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Abstract
Submodular functions have become a ubiquitous
tool in machine learning. They are learnable
from data, and can be optimized efficiently and
with guarantees. Nonetheless, recent negative
results show that optimizing learned surrogates
of submodular functions can result in arbitrarily
bad approximations of the true optimum. Our
goal in this paper is to highlight the source of
this hardness, and propose an alternative criterion
for optimizing general combinatorial functions
from sampled data. We prove a tight equivalence
showing that a class of functions is optimizable if
and only if it can be learned. We provide efficient
and scalable optimization algorithms for several
function classes of interest, and demonstrate their
utility on the task of optimally choosing trending
social media items.

1. Introduction
Submodular optimization is fast becoming a primary tool in
machine learning. The power of submodularity as a model
has been demonstrated in numerous applications, including
document summarization (Lin & Bilmes, 2011), cluster-
ing (Gomes & Krause, 2010), active learning (Golovin &
Krause, 2011; Guillory & Bilmes, 2011; Hoi et al., 2006),
graph and network inference (Gomez Rodriguez et al., 2010;
Rodriguez & Schölkopf, 2012; Defazio & Caetano, 2012),
and information diffusion in networks (Kempe et al., 2003).
Crucial to the success of these methods is the fact that op-
timizing submodular functions can be done efficiently and
with provable guarantees (Krause & Golovin, 2014).

In many cases, however, the true function cannot be ac-
cessed, and instead a surrogate function is learned from
data (Balkanski et al., 2017). To this end, PMAC learning
(Balcan & Harvey, 2011) offers a framework for analyzing
the learnability of submodular functions, as well as algo-
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rithms for learning in practice. Encouraging results show
that in many cases submodular functions can be efficiently
learned from data (Balcan & Harvey, 2011; Iyer et al., 2013;
Feldman & Kothari, 2014; Feldman & Vondrak, 2016). A
natural approach in this setting is to first learn a surrogate
function from samples, and then optimize it, hoping that the
estimated optimum will be close to the true one. A recent
line of work has been devoted to this setting of optimization
from samples (OPS) (Balkanski et al., 2016; 2017).

The main result of OPS is unfortunately discouraging: for
maximizing a submodular function under a cardinality con-
straint, no algorithm can obtain a constant factor approxi-
mation guarantee given polynomially-many samples from
any distribution (Balkanski et al., 2017). Thus, optimizing
over learned surrogates does not provide any meaningful
guarantees with respect to the true function.

The hardness of OPS is, however, a worst-case result. The
hardness stems from the discrepancy between how the algo-
rithm gains access to information (via samples) and how it
is evaluated (globally). In contrast, machine learning objec-
tives are typically concerned with expected outcomes, and
are evaluated over the same distribution from which data is
acquired (Valiant, 1984). In this paper, we build on this moti-
vation and propose an alternative framework for optimizing
from samples. The objective we propose, called distribu-
tional optimization from samples (DOPS), circumvents the
above difficulties by considering a distribution-dependent
objective. In general, a function class F is in α-DOPS if an
α-approximation of the empirical argmax can be found with
arbitrarily high probability using polynomially many sam-
ples, for any distribution D and for any f ∈ F . Formally:

Definition 1 (α-DOPS). Let F = {f : 2[n] → R+} be a
class of set functions over n elements. We say that F is
α-distributionally optimizable from samples if there is an
algorithm A that, for every distribution D over 2[n], every
f ∈ F , and every ε, δ ∈ [0, 1], when A is given as input

a sample set S = {(Si, f(Si))}Mi=1 where Si iid∼ D, with
probability of at least 1− δ over S it holds that:

PT ∼Dm
[
f
(
A(T )

)
≥ αmax

S∈T
f(S)

]
≥ 1− ε (1)

where T = {(Sj)}mj=1, A(T ) ∈ T is the output of the
algorithm, and S is of size M ∈ poly(n,m, 1/ε, 1/δ).
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The criterion in Eq. (1) relaxes the OPS objective to hold in
expectation over D. This is achieved by replacing the entire
combinatorial domain with a sampled subset T of size m,
allowing for a distribution-agnostic notion of approximation.
As m increases, satisfying Eq. (1) is expected to be harder.
When m→∞, DOPS recovers OPS.

Our first goal in this paper is to establish the hardness of
DOPS. In general, classic approximation results do not nec-
essarily transfer to statistical settings (Balkanski et al., 2017).
Nonetheless, our main theoretical result establishes a tight
equivalence between DOPS and PMAC learning (Balcan &
Harvey, 2011), meaning that any F that is learnable is also
optimizable, and vice versa. This demonstrates an intriguing
link between learning and optimizing submodular functions,
which are known to be PMAC-learnable (Balcan & Harvey,
2011). The equivalence result is constructive, and gives a
general optimization algorithm which can utilize any PMAC
learner as a black box for DOPS, and vice versa. While our
main focus in this paper is on submodular functions, these
results hold for any family of combinatorial functions.

In practice, however, optimizing via PMAC algorithms has
several drawbacks (Balcan & Harvey, 2011; Feldman &
Kothari, 2014; Feldman & Vondrak, 2016). Our second
goal in this paper is hence to design an efficient and scal-
able DOPS algorithm for several classes of interest. Our
algorithm optimizes a loss function whose minimization
provides a sufficient condition for DOPS. We prove that the
minimizer of the empirical loss can be used for recovering
an approximate argmax. In this sense, the framework we
propose is one in which the algorithm “learns to optimize”.
We show how the loss can be minimized efficiently and with
guarantees for several submodular function classes, includ-
ing coverage functions, cut functions, and unit demand.

An additional benefit of our approach is that it provides guar-
antees even when the output of the algorithm is restricted to
a set of sampled alternatives. This setting is especially preva-
lent in cases where both sets and their values are generated
by human users. For example, in the problem of influence
maximization (Kempe et al., 2003), the goal is to choose
a “seed” set of users such that, when exposed to certain
content, will maximize its expected propagation. However,
targeting arbitrary subsets of users is in most cases impos-
sible, and the algorithm must choose between the sets of
users sharing currently trending items. In the last part of the
paper we demonstrate the empirical utility of our approach
on this task using real data from Twitter.

2. Distributional optimization and learning
In this section we give a tight characterization of function
classes in DOPS by showing that a class F is in DOPS if
and only if it is PMAC-learnable. This involves two steps. In

the first, we show that if F is α-PMAC learnable with sam-
ple complexity MPMAC, then it is α-DOPS. We augment this
result with tight sample complexity bounds for α-DOPS. In
the second part, we show that PMAC learnability is not only
sufficient but also necessary for distributional optimization
from samples. We show that if F is not α-PMAC learnable,
then it is not (α− ε)-DOPS for any constant ε > 0, which is
tight. This result is obtained by constructing a novel PMAC
algorithm based on a DOPS black-box, and may thus be of
separate interest in PMAC analysis. Overall, our results de-
termine the hardness of DOPS by establishing a connection
between the approximability and learnability of function
classes.

We begin by reviewing the notion of PMAC learnability:

Definition 2 (PMAC, Balcan & Harvey (2011)). A class F
is α-PMAC-learnable if there is an algorithm such that for
every distribution D, every f ∈ F , and every ε, δ ∈ [0, 1],

PS∼D
[
f̃(S) ≤ f(S) ≤ αf̃(S)

]
≥ 1− ε (2)

where the input of the algorithm is a set S of size M ∈
poly(n, 1/ε, 1/δ), the output is a mapping f̃ : 2[n] → R+,
and Eq. (2) holds w.p. at least 1− δ over S.

Intuitively, PMAC generalizes the standard notion of PAC
learning by considering a loss which penalizes predictions
that are not within a factor of α of their true value.

We are now ready to prove our main theoretical results.

2.1. If F is PMAC-learnable then F is in DOPS

We show that if F is α-PMAC learnable with sample com-
plexity MPMAC(n, δ, ε, α), then it is α-DOPS with sample
complexity MPMAC(n, δ, 1− (1− ε)1/m, α), and this sample
complexity is tight. A PMAC algorithm learns a surrogate
function f̃ . In our reduction, the corresponding DOPS algo-
rithm simply outputs argmaxS∈T f̃(S). The technical part
of this result is in showing the sample complexity tightness.
Intuitively, the sample complexity is exactly the number of
samples that are needed so that, with high probability, f̃
obtains a good approximation on all S ∈ T . We begin by
showing that MPMAC(n, δ, 1 − (1 − ε)1/m, α) is sufficient,
which follows from the definition of PMAC.

Theorem 1. Assume F is α-PMAC-learnable with sample
complexity MPMAC(n, δ, ε, α), then F is α-DOPS with sam-
ple complexity at most MPMAC(n, δ, 1− (1− ε)1/m, α), i.e.,

MDOPS(n,m, δ, ε, α) ≤MPMAC(n, δ, 1− (1− ε)1/m, α).

Proof. Let f ∈ F , D be some distribution, S =
{(Si, f(Si))}Mi=1 and T = {Si}mi=1 be the train and test
sets, andA be an algorithm that constructs f̃ which α-PMAC
learns f with sample complexity MPMAC(n, δ, ε, α).
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The DOPS algorithm that we analyze constructs f̃ with
algorithm A using S and returns

S̃? = argmax
S∈T

f̃(S).

Fix ε, δ > 0 and α > 1 and consider M = MPMAC(n, δ, 1−
(1 − ε)1/m, α). By the definition of α-PMAC, we get that
with probability 1− δ over S,

Pr
S∼D

[
f̃(S) ≤ f(S) ≤ α · f̃(S)

]
≥ (1− ε)1/m.

Next, we obtain

Pr
T

[
f̃(S) ≤ f(S) ≤ α · f̃(S) : ∀S ∈ T

]
=
(

Pr
S∼D

[
f̃(S) ≤ f(S) ≤ α · f̃(S)

])m
≥ 1− ε.

where the equality is due to the sets S ∈ T being drawn
i.i.d. fromD, and the inequality holds with probability 1−δ
over S. We define S? = argmaxS∈T f(S) and obtain that
with probability 1− ε over T and 1− δ over S,

f(S̃?) ≥ f̃(S̃?) ≥ f̃(S?) ≥ α−1f(S?).

We conclude that withM = MPMAC(n, δ, 1−(1−ε)1/m, α),

f(S̃?) ≥ 1

α
·max
S∈T

f(S)

with probability 1− ε over T and 1− δ over S.

For tightness, we give an information-theoretic lower bound
by constructing a difficult class F that cannot be in α-DOPS
with less than MPMAC(n, δ, 1− (1− ε)1/m, α) samples.

Theorem 2. For all α > 1 and ε, δ > 0, for m sufficiently
large, there exists a family of functions F and a function
MPMAC(·) such that

• for all ε′, δ′ > 0: F is α-PMAC-learnable with sample
complexity MPMAC(n, δ′, ε′, α), and

• given strictly less than MPMAC(n, δ, 1− (1− ε)1/m, α)
samples, F is not α-DOPS, i.e.,

MDOPS(n,m, δ, ε, α) ≥MPMAC(n, δ, 1−(1−ε)1/m, α).

Proof Sketch (see supp. material for full proof). For each
f in the difficult F , only a single set S? has a high value,
while all others have low values. We consider a uniformly
random function f ∈ F and the corresponding randomized
subclass F ′ ⊆ F which consists of all functions f ′ such
that S? is in the test set but not in the train set.

Informally, an algorithm which aims to optimize f ∈ F ′
cannot use the train set to learn which S ∈ T is S?. More

precisely, if f ∈ F ′, the decisions of the algorithm are
independent of the randomization of f , conditioned on f ∈
F ′. Thus, if f ∈ F ′, the algorithm does not obtain an α-
approximation because of the gap between the value of S?

and the other sets.

We construct F and D such that S? is in the test set w.p.
greater than 1 − ε. This implies that to satisfy DOPS, the
algorithm must observe enough samples so that S? is in the
train set w.p. at least 1− δ. We then argue that this number
of samples is at least MPMAC(n, δ, 1− (1− ε)1/m, α).

2.2. If F is not PMAC-learnable then F is not in DOPS

A simple intuition for Theorem 1 is that if one can accu-
rately predict the values of all S ∈ T , then it is possible
to find the empirical argmax. The main result in this sec-
tion, which is perhaps less intuitive, shows that the reverse
implication also holds. Namely, if one can find the the em-
pirical argmax, then it is possible to infer the values of all
sets in T . The contrapositive of this result is that if F is
not PMAC-learnable, then F is not in DOPS. Combining
both results provides a full characterization of distributional
optimization in terms of learnability.

To construct a PMAC learner from a DOPS algorithm, we
first randomly partition S into “train” and “test” sets. We
then train the DOPS algorithm on the train set, and use it
to generate pairwise comparisons with test elements. The
learned value for S is given by the maximum value of a test
sample that S “beats” (via the inferred comparisons). At
a high level, the analysis uses the DOPS guarantees and a
bucketing argument to satisfy the PMAC requirements.
Theorem 3. Let µ = maxS f(S)/minS:f(S)>0 f(S),
c be any constant such that 1 ≤ α ≤ c, and
Mµ = 8 log µ

ε log c

(
1
ε + 2 log

(
1
δ

))
. If a class F is in α-

DOPS with sample complexity MDOPS(n,m, ε, δ, α), then
it is α-PMAC-learnable with sample complexity Mµ +
MDOPS(n, 2, ε/Mµ, δ/Mµ, α/c), i.e.,

MPMAC(n, ε, δ, α) ≥Mµ+MDOPS(n, 2, ε/Mµ, δ/Mµ, α/c).

Proof. Fix ε, δ > 0 and α > 1. Let S = {(Si, f(Si))}Mi=1

be the samples from D that are given as input. We partition
the samples in S uniformly at random into S1 and S2 of
sizes M1 and M2, respectively. For some S ∼ D, the goal
is to predict f̃(S) such that f̃(S) ≤ f(S) ≤ α · f̃(S).

For each Si ∈ S2, define S2,i := {Si, S}. Since F is
in DOPS, with M1 = MDOPS(n, 2, ε/M2, δ/M2, α/c) sam-
ples, the algorithm outputs S?i ∈ S2,i such that with proba-
bilities 1− δ/M2 over S1 and 1− ε/M2 over S2,i,

f(S?i ) ≥ α

c
max(f(S), f(Si)).

By a union bound, this holds for all i ∈M2 with probability
1− δ over S1 and probability 1− ε over S and S2.
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We say that S “beats” Si if the α-DOPS algorithm outputs
S when given S2,i. Let S−2 be the collection of sets Si in
S2 such that S beats Si. The learning algorithm is

f̃(S) =
c

α
· max
Si∈S−2

f(Si).

Let fmin = minS f(S) and fmax = maxS f(S). We parti-
tion the sets into buckets defined as follows:

Bi := {S : fmin · ci−1 ≤ f(S) < fminc
i}

for i ≥ 1 and B0 = {S : f(S) = 0}. With β :=
logµ/ log c buckets, all sets S are in a bucket since fmin ≤
f(S) ≤ fmax. We define a bucket Bi to be dense if a ran-
dom set S ∼ D has non-negligible probability to be in
Bi, otherwise it is sparse. More precisely, Bi is dense if
PrS∼D [S ∈ Bi] ≥ ε/2β.

The set S is in a dense bucket Bi with probability at least
1 − ε

2 since there are at most β buckets that are not dense
and S is in each of them with probability at most ε

2β by the
definition of dense bucket. With m samples, the expected
number of samples in Bi is at least m ε

2β and by a standard
concentration bound,

Pr

[
|Bi| ≤

m

2

ε

2β

]
≤ e−

mε
16β

We assume that |Bi| ≥ m
2

ε
2β for the remainder of the proof.

There is at most one set in bucket Bi that is beaten by all
the other sets. Since the set S has equal probability to be
any of the sets in Bi,1 there is at least one other set S− in
Bi which S beats with probability 1/|Bi| ≤ 4β/mε.

With δ ≥ e−
mε
16β (and hence m ≥ log(1/δ)16β

ε ), with prob-
ability of at least 1− δ, the number of samples in Bi is at
least m ε

4β . With ε/2 ≥ 4β/mε (and hence m ≥ 8β/ε2),
with probability of at least 1− ε over S ∼ D, S is in a dense
bucket and beats at least one other S− ∈ S−2 in that bucket.

We get that:

f̃(S) =
c

α
· max
Si∈S−2

f(Si) ≥
c

α
· f(S−) ≥ 1

α
· f(S)

where the equality is by the definition of f̃(S), the first
inequality is since S− ∈ S−2 , and the last is since S and S−

are in the same bucket. We also have

f(S) ≥ α

c
· max
Si∈S−2

f(Si) = f̃(S)

where the inequality is by the definition of S−2 and the equal-
ity by definition of f̃(S). Thus, f̃(S) ≤ f(S) ≤ αf̃(S) and
with M2 = m ≥ 8 log µ

ε log c

(
1
ε + 2 log

(
1
δ

))
= Mµ, the sample

complexity is Mµ +MDOPS(n, 2, ε/Mµ, δ/Mµ, α/c).

1We assume that the DOPS algorithm breaks ties in a consistent
manner, i.e., it cannot be adversarial and break ties depending on
whether S is the set we wish to learn or if S ∈ S2.

Algorithm 1 DOPS(S = {(Si, zi)}Mi=1, m, α)

1: Randomly partition [M ] into N = bMm c sets A1, . . . , AN

2: Create m-tuple sample set S = {(Si, zi)}Ni=1 from S

where Si = {Sj}j∈Ai and zi = {zj}j∈Ai
3: Compute α(zi) = {y ∈ [m] : ziy ≥ αmax zi} ∀ i ∈ [N ]

4: θ̂ = argmin
θ∈Θ

N∑
i=1

max
y

[1{y 6∈α(zi)} + fθ(S
i
y)− ψθ(Si, zi)]+

where ψθ(S, z) = 1
|α(z)|

∑
y∈α(z) fθ(Sy)

5: Return h
θ̂
(T ) = argmax

S∈T
f
θ̂
(S)

3. Learning to Optimize at Scale
In this section we give an efficient DOPS algorithm that
applies to several interesting parametric submodular sub-
classes FΘ = {fθ : θ ∈ Θ}. Our general technique
includes two steps. First, we identify a loss function whose
minimization provides a sufficient condition for DOPS (Eq.
(1)), but is in general hard to optimize. Then, we show that
for the function classes we consider, a transformation of the
inputs reveals structure which can be exploited for efficiently
optimizing a convex surrogate loss. Note that in principle,
due to Thm. 1, any PMAC algorithm can be used for DOPS.
This, however, has several practical disadvantages, which
we comment on in Sec. 3.5.

We begin by illustrating our approach for coverage functions
with parametric weights. We then describe our algorithm,
prove its correctness, and show how it can be applied to
other classes such as graph cuts, unit demand, and coverage
functions with parametric cover sets.

3.1. Learning to optimize coverage functions

Coverage functions are a simple but important class of sub-
modular functions, and have been used in applications such
as computational linguistics (Sipos et al., 2012), algorith-
mic game theory (Dughmi & Vondrák, 2015), and influence
maximization in social networks (Kempe et al., 2003). Let
U be a ground set of d items, and C = {C1, . . . , Cn} a col-
lection of subsets where Ci ⊆ U . For a set of non-negative
item weights θ = {θ1, . . . , θd}, a function fθ : 2[n] → R is
a coverage function if:

fθ(S) =
∑

u∈C(S)

θu, C(S) =
⋃
i∈S

Ci (3)

While apparently simple, coverage functions are quite ex-
pressive, and optimizing them from samples is known to
be hard (Balkanski et al., 2017). One reason is that, as a
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function of their inputs S, coverage functions can be highly
non-linear. Meanwhile, as a function of their parameters,
they become linear via a simple transformation of the inputs:

fθ(S) = 〈φ(S), θ〉, φu(S) = 1{∃ i∈S s.t. u∈Ci} (4)

This structure allows our algorithm to efficiently find the
approximate empirical argmax of any given T with high
probability. The output of the algorithm is a function h ∈ H
for choosing one S out of the m candidates in T , where:

H = {hθ(T ) = argmax
S∈T

fθ(S) : θ ∈ Θ} (5)

In this sense, our method “learns” how to optimize over
collections of size m.

3.2. Algorithm

Pseudocode of our DOPS algorithm is given in Algorithm 1.
The following theorem establishes its correctness:

Theorem 4. Let m ∈ N and ε, δ ∈ [0, 1], and let f = fθ∗

with θ∗ ∈ Θ. For a given α > 0, let h be the output of
Algorithm 1 when given S = {(Si, zi)}Mi=1, m, and α as

input, where z = fθ(S) and S iid∼ D. Then, with probability
of at least 1− δ over S, it holds that:

PT ∼Dm
[
f
(
h(T )

)
≥ αmax

S∈T
f(S)

]
≥ 1− ε (6)

for M ≥ Õ(m(kB/ε)2) with k = max |S|, B = ‖θ∗‖2.

The following proof holds for any class of functions that
can be made linear in their parameters under some represen-
tation. This includes the coverage functions in Sec. 3.1 as
well as the classes we consider in Sec. 3.3.

Proof. We begin with some notation. Let S =
{S1, . . . , Sm} be a set of m examples with corresponding
values z = {z1, . . . , zm} where zy = f(Sy). Algorithm 1
returns a function h that chooses a set Sy ∈ S. It will be
convenient to instead view h as a mapping from S to indices
y ∈ [m]. Denote the set of α-approximate solutions by:

α(z) = {y ∈ [m] : zy ≥ αmax z} (7)

Our analysis makes use of the following loss function:

∆α(z, y) = 1{y 6∈ α(z)} (8)

Eq. (8) is useful since L(h) := E[∆α(z, h(S))] ≤ ε im-
plies that h satisfies Eq. (6). We therefore focus on bounding
L(h). As we do not have access toD, our algorithm chooses
an h ∈ H which instead minimizes the empirical loss. Note
that while ∆α is defined over m-tuples, S contains individ-
ual sets. To ensure a consistent empirical loss, we randomly

partition [M ] into N = M/m distinct sets A1, . . . , AN ,
and define anm-tuple sample set S = {(Si, zi)}Ni=1, where
Si = {Sy}y∈Ai and zi = {zy}y∈Ai . The loss is now:

L̂(h;S) =
1

N

N∑
i=1

∆α(zi, ŷi), ŷi = h(Si) (9)

Since ∆α is not convex, the algorithm instead optimizes a
surrogate convex upper bound. There are many ways to do
this; here we use an average hinge surrogate:

max
y∈[m]

[∆α(zi, y) + fθ(S
i
y)− ψθ(Si, zi)]+ (10)

where [a]+ = max{0, a} and:

ψθ(S, z) =
1

|α(z)|
∑

y∈α(z)
fθ(Sy) (11)

Eq. (10) is similar in spirit to the loss in (Lapin et al., 2015),
and is tight w.r.t. Eq. (9) whenever L̂ = 0, Intuitively,
minimizing Eq. (10) pushes θ towards values for which the
true argmax is scored higher than all others by a margin.
Note that the average in Eq. (11) can be replaced with a
max to attain a tighter (though no longer convex) surrogate.

Since S is labeled by some fθ∗ ∈ FΘ, we have that
L(hθ∗) = 0. This means that there is some θ ∈ Θ such
that with L̂(hθ;S) = 0, and due to the tightness of Eq. (10),
L̃(hθ;S) = 0 as well. This is sufficient for applying the
following generalization bound (Collins, 2004):

L(h) ≤ O

(√
m

M

(
(kB logM)2 + log

1

δ

))
(12)

Plugging in M gives L(h) ≤ ε, concluding the proof.

Eq. (10) is convex whenever fθ is linear in θ for some repre-
sentation φ. This holds for coverage functions (Eq. (4)) as
well as for the other classes we consider in Sec. 3.3. Eq. (10)
can then be optimized using standard convex solvers, or with
highly efficient and scalable solvers such as the cutting plane
method of Joachims et al. (2009).

3.3. Other submodular classes

We now discuss how our method can be extended to other
submodular function classes. For each class, we give a
transformation φ of the inputs under which the function
becomes linear in its parameters. Thm. 4 and Algorithm 1
can then be applied with the appropriate fθ(S) = 〈φ(S), θ〉.

Graph k-cuts: Let G = (V,E) be an undirected graph,
and let θ ∈ R|E|+ be edge weights. For a partition P ∈ [k]|V |

of the nodes into k groups, its value is given by:

fθ(P ) =
1

2

∑
(u,v)∈E
Pu 6=Pv

θuv
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While k-cut functions are known to be hard to optimize over
P , they become linear in θ with the transformation:

φuv(P ) = 1{Pu 6= Pv} ∀ (u, v) ∈ E

Unit demand: Let θ ∈ Rn+ be a set of item weights. The
value of a subset S ⊆ [n] is given by:

fθ(S) = max
u∈S

θu

Although it is possible to write fθ = 〈θ, φ(S)〉 with
φu(S) = 1{θu≥θv ∀v∈S}, this representation requires θ,
which is unknown. Nonetheless, a similar data-dependent
construction can still be used to obtain some θ′ which min-
imizes the loss. To see why, let S̄ ∈ S be the set with the
highest value fθ(S̄) in S. For this S̄, there must exist some
u ∈ S̄ that is not in any other S ∈ S with fθ(S) < fθ(S̄).
By setting φv(S̄) = 1{u=v} and θ′u = fθ(S̄), we ensure
that fθ(S̄) = 〈θ′, φ(S̄)〉. Note that this does not necessarily
imply that θ′u = θu. In a similar fashion, by setting:

φu(Si) = 1{u ∈ Si ∧ @ j 6= i s.t. u ∈ Sj ∧ zj < zi}

for every i ∈M , we get that fθ(Si) = 〈θ′, φ(Si)〉 for some
θ′, which guarantees L̂ = 0. Note that generalization here
concerns φ as applied to examples in both S and T .

Coverage with parametrized cover sets: Let U = [N ]
be a ground set of items with unit weights. The parameters
are a collection item subsets {C1, . . . , Cn} with Ci ⊆ U .
We use ξiu = 1{u ∈ Ci} and denote the maximal overlap
by d = maxu

∑
i ξiu. For a subset S ∈ [n], its value is:

fC(S) =
∣∣∣⋃

i∈S
Ci

∣∣∣
While fC is not linear over C, it can be linearized over a
different parameterization. For xi = 1{i ∈ S}, we have:

fC(S) =
∑
u∈Ω

(
1−

n∏
i=1

(1− xiξiu)
)

Since fC is a polynomial of degree at most d, the explicit
size of φ (and hence of the corresponding θ) is nd. For
computational efficiency, we can consider the dual form and
implicitly define φ via the kernalized inner product:

〈φ(S), φ(S′)〉 =
(
〈xS , xS′〉+ 1

)d

3.4. Reducing the sample-complexity cost of m

Interestingly, at the cost of a small additional additive error,
the dependence of the generalization bound on m can be
removed by considering an alternative loss function. Fix

some q ∈ [0, 1]. Given S, define Q to be the set of ex-
amples in the top q-quantile. The idea here is to learn θ
so that fθ will score top-quantile examples S ∈ Q above
low-quantile examples S 6∈ Q. The corresponding loss is
therefore defined over example pairs:

∆q(S, S
′, fθ) =

{
1{fθ(S)<fθ(S′)} if S ∈ Q ∧ S′ 6∈ Q
0 otherwise

(13)
Note that, in a similar fashion to ∆α, the empirical loss
L̂q over ∆q can be optimized efficiently, and the optimal θ
gives L̂q = 0. For any S ∈ S, the probability of having at
least one S ∈ S ∩Q is 1− qm. Applying the generalization
bound in Agarwal & Niyogi (2009) gives:

ε ≤ qm + Õ

(
B

λMq
+

(
B2

λ
+ Z

)√
ln(1/δ)

Mq

)
(14)

where Z = supS f(S) and λ controls an additional regular-
izer. In Sec. 4 we use a stricter variant of this formulation,
in which high-quantile items are binned separately.

3.5. Using PMAC algorithms in practice

In principle, the reduction in Sec. 2.1 shows that any PMAC
algorithm can be used for DOPS. Practically, however, this
approach has several disadvantages. The root cause of this
is that most current PMAC algorithms are designed for gen-
eral submodular functions.2 As such, they must adhere to
demanding lower bounds (Balcan & Harvey, 2011; Feldman
& Vondrak, 2016) which hold even for simple distributions
(e.g., uniform). When considering specific submodular sub-
classes, these algorithms can therefore be suboptimal (and
in fact quite costly) in terms of runtime, sample complexity,
and/or approximation ratio. Additionally, virtually all cur-
rent PMAC algorithms provide guarantees for either uniform
or product distributions. Even in this setting, PMAC algo-
rithms either guarantee a fixed approximation ratio, or are
exponential in α (Feldman & Vondrak, 2016), making them
difficult to use for α-DOPS with arbitrarily small α. The
only known result for arbitrary distributions is the

√
n+ 1-

PMAC algorithm of Balcan & Harvey (2011), which give a
matching Ω̃(n1/3) lower bound on α.

4. Experiments
In this section we evaluate the performance of our method
on the task of optimally choosing trending items in social
media platforms. Of the countless items that are continu-
ously created and shared by users in such platforms, only a
handful will become widespread (Goel et al., 2012). A key

2 A notable exception to this is Feldman & Kothari (2014)
which specifically considers PMAC learning of coverage functions
with unknown cover sets.
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Figure 1. Demonstrating the power of a coverage model. The
true diffusion curves of a focal hashtag ω (black) and an additional
hashtag ω′ with an initially similar (but eventually very different)
diffusive pattern (orange). Diffusion-curve extrapolations (Bauck-
hage & Kersting, 2014) are generated based on Sω alone (dashed
blue) and on both Sω and C(Sω) (dashed green), with dashed
lines marking the times of the corresponding last observations.
This shows how conditioning on C(Sω) can boost performance by
providing a probabilistic “glimpse” into the near future. Markers
in the zoomed inlaid plot indicate active users.

challenge faced daily by platform administrators is that of
identifying potential trending content as early as possible.
Trending items can then be marked, used for generating
recommendations, or promoted to the public front page.

4.1. Optimizing trending items

For a given social platform, let n be the number of users,
and Ω be the set of spreading content items. When a user
u ∈ [n] is observed to have been exposed to an item ω ∈ Ω,
we say that u adopted ω. This can happen, for instance,
when u views, shares, comments, or votes on ω. A crucial
factor in the successful spread of an item is the identity of
its early adopters (Rogers, 1962; Goldenberg et al., 2002).
We therefore represent each content item ω at a certain time
point by the set of users that have adopted it up to that time,
which we denote by Sω ⊆ [n]. We will be interested in
the final number of adopters zω as a function of the set
of adopting users, namely zω = f(Sω). For simplicity
we assume that all items are considered at the time when
adopted by exactly k users, so that |Sω| = k for all ω ∈ Ω.
Under the above representation, targeting a successful item
can be thought of as optimizing over the set of adopting
users under a cardinality constraint. The task is therefore to
choose the set Sω for which f(Sω) is maximal.

The above optimization task has two clear restrictions. First,
f cannot be accessed or queried, and any information re-
garding the value of subsets is available only via samples,
namely past items and their adopting users. Second, an algo-
rithm cannot output any user subset S ⊆ [n], but must rather
choose from a set of currently available items. In addition,

the task of choosing the top trending item is performed re-
peatedly, each time over a different collection of content
items. For example, for a front page that is updated hourly, a
new trending item must be selected from the set of currently
propagating content items for each update. Note that in such
systems, the available subsets and their eventual value are
primarily determined by the system’s users. Online social
platforms are therefore a prime example of a setting where
an optimization algorithm has only statistical access to data.

4.2. Experimental setup

We evaluate the performance of our method on a benchmark
dataset of propagating Twitter hashtags (Weng et al., 2013).
Data was gathered by monitoring the sharing (tweeting and
retweeting) of hashtags across users over the course of a
month. The dataset includes 612,355 users who shared
226,488 distinct hashtags, with a total of 1,687,704 sharing
activities. For each hashtag, the data describes the sequence
of adopting users and the corresponding timestamps. These
are used to construct a “retweet” social network G = (V,E)
where (u, v) ∈ E if v retweeted u. A user is considered to
be active if she shared at least 20 hashtags. We focus on the
11,815 active users and on the 4,155 hashtags that include
at least one active user. If a user retweeted the same hashtag
more than once, we consider only the first tweet.

Samples were generated in the following manner. For each
hashtag ω, the user set Sω was defined to include the first
k ∈ {5, . . . , 15} active adopting users, and zω was set to
be the number of eventual adopters. All pairs (Sω, zω)
were randomly partitioned into a train set S and a global
test set T ′ using a 90:10 split. All methods were given
S as input, and were evaluated on 1,000 random subsets
T ⊆ T ′ of size m, where m ∈ {100, . . . , 500}. This was
repeated 100 times, and average results are reported. All
methods we consider return an element Ŝ ∈ T by com-
puting argmaxS∈T g(S) for some score function g, which
is typically learned from the data. Hyper-parameters were
tuned using cross validation for all relevant methods.

DOPS model: We implement the DOPS algorithm using
coverage functions as the base class. Specifically, given the
social network graph G = (V,E), we use V as the ground
set, and construct a cover set Cv = u : (v, u) ∈ E) for
every v ∈ V . The coverage function we learn is:

fθ,η(S) =
∑
v∈V

θv +
∑

u∈C(S)

ηu (15)

whereC(S) =
⋃
v∈S Cv . The idea behind this model is that,

given that user v adopted, each of her neighbors can also
adopt (with some probability). Figure 1 illustrates this idea.
Thus, the two terms in Eq. (15) quantify the contributions
of the adopting nodes and of their neighbors, respectfully,
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Figure 2. Comparison different methods for the task of optimally choosing trending hashtags on Twitter.

to the overall score. The coverage formulation takes into ac-
count the potential overlap in neighboring nodes, which can
often be considerable (Holland & Leinhardt, 1971; Watts &
Strogatz, 1998). We note that G is constructed using train-
ing data alone, and incoming edges where only considered
for nodes with at least 10 shares. Eq. (10) was optimized
using the cutting-plane method of Joachims et al. (2009).

Baselines: We compare to the following methods:

• SLOPE: A first-order extrapolation where we first esti-
mate the slope of the diffusion curve, and then choose
the subset with the highest value.

• LINREG: We first run linear regression with `2 regu-
larization, and then choose the subset with the highest
predicted value.

• OPS: A variant of the OPS (Balkanski et al., 2016),
where instead of returning a global argmax, a given
subset is scored based on the sum of marginal estimates.
Note that under certain conditions, this algorithm is
optimal for the setting of optimization from samples.

• PMAC: A soft version of the distribution-independent
PMAC algorithm of Balcan & Harvey (2011). Since the
original algorithm assumes separability (which does
not hold here), we instead use an agnostic classifier.

Results: Figures 2(a) and 2(b) compare the value (number
of adopters) for the chosen output of each method. As can be
seen, DOPS clearly outperforms other methods by a margin.
Note that when k increases, average output values are likely
to increase as well, since the algorithms are given more
information as input. When m increases, however, it is not
clear a-priori how the average output values should change.
This is because larger test sets are more likely to include
higher-valued items, but at the same time have more low-
valued alternatives. Interestingly, while the performance of

most baselines does not improve (or even degrades) as m
increases, the performance of DOPS improves steadily.

5. Conclusions
In this work, we proposed an optimization criterion for
settings where the algorithm is limited to statistical access of
the objective function. We argue that this setting is pervasive,
and in fact, believe that in most applications it is the common
rule rather than the exception. Previous results have been
generally negative, but mostly due to demanding worst-case
requirements. Drawing inspiration from learning theory, our
solution relaxes these requirements to hold in expectation.

Our main theoretical result shows an equivalence between
optimization in this setting and learning. This highlights
intriguing connections between the computational and statis-
tical structure of function classes. An interesting corollary is
that analyzing hardness of computation and approximation
can now be done using statistical tools, and vice versa.

Several of the functions classes we explored are notoriously
hard to optimize, but have a surprisingly simple structure
as a function of their parameters. This allowed us to use
simple learning strategies to produce powerful optimization
mechanisms. We hypothesize that there are many other
classes that posses these properties. An additional avenue
for further exploration, hinted by our equivalence result, is
the reverse: are there classes that are seemingly hard-to-
learn, but due to their optimizational properties, can actually
be learned efficiently? We leave this for future work.
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Appendix

A. Missing Analysis from Section 2
Theorem 5. For all α > 1 and ε, δ > 0, for m sufficiently
large, there exists a family of functions F and a function
MPMAC(·) such that

• for all ε′, δ′ > 0: F is α-PMAC-learnable with sample
complexity MPMAC(n, δ′, ε′, α), and

• given strictly less than MPMAC(n, δ, 1− (1− ε)1/m, α)
samples, F is not α-DOPS, i.e.,

MDOPS(n,m, δ, ε, α) ≥MPMAC(n, δ, 1−(1−ε)1/m, α).

Proof. Fixα > 1 and ε > 0. Define p := 1−(1−ε)1/m+εs,
for some small constant εs > 0, and let S1, . . . , S1/p be
1/p arbitrary distinct sets. The hard class of functions is
F = {fi}i∈[1/p] where

fi(S) =

{
α if S = Si
1
2 otherwise

Consider the distributionD which is the uniform distribution
over sets S1, . . . , S1/p, so Sj is drawn with probability p
for all j ∈ [1/p]. We first argue that the sample complexity
for PMAC-learning f over D is at most

MPMAC(n, δ′, ε′, α) =

{
0 if ε′ ≥ p

log(1/δ′)
log(1/(1−p)) if ε′ < p

Note that if ε′ ≥ p, f̃(S) = 1/2 for all S is correct with
probability 1− p ≥ 1− ε′ over S ∼ D and with probability
1 over the samples. If ε′ < p, if there exists sample Si such
that f(Si) = α, then f̃(Si) = α, and f̃(S) = 1/2 for all
other S. Note that that this is correct with probability 1 over
S ∼ D if Si is in the samples. The probability that Si is in
the samples

1− (1− p)m = 1− (1− p)
log(1/δ′)

log(1/(1−p))

= 1− e
log(δ′)

log(1−p) log(1−p)

= 1− δ′.

Thus, f̃ is correct with probability 1− δ′ over the samples.
Next, we argue that for all δ > 0 and m sufficiently large,
the sample complexity for DOPS is at least

MPMAC(n, δ, 1− (1− ε)1/m, α) =

MPMAC(n, δ, p− εs, α) =
log(1/δ)

log(1/(1− p))
.

Consider the random function fi where i ∈ [1/p] is uni-
formly random. Let F ′ be the randomized collection of

functions fi such that Si is in the testing set but not in the
training set. Since Si is not in the testing set, we have that
for all fi ∈ F ′ and for all sets S in the testing set,

fi(S) = 1.

Thus, the functions in F ′ are indistinguishable from the
samples in the training set. This implies that the decisions
of the algorithm are independent of the random variable i,
conditioned on fi ∈ F ′. Let S be the set in the testing set
that is returned by the algorithm, we obtain that

E
i:fi∈F ′

[fi(S)] = Pr
i:fi∈F ′

[S = Si] · α+ Pr
i:fi∈F ′

[S 6= Si] ·
1

2

≤ α

|F ′|
+

1

2

since S is independent of i conditioned on fi ∈ F ′. Con-
sider the case where Si is not in the training set with prob-
ability strictly greater than δ. The probability that Si is in
the testing set is 1− (1− p)m = ε+ εs. Thus a function is
in F ′ with probability at least δ(ε + εs). Note that 1/p is
arbitrarily large if m is arbitrarily large. Thus, |F ′| > 2α
with arbitrarily large probability if m is arbitrarily large for
fixed ε, δ, and α. Combining with the previous inequality,
this implies that

E
i:fi∈F ′

[fi(S)] < 1 =
1

α
· fi(Si)

=
1

α
· E
i:fi∈F ′

[ max
S∈Ste

fi(S)]

where the last equality is since Si ∈ Ste for all i ∈ F ′.
Thus, there exists at least one function fi ∈ F such that the
algorithm does not obtain an α-approximation when Si is
in the testing set and not in the training set.

The probability that Si is in the testing set is 1 − (1 −
p)m = ε+ εs. Thus, Si needs to be in the training set with
probability at least 1− δ, otherwise we don’t get an α-apx
with probability 1− ε. The probability that Si is not in the
training set is (1− p)m. Thus, we need δ > (1− p)m, or

m >
log(1/δ)

log(1/(1− p))
= mPMAC(n, δ, p− εs, α)

= mPMAC(n, δ, 1− (1− ε)1/m, α).


