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ABSTRACT

In this paper we study submodular maximization under a matroid
constraint in the adaptive complexity model. This model was re-
cently introduced in the context of submodular optimization to
quantify the information theoretic complexity of black-box opti-
mization in a parallel computation model. Informally, the adaptivity
of an algorithm is the number of sequential rounds it makes when
each round can execute polynomially-many function evaluations in
parallel. Since submodular optimization is regularly applied on large
datasets we seek algorithms with low adaptivity to enable speedups
via parallelization. Consequently, a recent line of work has been
devoted to designing constant factor approximation algorithms for
maximizing submodular functions under various constraints in the
adaptive complexity model.

Despite the burst in work on submodular maximization in the
adaptive complexity model, the fundamental problem of maximiz-
ing a monotone submodular function under a matroid constraint
has remained elusive. In particular, all known techniques fail for
this problem and there are no known constant factor approximation
algorithms whose adaptivity is sublinear in the rank of the matroid
k or in the worst case sublinear in the size of the ground set n.

In this paper we present an approximation algorithm for the
problem of maximizing a monotone submodular function under a
matroid constraint in the adaptive complexity model. The approxi-
mation guarantee of the algorithm is arbitrarily close to the optimal
1 —1/e and it has near optimal adaptivity of O(log(n) log(k)). This
result is obtained using a novel technique of adaptive sequencing
which departs from previous techniques for submodular maximiza-
tion in the adaptive complexity model. In addition to our main result
we show how to use this technique to design other approximation
algorithms with strong approximation guarantees and polyloga-
rithmic adaptivity.
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1 INTRODUCTION

In this paper we study submodular maximization under matroid
constraints in the adaptive complexity model. The adaptive com-
plexity model was recently introduced in the context of submodular
optimization in [BS18a] to quantify the information theoretic com-
plexity of black-box optimization in a parallel computation model.
Informally, the adaptivity of an algorithm is the number of sequen-
tial rounds it makes when each round can execute polynomially-
many function evaluations in parallel. The concept of adaptivity is
heavily studied in computer science and optimization as it provides
a measure of efficiency of parallel computation.

Since submodular optimization is regularly applied on very large
datasets, we seek algorithms with low adaptivity to enable speedups
via parallelization. For the basic problem of maximizing a monotone
submodular function under a cardinality constraint k the celebrated
greedy algorithm which iteratively adds to the solution the element
with largest marginal contribution is Q(k) adaptive. Until very
recently, even for this basic problem, there was no known constant-
factor approximation algorithm whose adaptivity is sublinear in
k. In the worst case k € Q(n) and hence greedy and all other
algorithms had adaptivity that is linear in the size of the ground
set.

The main result in [BS18a] is an adaptive sampling algorithm for
maximizing a monotone submodular function under a cardinality
constraint that achieves a constant factor approximation arbitrarily
close to 1/3 in O(log n) adaptive rounds as well as a lower bound
that shows that no algorithm can achieve a constant factor approx-
imation in 6(log n) rounds. Consequently, this algorithm provided
a constant factor approximation with an exponential speedup in
parallel runtime for monotone submodular maximization under a
cardinality constraint.

In [BRS19, EN19], the adaptive sampling technique was extended
to achieve an approximation guarantee arbitrarily close to the op-
timal 1 — 1/e in O(logn) adaptive rounds. This result was then
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obtained with a linear number of queries [FMZ19], which is op-
timal. Functions with bounded curvature have also been studied
using adaptive sampling under a cardinality constraint [BS18b].
The more general family of packing constraints, which includes
partition and laminar matroids, has been considered in [CQ19]. In
particular, under m packing constraints, a 1—1/e — € approximation
was obtained in O(log? mlog n) rounds using a combination of con-
tinuous optimization and multiplicative weight update techniques.

1.1 Submodular Maximization under a Matroid
Constraint

For the fundamental problem of maximizing a monotone submod-
ular function under a general matroid constraint it is well known
since the late 70s that the greedy algorithm achieves a 1/2 approxi-
mation [NWF78] and that even for the special case of cardinality
constraint no algorithm can obtain an approximation guarantee
better than 1—1/e using polynomially-many value queries [NW78].
Thirty years later, in seminal work, Vondrak introduced the contin-
uous greedy algorithm which approximately maximizes the multi-
linear extension of the submodular function [CCPV07] and showed
it obtains the optimal 1 — 1/e approximation guarantee [Von08].

Despite the surge of interest in adaptivity of submodular max-
imization, the problem of maximizing a monotone submodular
function under a matroid constraint in the adaptive complexity
model has remained elusive. As we discuss in Section 1.4, when
it comes to matroid constraints there are fundamental limitations
of the techniques developed in this line of work. The best known
adaptivity for obtaining a constant factor approximation guarantee
for maximizing a monotone submodular function under a matroid
constraint is achieved by the greedy algorithm and is linear in the
rank of the matroid. The best known adaptivity for obtaining the
optimal 1 — 1/e guarantee is achieved by the continuous greedy
and is linear in the size of the ground set.

Is there an algorithm whose adaptivity is sublinear in the size of the
rank of the matroid that obtains a constant factor approximation
guarantee?

1.2 Main Result

Our main result is an algorithm for the problem of maximizing a
monotone submodular function under a matroid constraint whose
approximation guarantee is arbitrarily close to the optimal 1 —1/e
and has near optimal adaptivity of O(log(n) log(k)).

THEOREM. Foranye > 0 thereis an O (log(n) log (g) 5—13) adap-
tive algorithm that, with probability 1 —o(1), obtainsal—1/e — O(e)
approximation for maximizing a monotone submodular function un-
der a matroid constraint.

Our result provides an exponential improvement in the adap-
tivity for maximizing a monotone submodular function under a
matroid constraint with an arbitrarily small loss in approximation
guarantee. As we later discuss, beyond the information theoretic
consequences, this implies that a very broad class of combinatorial
optimization problems can be solved exponentially faster in stan-
dard parallel computation models given appropriate representations
of the matroid constraints.
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Our main result is largely powered by a new technique developed
in this paper which we call adaptive sequencing. This technique
proves to be extremely powerful and is a departure from all previous
techniques for submodular maximization in the adaptive complexity
model. In addition to our main result we show that this technique
gives us a set of other strong results that include:

e An O(log(n)log(k)) adaptive combinatorial algorithm that
obtains a % — € approximation for monotone submodular
maximization under a matroid constraint (Theorem 1);

e An O(log(n)log(k)) adaptive combinatorial algorithm that
obtains a ﬁ — € approximation for monotone submodular
maximization under intersection of P matroids (Theorem 7);

e An O(log(n)log(k)) adaptive algorithm that obtains an ap-
proximation of 1 — 1/e — € for monotone submodular max-
imization under a partition matroid constraint that can be
implemented in the PRAM model with polylogarithmic depth
(Appendix A).

In addition to these results the adaptive sequencing technique
can be used to design algorithms that achieve the same results
as those for cardinality constraint in [BRS19, EN19, FMZ19] and
for non-monotone submodular maximization under cardinality
constraint as in [BBS18] (Appendix A).

1.3 Technical Overview

The standard approach to obtain an approximation guarantee arbi-
trarily close to 1 —1/e for maximizing a submodular function under
a matroid constraint M is by the continuous greedy algorithm due
to Vondrak [Von08]. This algorithm approximately maximizes the
multilinear extension F of the submodular function [CCPV07] in
O(n) adaptive steps. In each step the algorithm updates a continu-
ous solution x € [0, 1] in the direction of 1g, where S is chosen by
maximizing an additive function under a matroid constraint.

In this paper we introduce the accelerated continuous greedy
algorithm whose approximation is arbitrarily close to the optimal
1—1/e. Similarly to continuous greedy, this algorithm approximately
maximizes the multilinear extension by carefully choosing S € M
and updating the solution in the direction of 1. In sharp contrast
to continuous greedy, however, the choice of S is done in a manner
that allows making a constant number of updates to the solution,
each requiring O(log(n)log(k)) adaptive rounds. We do this by
constructing a feasible set S using O(log(n) log(k)) adaptive rounds,
at each one of the 1/ iterations of accelerated continuous greedy,
s.t. S approximately maximizes the contribution of taking a step of
constant size A in the direction of 15. We construct S via a novel
combinatorial algorithm introduced in Section 2.

The new combinatorial algorithm achieves by itself a 1/2 approx-
imation for submodular maximization under a matroid constraint
in O(log(n) log(k)) adaptive rounds. This algorithm is developed
using a fundamentally different approach from all previous low
adaptivity algorithms for submodular maximization (see discussion
in Section 1.4). This new framework uses a single random sequence
(a1, .. .,ay) of elements. In particular, for each i € [k], element
a; is chosen uniformly at random among all elements such that
SU{ai,...,a;} € M. This random feasibility of each element
is central to the analysis. Informally, this ordering allows the se-
quence to navigate randomly through the matroid constraint. For
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each position i in this sequence, we analyze the number of elements
asuch that SU {ay,...,a;} Ua € Mand fsy(q,, ... q;)(a)is large.
The key observation is that if this number is large at a position
i, by the randomness of the sequence, fsyq,,... q,}(@i+1) is large
w.h.p., which is important for the approximation. Otherwise, if this
number is low we discard a large number of elements, which is
important for the adaptivity.

In Section 3 we analyze the approximation of the accelerated
continuous greedy algorithm, which is the main result of the paper.
We use the algorithm from Section 2 to selects S as the direction
and show F(x + A1s) — F(x) = (1 — €)A(OPT — F(x)), which implies
al—1/e — e approximation.

Finally, in Section 4 we parallelize the matroid oracle queries.
The random sequence generated in each iteration of the combina-
torial algorithm in Section 2 is independent of function evaluations
and requires zero adaptive rounds, though it sequentially queries
the matroid oracle. For practical implementation it is important
to parallelize the matroid queries to achieve fast parallel runtime.
When given explicit matroid constraints such as for uniform or par-
tition matroids, this parallelization is relatively simple (Section A).
For general matroid constraints given via rank or independence
oracles we show how to parallelize the matroid queries in Section 4.
We give upper and lower bounds by building on the seminal work
of Karp, Upfal, and Wigderson on the parallel complexity of finding
the base of a matroid [KUW388]. For rank oracles we show how
to execute the algorithms with O(log(n) log(k)) parallel steps that
matches the O(log(n) log(k)) adaptivity. For independence oracles
we show how to execute the algorithm using O(n'/?) steps of par-
allel matroid queries and give an Q(n'/3) lower bound even for
additive functions and partition matroids.

1.4 Previous Optimization Techniques in the
Adaptive Complexity Model

The random sequencing approach developed in this paper is a
fundamental departure from the adaptive sampling approach in-
troduced in [BS18a] and employed in previous combinatorial al-
gorithms that achieve low adaptivity for submodular maximiza-
tion [BS18b, BBS18, BRS19, EN19, FMZ19, FMZ18]. In adaptive sam-
pling an algorithm samples multiple large feasible sets at every
iteration to determine elements which should be added to the solu-
tion or discarded. The issue with these uniformly random feasible
sets is that, although they have a simple structure for uniform ma-
troids, they are complex objects to generate and analyze for general
matroid constraints.

Chekuri and Quanrud recently obtained a 1 — 1/e — € approxima-
tion in O(log? mlog n) adaptive rounds for the family of m packing
constraints, which includes partition and laminar matroids [CQ19].
This setting was then also considered for non-monotone functions
in [ENV18]. Their approach also uses the continuous greedy algo-
rithm, combined with a multiplicative weight update technique to
handle the constraints. Since general matroids consist of exponen-
tially many constraints, a multiplicative weight update approach
over these constraints is not feasible. More generally packing con-
straints assume an explicit representation of the matroid. For gen-
eral matroid constraints, the algorithm is not given such a repre-
sentation but an oracle. Access to an independence oracle for a
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matroid breaks these results as shown in Section 4: any constant
factor approximation algorithm with an independence oracle must
have Q(n'/3) sequential steps.

1.5 Preliminaries

Submodularity. A function f : 2N — R, over ground set N =
[n] is submodular if the marginal contributions fs(a) = f(S U
a) — f(S) of an element a € N \ S to a set S C N are diminishing,
meaning fs(a) > fr(a)forallS € T € Nanda € N\T. Throughout
the paper, we abuse notation by writing S U a instead of S U {a}
and assume f is monotone, so f(S) < f(T) for all S C T. The
value of the optimal solution O for the problem of maximizing the
submodular function under some constraint M is denoted by OPT,
ie. O := argmaxg 5 f(S) and OPT := f(O).

Adaptivity. Given a value oracle f, an algorithm is r-adaptive
if every query f(S) for the value of a set S occurs at a round i € [r]
s.t. S is independent of the values f(S”) of all other queries at round
i, with at most poly(n) queries at every round.

Matroids. A set system M C 2N is a matroid if it satisfies the
downward closed and augmentation properties. A set system M is
downward closed if for all S C T such that T € M, then S € M.
The augmentation property is that if S,T € M and |S| < |T|, then
there exists a € T such that SUa € M. We callaset S € M
feasible or independent. The rank k = RANK(M) of a matroid is
the maximum size of an independent set S. The rank RANK(S) of
a set S is the maximum size of an independent subset T C S. A
set B € M is called a base of M if |B| = RANK(M). The matroid
polytope P(M) is the collection of points x € [0, 1]” in the convex
hull of the independent sets of M, or equivalently the points x such
that }};cs x; < RANK(S) for all S C [n].

The multilinear extension. The multilinear extension F : [0, 1]" —
R+ of a function f maps a point x € [0, 1]” to the expected value
of a random set R ~ x containing each element i € [n] with prob-
ability x; independently, i.e. F(x) = Egr-x[f(R)]. We note that
given an oracle for f, one can estimate F(x) arbitrarily well in
one round by querying in parallel a sufficiently large number of
samples Ry, ..., Ry, drawniid. from x and taking the average value
of f(R;) over i € [m] [CJV15, CQ19]. For ease of presentation, we
assume throughout the paper that we are given access to an exact
value oracle for F in addition to f. The results which rely on F
then extend to the case where the algorithm is only given an or-
acle for f with an arbitrarily small loss in the approximation, no
loss in the adaptivity, and additional O(nlog n) factor in the query
complexity.!

2 THE COMBINATORIAL ALGORITHM

In this section we describe a combinatorial algorithm used at ev-
ery iteration of the accelerated continuous greedy algorithm to
find a direction 1g for an update of a continuous solution. In the
next section we will show how to use this algorithm as a subpro-
cedure in the accelerated continuous greedy algorithm to achieve
an approximation arbitrarily close to 1 — 1/e with O(log(n) log(k))

'With O(e2n log n) samples, F(x) is estimated within a (1 + €) multiplicative factor
with high probability[CQ19].
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adaptivity. The optimization of this direction S is itself an instance
of maximizing a monotone submodular function under a matroid
constraint. The main result of this section is a O(log(n) log(k)) adap-
tive algorithm, which we call ADAPTIVE SEQUENCING, that returns
a solution {a;}; s.t., for all i, the marginal contribution of a; to
{a1,...,ai—1} is near optimal with respect to all elements a s.t.
{a1,...,ai-1,a} € M. We note that this guarantee also implies
that ADAPTIVE SEQUENCING itself achieves an approximation that
is arbitrarily close to 1/2 with high probability.

As discussed in Section 1.3 unlike all previous low-adaptivity
combinatorial algorithms for submodular maximization, the Apap-
TIVE SEQUENCING algorithm developed here does not iteratively
sample large sets of elements in parallel at every iteration. Instead,
it samples a single random sequence of elements in every iteration.
Importantly, this sequence is generated without any function eval-
uations, and therefore can be executed in zero adaptive rounds.
The goal is then to identify a high-valued prefix of the sequence
that can be added to the solution and discard a large number of
low-valued elements at every iteration. Identifying a high valued
prefix enables the approximation guarantee and discarding a large
number of elements in every iteration ensures low adaptivity.

2.1 Generating Random Feasible Sequences

The algorithm crucially requires generating a random sequence of
elements in zero adaptive rounds.

DEFINITION 1. Given a matroid M we say (ay, . . ., aRANK(M))
is a random feasible sequence if for all i € [RANK(M)], a; is an
element chosen u.a.r. from {a : {a1,...,aj-1,a} € M}.

A simple way to obtain a random feasible sequence is by sam-
pling feasible elements sequentially.

Algorithm 1 RANDOM SEQUENCE

Input: matroid M
for i = 1 to RaNK(M) do
X —{a:{a1,...,ai-1,a} € M}
a; ~ a uniformly random element from X
return ap, ..., dgang(M)

It is immediate that Algorithm 1 outputs a random feasible se-
quence. Since Algorithm 1 is independent of f, its adaptivity is zero.
For ease of presentation, we describe the algorithm using RANDOM
SEQUENCE as a subroutine, despite its sequential calls to the ma-
troid oracle. In Section 4 we show how to efficiently parallelize this
procedure using standard matroid oracles.

2.2 The Algorithm

The main idea behind the algorithm is to generate a random fea-
sible sequence in each adaptive round, and use that sequence to
determine which elements should be added to the solution and
which should be discarded from consideration. Given a position
i€{1,...,1l} in a sequence (a1, ay, ..., a;), a subset S, and thresh-
old ¢, we say that an element a is good if adding it to SU{ay, ..., a;}
satisfies the matroid constraint and its marginal contribution to
SuU{ai,...,a;} is at least threshold ¢. In each adaptive round the
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algorithm generates a random feasible sequence and finds the index
i* which is the minimal index i such that at most a 1 — € fraction
of the surviving elements X are good. The algorithm then adds
the set {ai,...,a;x} to S. A formal description of the algorithm is
included below. We use M(S,X) := {T € X : SUT € M} to denote
the matroid over elements X where a subset is feasible in M(X, S)
if its union with the current solution S is feasible according to M.

Algorithm 2 ADAPTIVE SEQUENCING

Input: function f, feasibility constraint M
S «— 0,t «— maxgen f(a)
for A iterations do
X <N
while X # 0 do
at, - - - Aank(M(s, X)) < RANDOM SEQUENCE(M(S, X))
Xi <« {a € X S U {ai,...,aj,a} €
Mand fsu{ay,...,a;}(@) 2 t}
i* — min{i:|X;| < (1-¢)X|}
S«—SuU{ag,....a;+}
X Xi*
te—(1-e)
return S

Intuitively, adding {aj, . . ., a;« } to the current solution S is desir-
able for two important reasons. First, for a random feasible sequence
we have that SU {ay, ...,a;+«} € M and for each element a; at a
position i < i*, there is a high likelihood that the marginal contri-
bution of a; to the previous elements in the sequence is at least ¢.
Second, by definition of i* a constant fraction € of elements are not
good at that position, and we discard these elements from X. This
discarding guarantees that there are at most logarithmically many
iterations until X is empty.

The threshold ¢ maintains the invariant that it is approximately
an upper bound on the optimal marginal contribution to the current
solution. By submodularity, the optimal marginal contribution to
S decreases as S grows. Thus, to maintain the invariant, the algo-
rithm iterates over decreasing values of . In particular, at each of

A=0 (é log (%)) iterations, where k := RANK(M), the algorithm
decreases t by a 1 —e€ factor when there are no more elements which
can be added to S with marginal contribution at least ¢, so when X
is empty.

2.3 Adaptivity

In each inner-iteration the algorithm makes polynomially-many
queries that are independent of each other. Indeed, in each itera-
tion, we generate X1, . . ., Xj_|s| non-adaptively and make at most
n function evaluations for each X;. The adaptivity immediately fol-
lows from the definition of i* that ensures an ¢ fraction of surviving
elements in X are discarded at every iteration.

LEmMMA 1. WithA =0 (% log (é)) ADAPTIVE SEQUENCING has
adaptivity O (log(n) log (é) 5_12 )

ProoF. The for loop has A iterations. The while loop has at most
O(e!log n) iterations since, by definition of i*, an € fraction of
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the surviving elements are discarded from X at every iteration. We
can find i* by computing X; for each i € [k] in parallel in one
round. O

We note that the query complexity, O (nk log(n) log (%) é), of
the algorithm can be improved to O (n log(n)log(k) log (%) ﬁ) if
we allow O (log(n) log(k)log (é) é) adaptivity by doing a binary

search over at most k sets X; to find i*. The details can be found in
Appendix B.

2.4 Approximation Guarantee

The main result for the approximation guarantee is that the al-

gorithm returns a solution S = {ay,...,q;} s.t. for all i < [, the
marginal contribution obtained by a; to {ay,...,a;-1} is near opti-
mal with respect to all elements a such that {ay,...,a;-1,a} € M.

To prove this we show that the threshold ¢ is an approximate upper
bound on the maximum marginal contribution.

LEMMA 2. Assume that f is submodular and that M is downward
closed. Then, at any iteration, t > (1 — €) max,.suqe M fs(a)-

Proor. The claim initially holds by the initial definitions of
t = maxgeN f(a),S = 0 and X = N. We show that this invariant is
maintained through the algorithm when either S or t are updated.

First, assume that at some iteration of the algorithm we have t >
(1—€e)maxg.suge m fs(a) and that S is updated to SU{ay, ..., a;* }.
Then, for all a such that SUa € M,

fsutar,...am }(@) < fs(@) < t/(1-€)
where the first inequality is by submodularity and the second by
the inductive hypothesis. Since {a : SU {ay,...,a;«} Ua e M} C
{a:SUa e M} by the downward closed property of M,
fSU{al,...,ai* }(a)

max
a:Su{ay,...,a;x JUaeM

< max )
a:SUaerSU{al,-..,ai*}( )

Thus, when S is updated to S U {ay,...,a;x}, we have t > (1 —
€) maXg:.su{ay,...,a;+ fuae M fs(a).

Next, consider an iteration where ¢ is updated to t’ = (1—e¢)t. By
the algorithm, X = 0 at that iteration with current solution S. Thus,
by the algorithm, for all a € N, a was discarded from X at some
previous iteration with current solution §” s.t. S’U{a1,...,a;x} C S.
Since a was discarded, it is either the case that S’ U {ay,...,a;+} U
a ¢ Mor fsyfa,...any(@ < LIS Ufar,...,apx}Va ¢ M
then S U a ¢ M by the downward closed property of M and since
§"U{ay,...,a;x} C S. Otherwise, fory(q,,....a,« }(a) < t and by
submodularity, fs(a) < fs'u{a,....a; (@) <t =1"/(1 = €). Thus,
Va e Nst.SUa € M, t’ > (1 - ¢)fs(a) and the invariant is
maintained. O

By exploiting the definition of i* and the random feasible se-
quence property we show that Lemma 2 implies that every element
added to S at some iteration j has near-optimal expected marginal
contribution to S. We define Xl.M ={aeX:SU{ay,...,a;}Vac
M}
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LEMMA 3. Assumethatay, ..., Agani(M(S, X)) is @ random feasible

sequence, then for all i < i*,

Eq, [fSU{al,...,a,-_l}(ai)]

>(1-e¢)? fsutan,....a;1 (i)

max
a:SU{ay,...,aj-1 }UaeM

Proor. By the random feasibility condition, we have
a; ~ fLI(Xi/Y‘I). We get

Pr[fsutan....ai (@) 2 ] -t
_Xial
XM
JXimal

- X

>(1-€)(1—-€ max
( )( )a:SU{al,..,,ai_l}UaeM

t
fsi_i(ai)

where the equality is by definition of X;_1, the first inequality since
X I.A_Al C X, and the second since i < i* and by Lemma 2. Finally, note

that E [fSU{al,...,a,»,l}(ai)] > Pr [fSU{al,...,a[,l}(ai) > t] -t. 0O

Next, we show that if every element a; in a solution
S ={ai,...,ax} of size k = RANK(M) has near-optimal expected
marginal contribution to S;—1 := {a1,...,ai—1}, then we obtain an
approximation arbitrarily close to 1/2 in expectation.

LEMMA 4. Assume that S = {a1,...,ar} s.t. Bg;lfs, (ai)] >
(1-e)maxgs, ,uaeM fs;_,(a) whereS; = {a1,...,a;}. Then, fora
matroid constraint M, we have E [ f(S)] > (1/2 — O(¢e))OPT.

Proor. Let O = {o1,...,0x} such that {aj,...,aj_1,0;} is feasi-
ble for all i, which exists by the augmentation property of matroids.
We get,

E[f(S)] = ). Elfs,,(a)]

ie[k]
>(1-¢€) > Elfs, (0]
i€lk]
> (1-€)f5(0) = (1= €)(OPT = £(S)). o

A corollary of the lemmas above is that ADAPTIVE SEQUENCING
has O(log(n) log(k)) adaptive rounds and provides an approxima-
tion that is arbitrarily close to 1/2, in expectation. To obtain this
guarantee with high probability we can simply run parallel in-
stances of the while-loop in the algorithm and include the elements
obtained from the best instance. We also note that the solution S
returned by ADAPTIVE SEQUENCING might have size smaller than
RANK(M), which causes an arbitrarily small loss for sufficiently
large A. We give the full details in Appendix B.

THEOREM 1. For any € > 0, there is an O (log(n) log (%) é)

adaptive algorithm that obtains a 1/2 — O(e) approximation with
probability 1 — o(1) for maximizing a monotone submodular function
under a matroid constraint.

In Appendix B, we generalize this result and obtaina 1/(P+1) —
O(e) approximation with high probability for the intersection of P
matroids.
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3 THE ACCELERATED CONTINUOUS
GREEDY ALGORITHM

In this section we describe the accelerated continuous greedy al-
gorithm that achieves the main result of the paper. This algorithm
employs the combinatorial algorithm from the previous section to
construct a continuous solution which approximately maximizes
the multilinear relaxation F of the function f. This algorithm re-
quires O(log(n) log(k)) adaptive rounds and it produces a continu-
ous solution whose approximation to the optimal solution is with
high probability arbitrarily close to 1 — 1/e. Finally, since the so-
lution is continuous and we seek a feasible discrete solution, it
requires rounding. Fortunately, by using either dependent round-
ing [CVZ09] or contention resolution schemes [VCZ11] this can be
done with an arbitrarily small loss in the approximation guarantee
without any function evaluations, and hence without any additional
adaptive rounds.

3.1 The Algorithm

The accelerated continuous greedy algorithm follows the same
principle as the (standard) continuous greedy algorithm [Von08]: at
every iteration, the solution x € [0, 1]” moves in the direction of a
feasible set S € M. The crucial difference between the accelerated
continuous greedy and the standard continuous greedy is in the
choice of this set S guiding the direction in which x moves. This dif-
ference allows the accelerated continuous greedy to terminate after
a constant number of iterations, each of which has O(log(n) log(k))
adaptive rounds, in contrast to the continuous greedy which re-
quires a linear number of iterations.

To determine the direction in every iteration, the accelerated
continuous greedy applies ADAPTIVE SEQUENCING on the surrogate
function g that measures the marginal contribution to x when
taking a step of size A in the direction of S. That is, g(S) := Fx(AS) =
F(x + AS) — F(x) where we abuse notation and write AS instead of
Mg for A € [0,1] and S € N. Since f is a monotone submodular
function it is immediate that g is monotone and submodular as well.

Algorithm 3 AccELERATED CONTINUOUS GREEDY

Input: matroid M, step size A
X< 0
for 1/ iterations do
define g : 2N — R to be g(T) = Fx(AT)
S « ADAPTIVE SEQUENCING(g, M)
X —x+AS
return x

The analysis shows that in every one of the 1/ iterations, ADAP-
TIVE SEQUENCING finds S such that the contribution of taking a
step of size A in the direction of S is approximately a A fraction of
OPT — F(x). For any A this is a sufficient condition for obtaining the
1—1/e — € guarantee.

The reason why the standard continuous greedy cannot be imple-
mented with a constant number of rounds 1/2 is that in every round
it moves in the direction of 15 for S := argmaxyc p( X ger 9(a).
When A is constant Fx(AS) is arbitrarily low due to the potential
overlap between high valued singletons (see Appendix C). Selecting
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S using ADAPTIVE SEQUENCING is the crucial part of the acceler-
ated continuous greedy which allows implementing it in a constant
number of iterations.

3.2 Analysis

We start by giving a sufficient condition on ADAPTIVE SEQUENCING
to obtain the 1 — 1/e — O(€) approximation guarantee. The analysis
is standard and the proof is deferred to Appendix C.

Lemma 5. For a given matroid M assume that
ADAPTIVE SEQUENCING outputs S € M s.t.

Es [Fx(AS)] = (1 — €)A(OPT — F(x))
at every iteration of ACCELERATED CONTINUOUS GREEDY. Then Ac-
CELERATED CONTINUOUS GREEDY outputs x € P(M) s.t.

E[F(x)] = (1 —1/e — €) OPT.

For a set S = {aj,...,ar} we define S; := {aj,...,qa;} and
Sj:k = {aj, ..., ar}. We use this notation in the lemma below. The
lemma is folklore and proved in Appendix C for completeness.

Lemma 6. Let M be a matroid, then for any feasible sets S =
{a1,...,ar} and O of size k, there exists an ordering of
O = {o1,...,0r} where for alli € [k], S; U Oj11.x € M and
SiN Ok = 0.

The following lemma is key in our analysis. We argue that unless
the algorithm already constructed S of sufficiently large value, the

sum of the contributions of the optimal elements to S is arbitrarily
close to the desired A(OPT — F(x)).

LEMMA 7. Assume that g(S) < A(OPT — F(x)), then
9510, (01) = A1 = A)(OPT = F(x)).
i

Proor. We first lower bound this sum of marginal contribution
of optimal elements with the contribution of the optimal solution
to the current solution x + AS at the end of the iteration:

Z 95\0,.(01) = Z Fy125\0, (A01)

i€[k] i€lk]

> 3" Freo,ysas(hoi)
ie[k]

22 Z Fx+0,_,+25(0i)
i€lk]
= AFxyps 0)
where the first inequality is by submodularity and the second by the
multilinearity of F. In the standard analysis of greedy algorithms
the optimal solution O may overlap with the current solution. In
the continuous algorithm, since the algorithm takes steps of size A,
we can bound the overlap between the solution at this iteration AS
and the optimal solution:
Fx+25(0) = Fx(O + AS) — Fx(4S)
> Fx(0) — A(OPT — F(x))
=(1-A)(OPT — F(x))
the first inequality is by monotonicity and lemma assumption and
the second by monotonicity. O
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As shown in Lemma 6, ADAPTIVE SEQUENCING picks elements a;
with near-optimal marginal contributions. Together with Lemma 7
we get the desired bound on the contribution of AS to x.

LEMMA 8. Let A = O (% log (5)) and A = O(e). For any x s.t.
F(x) < (1 —1/e)OPT, the set S returned by
ADAPTIVE SEQUENCING(g, M) satisfies

E [Fx(AS)] = (1 — O(€))A(OPT — F(x)).

PRrOOF. Initially, we have t; < OPT. After A = O (% log (ﬁ))
iterations of the outer loop of ADAPTIVE SEQUENCING, we get tf =
(1-e)0PT =0 (#). We begin by adding dummy elements
to S so that |S| = k, which enables pairwise comparisons between
S and O. In particular, we consider S’, which is S together with
RANK(M) — |S| dummy elements a|s|,1, . . - @ such that, for any
y and A, Fy(da) = t7, which is the value of t when ADAPTIVE
SEQUENCING terminates. Thus, by Lemma 2, for dummy elements
ai, gs,.,(ai) =ty > (1 — €)maxgs, ;uae M 95;-, (@)

We will conclude the proof by showing that S is a good approx-
imation to S”. From Lemma 3 that the contribution of a; to S;_1
approximates the optimal contribution to S;—_1:

i-1

k k
E [Fx(AS")] = Zl E (g5, (ar)] > Zl(l o max g, (a)

i= '
By Lemma 6 and submodularity, we have

max C(ai) > (o)),
a:Si—1UaeMgSH( i) 2 95\0,4 (01)

By Lemma 7, we also have

k

295,05, (01) = A1 = A)(OPT = F(x).

i=1
Combining the previous pieces, we obtain

E [Fx(AS")] = (1 - €)%A(1 — A)(OPT - F(x)).
We conclude by removing the value of dummy elements,
E [F(A9)] = E [Fx(AS") — Fraps(A(S"\ 8))]
> E [Fx(AS")| - ktf 2 E [Fx(AS")] — €AOPT.

The lemma assumes that F(x) < (1 — 1/e)OPT and A = O(e), so
OPT < e(OPT — F(x)) and eAOPT = O(e)A(OPT — F(x)). We conclude
that E [Fx(AS)] > (1 — O(e)) A(OPT — F(x)). O

The approximation guarantee of the ACCELERATED CONTINUOUS
GRrEEDY follows from lemmas 8 and 5, and the adaptivity from
Lemma 1. We defer the proof to Appendix C.

THEOREM 2. For any € > 0 ACCELERATED CONTINUOUS GREEDY

makes O (log(n) log (e—kz) ﬁ) adaptive rounds and obtains a 1 —

1/e — O(€) approximation in expectation for maximizing a monotone
submodular function under a matroid constraint.

The final step in our analysis shows that the guarantee of Ac-
CELERATED CONTINUOUS GREEDY holds not only in expectation but
also with high probability. To do so we argue in the lemma below
that if over all iterations i, Fx(AS) is close on average over the rounds
to A(OPT — F(x)), we obtain an approximation arbitrarily close to
1 — 1/e with high probability. The proof is in Appendix C.
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Lemma 9. Assume that ADAPTIVE SEQUENCING outputs S € M
s.t. Fx(AS) = a; A(OPT — F(x)) at every iteration i of ACCELERATED
CoNTINUOUS GREEDY and that A Zf:_i a;j > 1—e€. Then ACCELERATED
ConTtiNuous GREEDYoutputsx € P(M) s.t. F(x) > (1 —1/e — €) OPT.

The approximation «; obtained at iteration i is 1 — O(€) in expec-
tation by Lemma 8. Thus, by a simple concentration bound, w.h.p.
it is close to 1 — O(e) in average over all iterations. Together with
Lemma 9, this implies the 1 — 1/e — € approximation w.h.p.. The
details are in Appendix C.

THEOREM 3. ACCELERATED CONTINUOUS GREEDY is an algorithm
: - k) 1 . 0
with adaptivity O (log(n) log (J) a) that, with probability 1 - 6,
obtains a1 — 1/e — O(€) approximation for maximizing a monotone
submodular function under a matroid constaint, with step size A =

o (ez log™! (%))
4 PARALLELIZATION OF MATROID ORACLE
QUERIES

Throughout the paper we relied on RANDOM SEQUENCE as a sim-
ple procedure to generate a random feasible sequence to achieve
our O(log(n) log(k)) adaptive algorithm with an approximation ar-
bitrarily close to 1 — 1/e. Although RANDOM SEQUENCE has zero
adaptivity, it makes RANK(M) sequential steps depending on mem-
bership in the matroid to generate the sets X1, . . . , Xganx(M)- From
a practical perspective, we may wish to accelerate this process via
parallelization. In this section we show how to do so in the standard
rank and independence oracle models for matroids.

4.1 Matroid Rank Oracles

Given a rank oracle for the matroid, we get an algorithm that only
makes O (log(n) log(k)) steps of matroid oracle queries and has
polylogarithmic depth on a PRAM machine. Recall that a rank
oracle for M is given a set S and returns its rank, i.e. the maximum
size of an independent subset T C S. The number of steps of matroid
queries of an algorithm is the number of sequential steps it makes
when polynomially-many queries to a matroid oracle for M can
be executed in parallel in each step [KUW88].? We use a parallel
algorithm from [KUWS88] designed for constructing a base of a
matroid with a rank oracle, and show that it satisfies the random
feasibility property.

Algorithm 4 Parallel RaNpoM SEQUENCE for matroid constraint
with rank oracle

Input: matroid M, ground set N
bi,..., b|N| « random permutation of N
ri < RANK({by,...,b;}), foralli e {1,...,n}
aj « ithbjstrj—rj—1 =1
return aj,...,ap

With Algorithm 4 as the RANDOM SEQUENCE subroutine for ApAP-
TIVE SEQUENCING, we obtain the following result for matroid rank
oracles (proof in the full version of the paper.).

2More precisely, it allows p queries per step and the results depend on p, we consider
the case of p = poly(n).
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THEOREM 4. For any € > 0, there is an algorithm that obtains,
wp. 1-0(1), a1/2—O(e) approximation with O (log(n) log (%) ﬁ)

adaptivity and steps of matroid rank queries.

This gives O(log(n) log(k)) adaptivity and steps of independence
queries with 1 — 1/e — € approximation for maximizing the mul-
tilinear relaxation and 1/2 — e approximation for maximizing a
monotone submodular function under a matroid constraint. In par-
ticular, we get polylogarithmic depth on a PRAM machine with a
rank oracle.

4.2 Matroid Independence Oracles

Recall that an independence oracle for M is an oracle which given
S € N answers whether S € M or S ¢ M. We give a subroutine that
requires (j(nl/ 2) steps of independence matroid oracle queries and
show that Q(n!/3) steps are necessary. Similar to the case of rank
oracles we use a parallel algorithm from [KUWS88] for constructing
a base of a matroid that can be used as the RANDOM SEQUENCE
subroutine while satisfying the random feasibility condition.

O(+/n) upper bound. We use the algorithm from [KUW88] for
constructing a base of a matroid.

Algorithm 5 Parallel RANDoM SEQUENCE for matroid constraint
with independence oracle

Input: matroid M, ground set N

c—0,X<—N
while |[N| > 0 do
b1,. ..,b|X‘ <« random permutation of X
i* «— max{i:{ai,...,ac} U{b1,...,bi} € M}
Actls - - s Aegj* < b1, bix
ce—c+i*
X«—{aeX:{ai,...,ac,a} € M}
return ay,...,ac

With Algorithm 5 as the RANDOM SEQUENCE subroutine for ADAP-
TIVE SEQUENCING, we obtain the following result with independence
oracles. We defer the proof to the full version of the paper.

THEOREM 5. There is an algorithm that obtains, w.p. 1 — o(1), a
1/2—0(e) approximation with O (log(n) log (é) é) adaptivity and

0] (ﬁlog(n) log (é) é) steps of independence queries.

This gives O(log(n) log(k)) adaptivity and v/n log(n) log(k) steps
of independence queries with 1 — 1/e — € approximation for max-
imizing the multilinear relaxation and 1/2 — € approximation for
maximizing a monotone submodular function under a matroid
constraint. In particular, even with independence oracles we get a
sublinear algorithm in the PRAM model.

Q(n'/?) lower bound. We show that there is no algorithm which
obtains a constant approximation with less than Q(n'/?) steps of
independence queries, even for a cardinality function f(S) = |S|.
We do so by using the same construction for a hard matroid in-
stance as in [KUW88] used to show an Q(n'/3) lower bound on the
number of steps of independence queries for constructing a base
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of a matroid. Although the matroid instance is the same, we use a
different approach since the proof technique of [KUW88] does not
hold in our case (see proof and discussion in the full version of the

paper.).

THEOREM 6. For any constant a, there is no algorithm with
nlf3
4alog’n
greater than n~RU8") obtains an a approximation for maximizing
a cardinality function under a partition matroid constraint when

given an independence oracle.

— 1 steps of poly(n) matroid queries which, w.p. strictly

To the best of our knowledge, the gap between the lower and
upper bounds of Omega(n'/?) and O(n'/2) parallel steps for con-
structing a matroid basis given an independence oracle remains
open since [KUW88]. Closing this gap for submodular maximiza-
tion under a matroid constraint given an independence oracle is an
interesting open problem that would also close the gap of [KUWS88].

A DISCUSSION ABOUT ADDITIONAL
RESULTS

We discuss several cases for which our results and techniques gen-
eralize.

Cardinality constraint. We first discuss a generalization of ApAP-
TIVE SEQUENCING that is a O (log(n)) adaptive algorithm that ob-
tains a 1 — 1/e — O(e) approximation with probability 1 — o(1) for
monotone submodular maximization under a cardinality constraint,
which is the special case of a uniform matroid. Instead of sampling
uniformly random subsets of X of size k/r as done in every itera-
tion of the algorithm in [BRS19], it is possible to generate a single
sequence and then add elements to S and discard elements from
X in the same manner as ADAPTIVE SEQUENCING. We note that
generating a random feasible sequence in parallel is trivial for a
cardinality constraint k, one can simply pick k elements uniformly
at random. Similarly, the elements we add to the solution are ap-
proximately locally optimal and we discard a constant fraction of
elements at every round. A main difference is that for the case of a
cardinality constraint, setting the threshold t to t = (OPT — f(S))/k
is sufficient and, as shown in [BRS19], this threshold only needs
a constant number of updates. Thus, for the case of a cardinality
constraint, we obtain a O(log n) adaptive algorithm with a variant
of the algorithm. In addition, the continuous greedy algorithm is
not needed for a cardinality constraint since adding elements with
marginal contribution which approximates (OPT — f(S))/k at every
iteration guarantees a 1 — 1/e — € approximation.

Non-monotone functions. For maximizing a non-monotone sub-
modular function under a cardinality constraint, similarly as for
the monotone algorithm discussed above, we can also generate a
single sequence instead of multiple random blocks of elements, as
done in [BBS13].

Partition matroids with explicit representation. Special families of
matroids, such as graphical and partition matroids, have explicit
representations. We consider the case where a partition matroid is
given as input to the algorithm not as an oracle but with its explicit
representation, meaning the algorithm is given the parts P, . .., Pm,
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of the partition matroid and the number p;, ..
each parts allowed by the matroid.

For the more general setting of packing constraints given to
the algorithm as a collection of m linear constraints, as previously
mentioned, [CQ19] develop a O(log?(m) log(n)) adaptive algorithm
that obtains with high probability a 1 — 1/e — € approximation,
and has polylogarithmic depth on a PRAM machine for partition
matroids.

For partition matroids, we obtain a O (log(n) log (E—k/l) ﬁ) adap-
tive algorithm that, with probability 1 — §, obtainsa 1 — 1/e — O(e)

., Pm of elements of

approximation with A = O (62 log™! (%)) This algorithm also has
polylogarithmic depth. This algorithm uses ACCELERATED CONTIN-
vous GREEDY with the RANDOM SEQUENCE subroutine for rank
oracles since a rank oracle for partition matroids can easily be
constructed in polylogarithmic depth when given the explicit repre-
sentation of the matroid. As mentioned in [CQ19], it is also possible
to obtain a rounding scheme for partition matroids in polylogarith-
mic depth.

Intersection of P matroids. We formally analyze the more general
constraint consisting of the intersection of P matroids in Appen-
dix B.

B MISSING PROOFS FROM SECTION 2
B.1 Quasi-linear Query Complexity
The query complexity of ADAPTIVE SEQUENCING and ACCELERATED

CoNTINUOUS GREEDY can be improved from O(nk log(n)log(k)) to
quasi-linear with O(nlog(n) log?(k)) queries if we allow

O(log(n) log?(k))

rounds. This is done by finding i* at every iteration of ADAPTIVE
SEQUENCING by doing binary search of i € [RANK(M(S, X))] instead
of computing X; for all i in parallel. Since there are at most k values
of i, this decrease the query complexity of finding i* from nk to
nlogk, but increases the adaptivity by log k.

An important property to be able to perform binary search is to
have |X;| decreasing in i. We show this with the following lemma.

LEMMA 10. At every iteration of ADAPTIVE SEQUENCING, Xj+1 C
X;j for all i < RANK(M(S, X)).

ProoF. Assume a € Xjy1. Thus, SU {a3,...,a;} +a € M and
fsuiay,...,a;}(@) = t. By the downward closed property of matroids,
Su{ai,...,aj—1}+a € M.By submodularity, fsu(q,,...,a;_;}(@) =
fsuiay,...,a;}(@) 2 t. We get that a € X;. m|

COROLLARY 1. If ADAPTIVE SEQUENCING finds i* by doing binary
search, then its query complexity is O(nlog(n) log®(k))and its adap-
tivity is O(log(n) log?(k)).

B.2 From Expectation to High Probability for
the Combinatorial Algorithm

We generalize ADAPTIVE SEQUENCING to obtain an algorithm called

ADAPTIVE SEQUENCING++, described below, which achievesa 1/2—¢

approximation with high probability, instead of in expectation.
We note that this generalization is not needed when ADAPTIVE
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SEQUENCING is used as a subroutine of ACCELERATED CONTINUOUS
GREEDY for the 1 — 1/e — € result.

Algorithm 6 ADAPTIVE SEQUENCING++, ADAPTIVE SEQUENCING
with high probability guarantee

Input: function f, feasibility constraint M
S — 0.t — maxzen f(a)
for A iterations do
X« N
while X # 0 do
for j = 1 to p do (non-adaptivity and in parallel)
at, .. - Arank(M(S, X)) < RANDOM SEQUENCE(M(S, X))
Xi « {a € X SV {a,...,a;,a} €
Mand fsu(ay,....a;}(@) 2 £}
i* «—min{i:|X;| < (1-¢e)X|}
S Su{ag,...,a;x}
X X
v zl* Z}:lfSU{al,-..,aff1}(a5)
j* « argma 1¢/
Se S
X« XJ
te—(1—e)t
return S

Xjelp

THEOREM 1. For any € > 0, there is an O (log(n) log (é) é)
adaptive algorithm that obtains a 1/2 — O(e) approximation with
probability 1 — o(1) for maximizing a monotone submodular function
under a matroid constraint.

Proor. We set A = O (é log (é)) Initially we have t; < OPT.
After A iterations of ADAPTIVE SEQUENCING, the final value of ¢
isty < (1- €)0PT = O (%) OPT. We begin by adding dummy
elements to S so that |S| = k, which enables pairwise comparisons
between S and O. In particular, we consider S”, which is S together
with RANK(M) — |S| dummy elements as|11, . - - @k such that, for
any T, fr(a) = t7. Thus, by Lemma 2, for dummy elements a;,
fsiy(ai) = tp 2 (1 — e)maxg.s, uaem fs,, (@)

By Lemma 1, there are O(A log(n)/e€) iterations of the while-loop.
Since each iteration of the while-loop is non-adaptive, ADAPTIVE
SEQUENCING++ is O(A log(n)/€) adaptive

Consider an iteration of the while-loop of ADAPTIVE SEQUENC-
ING++. We first argue that for each inner-iteration j,

Z fs,,(ai) = (1 - e)zi*t.
ie[i*]
We first note that Prg, [fsu{al,...,a,»,l}(ai) > t] > 1 — € by the
definition of i* and the random feasible sequence property. Let Y
be the number of indices i < i* such that fsy(q,, .. q, (@) = t.
By Chernoff bound, with y = E[Y] > (1 — €)i*
Pr(Y <(1-e)(1-e)i*] < e € (1me)i%/2 ¢ me'(1-e)/2
Let Z < p be the number of inner-iterations j such that Y > (1 —
€)(1—¢)i*. By Chernoff bound, with y = E[Z] > (1- e_ez(l_e)/z)p,

Pr|Z < 2(1- 192 < (- 08,
<~ <



STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

Thus, withp = O ( 1_:752 log (Aleog 1 )), we have that with prob-

ability 1 — O (ed/(Alogn)), there is at least one inner-iteration j
such that Y > (1 —e)(1 - €)i*. Thus ¥;ep;# fs,_, (@) = (1 €)?i*t.
By Lemma 2,
(a)=(1-¢e? max . (a).
ie[zi*] fsaa) > 1= max  fs, (@)
By a union bound, this holds over all iterations of the while-loop
of ADAPTIVE SEQUENCING++ with probability 1 — § and we get that
(@)= (1-e)p® ().
2 finan = (1-¢) s, S5 (@
ie[k]
Let O = {o01,...,0x} such that {aj,...,aj—1,0;} is feasible for

all i, which exists by the augmentation property of matroids. We
conclude that with probability 1 — 8,

f8) =) Elfs,., ()]

ielk]
20 o e 5
>(1-¢’ Z E[fs,_,(0:)]
ielk]

> (1-¢€)’fs:(0)
> (1-¢)*(OPT = f(S"))

and since
f(S) = f(S') = (RaNk(M) = [SDtr > f(S") — O(e)OPT,
we conclude that f(S) > (1/2 — O(¢€))OPT. O

B.3 Intersection of Matroid Constraints

We consider constraint M = ﬂle/\/(,- which is the intersection of
P matroids M;,ie.S € MifS € M, foralli < P. Similarly as for a
single matroid constraint, we denote the size of the largest feasible
set by k. We denote the rank of a set S with respect to matroid M;
by RANK;(S). We define spaN;(S), called the span of S in M by:

SPAN;(S) = {a € N : RANK;(S U a) = RANK;(S)}
We will use the following claim.

Cram 1 (Prop. 2.2 IN [NWF78]). If for Vt € [k] Zf;é o; < tand
pi-1 = pi, with oj, p; > 0 then:

k-1 k-1
2P0 < ) pi
i=0 i=0

Similarly as for a single matroid, we give the approximation
guaranteed obtained by a solution S with near-optimal marginal
contributions for each a € S.

LEMMA 11. Assume that S = {a1, ..., ay} such that
o (ai)>2(1—-€ max . (a
fskl( i) = ( )a:S,-_1UaEMfSkl( )

where S; = {a1,...,a;}. Then, if M is the intersection of P matroids,
we have
1

P+1

£(8) > ( - O(e)) OPT.
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Proor. Since S; and O are independent sets in M; we have:
rank;(spaNn;(S;) N O) = [sPaN;(S;) N O] < [sPaN;(S;)| = |Si] < i

Define U; = UlesPANj(Si), to be the set of elements which are
not part of the maximization at index i + 1 of the procedure, and
hence cannot give value at that stage. We have:

P
|U; 1 0] = [(UfL5paN;(S1) N O] < > |spAN;(S;) N O] < P -

j=

Let V; = (U; \ Ui—1) N O be the elements of O which are not part of
the maximization at index i, but were part of the maximization at
index i — 1. If a € V; then it must be that

1-efs (@1 -e€) < fs, (@) < max A Jsia®

:S;_1U

where the first inequality is due to submodularity of f. Hence, we
can upper bound:

k
2 fs@=) ) max - f (@

0€0\ Sk oo @
k
i i=1 il a:S,-TSf;EM fsii(a)
k
- P; a:SingerS,-,l(a)
where the last inequality uses 25:1 V)| = [U; 00| < Piand

the claim due to 1. Together with OPT < f(O U Sg) < f(Sg) +

2oco\s; fs(0)and fs, , (a;) = (1-€)maxas, uaem fs,-,(a) we
get:

1
P+1

£5) > (

as required. O

- O(e)) OPT.

Since Lemma 2 only uses the downward closed property of M
and since intersections of matroids are downward closed, ADAPTIVE
SEQUENCING++ obtains a solution S with near-optimal marginal
contributions for each a; € S = {ay, ..., ax}. Combined with the
previous lemma, we obtain the result for intersections of matroids.

THEOREM 7. For any € > 0, ADAPTIVE SEQUENCING++ is an
o (log(n) log (é) é) adaptive algorithm that obtains a 1/(P + 1) —
O(e) approximation with probability 1 —o(1) for maximizing a mono-
tone submodular function under the intersection of P matroids.

ProoF. The first part of the of the proof follows similarly as the
proof for Theorem 3 by using Lemma 2, which also hold for intersec-
tions of matroids, to obtain the near-optimal marginal contributions
of each a; € S with probability 1 — o(1):

Z fsia(ai) > (1—¢€)® max

1€ :S;_1UaeM

We then combine this with Lemma 11 to obtain the 1/(P + 1) — O(e)
approximation with probability 1 — o(1). O

fsi(a).
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C MISSING PROOFS FROM SECTION 3

Discussion on constant step size A. In contrast to the continuous
greedy, the accelerated continuous greedy uses constant steps sizes
A to guarantee low adaptivity. The challenge with using constant A
is that Fx(AS) is arbitrarily low with S := argmaxy r( X4er 9(@)
due to the overlap in value of elements a with high individual value
g(a). For example, consider ground set N = AU B with

f(S) = min(logn, [SNA|) +|SNB|,

x = 0and S = A With A = 1/n, we note that sampling R ~ 1A
where R independently contains each element in S with probability
1/n gives |R| < logn with high probability and we get Fx(1A4) =
(1 - 0o(1))|A], which is near-optimal for a set of size |A|. However,
with constant A, then sampling R ~ AA gives |R| > log n with high
probability. Thus Fx(1A) < log(n) which is arbitrarily far from
optimal for |A| = |B| >> log n since Fx(AB) = A|B|.

Lemma 5. For a given matroid M assume that
ADAPTIVE SEQUENCING outputs S € M s.t.

Es [Fx(AS)] = (1 — €)A(OPT — F(x))

at every iteration of ACCELERATED CONTINUOUS GREEDY. Then Ac-
CELERATED CONTINUOUS GREEDY outputs x € P(M) s.t.

E[F(x)] = (1—1/e —€)OPT.

Proor. First, x € P since it is a convex combinations of A1
vectors 1S with S € M. Next, let x; denote the solution x at the
ith iteration of ACCELERATED CONTINUOUS GREEDY. The algorithm
increases the value of the solution x by at least (1—¢)-A-(OPT — F(x))
at every iteration. Thus,

F(x;) > F(xj—1) + (1 —€) - A+ (OPT — F(x;-1)) .
Next, we show by induction on i that
F(xi) 2 (1 —(1-(1- ew’) OPT.
Observe that
F(xi) 2 F(xi-1) + (1 — €)A(OPT — F(x;-1))
=(1-€)AOPT + (1 - (1 —€)A) F(xj-1)
> (1-€)A0PT + (1 - (1 -€)d) (1 -(1-(1- e)/l)"‘l) oPT
- (1 —(1-(- e)/l)i) oPT
Thus, with i = A~1, we return solution x = x ,-1 such that
F(x) > (1 —(1-(1- e)A))rl) OPT.
Next, since 1 —x < e ¥ forall x € R,
_ A7t
1-(1-en " < (e—“—e)ﬂ) =€),
We conclude that
ee
F(x) > (1 - e_(l_e)) OPT = (1 - —) OPT

e
1+ 2e
>(1- OPT
e
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where the second inequality is since e¥ < 1+2xfor0 <x <1. O

Lemma 6. Let M be a matroid, then for any feasible sets S =
{a1,...,ar} and O of size k, there exists an ordering of

O = {o1,...,0r} where foralli € [k], S; U Oj11.x € M and
SiN Ok = 0.

Proor. The proof is by reverse induction. For i = k, we have
SiUO;41.k =Sk =S € M by Lemma 2. Consider i < k and assume
that Si+1 U Oj,0.x € M for some ordering 042, .. .,0r of Oj4o.k.
By the downward closed property of matroids, S; U O;,9.r € M.
By the augmentation property of matroids, there exists 0j+1 €
O\(SiUO;4g) such that S;UO; 5. +0i41 = SiUO;4 1 € M. O

THEOREM 2. For any € > 0 ACCELERATED CONTINUOUS GREEDY
makes O (log(n) log (%) ﬁ) adaptive rounds and obtains a 1 —
1/e — O(e) approximation in expectation for maximizing a monotone
submodular function under a matroid constraint.

Proor. We use step size
A=0(e)

for ACCELERATED CONTINUOUS GREEDY and

ol

outer-iterations for ADAPTIVE SEQUENCING. Thus, by Lemma 1, the

adaptivity is
o (Al/{)egn) =0 (Iog(n)log (652) eiz) .
By Lemma 8, we have
E[Fx(6S)] = (1 — O(e))A(OPT — F(x))
at every iteration i. Combining with Lemma 5, we obtain that
E[F(x)] = (1 - e~ — O(¢))0PT.

It remains to round the solution x. We note that there exist
rounding schemes with arbitrarily small loss that are independent of
the function f [CVZ09, VCZ11] (so they do not perform any queries
to f). The set S we obtain from rounding the solution x returned by
AccELERATED CONTINUOUS GREEDY with these techniques is thus
a1l—1/e — O(e) approximation with no additional adaptivity. O

Lemma 9. Assume that ADAPTIVE SEQUENCING outputs S € M
s.t. Fx(AS) = a; AM(OPT — F(x)) at every iteration i of ACCELERATED
CoNTINUOUS GREEDY and that A Zf:_i aj > 1—e€. Then ACCELERATED
ConTtiNuous GREEDYoutputsx € P(M) s.t. F(x) > (1 —1/e — €) OPT.

Proor. First, x € P since it is a convex combinations of A1
vectors 1g € M. Next, let x; denote the solution x at the ith iteration
of ACCELERATED CONTINUOUS GREEDY. The algorithm increases
the value of the solution x by at least @; - A - (OPT — F(x)) at every
iteration. Thus,

F(x;) > F(xj—1) + & - A+ (OPT = F(x;-1)) .
Next, we show by induction on i that
i
Fixi) > [1-] ] (1-2ay) |oPT.
j=1
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Observe the following, where the first inequality is by the as-
sumption of the lemma, the second by the inductive hypothesis,
and the equalities by rearranging the terms.

F(x;) 2 F(xj-1) + ;A (OPT = F(x;-1))
= @ AOPT + (1 — ajA) F(xj-1)

i-1
aiAOPT + (1 - ;)| 1= [ | (1= Agy) |OPT
j=1

\%

i
aiA0PT + [ 1—aid = | | (1 - Aay) |OPT
j=1
i
1= ](1-2g;)|opT

Jj=1

Thus, with i = 171, we return solution x = x -1 such that

/171
Fx) = (1= | (1= A) |oPT.
j=1

Since 1 —x < e * forall x € R,
At A1 -
1- 1_[ (1-2aj) > 1_1_[9—1% D Y
Jj=1 Jj=1
>1-e 1) > 1T _2¢/e>1-¢l—¢

where the second inequality is since ¥ < 1+2xfor0 <x <1. O

THEOREM 3. ACCELERATED CONTINUOUS GREEDY is an algorithm
with adaptivity O (log(n) log (5) ﬁ) that, with probability 1 — J,
obtains a 1 — 1/e — O(€) approximation for maximizing a monotone
submodular function under a matroid constaint, with step size A =

o (62 log™! (%))
Proor. We use A = O (é log (ﬁ)) outer-iterations for ADAP-

Alogn) _

TIVE SEQUENCING. Thus, by Lemma 1, the adaptivity is O ( T

o (log(n) log (5) ﬁ) .

By Lemma 8, we have Fx(8S) > a;A(OPT—F(x)) at every iteration
i with E[a;] > 1 — €’ where €’ = O(¢). By a Chernoff bound with
EAY e ai]l 2 1-¢€,

\

Pr|A Z ai<(1-e)(1-€)| < e €= /2
ie[A-1]

Thus, with probability p = 1 — ee'(1=eNa!/2, AQie1 @i 2
1— € —¢€’. By Lemma 9, we conclude that w.p. p, F(x) > (1 —e”! —
(€ + €’))OPT. With step size A = O(e2/log(1/5)), we get that with

probability 1 — 8, F(x) = (1 —e™! — O(¢))OPT.

Eric Balkanski, Aviad Rubinstein, and Yaron Singer

It remains to round the solution x. We note that there exist
rounding schemes with arbitrarily small loss that are independent of
the function f [CVZ09, VCZ11] (so they do not perform any queries

to f). The set S we obtain from rounding the solution x returned by
AccELERATED CONTINUOUS GREEDY with these techniques is thus

a1l—1/e — O(e) approximation with no additional adaptivity. O
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