
An Exponential Speedup in Parallel Running Time for Submodular
Maximization without Loss in Approximation∗

Eric Balkanski† Aviad Rubinstein‡ Yaron Singer§

Abstract

In this paper we study the adaptivity of submodular
maximization. Adaptivity quantifies the number of se-
quential rounds that an algorithm makes when function
evaluations can be executed in parallel. Adaptivity is
a fundamental concept that is heavily studied across a
variety of areas in computer science, largely due to the
need for parallelizing computation. For the canonical
problem of maximizing a monotone submodular func-
tion under a cardinality constraint, it is well known that
a simple greedy algorithm achieves a 1 − 1/e approxi-
mation [NWF78] and that this approximation is optimal
for polynomial-time algorithms [NW78]. Somewhat sur-
prisingly, despite extensive efforts on submodular op-
timization for large-scale datasets, until very recently
there was no known algorithm that achieves a constant
factor approximation for this problem whose adaptivity
is sublinear in the size of the ground set n.

Recent work by [BS18] describes an algorithm that
obtains an approximation arbitrarily close to 1/3 in
O(log n) adaptive rounds and shows that no algorithm
can obtain a constant factor approximation in õ(log n)
adaptive rounds. This approach achieves an exponential
speedup in adaptivity (and parallel running time) at the
expense of approximation quality.

In this paper we describe a novel approach that
yields an algorithm whose approximation is arbitrarily
close to the optimal 1−1/e guarantee in O(log n) adap-
tive rounds. This algorithm therefore achieves an expo-
nential speedup in parallel running time for submodular
maximization at the expense of an arbitrarily small loss
in approximation quality. This guarantee is optimal in
both approximation and adaptivity, up to lower order
terms.

∗This research was supported by a Google PhD Fellowship, a
Robert N. Noyce Family Faculty Fellowship, a Rabin Postdoc-

toral Fellowship, NSF grant CAREER CCF 1452961, NSF CCF

1816874, BSF grant 2014389, NSF USICCS proposal 1540428, a
Google Research award, and a Facebook research award.
†Harvard University, ericbalkanski@g.harvard.edu
‡Harvard University, aviad@seas.harvard.edu
§Harvard University, yaron@seas.harvard.edu

1 Introduction

In this paper we study the adaptivity of submodular
maximization. For the canonical problem of maximiz-
ing a non-decreasing submodular function under a car-
dinality constraint it is well known that the celebrated
greedy algorithm which iteratively adds elements whose
marginal contribution is largest achieves a 1 − 1/e ap-
proximation [NWF78]. Furthermore, this approxima-
tion guarantee is optimal for any algorithm that uses
polynomially-many value queries [NW78].

The optimal approximation guarantee of the greedy
algorithm comes at a price of high adaptivity. Infor-
mally, the adaptivity of an algorithm is the number
of sequential rounds it makes when polynomially-many
function evaluations can be executed in parallel in each
round. The concept of adaptivity is heavily studied in
computer science and optimization as it provides a mea-
sure of efficiency of parallel computation (see Section 1.3
for related work on parallel computation). For cardinal-
ity constraint k and ground set of size n, the greedy algo-
rithm is k-adaptive since it sequentially adds elements in
k rounds. In each round it makes O(n) function evalua-
tions to identify and include the element with maximal
marginal contribution to the set of elements selected in
previous rounds. In the worst case k ∈ Ω(n) and thus
the greedy algorithm is Ω(n)-adaptive and its parallel
running time is Θ(n).

Since submodular optimization is regularly ap-
plied on very large datasets, adaptivity is cru-
cial as algorithms with low adaptivity enable dra-
matic speedups in parallel computing time. Sub-
modular optimization has been studied for well over
forty years now, and in the past decade there
has been extensive study of submodular maximiza-
tion for large datasets [BDF+12, KMVV15, MKSK13,
BV14, PJG+14, BMKK14, MBK+15, MZ15, MKBK15,
BENW15, MBK16, BENW16, EMZ17]. Somewhat
surprisingly however, until very recently, there was
no known constant-factor approximation algorithm for
submodular maximization whose adaptivity is sublinear
in n.

In recent work [BS18] introduce an algorithm for
maximizing monotone submodular functions under a

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

cardinality constraint that achieves a constant factor ap-
proximation arbitrarily close to 1/3 in O(log n) adaptive
steps. Furthermore, [BS18] show that no algorithm can
achieve a constant factor approximation with õ(log n)
rounds.

For constant factor approximations, [BS18] provide
an exponential speedup in the parallel run-time for the
canonical problem of maximizing submodular functions
under a cardinality constraint. This exponential im-
provement in adaptivity comes at the expense of the ap-
proximation quality achievable by Ω(n)-adaptive algo-
rithms (e.g. greedy), and raises two fundamental ques-
tions:

• Is there an algorithm whose adaptivity is sublinear
in the size of the ground set that obtains an ap-
proximation arbitrarily close to the optimal 1− 1/e
approximation guarantee?

• Given that a constant factor approximation cannot
be obtained in õ(log n) rounds, what is the best
approximation achievable in O(log n) rounds?

In this paper we address both questions as summa-
rized by our main result:

Theorem 1.1. For any constant ε > 0, any non-
decreasing submodular function f : 2[n] → R and k ∈
[n], there is an algorithm that with probability 1 − o(1)
obtains a 1− 1/e− ε approximation to maxS:|S|≤k f(S)
in O(log n) adaptive rounds.

The algorithm gives an exponential speedup in parallel
running time for maximizing a submodular function. In
particular, our result shows that exponential speedups
in parallel computing are possible with arbitrarily small
sacrifice in the quality of the approximation achievable
in poly-time.

1.1 Technical overview The main goal of this pa-
per is to achieve the optimal 1 − 1/e guarantee in
O(log n) adaptive steps. The optimal 1 − 1/e approx-
imation of the greedy algorithm stems from the guar-
antee that for any given set S there exists an element
whose marginal contribution to S is at least a 1/k frac-
tion of the remaining optimal value OPT − f(S). A
standard inductive argument then shows that iteratively
adding the element whose marginal contribution is max-
imal results in the 1−1/e approximation guarantee. To
obtain the 1 − 1/e guarantee in r = O(log n) adap-
tive steps rather than k, we could mimic this idea if in
each adaptive step we could add a block of k/r elements
whose marginal contribution to the existing solution S
is at least a 1/r fraction of OPT− f(S).

The entire challenge is in finding such a block of
k/r elements in O(1) adaptive steps. A priori, this is a

formidable task when k/r is super-constant. In general,
the maximal marginal contribution over all sets of size
k/r is as low as (OPT − f(S))/r. Finding a block of
size t of maximal marginal contribution in polynomial
time is as hard as solving the general problem of
submodular maximization under cardinality constraint
t, which, in general, cannot be approximated within
any factor better than 1−1/e using polynomially-many
queries [NW78]. Furthermore, we know it is impossible
to approximate within any constant approximation in
o(log n/ log log n) adaptive rounds [BS18].

Despite this seeming difficulty, we show one can ex-
ploit a fundamental property of submodular functions
to identify a block of size k/r whose marginal contribu-
tion is arbitrarily close to (OPT−f(S))/r. In general, we
show that for monotone submodular functions, while it
is hard to find a set of size k whose value is an arbitrar-
ily good approximation to OPT, it is actually possible to
find a set of size k/r whose value is arbitrarily close to
that of OPT/r in polynomial time for r = O(log n), even
when k/r is super-constant.

In Section 2 we describe an algorithm which pro-
gressively adds a subset of size k/r to the existing solu-
tion S whose marginal contribution is arbitrarily close to
(OPT−f(S))/r. To do so, it uses O(log n) rounds in each
such progression and it is hence O(log2 n)-adaptive. At
a high level, in each iteration that it adds a block of size
k/r, the algorithm carefully and aggressively filters ele-
ments in O(log n) rounds by considering their marginal
contribution to a random set drawn from a distribution
that evolves throughout the filtering iterations.

In Section 3, we generalize the algorithm so that, on
average, every step of adding a block of k/r elements
is done in O(1) adaptive steps. The main idea is to
consider epochs, which consist of sequences of iterations
such that, in the worst case, an iteration might still
consist of O(log n) rounds, but the amortized number
of rounds per iteration during an epoch is now constant.

1.2 Paper organization We first discuss related
work, followed by preliminary definitions and notation
below. In Section 2 we describe and analyze Iterative-
Filtering which obtains an approximation guarantee
arbitrarily close to 1−1/e in O(log2 n) adaptive rounds.
In Section 3 we describe and analyze Amortized-
Filtering which obtains the same approximation guar-
antee in O(log n) rounds.

1.3 Related work
Parallel computing and depth. Adaptivity is

closely related to the concept of depth in the PRAM
model. The depth of a PRAM algorithm is the num-
ber of parallel steps it takes on a shared memory ma-

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

chine with any number of processors. That is, it is the
longest chain of dependencies of the algorithm, includ-
ing operations which are not queries. There is a long
line of study on the design of low-depth algorithms (e.g.
[Ble96, BPT11, BRS89, RV98, BRM98, BST12]). As
discussed in further detail in Appendix A.2.1, our pos-
itive results extend to the PRAM model and our main
algorithm has Õ(log2 n·df) depth, where df is the depth
required to evaluate the function on a set. While the
PRAM model assumes that the input is loaded in mem-
ory, we consider the value query model where the algo-
rithm is given oracle access to a function of potentially
exponential size.

Adaptivity. The concept of adaptivity is gener-
ally well-studied in computer science, largely due to the
role it plays in parallel computing, such as in sorting
and selection [Val75, Col88, BMW16], communication
complexity [PS84, DGS84, NW91], multi-armed bandits
[AAAK17], sparse recovery [HNC09, IPW11, HBCN09],
and property testing [CG17, BGSMdW12, CST+17].
Beyond being a fundamental concept, adaptivity is
important for applications where sequentiality is the
main runtime bottleneck. We discuss in detail several
such applications of submodular optimization in Ap-
pendix B. Somewhat surprisingly, until very recently
Ω(n) was the best known adaptivity required for a
constant factor approximation to maximizing a mono-
tone submodular maximization under a cardinality con-
straint. As discussed above, [BS18] give an algorithm
that is O(log n)-adaptive and achieves an approxima-
tion arbitrarily close to 1/3. They also show that no
algorithm can achieve a constant factor approximation
with õ(log n) rounds. The approach and algorithms in
this paper are different than [BS18] and we provide a
detailed comparison in Appendix B.1.

Map-Reduce. There is a long line of work on
distributed submodular optimization in the Map-
Reduce model [KMVV15, MKSK13, MZ15, MKBK15,
BENW15, BENW16, EMZ17]. Map-Reduce is designed
to tackle issues related to massive data sets that are too
large to either fit or be processed by a single machine.
Instead of addressing distributed challenges, adaptiv-
ity addresses the issue of sequentiality, where query-
evaluation time is the main runtime bottleneck and
where these evaluations can be parallelized. The exist-
ing Map-Reduce algorithms for submodular optimiza-
tion have adaptivity that is linear in n in the worst-
case. This high adaptivity is caused by the algorithms
run on each machine, which are variants of the greedy
algorithm and thus have adaptivity at least linear in k.
Additional discussion about the Map-Reduce model is
provided in Appendix A.2.2.

1.4 Basic definitions and notation
Submodularity. For a given function f : 2N → R,

the marginal contribution of an element X ⊆ N to a set
S ⊆ N denoted fS(X) is defined as f(S ∪ X) − f(S).
A function f : 2N → R is submodular if for any
S ⊆ T ⊆ N and any a ∈ N \ T we have that fS(a) ≥
fT (a).1 A function is monotone or non-decreasing if
f(S) ≤ f(T) for all S ⊆ T . A submodular function
f is also subadditive, meaning f(S ∪ T) ≤ f(S) + f(T)
for all S ⊆ T . The size of the ground set is n = |N |
and k denotes the cardinality constraint of the given
optimization problem maxS:|S|≤k f(S).

Adaptivity. As standard, we assume access to a
value oracle of the function s.t. for any S ⊆ N the
oracle returns f(S) in O(1) time. Given a value oracle
for f , an algorithm is r-adaptive if every query f(S) for
the value of a set S occurs at a round i ∈ [r] s.t. S is
independent of the values f(S′) of all other queries at
round i, with at most poly(n) queries at every round.
In Appendix A.2.1 we discuss adaptivity and parallel
computing.

2 Iterative-Filtering: An O(log2 n)-adaptive
Algorithm

In this section, we present the Iterative-Filtering
algorithm which obtains an approximation arbitrarily
close to 1−1/e in O(log2 n) adaptive rounds. At a high
level, the algorithm iteratively identifies large blocks of
elements of high value and adds them to the solution.
There are O(log n) such iterations and each iteration
requires O(log n) adaptive rounds, which amounts to
O(log2 n)-adaptivity. The analysis in this section will
later be used as we generalize this algorithm to one that
obtains an approximation arbitrarily close to 1− 1/e in
O(log n) adaptive rounds.

2.1 Description of the algorithm The
Iterative-Filtering algorithm consists of r it-
erations which each add k/r elements to the solution S.
To find these elements the algorithm filters out elements
from the ground set using the Filter subroutine and
then adds a set of size k/r sampled uniformly at ran-
dom from the remaining elements. Let U(X, t) denote
the uniform distribution over subsets of X of size t.
Throughout the paper we always sample sets of size
t = k/r and therefore write U(X) instead of U(X, kr)
to simplify notation. The Iterative-Filtering
algorithm is described formally above as Algorithm 1.

1For readability we abuse notation and write a instead of {a}
when evaluating a singleton.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 1 Iterative-Filtering

Input: constraint k, bound on number of iterations r
S ← ∅
for r iterations do
X ← Filter(N,S, r)
S ← S ∪R, where R ∼ U(X)

return S

The Filter subroutine iteratively discards ele-
ments until a random set R ∼ U(X) has marginal con-
tribution arbitrarily close to the desired (OPT− f(S))/r
value. In each iteration, the elements discarded from the
set of surviving elements X are those whose marginal
contribution to R ∼ U(X) is low. Intuitively, Filter
terminates quickly since if a random set has low ex-
pected marginal contribution, then there are many ele-
ments whose marginal contribution to a random set is
low and these elements are then discarded. The subrou-
tine Filter is formally described below.

Algorithm 2 Filter(X,S, r)

Input: Remaining elements X, current solution S,
bound on number of outer-iterations r
while ER∼U(X) [fS(R)] < (1− ε) (OPT− f(S)) /r do

X ← X \ {a : ER∼U(X)

[
fS∪(R\{a})(a)

]
< (1 + ε/2) (1− ε) (OPT− f(S)) /k}

return X

Both Iterative-Filtering and Filter are ideal-
ized versions of the algorithms we implement. This is
due to the fact that we do not know the value of the
optimal solution OPT and we cannot compute expecta-
tions exactly. In practice, we can apply multiple guesses
of OPT in parallel and estimate expectations by repeated
sampling. For ease of presentation we analyze these ide-
alized versions of the algorithms and defer the presenta-
tion and analysis of the full algorithm to Appendix E. In
our analysis we assume that in Iterative-Filtering
when ER∼U(X)[fS(R)] ≥ t this implies that a random
set R ∼ U(X) respects fS(R) ≥ t.2

2.2 Analysis The analysis of Iterative-Filtering
relies on two properties of its Filter subroutine: (1)
the marginal contribution of the set of elements not
discarded in Filter after O(r) iterations is arbitrarily
close to (OPT − f(S))/r and (2) there are at most k/r
remaining elements after O(r) rounds. We assume that
ε > 0 is a small constant in the analysis.

2Since we estimate ER∼U(X)[fS(R)] by sampling in the full

version of the algorithm, there is at least one sample with value
at least the estimated value of ER∼U(X)[fS(R)] that we can take.

2.2.1 Bounding the value of elements that sur-
vive Filter We first prove that the marginal contri-
bution of elements returned by Filter to the existing
solution S is arbitrarily close to (OPT− f(S))/r. We do
so by arguing that the set returned by Filter includes
a subset of the optimal solution O with such marginal
contribution. Let ρ be the number of iterations of the
while loop in Filter. For a given iteration i ∈ [ρ] let Ri
be a random set of size r

k drawn uniformly at random
from Xi, where Xi are the remaining elements at itera-
tion i. Notice that by monotonicity and submodularity,
fS(O) ≥ OPT − f(S). We first show that we can con-
sider the marginal contribution of O not only to S but
S ∪ (∪ρi=1Ri), while suffering an arbitrarily small loss.
Considering the marginal contribution over random sets
Ri is important to show that some optimal elements of
high value must survive all rounds.

Lemma 2.1. Let Ri ∼ U(X) be the random set at
iteration i of Filter(N,S, r). For all S ⊆ N and
r, ρ > 0, if Filter(N,S, r) has not terminated after
ρ iterations, then

E
R1,...,Rρ

[
fS∪(∪ρi=1Ri)

(O)
]
≥
(

1− ρ

r

)
· (OPT− f(S)) .

Proof. We exploit the fact that if Filter(N,S, r) has
not terminated after ρ iterations, then by the algorithm,
the random set Ri ∼ U(X) at iteration i has expected
value that is upper bounded as follows:

E
Ri

[fS (Ri)] <
1− ε
r

(OPT− f(S))

for all i ≤ ρ. Next, by subadditivity, we have
ER1,...,Rρ [fS ((∪ρi=1Ri))] ≤

∑ρ
i=1 ERi [fS (Ri)] and, by

monotonicity, ER1,...,Rρ [fS (O ∪ (∪ρi=1Ri))] ≥ OPT −
f(S). Combining the above inequalities, we conclude
that

E
R1,...,Rρ

[
fS∪(∪ρi=1Ri)

(O)
]

= E
R1,...,Rρ

[fS (O ∪ (∪ρi=1Ri))]− E
R1,...,Rρ

[fS ((∪ρi=1Ri))]

≥OPT− f(S)−
ρ∑
i=1

E
Ri

[fS (Ri)]

≥
(

1− ρ

r

)
· (OPT− f(S)) .

Next, we bound the value of elements that survive
filtering rounds. To do so, we use Lemma 2.1 to show
that there exists a a subset T of the optimal solution O
that survives ρ rounds of filtering and that has marginal
contribution to S arbitrarily close to (OPT− f(S))/r.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Lemma 2.2. For all S ⊆ N and ε > 0, if r ≥
20ρε−1, then the elements Xρ that survive ρ iterations
of Filter(N,S, r) satisfy

fS(Xρ) ≥
1

r
(1− ε) (OPT− f(S)) .

Proof. At a high level, the proof first defines a subset T
of the optimal solution O. Then, the remaining of the
proof consists of two main parts. First, we show that
elements in T survive ρ iterations of Filter(N,S, r).
Then, we show that fS(T) ≥ 1

r (1− ε) (OPT− f(S)) .
We introduce some notation. Let O = {o1, . . . , ok}
be the optimal elements in some arbitrary order and
O` = {o1, . . . , o`}. We define the following marginal
contribution ∆` of each optimal element o`:

∆` := E
R1,...,Rρ

[
fS∪O`−1∪(∪ρi=1Ri\{o`})

(o`)
]
.

We define T to be the set of optimal elements o` such
that ∆` ≥ (1− ε/4)∆ where

∆ :=
1

k

(
1− ρ

r

)
· (OPT− f(S)) .

We first argue that elements in T survive ρ iterations of
Filter(N,S, r). For element o` ∈ T , we have

∆` ≥ (1− ε/4)∆

≥1

k
(1− ε/4)

(
1− ρ

r

)
· (OPT− f(S))

≥1

k
(1 + ε/2)(1− ε) · (OPT− f(S))

where the last inequality is since since r ≥ 20ρε−1.
Thus, at iteration i ≤ ρ, by submodularity,

E
Ri

[
fS∪(Ri\{o`})(o`)

]
≥ E
R1,...,Rρ

[
fS∪O`−1∪(∪ρi=1Ri\{o`})

(o`)
]

=∆` ≥
1

k
(1 + ε/2)(1− ε) · (OPT− f(S))

and o` survives all iterations i ≤ ρ, for all o` ∈ T .
Next, we argue that fS(T) ≥

1
r (1− ε) (OPT− f(S)) . Note that

k∑
`=1

∆` ≥ E
R1,...,Rρ

[
fS∪(∪ρi=1Ri)

(O)
]

≥
(

1− ρ

r

)
· (OPT− f(S)) = k∆.

where the second inequality is by Lemma 2.1. Next,
observe that

k∑
`=1

∆` =
∑
o`∈T

∆` +
∑

j∈O\T

∆` ≤
∑
o`∈T

∆` + k(1− ε/4)∆.

By combining the two inequalities above, we get∑
o`∈T ∆` ≥ kε∆/4. Thus, by submodularity,

fS(T) ≥
∑
o`∈T

fS∪O`−1
(o`)

≥
∑
o`∈T

E
R1,...,Rρ

[
fS∪O`−1∪(∪ρi=1Ri\{o`})

(o`)
]

=
∑
o`∈T

∆`

≥ kε∆/4.

We conclude that

fS(Xρ) ≥ fS(T)

≥ kε∆/4

= (ε/4)
(

1− ρ

r

)
· (OPT− f(S))

≥ 1

r
· (1− ε) · (OPT− f(S))

where the first inequality is by monotonicity and since
T ⊆ Xρ is a set of surviving elements.

2.3 The adaptivity of Filter The second part of
the analysis bounds the number of adaptive rounds of
the Filter algorithm. A main lemma for this part,
Lemma 2.3, shows that a constant fraction of elements
are discarded at every round of filtering. Combined with
the previous lemma that bounds the value of remaining
elements, Lemma 2.4 then shows that Filter has at
most log n rounds. The analysis that a constant fraction
of elements are discarded at every round is similar as
in [BS18] and we defer the proof to the appendix for
completeness. Since this is an important lemma, we
give a proof sketch nevertheless.

Lemma 2.3. Let Xi and Xi+1 be the surviving elements
at the start and end of iteration i of Filter(N,S, r).
For all S ⊆ N and r, i, ε > 0, if Filter(N,S, r) does
not terminate at iteration i, then

|Xi+1| <
|Xi|

1 + ε/2
.

Proof. [Proof Sketch (full proof in Appendix C).] At
a high level, since the surviving elements must have
high value and a random set has low value, we can then
use the thresholds to bound how many such surviving

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

elements there can be while also having a random set
of low value. To do so, we focus on the value of
f(Ri∩Xi+1) of the surviving elements Xi+1 in a random
set Ri ∼ DXi .

First, the proof uses submodularity and the
threshold for elements in Xi+1 to survive from Xi

to show that E [fS(Ri ∩Xi+1)] ≥ |Xi+1| · 1
r|Xi| ·

(1 + ε/2) (1− ε) (OPT− f(S)). Using monotonicity and
the bound on the value of a random set E [fS(Ri)] for
Filter to discard additional elements, the proof then
shows that E [fS(Ri ∩Xi+1)] < 1

r (1− ε) (OPT− f(S))
and concludes that |Xi+1| ≤ |Xi|/(1 + ε/2).

Thus, by the previous lemma, there are at most k/r
surviving elements after logarithmically many filtering
rounds and by Lemma 2.2, these remaining elements
must have high value. Thus, Filter terminates and
we obtain the following main lemma for the number of
rounds.

Lemma 2.4. For all S ⊆ N , if r ≥ 40ε−2 log n,
then Filter(N,S, r) terminates after at most O (log n)
iterations.

Proof. If Filter(N,S, r) has not yet terminated after
2ε−1 log n iterations, then, by Lemma 2.3, at most k/r
elements survived these ρ = 2ε−1 log n iterations. By
Lemma 2.2, with r ≥ 20ρε−1, the set Xρ of elements
that survive these 2ε−1 log n iterations is such that
fS(Xρ) ≥ 1

r · (1− ε) (OPT− f(S)). Since there are at
most k/r surviving elements X, R = Xρ for R ∼ U(Xρ)
and

fS(R) = fS(Xρ) ≥
1

r
· (1− ε) (OPT− f(S)) ,

and Filter(N,S, r) terminates at this iteration.

Main result for Iterative-Filtering. We are
now ready to prove the main result for Iterative-
Filtering. By Lemma 2.4, at every iteration of
Iterative-Filtering, in at most O (log n) iterations
of Filter, the value of the solution S is increased by
at least (1− ε) (OPT− f(S)) /r with k/r new elements.
The analysis of the 1−1/e−ε approximation then follows
similarly as for the standard analysis of the greedy
algorithm. Regarding the total number of rounds, we
fix parameter r = 40ε−2 log n. there are at most r
iterations of Iterative-Filtering, each of which with
at most O (log n) iterations of Filter and the queries
at every iteration of Filter are non-adaptive. We defer
the proof to Appendix C.

Theorem 2.1. For any constant ε > 0, Iterative-
Filtering is a O

(
log2 n

)
-adaptive algorithm that ob-

tains a 1 − 1/e − ε approximation, with parameter r =
40ε−2 log n.

3 Amortized-Filtering: An O(log n)-adaptive
Algorithm

In this section, we build on the algorithm and analysis
from the previous section to obtain the main result of
this paper. We present Amortized-Filtering which
accelerates Iterative-Filtering by using less filtering
rounds while maintaining the same approximation guar-
antee. In particular, it obtains an approximation arbi-
trarily close to 1−1/e in logarithmically-many adaptive
rounds.

3.1 Description of the algorithm Amortized-
Filtering iteratively adds a block of k/r elements
obtained using the Filter subroutine to the existing
solution S, exactly as Iterative-Filtering. The
improvement in adaptivity comes from the use of epochs.
An epoch is a sequence of iterations during which the
value of the solution S increases by at most ε(OPT −
f(S))/20. During an epoch, the algorithm invokes
Filter with the surviving elements from the previous
iteration of Amortized-Filtering, rather than all
elements in the ground set as in Iterative-Filtering.
In a new epoch, Filter is then again invoked with the
ground set. A formal description of an idealized version
is included below.

Algorithm 3 Amortized-Filtering

Input: bound on number of iterations r
S ← ∅
for 20

ε epochs do
X ← N,T ← ∅
while fS(T) < (ε/20)(OPT− f(S)) and |S ∪ T | < k

do
X ← Filter(X,S ∪ T, r)
T ← T ∪R, where R ∼ U(X)

S ← S ∪ T
return S

3.2 Analysis of Amortized-Filtering As in the
previous section, we analyze the idealized version de-
scribed above and defer the analysis of the full algo-
rithm to the appendix. Our analysis for Amortized-
Filtering relies on the properties of every epoch. In
particular, we first show that during an epoch, the sur-
viving elements X have marginal contribution at least
ε(OPT−f(S))/20 to S∪T (Section 3.2.1). Notice that the
marginal contribution is with respect to the set S∪T and
the value with respect only to S. We then show that for
any epoch, the total number of iterations of Filter dur-
ing that epoch is O(log n) (Section 3.2.2). We empha-
size that an iteration of Filter is different than an iter-
ation of the while-loop of Amortized-Filtering, i.e.,
an epoch consists of multiple iterations of Amortized-

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Filtering, each of which consists of multiple iterations
of Filter. Since there are at most 20ε−1 epochs, the
amortized number of iterations of Filter per iteration
of Amortized-Filtering is now constant.

3.2.1 Bounding the value of elements that sur-
vive an epoch For any given epoch, we first bound the
marginal contribution of O to S∪T and the random sets
{Ri}ρi=1 when there are ρ iterations of filtering during
the epoch. Similar to the previous section, we show that
the marginal contribution of O to S∪T and the random
sets is arbitrarily close to the desired OPT− f(S) value.
The analysis is similar to the analysis of Lemma 2.1,
except for a subtle yet crucial difference. The analysis
in this section needs to handle the fact that the solution
S ∪ T changes during the epoch. To do so we rely on
the fact that the increase in the value of S ∪ T during
an epoch is bounded. Due to space considerations, we
defer the proof to Appendix D.

Lemma 3.1. For any epoch j and ε > 0, let Ri ∼ U(X)
be the random set at iteration i of filtering during epoch
j. For all r, ρ > 0, if epoch j has not ended after ρ
iterations of filtering, then

E
R1,...,Rρ

[
fS+

j ∪(∪
ρ
i=1Ri)

(O)
]

≥
(

1− ρ

r
− ε/20

)
· (OPT− f(Sj))

where Sj is the set S at epoch j and S+
j is the set S ∪T

at the last iteration of epoch j.

Next, we bound the value of elements that survive
the filtering iterations during an epoch. The proof is
similar to that of Lemma 2.2, modified to handle the
fact that the solution S evolves during an epoch. We
defer the proof to Appendix D.

Lemma 3.2. For any epoch j and ε > 0, if r ≥ 20ρε−1,
then the elements Xρ that survive ρ iterations of filtering
at epoch j satisfy

fS+
j

(Xρ) ≥ (ε/4) (1− ε) (OPT− f(Sj)) .

where Sj is the set S at epoch j and S+
j is the set S ∪T

at the last iteration of epoch j.

3.2.2 The adaptivity of an epoch The next
lemma bounds the total number of iterations of fil-
tering per epoch. At a high level, similarly as for
Iterative-Filtering, a constant fraction of elements
are discarded at each iteration of filtering by Lemma 2.3
and there are at most k/r surviving elements after
logarithmically-many filtering rounds. Then, we use

Lemma 3.2 and the fact that the surviving elements
during an epoch have high contribution to show that
the epoch terminates.

Lemma 3.3. In any epoch of Amortized-Filtering
and for any ε ∈ (0, 1/2), if r ≥ 40ε−2 log n, then there
are at most 2ε−1 log n iterations of filtering during the
epoch.

Proof. If an epoch j has not yet terminated after ρ =
2ε−1 log n iterations of filtering, then, by Lemma 2.3, at
most k/r elements survived these ρ filtering iterations.
We consider the set T obtained after these ρ filtering
iterations. By Lemma 3.2, with r ≥ 20ρ · ε−1, the set
Xρ of elements that survive these iterations is such that
fS∪T (Xρ) ≥ (ε/4) · (1− ε) (OPT− f(S)). Since there are
at most k/r surviving elements, R = Xρ for R ∼ U(Xρ)
and

E [fS∪T (R)] ≥ fS∪T (Xρ) ≥(ε/4) · (1− ε) (OPT− f(S))

≥1

r
· (1− ε) (OPT− f(S ∪ T))

where the last inequality is by monotonicity. Thus, the
current call to the Filter subroutine terminates and
Xρ is added to T by the algorithm. Next,

fS(T ∪Xρ) ≥ fS(Xρ)

≥ fS∪T (Xρ)

≥ (ε/4) · (1− ε) (OPT− f(S))

≥ (ε/20) (OPT− f(S))

the first inequality is by monotonicity and the second
by submodularity. Thus, epoch j ends.

3.3 Main result We are now ready to prove the
main result of the paper which is that analysis of
Amortized-Filtering. There are two cases: either
the algorithm terminates after r iterations with |S ∪
T | = k or it terminates after 20ε−1 epochs. With
r = O(log n), there are at most O(log n) iterations of
adding elements and at most O(1) epochs with O(log n)
filtering iterations per epoch. Thus the total number of
adaptive rounds is O(log n). The proof is deferred to
Appendix D

Theorem 3.1. For any constant ε > 0, when using
parameter r = 40ε−2 log n, Amortized-Filtering
obtains a 1−1/e−ε approximation in O(log n)-adaptive
steps.

Similarly as for Iterative-Filtering,
Amortized-Filtering is an idealized version of
the full algorithm since we do not know OPT and

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

cannot compute expectations exactly. The full algo-
rithm, which guesses OPT and estimates expectations
arbitrarily well by sampling in one adaptive round,
is formally described and analyzed in Appendix E.
The algorithm is randomized due to the sampling
at every round and its analysis is nearly identical to
that presented in this section while accounting for an
additional arbitrarily small errors due to the guessing
of OPT and the estimates of the expectation. The main
result is the following theorem for the full algorithm.

Theorem 3.2. For any ε ∈ (0, 1/2), there exists
an algorithm that obtains a 1 − 1/e − ε approxi-
mation with probability 1 − δ in O(ε−2 log n) adap-
tive steps. Its query complexity in each round is

O
(
n(k + log n)2 1

ε4 log
(
n logn
εδ

))
.

Acknowledgments

This research was supported by a Google PhD Fellow-
ship, NSF grant CAREER CCF 1452961, NSF CCF
1816874, BSF grant 2014389, NSF USICCS proposal
1540428, a Google Research award, and a Facebook re-
search award.

References

[AAAK17] Arpit Agarwal, Shivani Agarwal, Sepehr
Assadi, and Sanjeev Khanna. Learn-
ing with limited rounds of adaptivity:
Coin tossing, multi-armed bandits, and
ranking from pairwise comparisons. In
COLT, pages 39–75, 2017.

[AM10] Saeed Alaei and Azarakhsh Malekian.
Maximizing sequence-submodular func-
tions and its application to online adver-
tising. arXiv preprint arXiv:1009.4153,
2010.

[ANRW15] Noga Alon, Noam Nisan, Ran Raz, and
Omri Weinstein. Welfare maximiza-
tion with limited interaction. In Foun-
dations of Computer Science (FOCS),
2015 IEEE 56th Annual Symposium on,
pages 1499–1512. IEEE, 2015.

[AWZ08] Akram Aldroubi, Haichao Wang,
and Kourosh Zarringhalam. Sequen-
tial adaptive compressed sampling
via huffman codes. arXiv preprint
arXiv:0810.4916, 2008.

[BDF+12] Ashwinkumar Badanidiyuru, Shahar
Dobzinski, Hu Fu, Robert Kleinberg,
Noam Nisan, and Tim Roughgarden.

Sketching valuation functions. In SODA,
pages 1025–1035. Society for Industrial
and Applied Mathematics, 2012.

[BENW15] Rafael Barbosa, Alina Ene, Huy
Nguyen, and Justin Ward. The power of
randomization: Distributed submodular
maximization on massive datasets. In
ICML, pages 1236–1244, 2015.

[BENW16] Rafael da Ponte Barbosa, Alina Ene,
Huy L Nguyen, and Justin Ward. A new
framework for distributed submodular
maximization. In FOCS, pages 645–654.
Ieee, 2016.

[BGSMdW12] Harry Buhrman, David Garćıa-Soriano,
Arie Matsliah, and Ronald de Wolf.
The non-adaptive query complexity of
testing k-parities. arXiv preprint
arXiv:1209.3849, 2012.

[Ble96] Guy E Blelloch. Programming paral-
lel algorithms. Communications of the
ACM, 39(3):85–97, 1996.

[BMKK14] Ashwinkumar Badanidiyuru, Baharan
Mirzasoleiman, Amin Karbasi, and An-
dreas Krause. Streaming submodular
maximization: massive data summariza-
tion on the fly. In The 20th ACM
SIGKDD International Conference on
Knowledge Discovery and Data Mining,
KDD ’14, New York, NY, USA - August
24 - 27, 2014, pages 671–680, 2014.

[BMW16] Mark Braverman, Jieming Mao, and
S Matthew Weinberg. Parallel algo-
rithms for select and partition with noisy
comparisons. In STOC, pages 851–862,
2016.

[BPR+16] Ashwinkumar Badanidiyuru, Christos
Papadimitriou, Aviad Rubinstein, Lior
Seeman, and Yaron Singer. Locally
adaptive optimization: Adaptive seeding
for monotone submodular functions. In
Proceedings of the Twenty-Seventh An-
nual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 414–429. Society
for Industrial and Applied Mathematics,
2016.

[BPT11] Guy E Blelloch, Richard Peng, and
Kanat Tangwongsan. Linear-work
greedy parallel approximate set cover

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

and variants. In SPAA, pages 23–32,
2011.

[BRM98] Guy E Blelloch and Margaret Reid-
Miller. Fast set operations using treaps.
In SPAA, pages 16–26, 1998.

[BRS89] Bonnie Berger, John Rompel, and Pe-
ter W Shor. Efficient nc algorithms for
set cover with applications to learning
and geometry. In FOCS, pages 54–59.
IEEE, 1989.

[BS18] Eric Balkanski and Yaron Singer. The
adaptive complexity of maximizing a
submodular function. In STOC, 2018.

[BST12] Guy E Blelloch, Harsha Vardhan
Simhadri, and Kanat Tangwongsan.
Parallel and i/o efficient set covering al-
gorithms. In SPAA, pages 82–90. ACM,
2012.

[BV14] Ashwinkumar Badanidiyuru and Jan
Vondrák. Fast algorithms for maximiz-
ing submodular functions. In Proceed-
ings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algo-
rithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pages 1497–
1514, 2014.

[CG17] Clement Canonne and Tom Gur.
An adaptivity hierarchy theorem
for property testing. arXiv preprint
arXiv:1702.05678, 2017.

[Col88] Richard Cole. Parallel merge sort. SIAM
Journal on Computing, 17(4):770–785,
1988.

[CST+17] Xi Chen, Rocco A Servedio, Li-Yang
Tan, Erik Waingarten, and Jinyu Xie.
Settling the query complexity of non-
adaptive junta testing. arXiv preprint
arXiv:1704.06314, 2017.

[CWW10] Wei Chen, Chi Wang, and Yajun
Wang. Scalable influence maximization
for prevalent viral marketing in large-
scale social networks. In Proceedings
of the 16th ACM SIGKDD international
conference on Knowledge discovery and
data mining, pages 1029–1038. ACM,
2010.

[CWY09] Wei Chen, Yajun Wang, and Siyu Yang.
Efficient influence maximization in so-
cial networks. In Proceedings of the 15th
ACM SIGKDD international conference
on Knowledge discovery and data min-
ing, pages 199–208. ACM, 2009.

[DG08] Jeffrey Dean and Sanjay Ghemawat.
Mapreduce: simplified data processing
on large clusters. Communications of the
ACM, 51(1):107–113, 2008.

[DGS84] Pavol Duris, Zvi Galil, and Georg
Schnitger. Lower bounds on communica-
tion complexity. In STOC, pages 81–91,
1984.

[DHK+16] Nikhil R Devanur, Zhiyi Huang, Nitish
Korula, Vahab S Mirrokni, and Qiqi
Yan. Whole-page optimization and sub-
modular welfare maximization with on-
line bidders. ACM Transactions on Eco-
nomics and Computation, 4(3):14, 2016.

[DNO14] Shahar Dobzinski, Noam Nisan, and Si-
gal Oren. Economic efficiency requires
interaction. In Proceedings of the forty-
sixth annual ACM symposium on The-
ory of computing, pages 233–242. ACM,
2014.

[DR01] Pedro Domingos and Matt Richard-
son. Mining the network value of cus-
tomers. In Proceedings of the seventh
ACM SIGKDD international conference
on Knowledge discovery and data min-
ing, pages 57–66. ACM, 2001.

[EMZ17] Alessandro Epasto, Vahab S. Mirrokni,
and Morteza Zadimoghaddam. Bicri-
teria distributed submodular maximiza-
tion in a few rounds. In SPAA, pages
25–33, 2017.

[FJK10] Joseph D Frazier, Peter K Jimack, and
Robert M Kirby. On the use of adjoint-
based sensitivity estimates to control
local mesh refinement. Commun Comput
Phys, 7:631–8, 2010.

[GK10] Daniel Golovin and Andreas Krause.
Adaptive submodularity: A new ap-
proach to active learning and stochastic
optimization. In COLT, pages 333–345,
2010.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

[GLL11] Amit Goyal, Wei Lu, and Laks VS
Lakshmanan. Celf++: optimizing the
greedy algorithm for influence maxi-
mization in social networks. In Proceed-
ings of the 20th international conference
companion on World wide web, pages
47–48. ACM, 2011.

[HBCN09] Jarvis D Haupt, Richard G Baraniuk,
Rui M Castro, and Robert D Nowak.
Compressive distilled sensing: Sparse
recovery using adaptivity in compres-
sive measurements. In Signals, Systems
and Computers, 2009 Conference Record
of the Forty-Third Asilomar Conference
on, pages 1551–1555. IEEE, 2009.

[HNC09] Jarvis Haupt, Robert Nowak, and Rui
Castro. Adaptive sensing for sparse sig-
nal recovery. In Digital Signal Processing
Workshop and 5th IEEE Signal Process-
ing Education Workshop, pages 702–707.
IEEE, 2009.

[HS15] Thibaut Horel and Yaron Singer. Scal-
able methods for adaptively seeding a
social network. In Proceedings of the
24th International Conference on World
Wide Web, pages 441–451. International
World Wide Web Conferences Steering
Committee, 2015.

[IPW11] Piotr Indyk, Eric Price, and David P
Woodruff. On the power of adaptivity
in sparse recovery. In FOCS, pages 285–
294. IEEE, 2011.

[JXC08] Shihao Ji, Ya Xue, and Lawrence
Carin. Bayesian compressive sensing.
IEEE Transactions on Signal Process-
ing, 56(6):2346–2356, 2008.

[KKT03] David Kempe, Jon Kleinberg, and Éva
Tardos. Maximizing the spread of in-
fluence through a social network. In
Proceedings of the ninth ACM SIGKDD
international conference on Knowledge
discovery and data mining, pages 137–
146. ACM, 2003.

[KMVV15] Ravi Kumar, Benjamin Moseley, Sergei
Vassilvitskii, and Andrea Vattani. Fast
greedy algorithms in mapreduce and
streaming. ACM Transactions on Par-
allel Computing, 2(3):14, 2015.

[KSV10] Howard Karloff, Siddharth Suri, and
Sergei Vassilvitskii. A model of compu-
tation for mapreduce. In SODA, pages
938–948, 2010.

[MBK+15] Baharan Mirzasoleiman, Ashwinkumar
Badanidiyuru, Amin Karbasi, Jan
Vondrák, and Andreas Krause. Lazier
than lazy greedy. In Proceedings of
the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA., pages
1812–1818, 2015.

[MBK16] Baharan Mirzasoleiman, Ashwinkumar
Badanidiyuru, and Amin Karbasi. Fast
constrained submodular maximization:
Personalized data summarization. In
ICML, pages 1358–1367, 2016.

[MKBK15] Baharan Mirzasoleiman, Amin Karbasi,
Ashwinkumar Badanidiyuru, and An-
dreas Krause. Distributed submodular
cover: Succinctly summarizing massive
data. In NIPS, pages 2881–2889, 2015.

[MKSK13] Baharan Mirzasoleiman, Amin Kar-
basi, Rik Sarkar, and Andreas Krause.
Distributed submodular maximization:
Identifying representative elements in
massive data. In NIPS, pages 2049–2057,
2013.

[MNSW95] Peter Bro Miltersen, Noam Nisan,
Shmuel Safra, and Avi Wigderson. On
data structures and asymmetric commu-
nication complexity. In STOC, pages
103–111. ACM, 1995.

[MSW08] Dmitry M Malioutov, Sujay Sanghavi,
and Alan S Willsky. Compressed sens-
ing with sequential observations. In
Acoustics, Speech and Signal Process-
ing, 2008. ICASSP 2008. IEEE Interna-
tional Conference on, pages 3357–3360.
IEEE, 2008.

[MZ15] Vahab Mirrokni and Morteza Zadi-
moghaddam. Randomized compos-
able core-sets for distributed submodu-
lar maximization. In STOC, pages 153–
162, 2015.

[NW78] George L Nemhauser and Laurence A
Wolsey. Best algorithms for approximat-
ing the maximum of a submodular set

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

function. Mathematics of operations re-
search, 3(3):177–188, 1978.

[NW91] Noam Nisan and Avi Widgerson.
Rounds in communication complexity
revisited. In STOC, pages 419–429,
1991.

[NWF78] George L Nemhauser, Laurence A
Wolsey, and Marshall L Fisher. An anal-
ysis of approximations for maximizing
submodular set functionsi. Mathemati-
cal Programming, 14(1):265–294, 1978.

[PJG+14] Xinghao Pan, Stefanie Jegelka, Joseph E
Gonzalez, Joseph K Bradley, and
Michael I Jordan. Parallel double greedy
submodular maximization. In Advances
in Neural Information Processing Sys-
tems, pages 118–126, 2014.

[PS84] Christos H Papadimitriou and Michael
Sipser. Communication complexity.
Journal of Computer and System Sci-
ences, 28(2):260–269, 1984.

[RD02] Matthew Richardson and Pedro Domin-
gos. Mining knowledge-sharing sites for
viral marketing. In Proceedings of the
eighth ACM SIGKDD international con-
ference on Knowledge discovery and data
mining, pages 61–70. ACM, 2002.

[RS06] Sofya Raskhodnikova and Adam Smith.
A note on adaptivity in testing proper-
ties of bounded degree graphs. ECCC,
TR06-089, 2006.

[RV98] Sridhar Rajagopalan and Vijay V Vazi-
rani. Primal-dual rnc approximation al-
gorithms for set cover and covering inte-
ger programs. SIAM Journal on Com-
puting, 28(2):525–540, 1998.

[SS13] Lior Seeman and Yaron Singer. Adap-
tive seeding in social networks. In Foun-
dations of Computer Science (FOCS),
2013 IEEE 54th Annual Symposium on,
pages 459–468. IEEE, 2013.

[STK16] Adish Singla, Sebastian Tschiatschek,
and Andreas Krause. Noisy submodu-
lar maximization via adaptive sampling
with applications to crowdsourced im-
age collection summarization. In AAAI,
pages 2037–2043, 2016.

[STW15] Rocco A Servedio, Li-Yang Tan, and
John Wright. Adaptivity helps for test-
ing juntas. In Proceedings of the 30th
Conference on Computational Complex-
ity, pages 264–279. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2015.

[TIWB14] Sebastian Tschiatschek, Rishabh K Iyer,
Haochen Wei, and Jeff A Bilmes. Learn-
ing mixtures of submodular functions for
image collection summarization. In Ad-
vances in neural information processing
systems, pages 1413–1421, 2014.

[Val75] Leslie G Valiant. Parallelism in compar-
ison problems. SIAM Journal on Com-
puting, 4(3):348–355, 1975.

Appendix

A Additional Discussion of Related Work

A.1 Adaptivity Adaptivity has been heavily stud-
ied across a wide spectrum of areas in computer sci-
ence. These areas include classical problems in theoret-
ical computer science such as sorting and selection (e.g.
[Val75, Col88, BMW16]), where adaptivity is known un-
der the term of parallel algorithms, and communica-
tion complexity (e.g. [PS84, DGS84, NW91, MNSW95,
DNO14, ANRW15]), where the number of rounds mea-
sures how much interaction is needed for a communica-
tion protocol.

For the multi-armed bandits problem, the relation-
ship of interest is between adaptivity and query com-
plexity, instead of adaptivity and approximation guar-
antee. Recent work showed that Θ(log? n) adaptive
rounds are necessary and sufficient to obtain the opti-
mal worst case query complexity [AAAK17]. In the ban-
dits setting, adaptivity is necessary to obtain non-trivial
query complexity due to the noisy outcomes of the
queries. In contrast, queries in submodular optimiza-
tion are deterministic and adaptivity is necessary to ob-
tain a non trivial approximation since there are at most
polynomially many queries per round and the function
is of exponential size. Adaptivity is also well-studied
for the problems of sparse recovery (e.g. [HNC09,
IPW11, HBCN09, JXC08, MSW08, AWZ08]) and prop-
erty testing (e.g. [CG17, BGSMdW12, CST+17, RS06,
STW15]). In these areas, it has been shown that adap-
tivity allows significant improvements compared to the
non-adaptive setting, which is similar to the results
shown in this paper for submodular optimization. How-
ever, in contrast to all these areas, adaptivity has not
been previously studied in the context of submodular
optimization.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

We note that the term adaptive submodular max-
imization has been previously used, but in an unre-
lated setting where the goal is to compute a policy
which iteratively picks elements one by one, which,
when picked, reveal stochastic feedback about the en-
vironment [GK10].

A.2 Related models of parallelism

A.2.1 Parallel computing and depth Our main
result extends to the PRAM model. Let df be the
depth required to evaluate the function on a set, then
there is a Õ(log2 n · df) depth algorithm with Õ(nk2)
work whose approximation is arbitrarily close to 1 −
1/e for submodular maximization under a cardinality
constraint.

The PRAM model is a generalization of the RAM
model with parallelization, it is an idealized model
of a shared memory machine with any number of
processors which can execute instructions in parallel.
The depth of a PRAM algorithm is the longest chain
of dependencies of the algorithm, including operations
which are not necessarily queries. Thus, in addition
to the number of adaptive rounds of querying, depth
also measures the number of adaptive steps of the
algorithms which are not queries. The additional factor
in the depth compared to the number of adaptive rounds
is df · Õ(log n) , where df is the depth required to
evaluate the function on a set in the PRAM model.
The operations that our algorithms performed at every
round, which are maximum, summation, set union, and
set difference over an input of size at most quasilinear,
can all be executed by algorithms with logarithmic
depth. A simple divide-and-conquer approach suffices
for maximum and summation, while logarithmic depth
for set union and set difference can be achieved with
treaps [BRM98].

A.2.2 Map-Reduce The problem of distributed
submodular optimization has been extensively studied
in the Map-Reduce model in the past decade. This
framework is primarily motivated by large scale prob-
lems over massive data sets. At a high level, in the
Map-Reduce framework [DG08], an algorithm proceeds
in multiple Map-Reduce rounds, where each round con-
sists of a first step where the input to the algorithm
is partitioned to be independently processed on differ-
ent machines and of a second step where the outputs
of this processing are merged. Notice that the notion
of rounds in Map-Reduce is different than for adaptiv-
ity, where one round of Map-Reduce usually consists of
multiple adaptive rounds. The formal model of [KSV10]
for Map-Reduce requires the number of machines and

their memory to be sublinear.
This framework for distributing the input to mul-

tiple machines with sublinear memory is designed to
tackle issues related to massive data sets. Such data
sets are too large to either fit or be processed by a sin-
gle machine and the Map-Reduce framework formally
models this need to distribute such inputs to multiple
machines.

Instead of addressing distributed challenges, adap-
tivity addresses the issue of sequentiality, where each
query evaluation requires a long time to complete and
where these evaluations can be parallelized (see Sec-
tion B for applications). In other words, while Map-
Reduce addresses the horizontal challenge of large scale
problems, adaptivity addresses an orthogonal vertical
challenge where long query-evaluation time is causing
the main runtime bottleneck.

A long line of work has studied problems related to
submodular maximization in Map-Reduce achieving dif-
ferent improvements on parameters such as the number
of Map-Reduce rounds, the communication complexity,
the approximation ratio, the family of functions, and
the family of constraints (e.g. [KMVV15, MKSK13,
MZ15, MKBK15, BENW15, BENW16, EMZ17]). To
the best of our knowledge, all the existing Map-Reduce
algorithms for submodular optimization have adaptivity
that is linear in n in the worst-case, which is exponen-
tially larger than the adaptivity of our algorithm. This
high adaptivity is caused by the distributed algorithms
which are run on each machine. These algorithms are
variants of the greedy algorithm and thus have adap-
tivity at least linear in k. We also note that our al-
gorithm does not (at least trivially) carry over to the
Map-Reduce setting.

B Applications

We discuss in detail several applications of submodu-
lar optimization where sequentiality is the main run-
time bottleneck. In crowdsourcing and data sum-
marization, algorithms involve subtasks performed by
the crowd. The intervention of humans in the evalua-
tion of queries causes algorithms with a large number
of adaptive rounds to be impractical. A crowdsourcing
platform consists of posted tasks and crowdworkers who
are remunerated for performing these posted tasks. For
several submodular optimization problems, such as data
summarization, the value of queries can be evaluated on
a crowdsourcing platform [TIWB14, STK16, BMW16].
The algorithm must wait to obtain the feedback from
the crowdworkers, however an algorithm can ask differ-
ent crowdworkers to evaluate a large number of queries
in parallel.

In experimental design, the goal is to pick a

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

collection of entities (e.g. subjects, chemical elements,
data points) which obtains the best outcome when
combined for an experiment. Experiments can be
run in parallel and have a waiting time to observe
the outcome [FJK10]. The submodular problem of
influence maximization, initiated studied by [DR01,
RD02, KKT03] has since then been well-studied (e.g.
[CWY09, CWW10, GLL11, SS13, HS15, BPR+16]).
Influence maximization consists of finding the most
influential nodes in a social network to maximize the
spread of information in this network. Information does
not spread instantly and an algorithm must wait to
observe the total number of nodes influenced by some
seed set of nodes. In advertising, the goal is to select
the optimal subset of advertisement slots to objectives
such as the click-through-rate or the number of products
purchased by customers, which are objectives exhibiting
diminishing returns [AM10, DHK+16]. Naturally, a
waiting time is incurred to observe the performance of
different collections of advertisements.

B.1 Previous work on adaptivity for submod-
ular maximization The main algorithm in [BS18],
Adaptive-Sampling, obtains a constant factor ap-
proximation in O(log n) adaptive rounds. It con-
sists of two primitives, Down-Sampling and Up-
Sampling. Down-Sampling is O(log n/ log log n)-
adaptive but only obtains aO(log n) approximation. On
the other hand, Up-Sampling obtains a constant fac-
tor approximation but in linearly many rounds. The
main algorithm appropriately combines both primitives
to obtain a constant factor approximation guarantee in
O(log n) rounds.

The main algorithm in this paper, Amortized-
Filtering, mimics the greedy analysis to obtain an
approximation arbitrarily close to 1 − 1/e by finding
a block of size k/r whose marginal contribution is arbi-
trarily close to (OPT−f(S))/r. We first give Iterative-
Filtering which finds such a set in O(log n) rounds by
filtering elements at every iteration. We build on that
algorithm to obtain Amortized-Filtering, which ob-
tains a 1 − 1/e approximation and uses a concept of
epoch to obtain an amortized number of rounds that is
constant per iteration during an epoch. The analysis for
the approximation is thus very different to obtain the
1 − 1/e approximation. One similarity is Lemma 2.3
which shows that a constant fraction of elements can be
discarded in one round, similarly as Lemma 1 in [BS18].

C Missing Analysis from Section 2

Proof of Lemma 2.3. At a high level, since the surviving
elements must have high value and a random set has
low value, we can then use the thresholds to bound how

many such surviving elements there can be while also
having a random set of low value. To do so, we focus
on the value of f(Ri ∩Xi+1) of the surviving elements
Xi+1 in a random set Ri ∼ DXi .

E [fS(Ri ∩Xi+1)]

≥E

 ∑
a∈Ri∩Xi+1

fS∪(Ri∩Xi+1\a)(a)


≥E

 ∑
a∈Xi+1

1a∈Ri · fS∪(Ri\a)(a)


=

∑
a∈Xi+1

E
[
1a∈Ri · fS∪(Ri\a)(a)

]
.

=
∑

a∈Xi+1

Pr [a ∈ Ri] · E
[
fS∪(Ri\a)(a)|a ∈ Ri

]
≥

∑
a∈Xi+1

Pr [a ∈ Ri] · E
[
fS∪(Ri\a)(a)

]
≥

∑
a∈Xi+1

Pr [a ∈ Ri] ·
1

k
(1 + ε/2) (1− ε) (OPT− f(S))

=|Xi+1| ·
k

r|Xi|
· 1

k
(1 + ε/2) (1− ε) (OPT− f(S))

=|Xi+1| ·
1

r|Xi|
· (1 + ε/2) (1− ε) (OPT− f(S)) .

Next, since elements are discarded, a random set must
have low value by the algorithm,

1

r
(1− ε) (OPT− f(S)) > E [fS(Ri)] .

By monotonicity, we get E [fS(Ri)] ≥ E [fS(Ri ∩Xi+1)].
Finally, by combining the above inequalities, we con-
clude that |Xi+1| ≤ |Xi|/(1 + ε/2).

Proof of Theorem 2.1. Let Si denote the solution
S at the ith iteration of Iterative-Filtering. The
algorithm increases the value of the solution S by at
least (1− ε) (OPT− f(S)) /r at every iteration with k/r
new elements. Thus,

f(Si) ≥ f(Si−1) +
1− ε
r

(OPT− f(Si−1)) .

Next, we show by induction on i that

f(Si) ≥

(
1−

(
1− 1− ε

r

)i)
OPT.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Observe that

f(Si) ≥ f(Si−1) +
1− ε
r

(OPT− f(Si−1))

=
1− ε
r

OPT +

(
1− 1− ε

r

)
f(Si−1)

≥ 1− ε
r

OPT +

(
1− 1− ε

r

)
·

(
1−

(
1− 1− ε

r

)i−1)
OPT

=

(
1−

(
1− 1− ε

r

)i)
OPT

Thus, with i = r where there has been r iterations of
adding k/r elements, we return solution S such that

f(S) ≥
(

1−
(

1− 1− ε
r

)r)
OPT

and obtain

f(S) ≥
(

1− e−(1−ε)
)
OPT

≥
(

1− 1 + 2ε

e

)
OPT

≥
(

1− 1

e
− ε
)
OPT

where the second inequality is since ex ≤ 1 + 2x for 0 <
x < 1. The number of rounds is at most rε−1 log n since
there are r iterations of Iterative-Filtering, each of
which with at most ε−1 log n iterations of Filter by
Lemma 2.4, with r = O(ε−1 log n).

D Missing Analysis from Section 3

We introduce some notation and terminology. We now
call the iteration i of filtering during epoch j the ith

iteration discarding elements inside of Filter since the
beginning of epoch j, over the multiple invokations of
Filter. An element survives ρ iterations of Filter
at epoch j if it has not been discarded at iteration i of
filtering during epoch j, for all i ≤ ρ. Let Sj denote the
solution S at epoch j ∈ [20ε−1], S+

j denote Sj∪T during
the last iteration of Amortized-Filtering at epoch j,
i.e., the last T such that fS(T) < (ε/20)(OPT − f(S)),
and Sj,i denote Sj∪T at the iteration i of filtering during
epoch j. Thus, for all i1 < i2,

Sj ⊆ Sj,i1 ⊆ Sj,i2 ⊆ S+
j ⊆ Sj+1

and f(S+
j)− f(Sj) < (ε/20)(OPT− f(Sj))..

Proof of Lemma 3.1. Similarly as for Lemma 2.1,
we exploit the fact that if Filter(N,S, r) has not

terminated after ρ iterations, then by the algorithm, the
random set Ri ∼ U(X) at iteration i has low expected
value. In addition, we also use the bound on the change
in value of S during epoch j:

E
R1,...,Rρ

[
fS+

j ∪(∪
ρ
i=1Ri)

(O)
]

= E
R1,...,Rρ

[
fS+

j
(O ∪ (∪ρi=1Ri))

]
− E
R1,...,Rρ

[
fS+

j
((∪ρi=1Ri))

]
≥OPT− f(S+

j)− E
R1,...,Rρ

[
fS+

j
((∪ρi=1Ri))

]
≥OPT− f(Sj)− (ε/20) (OPT− f(Sj))

− E
R1,...,Rρ

[
fS+

j
((∪ρi=1Ri))

]
≥(1− ε/20) (OPT− f(Sj))−

ρ∑
i=1

E
Ri

[
fS+

j
(Ri)

]
≥(1− ε/20) (OPT− f(Sj))−

ρ∑
i=1

E
Ri

[
fSj,i (Ri)

]
≥(1− ε/20) (OPT− f(Sj))−

ρ∑
i=1

1− ε
r

(OPT− f(Sj))]

=
(

1− ε/20− ρ

r

)
· (OPT− f(Sj)) .

Proof of Lemma 3.2. Let j be any epoch. Similarly
as for Lemma 2.2, the proof defines a subset Q of the
optimal solution O and then shows show that elements
in Q survive ρ iterations of filtering at epoch j and show
that fS+

j
(Q) ≥ (ε/4) (1− ε) (OPT− f(Sj)) . We define

the following marginal contribution ∆` of each optimal
element o`:

∆` := E
R1,...,Rρ

[
fS+

j ∪O`−1∪(∪ρi=1Ri\{o`})
(o`)

]
.

We define Q to be the set of optimal elements o`
such that ∆` ≥ (1− ε/4)∆ where

∆ :=
1

k

(
1− ρ

r
− ε/20

)
· (OPT− f(Sj)) .

We first argue that elements in Q survive ρ iterations
of filtering at epoch j. For element o` ∈ Q, we have

∆` ≥ (1− ε/4)∆

≥ 1

k
(1− ε/4)

(
1− ρ

r
− ε/20

)
· (OPT− f(Sj))

≥ 1

k
(1 + ε/2)(1− ε) · (OPT− f(Sj))

where the third inequality is by the condition on r.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Thus, at iteration i ≤ ρ, by submodularity,

E
Ri

[
fSj,i∪(Ri\{o`})(o`)

]
≥ E
R1,...,Rρ

[
fS+

j ∪O`−1∪(∪ρi=1Ri\{o`})
(o`)

]
=∆` ≥

1

k
(1 + ε/2)(1− ε) · (OPT− f(Sj))

and o` survives all iterations i ≤ ρ, for all o` ∈ Q.
Next, we argue that fS+

j
(Q) ≥

(ε/4) (1− ε) (OPT− f(Sj)) . Note that

k∑
`=1

∆` ≥ E
R1,...,Rρ

[
fS+

j ∪(∪
ρ
i=1Ri)

(O)
]

≥
(

1− ρ

r
− ε/20

)
· (OPT− f(Sj)) = k∆.

where the second inequality is by Lemma 3.1. Next,
observe that

k∑
`=1

∆` =
∑
o`∈Q

∆` +
∑

j∈O\Q

∆` ≤
∑
o`∈Q

∆` + k(1− ε/4)∆.

By combining the two inequalities above, we get∑
o`∈Q ∆` ≥ kε∆/4. Thus, by submodularity,

fS+
j

(Q) ≥
∑
o`∈Q

fS+
j ∪O`−1

(o`)

≥
∑
o`∈Q

E
R1,...,Rρ

[
fS+

j ∪O`−1∪(∪ρi=1Ri\{o`})
(o`)

]
=
∑
o`∈Q

∆`

≥ kε∆/4.

We conclude that

fS+
j

(Xρ) ≥ fS+
j

(Q)

≥ kε∆/4

= (ε/4)
(

1− ρ

r

)
· (OPT− f(Sj))

≥ (ε/4) · (1− ε) · (OPT− f(Sj)) .

where the first inequality is by monotonicity and since
Q ⊆ Xρ is a set of surviving elements.

Proof of Theorem 3.1. First, consider the case
where the algorithm terminates after r iterations of
adding elements to S. Let Si denote the solu-
tion S at the ith iteration. Amortized-Filtering
increases the value of the solution S by at least
(1− ε) (OPT− f(S)) /r at every iteration with k/r new
elements. Thus,

f(Si) ≥ f(Si−1) +
1− ε
r

(OPT− f(Si−1))

and we obtain f(S) ≥
(
1− e−(1−ε)

)
OPT ≥(

1− e−1 − ε
)
OPT similarly as for Theorem 2.1.

Next, consider the case where the algorithm ter-
minated after (ε/20)−1 epochs. At every epoch j,
the algorithm increases the value of the solution S by
(ε/20)(OPT− f(Sj)). Thus,

f(Sj) ≥ f(Sj−1) + (ε/20) (OPT− f(Sj−1)) .

Similarly as in the first case, we get that after (ε/20)−1

epochs, f(S) ≥ (1− e−1)OPT.
The total number of rounds of adaptivity of

Amortized-Filtering is at most O(ε−3 log n) since
there are at most r = 40ε−2 log n iterations of
adding elements and at most (ε/20)−1 epochs with, by
Lemma 3.3, at most ε−1 log n filtering iterations each.
The queries at each filtering iteration are independent
and can be evaluated in parallel.

E The Full Algorithm

E.1 Description of the full algorithm

E.1.1 Estimates of expectations in one round
via sampling We show that the expected value of
a random set and the expected marginal contribution
of elements to a random set can be estimated ar-
bitrarily well in one round, which is needed for the
Iterative-Filtering and Amortized-Filtering al-
gorithms. Recall that U(X) denotes the uniform dis-
tribution over subsets of X of size k/r. The values we
are interested in estimating are ER∼U(X) [fS(R)] and

ER∼U(X)

[
fS∪(R\a)(a)

]
. We denote the corresponding

estimates by vS(X) and vS(X, a), which are computed
in Algorithms 4 and 5. These algorithms first sample
m sets from U(X), where m is the sample complexity,
then query the desired sets to obtain a random realiza-
tion of fS(R) and fS∪(R\a)(a), and finally averages the
m random realizations of these values.

Algorithm 4 EstimateSet: Computes estimate
vS(X) of ER∼U(X) [fS(R)].

Input: set X ⊆ N , sample complexity m.
Query f(S) and f(S ∪ Ri) for all samples

R1, . . . , Rm
i.i.d.∼ U(X)

return 1
m

∑m
i=1 fS(Ri)

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 5 EstimateMarginal: Computes esti-
mate vS(X, a) of ER∼U(X)

[
fS∪(R\a)(a)

]
.

Input: set X ⊆ N , sample complexity m, element
a ∈ N .
Query f(S∪(Ri∪a)) and f(S∪(Ri\a)) for all samples

R1, . . . , Rm
i.i.d.∼ U(X)

return 1
m

∑m
i=1 fS∪(Ri\a)(a)

Using standard concentration bounds, the estimates
computed by these algorithms are arbitrarily good for
a sufficiently large sample complexity m. We state the
version of Hoeffding’s inequality which is used to bound
the error of these estimates.

Lemma E.1. (Hoeffding’s inequality) Let
S1, . . . , Sn be independent random variables with
values in [0, b]. Let S = 1

m

∑m
i=1 Si. Then for any

ε > 0,

Pr [|S − E[S]| ≥ ε] ≤ 2e−2mε
2/b2 .

We are now ready to show that these estimates are
arbitrarily good.

Lemma E.2. Let m = 1
2

(
OPT
ε

)2
log
(
2
δ

)
, then for all

S,X ⊆ N , and a ∈ N , with probability 1 − δ over the
samples R1, . . . , Rm,∣∣∣∣vS(X, a)− E

R∼U(X)

[
fS∪(R\a)|a∈R(a)

]∣∣∣∣ ≤ ε
and ∣∣∣∣vS(X)− E

R∼U(X)
[fS(R)]

∣∣∣∣ ≤ ε.
Thus, with m = n

(
OPT
ε

)2
log
(
2n
δ

)
total samples in one

round, with probability 1 − δ, it holds that vS(X) and
vS(X, a), for all a ∈ N , are ε-estimates.

Proof. Note that

E [vS(X)] = E
R∼U(X)

[fS(R)]

and
E [vS(X, a)] = E

R∼U(X)

[
fS∪(R\a)(a)

]
.

Since all queries are of size at most k, their values are all
bounded by OPT. Thus, by Hoeffding’s inequality with

m = 1
2

(
OPT
ε

)2
log
(
2
δ

)
, we get

Pr

[∣∣∣∣vS(X)− E
R∼U(X)

[fS(R)]

∣∣∣∣ ≥ ε] ≤ 2e−
2mε2

OPT2 ≤ δ

and

Pr

[∣∣∣∣vS(X, a)− E
R∼U(X)

[
fS∪(R\a)(a)

]∣∣∣∣ ≥ ε] ≤ δ

for ε > 0. Thus, with m = n
(
OPT
ε

)2
log
(
2n
δ

)
total

samples in one round, by a union bound over each of the
estimates holding with probability 1− δ/n individually,
we get that all the estimates hold simultaneously with
probability 1− δ.

We can now describe the (almost) full version of the
main algorithm which uses these estimates. Note that
we can force the algorithm to stop after any round to
obtain the desired adaptive complexity with probability
1. In our analysis, the loss from the event that the
algorithm is forced to stop when the desired adaptivity
is reached is accounted for in the δ probability of failure
of the approximation guarantee of the algorithm.

Algorithm 6 Amortized-Filtering-Proxy

Input: bound on number of iterations r, sample com-
plexity m, proxy v?

S ← ∅
for 20

ε epochs do
X ← N,T ← ∅
vS (X)← EstimateSet (X,m)
while vS (X) < (ε/20)(v? − f(S)) and |S ∪ T | < k

do
for a ∈ X do Non-adaptive loop

vS (X, a)← EstimateMarginal(X \ S,m, a)

X ← X \ {a : vS (X, a)
< (1 + ε/2) (1− ε) (v? − f(S)) /k}

T ← T ∪R, where R ∼ U(X)
vS (X)← EstimateSet (X,m)

S ← S ∪ T
return S

E.1.2 Estimates of OPT The main idea to estimate
OPT is to have O(ε−1 log n) values vi such that one of
them is guaranteed to be a (1−ε)-approximation to OPT.
To obtain such values, we use the simple observation
that the singleton a? with largest value is at least a 1/n
approximation to OPT.

More formally, let a? = argmaxa∈N f(a) be the
optimal singleton, and vi = (1 + ε)i · f (a?) . We
argue that there exists some i ∈

[
ε−1 log n

]
such that

OPT ≤ vi ≤ (1 + ε) · OPT. By submodularity, we get
f(a?) ≥ 1

kOPT ≥
1
nOPT. By monotonicity, we have

f(a?) ≤ OPT. Combining these two inequalities, we get
v0 ≤ OPT ≤ vε−1 logn. By the definition of vi, we then
conclude that there must exists some i ∈

[
ε−1 log n

]
such that OPT ≤ vi ≤ (1 + ε) · OPT.

Since the solution obtained for the unknown vi
which approximates OPT well is guaranteed to be a good
solution, we run the algorithm in parallel for each of
these values and return the solution with largest value.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

We obtain the full algorithm Amortized-Filtering-
Full which we describe next.

Algorithm 7 Amortized-Filtering-Full

Input: bounds on number of outer-iterations r, sample
complexity m, and precision ε
Query f(a1), . . . , f(an)
a? ← argmaxai f(ai)
for i ∈

{
0, . . . , ε−1 log n

}
do Non-adaptive loop

v? ← (1 + ε)i · f (a?)
Xi ← Amortized-Filtering-Proxy(v?)

return best solution Xi: argmaxXi:i∈[ε−1 logn] f(Xi)

E.2 Analysis of the Amortized-Filtering-Full
algorithm We bound the number of elements removed
from X in each round of the full algorithm.

Lemma E.3. Assume (1 − ε/20)OPT ≤ v? ≤ OPT and
0 < ε < 1/2. For any S and r, at the iteration i of
filtering during any epoch j of Amortized-Filtering-
Proxy, with probability 1− δ, we have

|Xi+1| <
1

1 + ε/3
|Xi|.

where Xi and Xi+1 are the set X before and after
this ith iteration and with sample complexity m =

O
(
n
(
k+r
ε

)2
log
(
n
δ

))
at each round.

Proof. At a high level, since the surviving elements must
have high value and a random set has low value, we
can then use the thresholds to bound how many such
surviving elements there can be while also having a
random set of low value. To do so, we focus on the
value of f(Ri ∩Xi+1) of the surviving elements Xi+1 in
a random set Ri ∼ DXi ,

E [fS(Ri ∩Xi+1)]

≥E

 ∑
a∈Ri∩Xi+1

fS∪(Ri∩Xi+1\a)(a)


≥E

 ∑
a∈Xi+1

1a∈Ri · fS∪(Ri\a)(a)


=

∑
a∈Xi+1

E
[
1a∈Ri · fS∪(Ri\a)(a)

]
.

=
∑

a∈Xi+1

Pr [a ∈ Ri] · E
[
fS∪(Ri\a)(a)|a ∈ Ri

]
≥

∑
a∈Xi+1

Pr [a ∈ Ri] · E
[
fS∪(Ri\a)(a)

]

Next, we have

E
[
fS∪(Ri\a)(a)

]
≥vS(X, a)− ε

20k
(1 + ε/2) (1− ε) (v? − f(S))

≥ (1− ε/20)
1

k
(1 + ε/2) (1− ε) (v? − f(S))

Combining the two previous equations,

E [fS(Ri ∩Xi+1)] ≥ |Xi+1| ·
1

r|Xi|
· (1− ε/20) (1 + ε/2) (1− ε) (v? − f(S)) .

Next, by the algorithm and by Lemma E.2,

(1 + ε/20)
1

r
(1− ε) (v? − f(S))

≥vS(X) +
ε

20

1

r
(1− ε) (v? − f(S))

>E [fS(Ri)] .

By monotonicity, we get E [fS(Ri)] ≥ E [fS(Ri ∩Xi+1)].
Finally, by combining the above inequalities, we con-
clude that

|Xi+1| ≤
1

(1− ε/20)2(1 + ε/2)
|Xi| ≤

1

1 + ε/3
|Xi|

where, with probability 1−δ, all the estimates hold with
sample complexity

m = O

(
n

(
k + r

ε

)2

log
(n
δ

))

per round by Lemma E.2 and since v? ≥ (1− ε/20)OPT.

Lemma E.4. Assume (1 − ε/20)OPT ≤ v? ≤ OPT and
0 < ε < 1/2. For any epoch j, let Ri ∼ U(X) be
the random set at iteration i of filtering during epoch j.
For all r, ρ > 0, if epoch j of Amortized-Filtering-
Proxy has not ended after ρ iterations of filtering, then,
with probability 1− δ,

E
R1,...,Rρ

[
fS+

j ∪(∪
ρ
i=1Ri)

(O)
]

≥
(

1− ρ

r
− ε/10

)
· (OPT− f(Sj))

where Sj and S+
j are the set S at start and end of epoch

j, with sample complexity

m = O
(
ρ
(ρ
ε

)2
log
(ρ
δ

))
per epoch.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. By the condition to have a filtering iteration, a
random set R ∼ D must have low value at each of the
Filter iterations:

E
R1,...,Rρ

[
fS+

j ∪(∪
ρ
i=1Ri)

(O)
]

= E
R1,...,Rρ

[
fS+

j
(O ∪ (∪ρi=1Ri))

]
− E
R1,...,Rρ

[
fS+

j
((∪ρi=1Ri))

]
≥OPT− f(S+

j)− E
R1,...,Rρ

[
fS+

j
((∪ρi=1Ri))

]
≥OPT− f(Sj)−

ε

20
(OPT− f(Sj))

− E
R1,...,Rρ

[
fS+

j
((∪ρi=1Ri))

]
.

Next,

E
R1,...,Rρ

[
fS+

j
((∪ρi=1Ri))

]
≤

ρ∑
i=1

E
Ri

[
fS+

j
(Ri)

]
≤

ρ∑
i=1

E
Ri

[
fSj,i (Ri)

]
≤

ρ∑
i=1

E
Ri

[
vSi,j (Xi) +

ε

20ρ
(v? − f(Sj))

]
≤

ρ∑
i=1

E
Ri

[
vSi,j (Xi) +

ε

20ρ
(OPT− f(Sj))

]
≤

ρ∑
i=1

(
1− ε
r

+
ε

20ρ

)
(OPT− f(Sj))]

Thus,

E
R1,...,Rρ

[
fS+

j ∪(∪
ρ
i=1Ri)

(O)
]

≥
(

1− ε/20− ρ

r
− ε/20

)
· (OPT− f(Sj)) .

where, with probability 1 − δ, the estimates hold
for all ρ iterations with sample complexity m =

O
(
ρ
(
ρ
ε

)2
log
(
ρ
δ

))
per round by Lemma E.2 and since

v? ≥ (1− ε/20)OPT.

Lemma E.5. Assume (1 − ε/20)OPT ≤ v? ≤ OPT and
0 < ε < 1/2. If r ≥ 20ρε−1, then, with probability
1 − δ, the set Xρ of elements that survive ρ iterations
of filtering at any epoch j of Amortized-Filtering-
Proxy satisfies

fS+
j

(Xρ) ≥ (ε/4) (1− ε) (v? − f(Sj)) .

where Sj and S+
j are the set S at the start and

end of epoch j and with sample complexity m =

O
(
ρ
(
k
ε

)2
log
(
ρ
δ

))
per epoch.

Proof. Let j be any epoch. Similarly as for Lemma 2.2,
the proof defines a subset T of the optimal solution
O and then shows show that elements in T survive
ρ iterations of filtering at epoch j and show that
fS+

j
(T) ≥ (ε/4) (1− ε) (OPT− f(Sj)) . We define the

following marginal contribution ∆` of each optimal
element o`:

∆` := E
R1,...,Rρ

[
fS+

j ∪O`−1∪(∪ρi=1Ri\{o`})
(o`)

]
.

We define T to be the set of optimal elements o`
such that ∆` ≥ (1− ε/4)∆ where

∆ :=
1

k

(
1− ρ

r
− ε/10

)
· (OPT− f(Sj)) .

We first argue that elements in T survive ρ iterations of
filtering at epoch j. For element o` ∈ T , we have

∆` ≥ (1− ε/4)∆

≥ 1

k
(1− ε/4)

(
1− ρ

r
− ε/10

)
· (OPT− f(Sj))

≥ 1

k
(1− 5ε/12) · (OPT− f(Sj))

≥ 1

k
(1 + ε/2)(1− ε)(1 + ε/20) · (OPT− f(Sj)) .

where the third inequality is by the condition on r.
Thus, at iteration i ≤ ρ, by Lemma E.2 and by
submodularity,

vSj,i(Xi) +
ε

20
· 1

k
(1 + ε/2)(1− ε) (OPT− f(Sj))

≥E
Ri

[
fSj,i∪(Ri\{o`})(o`)

]
≥ E
R1,...,Rρ

[
fS+

j ∪O`−1∪(∪ρi=1Ri\{o`})
(o`)

]
=∆`

≥1

k
(1 + ε/2)(1− ε)(1 +

ε

20
) · (OPT− f(Sj)) ,

where, with probability 1 − δ, the estimates hold
for all ρ iterations with sample complexity m =

O
(
ρ
(
k
ε

)2
log
(
ρ
δ

))
. Thus,

vSj,i(Xi) ≥
1

k
(1 + ε/2)(1− ε) · (OPT− f(Sj))

≥ 1

k
(1 + ε/2)(1− ε) · (v? − f(Sj))

and o` survives all iterations i ≤ ρ, for all o` ∈ T .

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Next, we argue that fS+
j

(T) ≥
(ε/4) (1− ε) (OPT− f(Sj)) . Note that

k∑
`=1

∆` ≥ E
R1,...,Rρ

[
fS+

j ∪(∪
ρ
i=1Ri)

(O)
]

≥
(

1− ρ

r
− ε/10

)
· (OPT− f(Sj))

= k∆.

where the second inequality is by Lemma E.4. Next,
observe that

k∑
`=1

∆` =
∑
o`∈T

∆` +
∑

j∈O\T

∆` ≤
∑
o`∈T

∆` + k(1− ε/4)∆.

By combining the two inequalities above, we get∑
o`∈T ∆` ≥ kε∆/4. Thus, by submodularity,

fS+
j

(T) ≥
∑
o`∈T

fS+
j ∪O`−1

(o`)

≥
∑
o`∈T

E
R1,...,Rρ

[
fS+

j ∪O`−1∪(∪ρi=1Ri\{o`})
(o`)

]
=
∑
o`∈T

∆`

≥kε∆/4.

We conclude that

fS+
j

(Xρ) ≥ fS+
j

(T)

≥ kε∆/4

=
ε

4

(
1− ρ

r
− ε/10

)
· (OPT− f(Sj))

≥ ε

4
· (1− ε) · (OPT− f(Sj))

≥ ε

4
· (1− ε) · (v? − f(Sj)) .

where the first inequality is by monotonicity and since
T ⊆ Xρ is a set of surviving elements.

Lemma E.6. Assume (1 − ε/20)OPT ≤ v? ≤ OPT and
constant 0 < ε < 1/2. For any epoch j, with proba-
bility 1 − δ, there are at most 3ε−1 log n iterations of
filtering when the number of iterations of Amortized-
Filtering-Proxy with r = 60ε−2 log n and with sam-

ple complexity m = O
(
n
(
k+r
ε

)2
log
(
n
δ

))
at each round.

Proof. If an epoch j has not yet terminated after
3ε−1 log n iterations of filtering, then, by Lemma E.3, at
most k/r elements survived these 3ε−1 log n iterations.
By Lemma E.5, with the set Xρ of elements that survive
these 3ε−1 log n iterations is such that fS+

j
(Xρ) ≥

(ε/4) · (1− ε) (v? − f(Sj)). Since there are at most k/r
surviving elements, R = Xρ for R ∼ U(Xρ) and

E
[
fS+

j
(R)
]
≥ fS+

j
(Xρ)

≥ ε

4
· (1− ε) (v? − f(Sj))

≥ 1

r
· (1− ε)

(
v? − f(S+

j)
)

where the last inequality is by monotonicity since Sj ⊆
S+
j . Thus the current call to the Filter subroutine

terminates and Xρ is added to S+
j by the algorithm.

Next,

fSj (S
+
j ∪Xρ) ≥ fSj (Xρ)

≥ fS+
j

(Xρ)

≥ ε

4
· (1− ε) (OPT− f(Sj))

≥ ε

20
(v? − f(Sj))

where the first inequality is by monotonicity and the
second by submodularity. Thus, epoch j ends.

We are now ready to prove the main result for
Amortized-Filtering-Proxy.

Lemma E.7. Assume (1 − ε/20)OPT ≤ v? ≤ OPT.
The Amortized-Filtering-Proxy algorithm is a
O
(
ε−2 log n

)
-adaptive algorithm that obtains, with

probability 1 − δ, a 1 − 1/e − ε approximation,
with r = 60ε−2 log n. Its sample complexity m =

O
(
n (k + log n)

2
ε−4 log

(
n
δ

))
at each round.

Proof. First, consider the case where the algorithm
terminates after r iterations of adding elements to
S. Let Si denote the solution S at the ith iter-
ation of Amortized-Filtering-Proxy. The algo-
rithm increases the value of the solution S by at least
(1− ε) (v? − f(S)) /r at every iteration with k/r new
elements. Thus,

f(Si) ≥ f(Si−1) +
1− ε
r

(v? − f(Si−1))

and we obtain

f(S) ≥
(

1− e−(1−ε)
)
v?

≥
(

1− e−(1−ε) − ε/20
)
OPT

≥
(

1− 1 + 2ε

e
− ε/20

)
OPT

≥
(

1− 1

e
− ε
)
OPT

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

similarly as for Theorem 2.1.
Next, consider the case where the algorithm ter-

minated after (ε/20)−1 epochs. At every epoch j,
the algorithm increases the value of the solution S by
(ε/20)(v? − f(Sj)). Thus,

f(Sj) ≥ f(Sj−1) +
ε

20
· (v? − f(Sj−1)) .

Similarly as in the first case, we get that after (ε/20)−1

epochs, f(S) ≥ (1− e−1)v? ≥ (1− e−1 − ε/20)v?.
The number of rounds is at most 60ε−2 log n +

60ε−2 log n since there are at most r = 60ε−2 log n
iterations of adding elements and at most (ε/20)−1

epochs, each of which with at most 3ε−1 log n filtering
iterations by Lemma E.6.

Proof of Theorem 3.2. With 20ε−1 log n different
guesses v? of OPT, there is at least one v? in Amortized-
Filtering-Full that is such that (1 − ε/20)OPT ≤
v? ≤ OPT. The solution to Amortized-Filtering-
Proxy(v?) with such a v? is then, with probability 1−δ,
a 1 − 1/e − ε approximation with sample complexity

m = O
(
n (k + log n)

2
ε−4 log

(
n
δ

))
at each round and

with adaptivity O
(
ε−2 log n

)
by Lemma E.7. Since

Amortized-Filtering-Full picks the best solution
returned by all instances of Amortized-Filtering-
Proxy, it also obtains with probability 1−δ, a 1−1/e−ε
approximation.

Finally, since there are 20ε−1 log n non-adaptive
instances of Amortized-Filtering-Proxy, each
with adaptivity O

(
3ε−2 log n

)
, the total number of

adaptive rounds of Amortized-Filtering-Full is
O
(
ε−2 log n

)
. The total query complexity per round

over all guesses is

m = O
(
n log nε−5 (k + log n)

2
log
(n
δ

))
.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Technical overview
	Paper organization
	Related work
	Basic definitions and notation

	Iterative-Filtering: An O(log2 n)-adaptive Algorithm
	Description of the algorithm
	Analysis
	Bounding the value of elements that survive Filter

	The adaptivity of Filter

	Amortized-Filtering: An O(logn)-adaptive Algorithm
	Description of the algorithm
	Analysis of Amortized-Filtering
	Bounding the value of elements that survive an epoch
	The adaptivity of an epoch

	Main result

	Additional Discussion of Related Work
	Adaptivity
	Related models of parallelism
	Parallel computing and depth
	Map-Reduce

	Applications
	Previous work on adaptivity for submodular maximization

	Missing Analysis from Section 2
	Missing Analysis from Section 3
	The Full Algorithm
	Description of the full algorithm
	Estimates of expectations in one round via sampling
	Estimates of OPT

	Analysis of the Amortized-Filtering-Full algorithm

