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1. Introduction

The Fourier transform on Rd

f̂(ξ) :=

∫
Rd
e−ix·ξf(x) dx, ξ ∈ Rd, (1.1)

is a fundamental operator that, via the Fourier inversion formula, provides coeffi-
cients to represent nice functions as superpositions of plane waves,

f(x) = 1
(2π)d

∫
Rd
f̂(ξ) eix·ξdξ. (1.2)

Aside from the basic utility of decomposing functions into simpler parts, this op-
erator is powerful in the study of differential equations because it intertwines the
operations of differentiation and polynomial multiplication via the formulae

̂(−ixjf) = ∂ξj f̂ , (̂∂xjf) = iξj f̂ . (1.3)

Surprisingly, given its importance, much remains unknown about how the Fourier
transform interacts with simple geometric objects.

The Fourier restriction problem for the sphere asks for which exponents (p, q) ∈
[1,∞]2 does there hold an inequality

‖f̂ |Sd−1‖Lq(Sd−1) ≤ C‖f‖Lp(Rd), (1.4)

with a constant C uniform over all smooth, compactly supported functions f . Such

an a priori inequality would imply that the restriction operator, f 7→ f̂ |Sd−1 ,
uniquely extends to all of Lp, providing a reasonable interpretation of the restric-
tion of the Fourier transform of Lp functions to the sphere. The mismatch between
the linearity of planar waves and the curvature of the sphere makes this problem
highly nontrivial and leads to deep connections among seemingly disparate areas
of mathematics such as geometric measure theory, dispersive PDE, and analytic
number theory.

The restriction problem originated from work of Elias M. Stein in the 1960’s,
who established the first positive results in unpublished work. Despite its quick
resolution in two dimensions, in work by Fefferman–Stein and Zygmund, the re-
striction conjecture for the sphere, that (??) holds if and only if

p < 2d
d+1 and d−1

p′ ≥
d+1
q , (1.5)

remains open in all dimensions d ≥ 3. Recent developments have substantially
narrowed the gap between restriction theorems and the conjecture, and these new
techniques have facilitated or promise to enable progress on a vast circle of related
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questions. The purpose of this article is to give a brief introduction for non-experts
to some of the ideas and applications surrounding Stein’s restriction problem.

The article is structured around a selection of methods, which we describe,
for clarity, in the context of the restriction problem for the paraboloid, a simpler
model than the sphere. In the elliptic setting (which contains both the sphere and
paraboloid), most of these methods have by now been surpassed, but the field has
become sufficiently broad that each method is at, or even beyond, the state-of-the-
art for a large number of interesting restriction problems. Giving a sense of this
breadth is a particular goal of this article, so we will describe and motivate some
of these related questions as we reach their record-setting methods.

The competing demands of limited space, topical breadth, and (especially)
clarity for non-experts, in a time of rapid development, necessitate the neglect
of a number of important results. The author apologizes for these omissions and
encourages the reader to view the bibliography as merely a starting point for further
reading.

2. Background: The restriction and extension operators

Our integral definition (??) of the Fourier transform only makes sense for a
small class of functions, those in L1(Rd), but for applications one often needs to
extend the definition to a larger class. For f ∈ L1∩L2, the Plancherel theorem states

that ‖f‖2 = 1
(2π)d/2

‖f̂‖2, and since L1 ∩ L2 is dense in L2, the Fourier transform

extends uniquely to a bounded linear operator of L2 onto itself. By interpolation,
we obtain the Hausdorff–Young inequality, which states that for 1 ≤ p ≤ 2, this

extension maps Lp boundedly into Lp
′

and obeys ‖f̂‖p′ ≤ Cp,d‖f‖p; here p′ is the
dual exponent p′ = p

p−1 . This range of Lp(Rd) → Lq(Rd) estimates is the best

possible.

For f ∈ L1, f̂ makes sense pointwise, but for f ∈ Lp, 1 < p ≤ 2, we usually

interpret f̂ as an Lp
′

limit, f̂ = limn→∞ f̂n, where fn is a sequence of integrable
functions converging to f in Lp. This interpretation leads to an obvious obstruction
to restricting a Fourier transform to sets of Lebesgue measure zero: Lp

′
convergence

does not “see” sets of measure zero, indeed, Lp
′
consists of equivalence classes within

which members are allowed to differ off of sets of measure zero. Thus it makes no
sense to define Fourier restriction to a set of measure zero as a simple composition.
This nontriviality leads to a generalization of Stein’s original restriction problem.
Given a set Σ of Lebesgue measure zero, for which p, q does there hold an inequality

‖f̂ |Σ‖Lq(Σ) ≤ C‖f‖p, (2.1)

for smooth, compactly supported functions f? Such an a priori estimate would
imply that one can uniquely define an extension, RΣ : Lp → Lq, which agrees with

f 7→ f̂ |Σ on L1 ∩ Lp. (One needs a measure σ on Σ to define the space Lq(Σ).
Which measure to use is an interesting question, but here we will focus on the case
that σ is comparable to the natural Hausdorff measure on Σ.)

Finding the optimal (smallest) constant C in (??) seems to be a very difficult
problem, which has only been solved in a few cases. As such questions of sharp
constants are beyond the scope of this article, we will sweep operator norms and
other constants under the rug by writing A . B to mean that A ≤ CB, for a
constant C depending only on admissible parameters, such as the exponents p, q
and the set Σ.
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It was observed early on that even when Σ has measure zero, (??) is often
uninteresting. The restriction problem for p = 1 is trivial because the Fourier
transform of an L1 function is bounded and continuous on all of Rd, and so restricts
to any set Σ ⊆ Rd in the natural way. The Fourier transform is an L2 isometry by
Plancherel, so a function can have small L2 norm, while being large near a given set
of measure zero: the restriction problem for p = 2 (and hence p ≥ 2) is impossible.
Finally, for p > 1 and 0 6≡ φ smooth, nonnegative, and compactly supported,

the sequence φn(x) := n−
1
pφ(x′, xd/n), where x = (x′, xd) ∈ Rd−1 × R, remains

bounded in Lp, but its Fourier transform, φ̂n(ξ) = n
1
p′ φ(x′, nxd) blows up (in every

Lq space) on the hyperplane {xd = 0}. Similar examples show that nontrivial
restriction theorems are impossible for any subset of any affine hyperplane and,
moreover, that interesting sets for Fourier restriction must escape from hyperplanes
in the sense of having small measure trapped inside thin planar slabs. We think
of such sets as being curved (even when they have no manifold structure); for
instance, elliptic hypersurfaces, such as the sphere, escape from every hyperplane
at a quadratic or faster rate.

Taken together, these examples allow us to recast the restriction problem:
Given a set Σ of Lebesgue measure zero that escapes from hyperplanes, what is the
largest p for which (??) holds for some exponent q ≥ 1, and, given such a p, what is
the largest possible q? Raising the exponents p and q has a heuristic interpretation,
to which we now turn.

The identities in (??) imply a relationship between decay of a function and
smoothness of its Fourier transform, while the Lebesgue inequalities in Hausdorff–
Young do as well, but in a more subtle way. Chebyshev’s inequality states that
{|f | > λ} has measure at most λ−p‖f‖pLp . For large λ, this inequality controls the
rate of blowup of f and is strongest for large p; f ∈ Lp with p large is thus a kind
of averaged smoothness condition. For small λ, Chebyshev’s inequality is a kind
of decay condition and is strongest for small p. Since p′ increases as p decreases,
we may reinterpret Hausdorff–Young as a version of the principle that faster decay
leads to a smoother Fourier transform.

Restriction inequalities are a finer manifestation of the link between decay and
smoothness. A priori, the restriction problem for a set Σ is to determine precisely
how little Lp decay is needed to restrict the Fourier transform and then to obtain the
strongest Lq averaged smoothness along Σ for Fourier transforms of functions with
that decay. Heuristically, bounds on the average smoothness along a measure zero
set are quite strong because the denominator used in the average is small. (This
interpretation also points to an understanding of sets with nontrivial restriction
theorems, such as the sphere or even the helix, as larger than hyperplanes, but
such a discussion is beyond the scope of this article.)

The preceding paragraph cast restriction inequalities as tangential smoothness
conditions on Fourier transforms of functions with a given decay; recently, maximal
Fourier restriction inequalities, due to Müller–Ricci–Wright [?] and others, also
demonstrate a kind of transverse smoothness. An application of these results is a
more intrinsic interpretation of the restriction operator than one obtains by using a
priori inequalities to approximate and take Lq limits: for certain Σ and exponents
p, the restriction operator on Lp can be understood by using averages over shrinking
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Euclidean balls,

RΣf(ξ) = lim
r↘0

1
|Br(ξ)|

∫
Br(ξ)

f̂(η) dη, a.e. ξ ∈ Sd−1, f ∈ Lp(Rd).

The term inside the limit always makes sense when 1 ≤ p ≤ 2, but a.e. existence of
the limit fails when p > 1 for subsets of hyperplanes, because (as we have seen) the
Fourier transform of an Lp function may lack smoothness in the (fixed) direction
perpendicular to the hyperplane.

Whereas the restriction operator discards a great deal of information, its dual,
which is called the extension operator and is given by

(RΣ)∗g(x) =: EΣg(x) =

∫
Σ

eix·ξg(ξ) dσ(ξ),

does not and is thus easier to work with. Every restriction theorem, RΣ : Lp(Rd)→
Lq(Σ), has an equivalent extension counterpart, EΣ : Lq

′
(Σ)→ Lp

′
(Rd), and, as of

this writing, almost all restriction theorems are really proved as extension theorems.
For the remainder of the article, we will consider only the extension problem, which
is to prove a priori inequalities,

‖EΣf‖Lq(dx) . ‖f‖Lp(σ), (2.2)

with f in some appropriate dense class. Dualizing our earlier remarks, the case
q =∞ is trivial, the case q ≤ 2 is impossible, and the goal is to decrease q as much
as possible (show more decay), which may require increasing p (assuming more
smoothness), though, optimally, we would like to increase p as little as possible.

We will focus on a specific set Σ that is easy to parametrize and visualize and
for which current techniques are most advanced, the extension operator associated
to the paraboloid P = {(ξ, |ξ|2) : ξ ∈ Rd−1}:

EPf(x) =

∫
Rd−1

eix·(ξ,|ξ|
2)f(ξ) dξ,

initially defined for smooth functions f with support contained in some fixed ball
centered at 0 in Rd−1. (We will sweep under the rug the effects of the size of this
ball.)

Most of the methods for bounding EP readily generalize to compact elliptic
hypersurfaces, such as the sphere, such surfaces are locally, after an affine trans-
formation, small perturbations of the paraboloid. However, none of these methods
have been fully generalized to all “interesting” measure zero sets, nor even all hy-
persurfaces, as we will see.

3. Classical methods and the L2 theory

The paraboloid has a large affine symmetry group. Since the dot product
interacts well with affine transformations, so too does the extension operator EP.
Three particularly important symmetries are:

Parabolic dilations: EP[ε−(d−1)f(ε−1ξ)](x) = EPf(εx′, ε2xd); (3.1)

Frequency translations: EP[f(ξ − ξ0)](x) = eix·(ξ0,|ξ0|
2)EPf(x′ + 2xdξ0, xd); (3.2)

Spatial translations: EP[e−ix0(ξ,|ξ|2)f(ξ)](x) = EPf(x− x0). (3.3)
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The parabolic and frequency translations are associated, respectively, with the di-
lation (ξ, |ξ|2) 7→ (εξ, ε2|ξ|2) and Galilean (ξ, |ξ|2) 7→ (ξ + ξ0, |ξ + ξ0|2) symmetries
of P.

We can use the symmetries to illustrate some of the geometry associated to EP.
Let ϕ be a smooth, nonnegative function with integral 1 and support in {|ξ| < 0.1}.
We begin by estimating EPϕ. For |x′|, |xd| < 1 the integral defining Re EPϕ has no
cancellation, and hence |EPϕ(x)| is nearly as large as possible:

|EPϕ(x)| ≥
∫

cos(x · (ξ, |ξ|2))ϕ(ξ) dξ ≥
∫

cos(0.11)ϕ(ξ) dξ ≈ 1.

For large |x| the integrand oscillates rapidly in ξ, leading to cancellation in the
integral, and hence a small extension: |EPϕ(x)| � 1 for |x| � 1.

Now we apply our symmetries, first a dilation, then a frequency translation,
and finally a spatial translation,

ϕεξ0,x0
(ξ) = ε−(d−1)eix0·(ξ,|ξ|2)ϕ(ε−1(ξ − ξ0)).

Here, due to our assumption that functions are supported in some fixed ball, we
think of ε as small. The function ϕεξ0,x0

is supported on the set {|ξ − ξ0| < 0.1ε},
which is naturally associated to the parabolic subset

κεξ0 := {ζ ∈ P : 0 ≤ (ζ − ζ0) · vξ0 < 0.01ε2},

where ζ0 := (ξ0, |ξ0|2) and vξ0 is the upward normal 〈−2ξ0, 1〉 to P at ζ0. The set
κεξ0 thus resembles a tilted, shallow bowl of width about ε in directions tangent

to P and depth about ε2 in the direction vξ0 , the relationship between width and
thickness reflecting the curvature of P. We call both the set κεξ0 and the function
ϕεξ0,0 ε-caps on P centered at ζ0, while we call the more general ϕεξ0,x0

a modulated

ε-cap. (The comparison to headgear is more convincing for caps on −P or on the
northern hemisphere of Sd−1.)

The extension of a modulated ε-cap is, per (??-??), given by

EPϕεξ0,x0
(x) = ei(x−x0)·ζ0EPϕ

(
ε[(x− x0)′ + 2(x− x0)d ξ0], ε2(x− x0)d

)
.

Using our estimates for EPϕ, |EPϕεξ0,x0
| is comparable to 1 on the long tube

T εξ0,x0
= {|(x− x0)′ + 2(x− x0)d ξ0| < ε−1, |xd − (x0)d| < ε−2},

centered at x0 and having width ε−1 > 1 and length ε−2 > ε−1 in the direction
vξ0 (this geometry again reflects the curvature of P), and decays rapidly off of this
tube. For T = T εξ0,x0

and ϕT = ϕεξ0,x0
, EPϕT is called a wave packet associated to

T .
For any ε � 1, a partition of unity directly decomposes our original function

ϕ as a sum of (unmodulated) ε-caps, indexed by a collection of O(ε−(d−1)) tubes,

ϕ =
∑
T

cTϕT , T = T εξT ,0,

most of whose coefficients cT are about εd−1 (the rest are smaller). The curvature
of P means that distinct tubes T, T ′ have directions vT , vT ′ separated by at least

ε. Because two tubes begin to separate at the length scale width
angle & ε−1

ε , two tubes

centered at 0 are nearly pairwise disjoint on {|x| ∼ ε−2}. Taking ε ∼ (1 + |x|)− 1
2 ,

we can morally approximate EPϕ(x) using the contribution from a single tube:

|EPϕ(x)| ≈ |EP(cTφT )(x)| ≈ εd−1 ≈ (1 + |x|)−(d−1)/2. (3.4)
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A rigorous version of (??) can be proved using the method of stationary phase.

The estimates ‖ϕT ‖p ≈ ε−(d−1)/p′ and ‖EPϕT ‖q & |T |1/q (the Knapp exam-
ple), and the lower bound (??), lead to the necessary conditions

d−1
p′ ≥

d+1
q , q > 2d

d−1 (3.5)

for validity of (??). By dualizing, (??) is equivalent to the necessary condition (??)
for boundedness of the restriction operator, and these are currently the only known
necessary conditions. (The introduction concerned the sphere; the conjecture for
the paraboloid is the same.)

Self-duality of Lp when p = 2 allows one to recast the extension problem for
p = 2 as a question about the convolution operator

EP ◦ RPf(x) =

∫
Rd−1

(EPψ)(x− y)f(y) dy,

where ψ is smooth, compactly supported, and is identically 1 on some large ball.
This formulation has the advantage that the difficult-to-understand extension op-
erator is applied to a fixed function ψ, rather than the arbitrary function f . An
argument of Stein and Tomas from the 1970s uses the decay estimate (??) together
with the simple observation that an ε-cap on the paraboloid has area εd−1 to show

that EP maps L2 boundedly into Lq for q ≤ 2(d+1)
d−1 , which by (??) is the optimal

L2-based result.
The Stein–Tomas Theorem generalizes to other sets, including sets of frac-

tional dimension, so long as decay and volume estimates are known ([?], and the
references therein). However, sharp decay estimates can be quite intricate and caps
much more complicated for general sets, so sharp L2-based estimates are known
in a relatively narrow collection of examples. For example, what are the optimal
L2-based extension estimates for polynomial hypersurfaces in dimension d ≥ 4 is
largely an open question, with the d = 3 case having been only recently resolved
by Ikromov–Müller [?].

One reason the L2 theory for the extension problem for hypersurfaces has been
so well studied is that the equations (??) lead to a connection with certain PDE. For
instance, for a sufficiently nice function u0 on Rd−1, the extension EPû0 solves the
linear Schrödinger equation iut = −∆xu on Rd−1

x × Rt with initial data u(x, 0) =
u0(x), and extension operators for higher order polynomial surfaces are associated
to higher order equations. Via Plancherel, an L2 → Lq extension estimate leads
to an L2 → Lq inequality for the data-to-solution map (known as a Strichartz
estimate), and such estimates have been extremely important in the study of a
variety of dispersive and wave equations.

4. The wave packet decomposition and Kakeya

For p > 2, a larger range of Lp → Lq extension estimates for EP should be
possible, but the problem cannot be readily reduced to a question about convolu-
tions. Instead, one wants to directly study the extension EPf , where the function f
may be very rough, even on small scales. After using a partition of unity to localize
f =

∑
fεξj , Fourier series methods resolve each fεξj as a superposition of modulated

caps; thus

f =
∑
T

cTϕT , T = T εξT ,xT . (4.1)
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This wave packet decomposition lies at the heart of modern approaches to the
subject, to which we turn in the coming sections. It first appeared in work of
Bourgain in 1991, though it is closely connected with the earlier combinatorial
approach of Fefferman and Córdoba. (A detailed implementation and more precise
references may be found in e.g. [?].)

When p = 2, different modulations of the same cap are mutually orthogonal,
and we can approximate

‖f‖2 ≈
(∑
T

‖cTϕT ‖22
) 1

2 ≈ ε−(d−1)/2
(∑
T

|cT |2
) 1

2 ; (4.2)

this is analogous to the Plancherel theorem for the Fourier transform. For p 6= 2,
however, the analogue to (??) is valid if and only if each cap is associated to at
most one tube (instead of many parallel translates).

Let T ε be a collection of length ε−2, width ε−1 tubes in one-to-one corre-
spondence with the set of ε caps. Understanding how these tubes can pile up and
interact with one another is a very difficult geometric problem, with implications
for bounds on E

∑
T∈T ε ϕT . To illustrate this, we adapt an argument from [?].

In the previous section, we used the approximation |EPϕT | ≈ χT , but this
ignores oscillatory factors, which might lead to cancellation (and hence a smaller
sum) if many tubes overlap. Nevertheless, randomization (Khintchine’s inequality)
allows us to obtain a lower bound

‖
∑
T∈T ε

χT ‖1/2q/2 =
∥∥( ∑
T∈T ε

|χT |2
)1/2‖q . ‖EPf‖q, (4.3)

for some f :=
∑
T∈T ε ±φT . The Lq/2 norm on the left of (??) is closely connected,

via Hölder’s inequality, with the volume of the union of tubes:∑
T∈T ε

|T | = ‖
∑
T∈T ε

χT ‖L1 ≤ |
⋃
T∈T ε

T |1−
2
q ‖
∑
T∈T ε

χT ‖q/2. (4.4)

Meanwhile, validity of (??) would allow us to bound the right hand side of (??) by
‖f‖p ≈ ε−(d−1). After a bit of arithmetic, (??), (??), and (??) thus imply

εα
∑
T∈T ε

|T | . |
⋃
T∈T ε

T |, α := 2
q−2 (q(d− 1)− 2d), 0 < ε� 1, (4.5)

with implicit constants uniform in ε < 1.
The case α = 0 of (??) corresponds to the case q = 2d

d−1 , the conjectured
endpoint for the extension problem. The brief remainder of this section will be
devoted to some geometric heuristics around (??), which is easier to visualize in
the (equivalent) rescaled version

εα . |
⋃
T∈T ε

T̃ |, (4.6)

in which tubes T̃ := ε2T have length 1 and width ε.
Inequality (??) is clearly false when α < 0: a union cannot be larger than the

sum of the volumes. Overly simplistic reasoning suggests that (??) might be true
for α = 0. Indeed, since two distinct tubes separate (as we have seen), it seems
unlikely that a collection T ε could possess sufficient overlap for the union to have
much smaller measure than the sum of the volumes. However, a surprising 1920s
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example of Besicovitch showed that for all d ≥ 2, there are configurations of tubes
with such strong overlap that

|
⋃
T∈T ε

T̃ | = oε(1), as ε↘ 0.

As the tubes T̃ , with T ∈ T ε, together contain length-one line segments pointing
in (a large portion of) all possible directions, Besicovitch’s example leads to the
conclusion that there exist compact sets of measure zero containing a unit line
segment in each direction. Such sets are called Besicovitch sets (and sets containing
a unit line segment in every direction are called Kakeya sets).

One version of the Kakeya Conjecture is that for all d ≥ 2, Besicovitch sets,
though measure zero, are not too small, in the sense that (??) holds for all con-
figurations T ε and all α > 0. This conjecture is only settled in dimension d = 2,
and there is good evidence that the remaining cases are extremely difficult, with
the current record for d = 3 only slightly better than α = 1

2 (The exact record for
α, which is due either to Katz– Laba–Tao or to Katz–Zahl, has not been precisely
computed.)

5. Capitalizing on transversality: Multilinear methods

Let τ1, . . . , τk, 2 ≤ k ≤ d be balls in {|ξ| < 1}, of diameter compara-
ble to 1, whose corresponding parabolic caps are k-transversal in the sense that
det(ν1, . . . , νk) ∼ 1 whenever each νj is normal to the portion of P above τj . We
can define a multilinear extension operator (somewhat confusingly called a multi-
linear restriction operator in the literature)

MP(f1, . . . , fk)(x) :=

k∏
j=1

EP(fjχτj )(x), (5.1)

and ask for inequalities of the form

‖MP(f1, . . . , fk)‖ q
k
.

k∏
j=1

‖fj‖p. (5.2)

If (??) holds for p and q, then (??) is an immediate consequence of Hölder’s inequal-
ity. Thus the interesting case is when the left side exhibits better-than-expected
decay, q < d+1

d−1p
′. Earlier, we sketched a heuristic argument that slight differences

in the directions of tubes lead to separation and consequently the decay estimate
(??), which, in turn leads to the Stein–Tomas theorem. Transverse tubes separate
more rapidly, and the relatively small size of their intersection makes improved
decay plausible in (??). Improved decay is extremely useful because it makes lin-
ear inequalities that improve on Stein–Tomas accessible to L2-based wave packet
methods.

Variations on the multilinear idea have been around since early in the devel-
opment of the subject, having played a role in the L4 theory of Fefferman, Sjölin,
and Carleson in the 1970s, and the work of Prestini, Drury, and Christ on restric-
tion to curves in the 1980s. Bourgain, in the 1990s, was the first to improve on
Stein–Tomas in higher dimensions by using bilinear estimates. These ideas were
further developed by Moyua–Vargas–Vega and Tao–Vargas–Vega, culminating in
near-optimal bilinear restriction inequalities for the cone (Wolff) and elliptic hy-
persurfaces (Tao) in the early 2000s. Since that time, there has been significant
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progress toward a bilinear theory for more general hypersurfaces, though major
open questions remain. Somewhat better known are the developments on multi-
linear restriction estimates for elliptic surfaces, to which we devote the majority of
this section. We will describe some challenges for more general hypersurfaces at
the end of the section.

In the special case p = 2, it is conjectured [?] that (??) should hold for q >
2(d+k)
d+k−2 . Below that endpoint, the inequality fails, as can be seen by considering
functions fj formed by summing ε-caps with normal directions lying within ε of a

fixed k-plane. There are ε−(k−1) such caps, each with norm roughly ε−
d−1
2 , so∏

j

‖fj‖2 ∼
(
ε−

d+k−2
2 )k.

The extension of each fj is comparable to 1 on the ε−1 neighborhood of an ε−2-ball
in the k-plane. As this (shared) cylinder has volume (ε−2)k(ε−1)d−k,

‖M(f1, . . . , fk)‖ q
k
∼ ε−(d+k) kq ,

and sending ε↘ 0 in (??) leads to the claimed necessary condition.
The above-described multilinear restriction conjecture for P is settled when

k = 1 (Stein–Tomas), when k = 2 (Tao), and when k = d (Bennett–Carbery–Tao,
[?]). The latter result also gives a nontrivial improvement for all k ≥ 3, which we
now state.

Theorem 5.1 ([?]). Inequality (??) holds when p = 2 and q > 2k
k−1 .

Of particular note is the fact that for k = d, the endpoint 2k
k−1 matches the end-

point in the extension conjecture (??). Theorem ?? is based only on the transver-
sality of the surface patches, not their curvature, and hence in its full generality
(for which (??) is a special case) it is optimal.

We turn now to a heuristic description of the process of extracting linear
inequalities from the bi- and multi-linear ones. The “bilinear-to-linear” argument of
[?] expresses |Ef |q = |(Ef)2|q/2 as the q

2 power of a double integral over Rd−1×Rd−1.
The diagonal in this space has measure zero, so the double integral may be taken
over (ξ, η) with ξ 6= η. Each such pair is associated a pair of balls of radii about
|ξ − η|, separated from one another by a distance about |ξ − η|, one containing ξ
and one containing η. Separated balls have transverse normals because the gradient
map is a diffeomorphism (thanks to the curvature). The bilinear theory applies to
such pairs of balls after rescaling. Orthogonality and convexity arguments then
make it possible to sum.

The geometry described above does not readily generalize to (for instance)
the d-linear case, because d distinct points on P could have normals all transverse
to one another, all arranged along some k-plane, or lying in some intermediate
configuration. Because of the variety in the possible configurations, it took some
years before multilinear restriction was used to obtain new linear estimates by
Bourgain–Guth [?].

The Bourgain–Guth argument is via a transverse vs. linearly dependent di-
chotomy and induction on scales, for which we give a brief cartoon (which owes
much to the exposition in [?]). The extension Ef(x) may be thought of as a super-
position of many tubes though x. There is either a significant contribution from d
transverse tubes, or the bulk of the tubes lie near some hyperplane passing through
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x. The d-transversal case is favorable because d-linear extension estimates come
with an exponent q = 2d

d−1 , which matches the extension conjecture. The hyper-
plane case is refined further to determine the right dimension of transversality for
the tubes contributing to Ef(x). We have already seen that one extreme, the d-
transversal case, is favorable. At the other extreme, Ef(x) is 1-transversal, i.e.,
parallel: it primarily comes from tubes whose corresponding caps lie within some
small ball. This case is favorable as well, because of an argument known as induc-
tion on scales: parabolic rescaling expands the small ball to have radius 1 (so we
nearly have the same problem again), but introduces an additional favorable term.
This term arises because the method aims for Lp → Lq inequalities that do not
scale (meaning that ‖EPf‖q and ‖f‖p behave differently under rescaling).

The k-transversal case is intermediate between the two extremes. On the one
hand, k-linear restriction comes with a minimal exponent of q = 2k

k−1 , which is

smaller, hence better (closer to the conjectured q > 2d
d−1 ) for large k; for small

k, the exponent must be reduced further, leading to a loss. On the other hand,
the tubes correspond to caps lying near a k-plane, and the k-plane can be covered
by small balls, which can be parabolically rescaled. For this estimate, smaller k
corresponds to fewer small balls in the cover, and hence a more favorable term from
parabolic rescaling. For a certain range of exponents, the gains compensate for the
losses, leading to new (at the time, but by now surpassed) estimates.

Among hypersurfaces, the elliptic case is generally the best studied, and there
are currently few linear results beyond Stein–Tomas for hyperbolic surfaces and
surfaces whose curvature varies. (As already noted, even the L2 theory is not
fully developed for such surfaces.) We give two examples to illustrate some of the
challenges.

Hyperbolic surfaces may be ruled (expressible as unions of lines, such as the
one-sheeted hyperboloid or the hyperbolic paraboloid), or have high order contact
with certain lines. It is easy to produce lots of overlap among tubes with directions
normal to a surface along some line within the surface, necessitating additional
separation hypotheses for nontrivial bilinear restriction. In particular, in the case
k = 2 of (??), to obtain a result matching that for the paraboloid the images of the
balls τ1, τ2 on the surface cannot be nearly collinear. Stronger hypotheses make for
weaker theorems, leading to a more difficult bilinear-to-linear deduction; indeed,
the natural analogue of the Tao–Vargas–Vega deduction has only been fully carried
out for the hyperbolic paraboloid in R3. Moreover, the hyperbolic case does not
perturb as well as the elliptic case. The natural caps for the hyperbolic paraboloid
are rectangles, which may be long and thin. Whereas perturbed balls (such as
arise in the elliptic case) still look roughly like balls, perturbed rectangles may
curve, leading to new difficulties. Some of these issues are described in [?] and the
references therein.

An advantage in the hyperbolic case is that the multilinear extension result
of Bennett–Carbery–Tao, Theorem ??, depends only on transversality, and hence
readily generalizes to any surface (or subset thereof) on which the unit normal map
is a local diffeomorphism. This property does not hold for surfaces on which the
Gaussian curvature may vanish, and, moreover, variable curvature can lead to very
different behavior on different parts of the surface. Even for convex polynomial
hypersurfaces in dimension d ≥ 3, how to deal with these issues to achieve results
matching the elliptic case is a largely open question.
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6. Discretization via decoupling

An important application of the multilinear perspective is in proving decou-
pling inequalities. These inequalities were introduced by Wolff in his work on the
Lp regularity properties of the wave equation (the local smoothing problem), and
a recent result of Bourgain–Demeter [?] established a stronger version of Wolff’s
inequalities in the optimal range. In this section, we will state and provide some
background on the Bourgain–Demeter result and mention a two recent applications
of the method, one in analytic number theory, and one for restriction to fractal
sets; an application to PDE is discussed in the final section.

Let f be a function on Rd with f̂ having compact support contained in the
δ-neighborhood of P, Nδ(P). We can discretize Nδ(P) =

⋃
θ∈Pδ θ, where the θ’s

are finitely overlapping caps of thickness δ and width δ
1
2 . A partition of unity

decomposes f =
∑
θ fθ, with each f̂θ supported on θ. By the triangle inequality,

the simple estimate #Pδ ≈ δ−(d−1)/2, and Cauchy–Schwarz,

‖f‖∞ ≤ δ−(d−1)/4
(∑
θ

‖fθ‖2∞
) 1

2 , (6.1)

while Plancherel and finite overlap of the caps immediately implies

‖f‖2 .
(∑
θ∈Pδ

‖fθ‖22
) 1

2 . (6.2)

Both of these results are optimal, and interpolating them yields

‖f‖p . δ−
d−1
2 ( 1

2−
1
p )
(∑
θ

‖fθ‖2p
) 1

2 , 2 ≤ p ≤ ∞, 2 ≤ p ≤ ∞. (6.3)

Inequality (??), it turns out, is not optimal, due to the curvature of P.
The `2 decoupling theorem of Bourgain–Demeter [?] states that for f as above,

the inequality

‖f‖p . δ−
d−1
4 + d+1

2p −ε
(∑
θ∈Pδ

‖fθ‖2p
) 1

2 , (6.4)

holds for all p ≥ 2(d+1)
d−1 and ε > 0, which nearly eliminates the negative power of δ

in (??) when p = 2(d+1)
d−1 .

It is no coincidence that the critical exponent p = 2(d+1)
d−1 for (??) matches that

for the Stein–Tomas theorem (i.e. the optimal L2-based extension theorem), and an
important application of (??) was to prove the discrete analogue of the Stein–Tomas
theorem (which has applications to the periodic Schrödinger equation). Discrete
versions of inequalities in harmonic analysis tend to be harder than the continuous
versions, because delicate number theoretic issues come into play. (Compare, for
instance, the difficulty in finding the measure of the real solution set of xa+ya = za

with finding the cardinality of its integer solution set.) These issues are somewhat
easier to see in cases wherein the exponents involved are integers, so we now turn
to a related example.

The Main Conjecture in Vinogradov’s Mean Value Theorem is (was) the upper

bound #Js,d(N) ≤ Cε,s,dNs+ε+N2s− d(d+1)
2 +ε on the number, Js,d(N), of solutions

to the system of equations

ji1 + · · ·+ jis = jis+1 + · · ·+ ji2s, 1 ≤ i ≤ d, j ∈ [1, N ]2s.
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This was a classical result for d = 1, 2, and was proved by Wooley in the case d = 3,
with partial progress in higher dimensions, via efficient congruencing. However, a
different approach, via decoupling associated to the curve (t, t2, . . . , td), was used
by Bourgain–Demeter–Guth in [?] to affirmatively resolve the conjecture in all
dimensions.

The connection between the number theoretic problem and restriction can be
seen by direct computation. Expanding

Js,d(N) =

∫
[0,1]d

|
N∑
j=1

exp[2πi(x1j + x2j
2 + · · ·+ xdj

d)]|2s dx,

and realizing the right as an Lq norm of the discrete extension operator

Eγa(x) :=

N∑
j=1

exp[2πi(x · γ(j))]aj , γ(j) := (j, j2, . . . , jd), a ∈ CN ,

the conjectured bound on Js,d(N) is equivalent to the estimate

‖Eγa‖Lp([0,1]d) . (Nε +N
1
2−

d(d+1)
2p +ε)‖a‖`2([1,N ]), p = 2s ≥ 2, (6.5)

where a := (1, . . . , 1). The estimate (??) in turn follows from decoupling.
Ideas from decoupling and work of Bourgain on Λ(p) sets have recently been

used by  Laba–Wang [?] to construct examples of fractal sets of arbitrary Haus-
dorff dimension in the interval (0, 1) that obey extension inequalities in a range
inaccessible to the generalized Stein–Tomas theorem from [?]. These examples are
Cantor-like sets, wherein the deletion process in the standard Cantor construction is
randomized. Randomization has been used in the past to construct interesting sets
for Fourier restriction (further references are in [?]); the advantage of decoupling is
that it helps to separate out the different pieces of the set at each scale.

7. Lines, curves, and varieties: Polynomial and Kakeya methods

In this final section, we discuss some techniques that comprise the current
state of the art for linear restriction to the paraboloid. These techniques use, in
various ways, the fact that a tube is a thickened version of an algebraic object
(a line) and hence should not intersect a given low-degree algebraic variety too
many times. One reason algebraic varieties are relevant is that, as noted earlier,
tubes lying close to k-planes provide the conjectured sharp examples for multilinear
extension inequalities in the presence of curvature; controlling the extension of a
function on lower dimensional sets is also relevant in PDE, as described at the end
of this section.

The current best (smallest q) results for EP involve bounds for quantities called
k-broad norms, which were introduced by Guth [?, ?]. These linearize the transver-
sality utilized in multilinear estimates. We will not give the precise definition, but
roughly, the k-broad norm counts only the part of EPf that genuinely comes from
k-transversal parts of P, and thus is closely related to the k-linear extension op-
erator (??). Bounding these norms involves counting intersections of transversal
tubes (a combinatorial perspective that traces back to the work of Bourgain and
Wolff), and optimal estimates were proved for these norms by Guth in [?, ?] using
a technique called polynomial partitioning.
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Polynomial partitioning is divide-and-conquer strategy for bounding the num-
ber of certain types of incidences (such as k-transversal intersections of tubes).
Very roughly, the “Polynomial Ham Sandwich Theorem” allows one to find a low-
ish degree algebraic variety whose complement is a union of cells that each contain
roughly the same number of incidences. The cells are good objects for induction on
the number of tubes: each tube is like a line and so by the Fundamental Theorem
of Algebra only enters a few cells; therefore some cell meets only a small number
of tubes, yielding a simpler problem. The variety contains two types of incidences:
those occurring exclusively among tubes that are tangent to the variety and those
involving at least one tube that intersects the variety transversally. The former
situation sets up an induction on dimension, while transversal intersections are not
too common because any given tube can only cross the variety a few times. The
polynomial partitioning method originated in work of Guth–Katz, with important
precursors in the works of Dvir and Clarkson–Edelsbrunner–Guibas–Sharir–Welzl;
a detailed history of the method may be found in the introduction of [?].

The estimates for the k-broad norms in [?, ?] correspond to the conjectured
optimal range for multilinear restriction to P, and yield the same bounds for EP as
would have been achieved via the methods of [?] using the optimal multilinear re-
striction conjecture. These bounds on EP have been improved in all except a handful
of dimensions ([?, ?]), and are thought not to be optimal in any dimension, but their
analogues are optimal for a variable coefficient generalization recently obtained by
Guth–Hickman–Iliopoulou. In the variable coefficient generalization, tubes are re-
placed by neighborhoods of curves that can compress into low-dimensional sets in
ways that lines cannot, as observed in [?] and earlier work of Wisewell.

Improvements over [?] have used polynomial partitioning in conjunction with
additional geometric arguments that further limit the ability of straight-line tubes
to compress into small sets. These include an argument of Wang in [?] that organizes
the tubes lying along a hypersurface in R3 into “brooms,” and one of Hickman–
Rogers in higher dimensions [?] that utilizes a theorem of Katz–Rogers verifying
what are called “polynomial Wolff axioms,” which bound from below the size of a
sub-algebraic set containing a large number of tubes.

The extension problem for the cone {(ξ, |ξ|) : 1 ≤ |ξ| ≤ 2} is almost as well
studied as that for the paraboloid, and the former problem is closely connected
with the wave equation. The cone and the cylinder [1, 2] × Sd−2 ⊆ Rd both have
d − 2 nonvanishing principal curvatures, and a variation on the Knapp example
suggests the same restriction conjecture for these surfaces as for the sphere of one
lower dimension. In fact, the product structure makes the extension problem for
the cylinder exactly the same as the sphere of one lower dimension. However, the
changing slope of the flat direction on the cone has facilitated much better progress
on its restriction theory than that of the lower dimensional sphere, and the cone
restriction problem has also been completely solved in dimensions d = 3 (Barceló,
classical), d = 4 (Wolff, using the bilinear theory), and d = 5 (Ou–Wang, [?]). The
latter result used polynomial partitioning to reduce q to the optimal range and the
bilinear theory to obtain the optimal p range.

We close by describing the recent resolution of a question in PDE in which
the size of a Fourier extension near some lower-dimensional set plays an important
role. The solution to the linear Schrödinger equation iut + ∆u = 0, with initial
data u(0) = u0 ∈ L2(Rd−1), is simply the extension u(x, t) = (EPû0)(x, t). Here, u0
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is the initial data in the sense that limt→0 ‖u(t)− u0‖L2 = 0. Carleson’s problem,
posed in the late 1970s, asks for the precise number of derivatives needed to ensure
that limt→0 u(t, x) = u0(x), for almost every x. In dimension d = 2, the problem
was resolved relatively quickly by Carleson himself ( 1

4 derivative is sufficient) and

Kenig–Dahlberg ( 1
4 derivative is necessary), while its (almost) complete resolution

took nearly 40 years longer.
A.e. convergence follows from bounding the maximal operator

f 7→ sup
0<t≤1

|EPf̂(x, t)|.

This maximal operator can be linearized as EPf̂(x, t(x)), which looks like the (func-

tional) restriction of EPf̂ to a (d − 1)-dimensional set. Du–Guth–Li [?] proved in
dimension d = 2 (using polynomial partitioning), and Du–Zhang [?] proved in di-
mension d ≥ 3 (using decoupling and multilinear restriction) that having more than
d−1
2d L2 derivatives (in other words for u0 ∈ Hs, s > d−1

2d ), suffices for a.e. conver-

gence of u to u0. An earlier result of Bourgain showed that s ≥ d−1
2d derivatives is

necessary, so Carleson’s problem is resolved except at the critical value.
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