensemaking strategies. As described in the previous
section, not every developer used every feature, and feature usage was often dependent on the
developers’ incoming knowledge and approach to the exploration task. Some extensively manipu-
lated the call graph and source frame representations to express their current understanding, while
others never made changes. Some used facet filters to view slices of the call graph, while others
explored the whole graph and used facet colors and labels to help them dig through the com-
plexity. These patterns demonstrate that Isopleth’s core features can support a variety of program
comprehension strategies.

In this section, we present user stories that reflect the strategies used by three distinct partic-
ipants in our study: one who rejected their original conceptual model, one who changed their
model, and one who accepted their model. All participant names have been changed. These sto-
ries demonstrate the variety of program comprehension strategies we observed, and show how
Isopleth’s core features were used to support different sensemaking approaches. Importantly, Iso-
pleth’s features were able to effectively support these diverse approaches, showing that they are
flexible and do not require users to follow a particular sensemaking procedure. The central goal of
Isopleth is to help novice learners bridge from their own intuitive understanding; as a result, we
see this flexibility in supporting distinct program comprehension approaches to be a significant
strength of the system.

7.4.1  Grace Explores BBC. A junior participant Grace had pre-test score of 28%, and rejected
her original conceptual model during the post-test. She activated Isopleth on the BBC website to
explore its header and image loading functionality, and began her sensemaking process by look-
ing at the call graph. Grace moved the call graph around looking for familiar syntax or potential
starting points. Without a strong intuition to start her search, Grace switched back to the website
and recreated the effect to see which call counts updated on the graph. Returning to the call graph,
Grace was still unsure where to look, but clicked on the DOM facet filter after remembering that
was helpful in narrowing down the search space during the pre-task demo. While clicking on a
few top level nodes, Grace said I'm trying to figure out which one starts the chain of stuff. Grace
found top-level DOM nodes that referenced nav-browse-shows and nav-expanded, and labeled a
node once the hamburger is open to indicate that the function was a callback for when the drawer
view expanded. Interested in seeing how her mouse movement related to the drawer open ef-
fect, Grace remembered the Mouse facet filter from the demo and clicked it. With the two filters
applied, Grace clicked through three nodes to the left of her first labeled node, as these nodes oc-
curred before the “hamburger is open.” Grace worked through each node by updating its label and
following its direct calls, and she discovered how mouse events that were bound at setup triggered
a draw-open and image-load-in-carousel effect. Grace rejected her prior model, which outlined
a click, resize, and insert-pics functionality, and instead created a new model that included lazy
loading of images, changing CSS classes to trigger opens and closes, and even the analytics that
were transmitted when opening and closing the header.

7.4.2  Ada Explores National Geographic’s New York Skyline Article. A junior participant Ada
had a pre-test score of 44%, and changed her original conceptual model during the post-test. She
activated Isopleth on the New York Skyline article and began her sensemaking process on the right
side of the call graph (see her pre-post model Figure 14). Seeing light green top-level nodes, Ada
searched for one to begin with, and selected the node that was furthest to the right of the graph
(the most recent call). Ada was unsure what the source code was doing, and visited neighboring
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nodes by following async call lines and proximity in the call graph. Ada found a node pre-labeled
as “scroll.waypoints handler” and began an iterative manipulation process. She worked through
several of its child nodes by clicking to open their source frames, activating the call, argument, and
return value buttons, and writing notes in the comments (e.g., variable a is the building, loop, now
b is the building, move page). Ada renamed each of the child nodes with short descriptions such
as remove click event, listen for hover, add to horizontal position, and repeated this process up the
tree renaming the top level node, listen to mouse, move the skyline. Through bottom-up iteration,
Ada learned how the skyline moved and how it showed details on hover. During her post-test, Ada
changed her prior model, which featured button callbacks and simple listeners, to include more
components such as scroll handlers, relationships such as hover to translate3d, and dataflow
showing which building to animate.

7.4.3  Alan Explores XKCD. A junior participant Alan had a pre-test score of 63%, and accepted
his original conceptual model during the post-test. He activated Isopleth on XKCD to understand
its click-and-drag effect. Alan saw the node colors, async relationships, and relationships among
top-level callers. He read the pre-populated node labels and gained an understanding of the role
each node played in the context of the larger picture. Alan selected a node carefully based on
its label and relationships, and saw a node that looked like a callback bound at page load which
modified the DOM and had a mouse facet label as well. Alan started by reading the source frame of a
“mousedown” node; he followed lines to “drag” and “update” nodes and continued to move through
the graph. Given the roles of these nodes, Alan visited neighboring nodes to verify the context of
the original nodes. Alan read the code in the source frames carefully, making assumptions about
unknown methods based on how they are used in context and mentally bookmarking spots he
was confused about. Alan repeated this process until he gained a verified working knowledge of
the effect. In his post-test, Alan validated his prior model, adding specific details about the scope
of mouse bindings and the clever image-index naming convention for lazy-loading images.

8 DISCUSSION

Our work advances the creation of RALE that transform professional web applications into op-
portunities for authentic learning. As a first step toward realizing RALE, this article contributes
Isopleth, a web-based platform that helps learners interactively explore the complex front-end code
of professional web applications. Isopleth embeds sensemaking scaffolds informed by the learn-
ing sciences and the program comprehension literature to help learners build conceptual models of
how components coordinate to produce complex interactions in professional code. Through a case
study, we found that Isopleth provided helpful scaffolds for making sense of event bindings, web
application design, and complex interactive features across a wide range of professional websites,
and can be used to surface the various ways that the same features can be implemented across
professional web applications. Through a user study with junior and senior developers, we found
that Isopleth helped junior developers significantly improve their conceptual models between a
pre- and post-test (by 31%); they improved their understanding of individual code components,
functional relationships among components, and dataflow. Moreover, Isopleth helped senior de-
velopers reach a near-perfect 97% accuracy on the post-test. These results provide promising early
evidence of how tools like Isopleth can enable learners to use professional examples to build deeper
conceptual understanding.

Beyond demonstrating conceptual learning gains, our study results confirmed our design ar-
guments by validating how Isopleth’s core characteristics can be used to support the process
of making sense of complex code artifacts. First, Isopleth exposes hidden functional and event-
driven relationships between code components with its condensed call graph and source frames.
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We argued that these affordances make disciplinary knowledge and practice accessible to learners
by surfacing all connections among code components in the call graph (including asynchronous
ones) and encourage the expert practice of thinking about functions in terms of inputs and out-
puts through source frames. Through our studies, we found both ourselves and other developers
following asynchronous links in the call graph to discover how separate functions in different
areas of the source code worked together; using source frames to examine the arguments and re-
turn values of method calls; and switching between exploring the structure of the call graph and
investigating relationships in detail through source frames throughout the sensemaking process.
These usage patterns demonstrate how making the semantics of the discipline apparent can help
learners compose a deeper and more complete understanding of how components coordinate to
implement a feature.

Second, Isopleth provides visual organizers that allow learners to view slices of code that are
functionally related through its facet filters and facet labels. We argued that these affordances help
learners use their intuitive understanding of how interactions cause visual effects (e.g., mouse and
keyboard events) and organize code into functional slices that reflect how experts think about
functionality (e.g., where events are bound and where AJAX calls are made). In our studies, facet
filters helped us and three developers with high pre-test scores to explore concrete hypotheses by
significantly filtering down on the call graph to hone in functional slices of interest. Facet filters
also helped three junior developers who did not have a concrete hypothesis gain entry points into
portions of the code to start their exploration based on their intuitions. The remaining developers
who did not use the facet filters nevertheless referred to facet labels and coloring, e.g., to locate
nodes of interest based on their functional roles during their sensemaking process. These obser-
vations illustrate how visual organizers can help learners connect their prior knowledge (however
deep or shallow) to performing the sensemaking task at hand.

Finally, Isopleth supports iterative manipulation of code representations to reflect a learner’s
understanding as it develops through affordances for moving nodes, editing node labels, adding
code comments, and creating custom facets. We argued that these affordances can help learners to
externalize their mental models of code structures and functionality in ways that further support
their sensemaking process. In our studies, we found ourselves and many other developers con-
stantly dragging nodes to group them according to their functional roles, adding code comments
to capture our understanding, and relabeling nodes with more intuitive names to serve as beacons
for further investigation. Seven of the ten junior developers not only added node labels and code
comments, but also referenced these annotations later in their sensemaking processes. These re-
sults confirm our hypothesis that learners can benefit from sensemaking scaffolds that not only
provide multiple representations for viewing code but that also allow learners to manipulate those
representations directly in flexible ways.

While we found that many Isopleth features were used extensively by our study participants,
some features were underutilized. For example, custom facets were rarely used successfully by
junior developers. The custom facet filters may have been too advanced for junior developers,
since many did not have concrete hypotheses they could have explored through a custom filter.
To reduce the complexity of authoring custom filters, future work may explore allowing users to
define filters with forms and drop-downs rather than by writing predicates in code. We expect that
some of the other features were underutilized because they were not needed to support some users’
sensemaking processes. For example, while 9 of the 14 developers modified node labels to keep
track of their progress, the other developers never modified labels, with some instead highlighting
code as they explored and taking mental notes to keep track of their understanding. While these
other developers may still benefit from the manipulation affordances when exploring even more
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complex examples, their sensemaking approaches were successful without these affordances for
the examples included in the study.

More generally, by providing multiple sensemaking affordances that learners could use as
needed, we found that Isopleth supported a variety of different sensemaking strategies. This en-
abled learners to follow flexible, self-directed sensemaking processes during which they used fea-
tures as they saw fit, without being constrained to a predefined procedure. For example, we ob-
served developers use top-down and bottom-up approaches while inspecting the call graph. We
also found that junior and senior developers used different sensemaking strategies based on their
background knowledge and the specificity of their hypotheses about the feature implementation.
We observed senior developers scan the call graph to look for particular functionality, while junior
developers worked through nodes more systematically as they built up their conceptual models.
Despite these differences in approach, we found that Isopleth helped both junior and senior de-
velopers improve the accuracy of their conceptual models, whether they rejected prior models,
changed large portions, or accepted their (correct) models and added additional details.

8.1 Limitations

Our user study focused on evaluating how learners of varying experience levels used the Isopleth
features to make sense of complex professional websites, and how the experience changed their
conceptual models of the websites’ implementation. As a result, we chose to design a single con-
dition study that compared understanding before and after interacting with Isopleth. While we
think this design was appropriate for addressing our immediate research questions, it does have
a number of limitations. In particular, we did not compare Isopleth to a baseline to uncover how
much value Isopleth adds beyond current tools for web inspection. It is likely that learners would
be able to build some level of understanding by spending the same amount of time exploring web-
site source code using currently available tools. Therefore, in the future, we would like to conduct
a comparative study in which users in one condition would use Chrome Developer Tools to inspect
websites, while those in another condition would use Isopleth. This comparative study would help
us better understand the relative strengths and weaknesses of both tools, and help us further re-
fine the design of Isopleth. In addition, our study was conducted in a lab, so learners were not
participating due to their own motivation and interest. Learners may apply different strategies to
make sense of websites that interest them personally. As a result, we would like to conduct a in-
the-wild study of Isopleth to better understand how learners explore websites in more naturalistic
settings in the future. Despite the limitations of our current user study, we believe it provides an
important initial understanding of Isopleth’s features and the ways in which they support novices
in sensemaking.

8.2 Future Work on RALE

Our vision for RALE aims to empower learners to leverage the entire web of professional exam-
ples as a resource for learning programming concepts, practicing concept implementations, and
applying concepts across problems. But while professional web examples provide an invaluable
resource for authentic learning, they pose an enormous cognitive burden for novice developers
who lack the expert models needed for making sense of complex examples. To use professional
examples as a learning resource, novices must drive an inquiry-like process of making sense of
complex examples, managing the investigative learning process, and reflecting on their progress
to monitor and plan how best to continue learning. These skills are required for learning from com-
plex examples, and more generally, for preparing students for CS jobs where they will be expected
to learn independently and keep up with the latest technologies and techniques.
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Our work on RALE seeks to overcome such challenges by advancing technologies that scaffold
self-directed learning from authentic professional examples so that learners can better manage
their learning process, assess what they have learned, and drive further investigation. Rather than
taking a case-based approach and manually curating example cases for learners, our approach
is to leverage existing professional examples that embed the rich set of concepts and skills that
learners want to practice, and to scaffold learning directly from those examples. We have chosen
to use professional examples for multiple reasons. Given the complexity required for examples
to embed authentic professional design patterns and practices, curating a large number of cases
would be cost-prohibitive. Providing only a limited number of authentic example cases would limit
their utility for learning. Moreover, given the rapid rate of technological change in the domain of
web development, case libraries would quickly become out-of-date.

While Isopleth is designed to help learners understand JavaScript code, we expect our general
approach of applying principles from the learning sciences to form sensemaking scaffolds that ad-
dress the specific learning challenges of a context and domain to be likewise effective for learning
from professional examples in other programming disciplines. As an illustrative example, our re-
cent work led to Ply [36], a visual web inspector that supports novices learning to replicate the
appearance of professional webpage features in CSS. To help novices build conceptual knowledge,
Ply implements a novel technique called visual regression testing to hide visually irrelevant CSS
properties and surface common professional design patterns in which multiple CSS properties
coordinate to produce visual effects. This helps learners build on their intuitive understanding
of visual effects, and fill gaps in their conceptual knowledge about how different CSS properties
worked together. Beyond learning from professional websites, our future work will take a simi-
lar approach to explore the broader applications for RALE across many languages such as Java,
Python, and C++. For example, while for a Java web REST API it may not make sense to have
facets for mouse, keyboard, and DOM-modifying code as Isopleth does, surfacing functionally re-
lated slices of code is likely to still be a useful sensemaking scaffold, and may involve defining
facets around API endpoints and for discovering components such as Java controllers, services, or
repository accessors.

Beyond sensemaking, our continuing work on RALE will pursue the design of learning envi-
ronments and associated technologies that provide self-directed learning scaffolds for (1) process
management to help novices implement concepts from professional examples; and (2) reflection and
articulation to support learning to apply concepts across diverse problems. For (1), while Isopleth
helps novices understand conceptually how a feature is implemented, novices can still struggle to
replicate a feature or use a design pattern to implement a similar feature on their own. Practicing
implementing a feature reveals additional self-directed learning challenges for novice developers
who lack strategic knowledge of how to select practice activities and coordinate the process of
learning [57]. Novices can easily become overwhelmed by the complexity of options, be distracted
by less important tasks, or approach tasks that are larger than what they can productively handle.
To overcome these challenges, our future work will design effective process management scaffolds
that (a) create scaffolded exercises that decompose features into practice activities; (b) teach pro-
gramming concepts and libraries in-context; and (c) provide workspaces to help learners manage
their practice and test their code. These scaffolds can increase novices’ ability to learn to imple-
ment complex web features by supporting their practicing component skills and then progressively
combining them to implement features [3]; draw novices’ attention to professional practice [7, 14];
and handle routine tasks to reduce cognitive load and disruption [41].

For (2), while novices can use Isopleth to study multiple examples, they may not attend to
the similarities and differences in implementation approaches across examples, which is help-
ful for learning how to apply programming concepts across diverse problems. Learning to apply
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concepts across problems presents additional self-directed learning challenges for novice devel-
opers who may explore examples haphazardly without reflecting on how concepts can be applied
across examples to support future knowledge transfer [22]. Novices may focus on achieving quick
outcomes rather than deep understanding; for example, a novice may quickly identify two exam-
ples as similar based on surface features, and fail to recognize core differences in implementation
approach [15]. To overcome these challenges, our future work will design effective articulation
and reflection scaffolds that (a) provide “knowledge maps” to help learners curate and discover
similar or contrasting professional examples; (b) prompt learners to label similar and contrasting
implementation approaches and techniques; and (c) use guided reflection to encourage learners
to reason about alternate implementation choices. These scaffolds support continual sensemaking
across examples [37] to guide learners through analogical reasoning [20, 21, 33, 39]; help learners
use contrasting and boundary cases to refine conceptual understanding [8, 54, 55]; and highlight
deep features to overcome transfer issues [44]. Together, they can improve learners’ ability to cre-
ate knowledge maps that relate web features and implementation approaches, and their ability to
apply concepts to construct solutions to diverse problems.

Beyond the above-mentioned self-directed learning scaffolds, novices may need support for
identifying and selecting examples that are good for learning (e.g., those that embed good prac-
tices, that are at an appropriate level of complexity, that reinforce learned concepts, etc.). Moreover,
learners may need help understanding why a design pattern is chosen over some other approach,
and whether the programmer actually chose the right design pattern. To address these needs, we
are interested in ways to embed expert guidance into RALE, so that self-directed learning tools are
used in conjunction with established curricula, expert teachers, and learning communities that
help to curate content and explain difficult concepts.

Through advancing these research directions, we envision a future that provides vast opportu-
nities for learning from the entire corpora of websites on the Internet and from publicly available
professional code everywhere. This can help train increased numbers of developers who are ca-
pable of pursuing professional careers in Computer Science, and produce broadly applicable and
available computer science education content that targets conceptual understanding through au-
thentic worked examples. Beyond learning to code, RALE provides a compelling direction for gen-
erally enabling many learners to pursue mastery in complex domains by transforming real-world
artifacts into authentic learning resources. Progress in this direction will require creating new in-
teractive technologies that continue to be informed by the learning sciences, and that contribute
new ways of integrating automated methods, interface affordances, and learner-created artifacts
to realize the desired scaffolds for learning complex skills.
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