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ABSTRACT
In this paper we study submodular maximization under a matroid

constraint in the adaptive complexity model. This model was re-

cently introduced in the context of submodular optimization to

quantify the information theoretic complexity of black-box opti-

mization in a parallel computation model. Informally, the adaptivity

of an algorithm is the number of sequential rounds it makes when

each round can execute polynomially-many function evaluations in

parallel. Since submodular optimization is regularly applied on large

datasets we seek algorithms with low adaptivity to enable speedups

via parallelization. Consequently, a recent line of work has been

devoted to designing constant factor approximation algorithms for

maximizing submodular functions under various constraints in the

adaptive complexity model.

Despite the burst in work on submodular maximization in the

adaptive complexity model, the fundamental problem of maximiz-

ing a monotone submodular function under a matroid constraint

has remained elusive. In particular, all known techniques fail for

this problem and there are no known constant factor approximation

algorithms whose adaptivity is sublinear in the rank of the matroid

k or in the worst case sublinear in the size of the ground set n.
In this paper we present an approximation algorithm for the

problem of maximizing a monotone submodular function under a

matroid constraint in the adaptive complexity model. The approxi-

mation guarantee of the algorithm is arbitrarily close to the optimal

1 − 1/e and it has near optimal adaptivity of O(log(n) log(k)). This
result is obtained using a novel technique of adaptive sequencing

which departs from previous techniques for submodular maximiza-

tion in the adaptive complexity model. In addition to our main result

we show how to use this technique to design other approximation

algorithms with strong approximation guarantees and polyloga-

rithmic adaptivity.
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1 INTRODUCTION
In this paper we study submodular maximization under matroid

constraints in the adaptive complexity model. The adaptive com-

plexity model was recently introduced in the context of submodular

optimization in [BS18a] to quantify the information theoretic com-

plexity of black-box optimization in a parallel computation model.

Informally, the adaptivity of an algorithm is the number of sequen-

tial rounds it makes when each round can execute polynomially-

many function evaluations in parallel. The concept of adaptivity is

heavily studied in computer science and optimization as it provides

a measure of efficiency of parallel computation.

Since submodular optimization is regularly applied on very large

datasets, we seek algorithms with low adaptivity to enable speedups

via parallelization. For the basic problem of maximizing a monotone

submodular function under a cardinality constraint k the celebrated

greedy algorithm which iteratively adds to the solution the element

with largest marginal contribution is Ω(k) adaptive. Until very
recently, even for this basic problem, there was no known constant-

factor approximation algorithm whose adaptivity is sublinear in

k . In the worst case k ∈ Ω(n) and hence greedy and all other

algorithms had adaptivity that is linear in the size of the ground

set.

The main result in [BS18a] is an adaptive sampling algorithm for

maximizing a monotone submodular function under a cardinality

constraint that achieves a constant factor approximation arbitrarily

close to 1/3 in O(logn) adaptive rounds as well as a lower bound
that shows that no algorithm can achieve a constant factor approx-

imation in õ(logn) rounds. Consequently, this algorithm provided

a constant factor approximation with an exponential speedup in

parallel runtime for monotone submodular maximization under a

cardinality constraint.

In [BRS19, EN19], the adaptive sampling technique was extended

to achieve an approximation guarantee arbitrarily close to the op-

timal 1 − 1/e in O(logn) adaptive rounds. This result was then
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obtained with a linear number of queries [FMZ19], which is op-

timal. Functions with bounded curvature have also been studied

using adaptive sampling under a cardinality constraint [BS18b].

The more general family of packing constraints, which includes

partition and laminar matroids, has been considered in [CQ19]. In

particular, underm packing constraints, a 1−1/e−ϵ approximation

was obtained in O(log2m logn) rounds using a combination of con-

tinuous optimization and multiplicative weight update techniques.

1.1 Submodular Maximization under a Matroid
Constraint

For the fundamental problem of maximizing a monotone submod-

ular function under a general matroid constraint it is well known

since the late 70s that the greedy algorithm achieves a 1/2 approxi-

mation [NWF78] and that even for the special case of cardinality

constraint no algorithm can obtain an approximation guarantee

better than 1−1/e using polynomially-many value queries [NW78].

Thirty years later, in seminal work, Vondrák introduced the contin-

uous greedy algorithm which approximately maximizes the multi-

linear extension of the submodular function [CCPV07] and showed

it obtains the optimal 1 − 1/e approximation guarantee [Von08].

Despite the surge of interest in adaptivity of submodular max-

imization, the problem of maximizing a monotone submodular

function under a matroid constraint in the adaptive complexity

model has remained elusive. As we discuss in Section 1.4, when

it comes to matroid constraints there are fundamental limitations

of the techniques developed in this line of work. The best known

adaptivity for obtaining a constant factor approximation guarantee

for maximizing a monotone submodular function under a matroid

constraint is achieved by the greedy algorithm and is linear in the

rank of the matroid. The best known adaptivity for obtaining the

optimal 1 − 1/e guarantee is achieved by the continuous greedy

and is linear in the size of the ground set.

Is there an algorithm whose adaptivity is sublinear in the size of the

rank of the matroid that obtains a constant factor approximation

guarantee?

1.2 Main Result
Our main result is an algorithm for the problem of maximizing a

monotone submodular function under a matroid constraint whose

approximation guarantee is arbitrarily close to the optimal 1 − 1/e
and has near optimal adaptivity of O(log(n) log(k)).

Theorem. For any ϵ > 0 there is an O

(
log(n) log

(
k
ϵ 3

)
1

ϵ 3

)
adap-

tive algorithm that, with probability 1−o(1), obtains a 1− 1/e −O(ϵ)
approximation for maximizing a monotone submodular function un-

der a matroid constraint.

Our result provides an exponential improvement in the adap-

tivity for maximizing a monotone submodular function under a

matroid constraint with an arbitrarily small loss in approximation

guarantee. As we later discuss, beyond the information theoretic

consequences, this implies that a very broad class of combinatorial

optimization problems can be solved exponentially faster in stan-

dard parallel computationmodels given appropriate representations

of the matroid constraints.

Our main result is largely powered by a new technique developed

in this paper which we call adaptive sequencing. This technique

proves to be extremely powerful and is a departure from all previous

techniques for submodularmaximization in the adaptive complexity

model. In addition to our main result we show that this technique

gives us a set of other strong results that include:

• An O(log(n) log(k)) adaptive combinatorial algorithm that

obtains a
1

2
− ϵ approximation for monotone submodular

maximization under a matroid constraint (Theorem 1);

• An O(log(n) log(k)) adaptive combinatorial algorithm that

obtains a
1

P+1 − ϵ approximation for monotone submodular

maximization under intersection of P matroids (Theorem 7);

• An O(log(n) log(k)) adaptive algorithm that obtains an ap-

proximation of 1 − 1/e − ϵ for monotone submodular max-

imization under a partition matroid constraint that can be

implemented in the PRAMmodel with polylogarithmic depth

(Appendix A).

In addition to these results the adaptive sequencing technique

can be used to design algorithms that achieve the same results

as those for cardinality constraint in [BRS19, EN19, FMZ19] and

for non-monotone submodular maximization under cardinality

constraint as in [BBS18] (Appendix A).

1.3 Technical Overview
The standard approach to obtain an approximation guarantee arbi-

trarily close to 1− 1/e for maximizing a submodular function under

a matroid constraintM is by the continuous greedy algorithm due

to Vondrák [Von08]. This algorithm approximately maximizes the

multilinear extension F of the submodular function [CCPV07] in

O(n) adaptive steps. In each step the algorithm updates a continu-

ous solution x ∈ [0, 1] in the direction of 1S , where S is chosen by

maximizing an additive function under a matroid constraint.

In this paper we introduce the accelerated continuous greedy

algorithm whose approximation is arbitrarily close to the optimal

1−1/e . Similarly to continuous greedy, this algorithm approximately

maximizes the multilinear extension by carefully choosing S ∈ M
and updating the solution in the direction of 1S . In sharp contrast

to continuous greedy, however, the choice of S is done in a manner

that allows making a constant number of updates to the solution,

each requiring O(log(n) log(k)) adaptive rounds. We do this by

constructing a feasible set S using O(log(n) log(k)) adaptive rounds,
at each one of the 1/λ iterations of accelerated continuous greedy,

s.t. S approximately maximizes the contribution of taking a step of

constant size λ in the direction of 1S . We construct S via a novel

combinatorial algorithm introduced in Section 2.

The new combinatorial algorithm achieves by itself a 1/2 approx-

imation for submodular maximization under a matroid constraint

in O(log(n) log(k)) adaptive rounds. This algorithm is developed

using a fundamentally different approach from all previous low

adaptivity algorithms for submodular maximization (see discussion

in Section 1.4). This new framework uses a single random sequence

(a1, . . . ,ak ) of elements. In particular, for each i ∈ [k], element

ai is chosen uniformly at random among all elements such that

S ∪ {a1, . . . ,ai } ∈ M. This random feasibility of each element

is central to the analysis. Informally, this ordering allows the se-

quence to navigate randomly through the matroid constraint. For
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each position i in this sequence, we analyze the number of elements

a such that S ∪ {a1, . . . ,ai } ∪ a ∈ M and fS∪{a1, ...,ai }(a) is large.
The key observation is that if this number is large at a position

i , by the randomness of the sequence, fS∪{a1, ...,ai }(ai+1) is large
w.h.p., which is important for the approximation. Otherwise, if this

number is low we discard a large number of elements, which is

important for the adaptivity.

In Section 3 we analyze the approximation of the accelerated

continuous greedy algorithm, which is the main result of the paper.

We use the algorithm from Section 2 to selects S as the direction

and show F (x + λ1S ) − F (x) ≥ (1 − ϵ)λ(OPT − F (x)), which implies

a 1 − 1/e − ϵ approximation.

Finally, in Section 4 we parallelize the matroid oracle queries.

The random sequence generated in each iteration of the combina-

torial algorithm in Section 2 is independent of function evaluations

and requires zero adaptive rounds, though it sequentially queries

the matroid oracle. For practical implementation it is important

to parallelize the matroid queries to achieve fast parallel runtime.

When given explicit matroid constraints such as for uniform or par-

tition matroids, this parallelization is relatively simple (Section A).

For general matroid constraints given via rank or independence

oracles we show how to parallelize the matroid queries in Section 4.

We give upper and lower bounds by building on the seminal work

of Karp, Upfal, and Wigderson on the parallel complexity of finding

the base of a matroid [KUW88]. For rank oracles we show how

to execute the algorithms with O(log(n) log(k)) parallel steps that
matches the O(log(n) log(k)) adaptivity. For independence oracles

we show how to execute the algorithm using
˜O(n1/2) steps of par-

allel matroid queries and give an Ω̃(n1/3) lower bound even for

additive functions and partition matroids.

1.4 Previous Optimization Techniques in the
Adaptive Complexity Model

The random sequencing approach developed in this paper is a

fundamental departure from the adaptive sampling approach in-

troduced in [BS18a] and employed in previous combinatorial al-

gorithms that achieve low adaptivity for submodular maximiza-

tion [BS18b, BBS18, BRS19, EN19, FMZ19, FMZ18]. In adaptive sam-

pling an algorithm samples multiple large feasible sets at every

iteration to determine elements which should be added to the solu-

tion or discarded. The issue with these uniformly random feasible

sets is that, although they have a simple structure for uniform ma-

troids, they are complex objects to generate and analyze for general

matroid constraints.

Chekuri and Quanrud recently obtained a 1− 1/e −ϵ approxima-

tion in O(log2m logn) adaptive rounds for the family ofm packing

constraints, which includes partition and laminar matroids [CQ19].

This setting was then also considered for non-monotone functions

in [ENV18]. Their approach also uses the continuous greedy algo-

rithm, combined with a multiplicative weight update technique to

handle the constraints. Since general matroids consist of exponen-

tially many constraints, a multiplicative weight update approach

over these constraints is not feasible. More generally packing con-

straints assume an explicit representation of the matroid. For gen-

eral matroid constraints, the algorithm is not given such a repre-

sentation but an oracle. Access to an independence oracle for a

matroid breaks these results as shown in Section 4: any constant

factor approximation algorithm with an independence oracle must

have Ω̃(n1/3) sequential steps.

1.5 Preliminaries
Submodularity. A function f : 2

N → R+ over ground set N =
[n] is submodular if the marginal contributions fS (a) := f (S ∪
a) − f (S) of an element a ∈ N \ S to a set S ⊆ N are diminishing,

meaning fS (a) ≥ fT (a) for all S ⊆ T ⊆ N anda ∈ N \T . Throughout
the paper, we abuse notation by writing S ∪ a instead of S ∪ {a}
and assume f is monotone, so f (S) ≤ f (T ) for all S ⊆ T . The
value of the optimal solution O for the problem of maximizing the

submodular function under some constraintM is denoted by OPT,
i.e. O := argmaxS ∈M f (S) and OPT := f (O).

Adaptivity. Given a value oracle f , an algorithm is r -adaptive
if every query f (S) for the value of a set S occurs at a round i ∈ [r ]
s.t. S is independent of the values f (S ′) of all other queries at round
i , with at most poly(n) queries at every round.

Matroids. A set systemM ⊆ 2
N

is a matroid if it satisfies the

downward closed and augmentation properties. A set systemM is

downward closed if for all S ⊆ T such that T ∈ M, then S ∈ M.

The augmentation property is that if S,T ∈ M and |S | < |T |, then
there exists a ∈ T such that S ∪ a ∈ M. We call a set S ∈ M
feasible or independent. The rank k = rank(M) of a matroid is

the maximum size of an independent set S . The rank rank(S) of
a set S is the maximum size of an independent subset T ⊆ S . A
set B ∈ M is called a base ofM if |B | = rank(M). The matroid

polytope P(M) is the collection of points x ∈ [0, 1]n in the convex

hull of the independent sets ofM, or equivalently the points x such
that

∑
i ∈S xi ≤ rank(S) for all S ⊆ [n].

Themultilinear extension. Themultilinear extension F : [0, 1]n →

R+ of a function f maps a point x ∈ [0, 1]n to the expected value

of a random set R ∼ x containing each element i ∈ [n] with prob-

ability xi independently, i.e. F (x) = ER∼x[f (R)]. We note that

given an oracle for f , one can estimate F (x) arbitrarily well in

one round by querying in parallel a sufficiently large number of

samplesR1, . . . ,Rm drawn i.i.d. from x and taking the average value
of f (Ri ) over i ∈ [m] [CJV15, CQ19]. For ease of presentation, we
assume throughout the paper that we are given access to an exact

value oracle for F in addition to f . The results which rely on F
then extend to the case where the algorithm is only given an or-

acle for f with an arbitrarily small loss in the approximation, no

loss in the adaptivity, and additional O(n logn) factor in the query

complexity.
1

2 THE COMBINATORIAL ALGORITHM
In this section we describe a combinatorial algorithm used at ev-

ery iteration of the accelerated continuous greedy algorithm to

find a direction 1S for an update of a continuous solution. In the

next section we will show how to use this algorithm as a subpro-

cedure in the accelerated continuous greedy algorithm to achieve

an approximation arbitrarily close to 1 − 1/e with O(log(n) log(k))

1
With O(ϵ−2n logn) samples, F (x) is estimated within a (1± ϵ ) multiplicative factor

with high probability[CQ19].
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adaptivity. The optimization of this direction S is itself an instance

of maximizing a monotone submodular function under a matroid

constraint. The main result of this section is a O(log(n) log(k)) adap-
tive algorithm, which we call Adaptive Seqencing, that returns

a solution {ai }i s.t., for all i , the marginal contribution of ai to
{a1, . . . ,ai−1} is near optimal with respect to all elements a s.t.

{a1, . . . ,ai−1,a} ∈ M. We note that this guarantee also implies

that Adaptive Seqencing itself achieves an approximation that

is arbitrarily close to 1/2 with high probability.

As discussed in Section 1.3 unlike all previous low-adaptivity

combinatorial algorithms for submodular maximization, the Adap-

tive Seqencing algorithm developed here does not iteratively

sample large sets of elements in parallel at every iteration. Instead,

it samples a single random sequence of elements in every iteration.

Importantly, this sequence is generated without any function eval-

uations, and therefore can be executed in zero adaptive rounds.

The goal is then to identify a high-valued prefix of the sequence

that can be added to the solution and discard a large number of

low-valued elements at every iteration. Identifying a high valued

prefix enables the approximation guarantee and discarding a large

number of elements in every iteration ensures low adaptivity.

2.1 Generating Random Feasible Sequences
The algorithm crucially requires generating a random sequence of

elements in zero adaptive rounds.

Definition 1. Given a matroid M we say (a1, . . . ,arank(M))
is a random feasible sequence if for all i ∈ [rank(M)], ai is an
element chosen u.a.r. from {a : {a1, . . . ,ai−1,a} ∈ M}.

A simple way to obtain a random feasible sequence is by sam-

pling feasible elements sequentially.

Algorithm 1 Random Seqence

Input: matroidM

for i = 1 to rank(M) do
X ← {a : {a1, . . . ,ai−1,a} ∈ M}
ai ∼ a uniformly random element from X

return a1, . . . ,arank(M)

It is immediate that Algorithm 1 outputs a random feasible se-

quence. Since Algorithm 1 is independent of f , its adaptivity is zero.
For ease of presentation, we describe the algorithm using Random

Seqence as a subroutine, despite its sequential calls to the ma-

troid oracle. In Section 4 we show how to efficiently parallelize this

procedure using standard matroid oracles.

2.2 The Algorithm
The main idea behind the algorithm is to generate a random fea-

sible sequence in each adaptive round, and use that sequence to

determine which elements should be added to the solution and

which should be discarded from consideration. Given a position

i ∈ {1, . . . , l} in a sequence (a1,a2, . . . ,al ), a subset S , and thresh-

old t , we say that an element a is good if adding it to S∪{a1, . . . ,ai }
satisfies the matroid constraint and its marginal contribution to

S ∪ {a1, . . . ,ai } is at least threshold t . In each adaptive round the

algorithm generates a random feasible sequence and finds the index

i⋆ which is the minimal index i such that at most a 1 − ϵ fraction
of the surviving elements X are good. The algorithm then adds

the set {a1, . . . ,ai⋆ } to S . A formal description of the algorithm is

included below. We useM(S,X ) := {T ⊆ X : S∪T ∈ M} to denote
the matroid over elements X where a subset is feasible inM(X , S)
if its union with the current solution S is feasible according toM.

Algorithm 2 Adaptive Seqencing

Input: function f , feasibility constraintM

S ← ∅, t ← maxa∈N f (a)
for ∆ iterations do
X ← N
while X , ∅ do
a1, . . . ,arank(M(S,X )) ← Random Seqence(M(S,X ))

Xi ← {a ∈ X : S ∪ {a1, . . . ,ai ,a} ∈

M and fS∪{a1, ...,ai }(a) ≥ t}

i⋆ ← min {i : |Xi | ≤ (1 − ϵ)|X |}
S ← S ∪ {a1, . . . ,ai⋆ }
X ← Xi⋆

t ← (1 − ϵ)t
return S

Intuitively, adding {a1, . . . ,ai⋆ } to the current solution S is desir-
able for two important reasons. First, for a random feasible sequence

we have that S ∪ {a1, . . . ,ai⋆ } ∈ M and for each element ai at a
position i ≤ i⋆, there is a high likelihood that the marginal contri-

bution of ai to the previous elements in the sequence is at least t .
Second, by definition of i⋆ a constant fraction ϵ of elements are not

good at that position, and we discard these elements from X . This

discarding guarantees that there are at most logarithmically many

iterations until X is empty.

The threshold t maintains the invariant that it is approximately

an upper bound on the optimal marginal contribution to the current

solution. By submodularity, the optimal marginal contribution to

S decreases as S grows. Thus, to maintain the invariant, the algo-

rithm iterates over decreasing values of t . In particular, at each of

∆ = O
(
1

ϵ log

(
k
ϵ

))
iterations, where k := rank(M), the algorithm

decreases t by a 1−ϵ factor when there are no more elements which

can be added to S with marginal contribution at least t , so when X
is empty.

2.3 Adaptivity
In each inner-iteration the algorithm makes polynomially-many

queries that are independent of each other. Indeed, in each itera-

tion, we generate X1, . . . ,Xk−|S | non-adaptively and make at most

n function evaluations for each Xi . The adaptivity immediately fol-

lows from the definition of i⋆ that ensures an ϵ fraction of surviving
elements in X are discarded at every iteration.

Lemma 1. With ∆ = O
(
1

ϵ log

(
k
ϵ

))
, Adaptive Sequencing has

adaptivity O

(
log(n) log

(
k
ϵ

)
1

ϵ 2

)
.

Proof. The for loop has ∆ iterations. The while loop has at most

O(ϵ−1 logn) iterations since, by definition of i⋆, an ϵ fraction of
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the surviving elements are discarded from X at every iteration. We

can find i⋆ by computing Xi for each i ∈ [k] in parallel in one

round. □

We note that the query complexity, O

(
nk log(n) log

(
k
ϵ

)
1

ϵ 2

)
, of

the algorithm can be improved to O

(
n log(n) log(k) log

(
k
ϵ

)
1

ϵ 2

)
if

we allow O

(
log(n) log(k) log

(
k
ϵ

)
1

ϵ 2

)
adaptivity by doing a binary

search over at most k sets Xi to find i
⋆
. The details can be found in

Appendix B.

2.4 Approximation Guarantee
The main result for the approximation guarantee is that the al-

gorithm returns a solution S = {a1, . . . ,al } s.t. for all i ≤ l , the
marginal contribution obtained by ai to {a1, . . . ,ai−1} is near opti-
mal with respect to all elements a such that {a1, . . . ,ai−1,a} ∈ M.

To prove this we show that the threshold t is an approximate upper

bound on the maximum marginal contribution.

Lemma 2. Assume that f is submodular and thatM is downward

closed. Then, at any iteration, t ≥ (1 − ϵ)maxa:S∪a∈M fS (a).

Proof. The claim initially holds by the initial definitions of

t = maxa∈N f (a), S = ∅ and X = N . We show that this invariant is

maintained through the algorithm when either S or t are updated.
First, assume that at some iteration of the algorithm we have t ≥

(1−ϵ)maxa:S∪a∈M fS (a) and that S is updated to S∪{a1, . . . ,ai⋆ }.
Then, for all a such that S ∪ a ∈ M,

fS∪{a1, ...,ai⋆ }(a) ≤ fS (a) ≤ t/(1 − ϵ)

where the first inequality is by submodularity and the second by

the inductive hypothesis. Since {a : S ∪ {a1, . . . ,ai⋆ } ∪ a ∈ M} ⊆
{a : S ∪ a ∈ M} by the downward closed property ofM,

max

a:S∪{a1, ...,ai⋆ }∪a∈M
fS∪{a1, ...,ai⋆ }(a)

≤ max

a:S∪a∈M
fS∪{a1, ...,ai⋆ }(a).

Thus, when S is updated to S ∪ {a1, . . . ,ai⋆ }, we have t ≥ (1 −
ϵ)maxa:S∪{a1, ...,ai⋆ }∪a∈M fS (a).

Next, consider an iteration where t is updated to t ′ = (1−ϵ)t . By
the algorithm, X = ∅ at that iteration with current solution S . Thus,
by the algorithm, for all a ∈ N , a was discarded from X at some

previous iterationwith current solution S ′ s.t. S ′∪{a1, . . . ,ai⋆ } ⊆ S .
Since a was discarded, it is either the case that S ′ ∪ {a1, . . . ,ai⋆ } ∪
a < M or fS∪{a1, ...,ai⋆ }(a) < t . If S ′ ∪ {a1, . . . ,ai⋆ } ∪ a < M

then S ∪ a <M by the downward closed property ofM and since

S ′ ∪ {a1, . . . ,ai⋆ } ⊆ S . Otherwise, fS ′∪{a1, ...,ai⋆ }(a) < t and by

submodularity, fS (a) ≤ fS ′∪{a1, ...,ai⋆ }(a) < t = t ′/(1 − ϵ). Thus,

∀a ∈ N s.t. S ∪ a ∈ M, t ′ ≥ (1 − ϵ)fS (a) and the invariant is

maintained. □

By exploiting the definition of i⋆ and the random feasible se-

quence property we show that Lemma 2 implies that every element

added to S at some iteration j has near-optimal expected marginal

contribution to S . We define XMi := {a ∈ X : S ∪ {a1, . . . ,ai } ∪a ∈
M}.

Lemma 3. Assume thata1, . . . ,arank(M(S,X )) is a random feasible

sequence, then for all i ≤ i⋆,

Eai
[
fS∪{a1, ...,ai−1 }(ai )

]
≥(1 − ϵ)2 max

a:S∪{a1, ...,ai−1 }∪a∈M
fS∪{a1, ...,ai−1 }(ai ).

Proof. By the random feasibility condition, we have

ai ∼ U(X
M
i−1). We get

Pr

ai

[
fS∪{a1, ...,ai−1 }(ai ) ≥ t

]
· t

=
|Xi−1 |

|XMi−1 |
· t

≥
|Xi−1 |

|X |
· t

≥(1 − ϵ)(1 − ϵ) max

a:S∪{a1, ...,ai−1 }∪a∈M
fSi−1 (ai )

where the equality is by definition of Xi−1, the first inequality since

XMi−1 ⊆ X , and the second since i ≤ i⋆ and by Lemma 2. Finally, note

that E
[
fS∪{a1, ...,ai−1 }(ai )

]
≥ Pr

[
fS∪{a1, ...,ai−1 }(ai ) ≥ t

]
· t . □

Next, we show that if every element ai in a solution

S = {a1, . . . ,ak } of size k = rank(M) has near-optimal expected

marginal contribution to Si−1 := {a1, . . . ,ai−1}, then we obtain an

approximation arbitrarily close to 1/2 in expectation.

Lemma 4. Assume that S = {a1, . . . ,ak } s.t. Eai [fSi−1 (ai )] ≥
(1 − ϵ)maxa:Si−1∪a∈M fSi−1 (a) where Si = {a1, . . . ,ai }. Then, for a
matroid constraintM, we have E [f (S)] ≥ (1/2 − O(ϵ))OPT.

Proof. LetO = {o1, . . . ,ok } such that {a1, . . . ,ai−1,oi } is feasi-
ble for all i , which exists by the augmentation property of matroids.

We get,

E[f (S)] =
∑
i ∈[k ]

E[fSi−1 (ai )]

≥ (1 − ϵ)
∑
i ∈[k ]

E[fSi−1 (oi )]

≥ (1 − ϵ)fS (O) ≥ (1 − ϵ)(OPT − f (S)). □

A corollary of the lemmas above is that Adaptive Seqencing

has O(log(n) log(k)) adaptive rounds and provides an approxima-

tion that is arbitrarily close to 1/2, in expectation. To obtain this

guarantee with high probability we can simply run parallel in-

stances of the while-loop in the algorithm and include the elements

obtained from the best instance. We also note that the solution S
returned by Adaptive Seqencing might have size smaller than

rank(M), which causes an arbitrarily small loss for sufficiently

large ∆. We give the full details in Appendix B.

Theorem 1. For any ϵ > 0, there is an O

(
log(n) log

(
k
ϵ

)
1

ϵ 2

)
adaptive algorithm that obtains a 1/2 − O(ϵ) approximation with

probability 1−o(1) for maximizing a monotone submodular function

under a matroid constraint.

In Appendix B, we generalize this result and obtain a 1/(P + 1) −
O(ϵ) approximation with high probability for the intersection of P
matroids.
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3 THE ACCELERATED CONTINUOUS
GREEDY ALGORITHM

In this section we describe the accelerated continuous greedy al-

gorithm that achieves the main result of the paper. This algorithm

employs the combinatorial algorithm from the previous section to

construct a continuous solution which approximately maximizes

the multilinear relaxation F of the function f . This algorithm re-

quires O(log(n) log(k)) adaptive rounds and it produces a continu-

ous solution whose approximation to the optimal solution is with

high probability arbitrarily close to 1 − 1/e . Finally, since the so-
lution is continuous and we seek a feasible discrete solution, it

requires rounding. Fortunately, by using either dependent round-

ing [CVZ09] or contention resolution schemes [VCZ11] this can be

done with an arbitrarily small loss in the approximation guarantee

without any function evaluations, and hence without any additional

adaptive rounds.

3.1 The Algorithm
The accelerated continuous greedy algorithm follows the same

principle as the (standard) continuous greedy algorithm [Von08]: at

every iteration, the solution x ∈ [0, 1]n moves in the direction of a

feasible set S ∈ M. The crucial difference between the accelerated

continuous greedy and the standard continuous greedy is in the

choice of this set S guiding the direction in which xmoves. This dif-

ference allows the accelerated continuous greedy to terminate after

a constant number of iterations, each of which has O(log(n) log(k))
adaptive rounds, in contrast to the continuous greedy which re-

quires a linear number of iterations.

To determine the direction in every iteration, the accelerated

continuous greedy applies Adaptive Seqencing on the surrogate

function д that measures the marginal contribution to x when

taking a step of size λ in the direction of S . That is, д(S) := Fx(λS) =
F (x + λS) − F (x) where we abuse notation and write λS instead of

λ1S for λ ∈ [0, 1] and S ⊆ N . Since f is a monotone submodular

function it is immediate that д is monotone and submodular as well.

Algorithm 3 Accelerated Continuous Greedy

Input: matroidM, step size λ
x← 0
for 1/λ iterations do
define д : 2

N → R to be д(T ) = Fx(λT )
S ← Adaptive Seqencing(д,M)
x← x + λS

return x

The analysis shows that in every one of the 1/λ iterations, Adap-

tive Seqencing finds S such that the contribution of taking a

step of size λ in the direction of S is approximately a λ fraction of

OPT − F (x). For any λ this is a sufficient condition for obtaining the

1 − 1/e − ϵ guarantee.

The reason why the standard continuous greedy cannot be imple-

mented with a constant number of rounds 1/λ is that in every round
it moves in the direction of 1S for S := argmaxT ∈M

∑
a∈T д(a).

When λ is constant Fx(λS) is arbitrarily low due to the potential

overlap between high valued singletons (see Appendix C). Selecting

S using Adaptive Seqencing is the crucial part of the acceler-

ated continuous greedy which allows implementing it in a constant

number of iterations.

3.2 Analysis
We start by giving a sufficient condition on Adaptive Seqencing

to obtain the 1 − 1/e − O(ϵ) approximation guarantee. The analysis

is standard and the proof is deferred to Appendix C.

Lemma 5. For a given matroidM assume that

Adaptive Sequencing outputs S ∈ M s.t.

ES [Fx(λS)] ≥ (1 − ϵ)λ(OPT − F (x))

at every iteration of Accelerated Continuous Greedy. Then Ac-

celerated Continuous Greedy outputs x ∈ P(M) s.t.

E[F (x)] ≥ (1 − 1/e − ϵ) OPT.

For a set S = {a1, . . . ,ak } we define Si := {a1, . . . ,ai } and
Sj :k := {aj , . . . ,ak }. We use this notation in the lemma below. The

lemma is folklore and proved in Appendix C for completeness.

Lemma 6. Let M be a matroid, then for any feasible sets S =
{a1, . . . ,ak } and O of size k , there exists an ordering of

O = {o1, . . . ,ok } where for all i ∈ [k], Si ∪ Oi+1:k ∈ M and

Si ∩Oi+1:k = ∅.

The following lemma is key in our analysis. We argue that unless

the algorithm already constructed S of sufficiently large value, the

sum of the contributions of the optimal elements to S is arbitrarily

close to the desired λ(OPT − F (x)).

Lemma 7. Assume that д(S) ≤ λ(OPT − F (x)), then∑
i
дS\Oi :k (oi ) ≥ λ(1 − λ)(OPT − F (x)).

Proof. We first lower bound this sum of marginal contribution

of optimal elements with the contribution of the optimal solution

to the current solution x + λS at the end of the iteration:∑
i ∈[k ]

дS\Oi :k (oi ) =
∑
i ∈[k ]

Fx+λS\Oi :k (λoi )

≥
∑
i ∈[k ]

Fx+Oi−1+λS (λoi )

≥ λ
∑
i ∈[k ]

Fx+Oi−1+λS (oi )

= λFx+λS (O)

where the first inequality is by submodularity and the second by the

multilinearity of F . In the standard analysis of greedy algorithms

the optimal solution O may overlap with the current solution. In

the continuous algorithm, since the algorithm takes steps of size λ,
we can bound the overlap between the solution at this iteration λS
and the optimal solution:

Fx+λS (O) = Fx(O + λS) − Fx(λS)

≥ Fx(O) − λ(OPT − F (x))

= (1 − λ) (OPT − F (x))

the first inequality is by monotonicity and lemma assumption and

the second by monotonicity. □
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As shown in Lemma 6, Adaptive Seqencing picks elements ai
with near-optimal marginal contributions. Together with Lemma 7

we get the desired bound on the contribution of λS to x.

Lemma 8. Let ∆ = O
(
1

ϵ log

(
k
ϵλ

))
and λ = O(ϵ). For any x s.t.

F (x) < (1 − 1/e)OPT, the set S returned by

Adaptive Sequencing(д,M) satisfies

E [Fx(λS)] ≥ (1 − O(ϵ))λ(OPT − F (x)).

Proof. Initially, we have ti < OPT. After ∆ = O
(
1

ϵ log

(
k
ϵλ

))
iterations of the outer loop of Adaptive Seqencing, we get tf =

(1 − ϵ)∆OPT = O
(
ϵλOPT
k

)
. We begin by adding dummy elements

to S so that |S | = k , which enables pairwise comparisons between

S and O . In particular, we consider S ′, which is S together with

rank(M) − |S | dummy elements a |S |+1, . . . ak such that, for any

y and λ, Fy(λa) = tf , which is the value of t when Adaptive

Seqencing terminates. Thus, by Lemma 2, for dummy elements

ai , дSi−1 (ai ) = tf ≥ (1 − ϵ)maxa:Si−1∪a∈M дSi−1 (a).
We will conclude the proof by showing that S is a good approx-

imation to S ′. From Lemma 3 that the contribution of ai to Si−1
approximates the optimal contribution to Si−1:

E
[
Fx(λS

′)
]
=

k∑
i=1
E
[
дSi−1 (ai )

]
≥

k∑
i=1
(1 − ϵ)2 max

a:Si−1∪a∈M
дSi−1 (ai ).

By Lemma 6 and submodularity, we have

max

a:Si−1∪a∈M
дSi−1 (ai ) ≥ дS\Oi :k (oi ).

By Lemma 7, we also have

k∑
i=1

дS\Oi :k (oi ) ≥ λ(1 − λ)(OPT − F (x)).

Combining the previous pieces, we obtain

E
[
Fx(λS

′)
]
≥ (1 − ϵ)2λ(1 − λ)(OPT − F (x)).

We conclude by removing the value of dummy elements,

E [Fx(λS)] = E
[
Fx(λS

′) − Fx+λS (λ(S
′ \ S))

]
≥ E

[
Fx(λS

′)
]
− ktf ≥ E

[
Fx(λS

′)
]
− ϵλOPT.

The lemma assumes that F (x) < (1 − 1/e)OPT and λ = O(ϵ), so
OPT ≤ e(OPT − F (x)) and ϵλOPT = O(ϵ)λ(OPT − F (x)). We conclude

that E [Fx(λS)] ≥ (1 − O(ϵ)) λ(OPT − F (x)). □

The approximation guarantee of the Accelerated Continuous

Greedy follows from lemmas 8 and 5, and the adaptivity from

Lemma 1. We defer the proof to Appendix C.

Theorem 2. For any ϵ > 0 Accelerated Continuous Greedy

makes O

(
log(n) log

(
k
ϵ 2

)
1

ϵ 2

)
adaptive rounds and obtains a 1 −

1/e −O(ϵ) approximation in expectation for maximizing a monotone

submodular function under a matroid constraint.

The final step in our analysis shows that the guarantee of Ac-

celerated Continuous Greedy holds not only in expectation but

also with high probability. To do so we argue in the lemma below

that if over all iterations i , Fx(λS) is close on average over the rounds
to λ(OPT − F (x)), we obtain an approximation arbitrarily close to

1 − 1/e with high probability. The proof is in Appendix C.

Lemma 9. Assume that Adaptive Sequencing outputs S ∈ M
s.t. Fx(λS) ≥ αiλ(OPT − F (x)) at every iteration i of Accelerated

Continuous Greedy and that λ
∑λ−1
i=1 αi ≥ 1−ϵ . Then Accelerated

Continuous Greedyoutputs x ∈ P(M) s.t. F (x) ≥ (1 − 1/e − ϵ) OPT.

The approximation αi obtained at iteration i is 1−O(ϵ) in expec-

tation by Lemma 8. Thus, by a simple concentration bound, w.h.p.

it is close to 1 − O(ϵ) in average over all iterations. Together with

Lemma 9, this implies the 1 − 1/e − ϵ approximation w.h.p.. The

details are in Appendix C.

Theorem 3. Accelerated Continuous Greedy is an algorithm

with adaptivity O

(
log(n) log

(
k
ϵλ

)
1

ϵλ

)
that, with probability 1 − δ ,

obtains a 1 − 1/e − O(ϵ) approximation for maximizing a monotone

submodular function under a matroid constaint, with step size λ =

O

(
ϵ2 log−1

(
1

δ

))
.

4 PARALLELIZATION OF MATROID ORACLE
QUERIES

Throughout the paper we relied on Random Seqence as a sim-

ple procedure to generate a random feasible sequence to achieve

our O(log(n) log(k)) adaptive algorithm with an approximation ar-

bitrarily close to 1 − 1/e . Although Random Seqence has zero

adaptivity, it makes rank(M) sequential steps depending on mem-

bership in the matroid to generate the sets X1, . . . ,Xrank(M ). From

a practical perspective, we may wish to accelerate this process via

parallelization. In this section we show how to do so in the standard

rank and independence oracle models for matroids.

4.1 Matroid Rank Oracles
Given a rank oracle for the matroid, we get an algorithm that only

makes O (log(n) log(k)) steps of matroid oracle queries and has

polylogarithmic depth on a PRAM machine. Recall that a rank

oracle forM is given a set S and returns its rank, i.e. the maximum

size of an independent subsetT ⊆ S . The number of steps of matroid

queries of an algorithm is the number of sequential steps it makes

when polynomially-many queries to a matroid oracle forM can

be executed in parallel in each step [KUW88].
2
We use a parallel

algorithm from [KUW88] designed for constructing a base of a

matroid with a rank oracle, and show that it satisfies the random

feasibility property.

Algorithm 4 Parallel Random Seqence for matroid constraint

with rank oracle

Input: matroidM, ground set N
b1, . . . ,b |N | ← random permutation of N
ri ← rank({b1, . . . ,bi }), for all i ∈ {1, . . . ,n}
ai ← ith bj s.t. r j − r j−1 = 1

return a1, . . . ,aℓ

WithAlgorithm 4 as the Random Seqence subroutine for Adap-

tive Seqencing, we obtain the following result for matroid rank

oracles (proof in the full version of the paper.).

2
More precisely, it allows p queries per step and the results depend on p , we consider
the case of p = poly(n).
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Theorem 4. For any ϵ > 0, there is an algorithm that obtains,

w.p. 1−o(1), a 1/2−O(ϵ) approximation with O

(
log(n) log

(
k
ϵ

)
1

ϵ 2

)
adaptivity and steps of matroid rank queries.

This gives O(log(n) log(k)) adaptivity and steps of independence
queries with 1 − 1/e − ϵ approximation for maximizing the mul-

tilinear relaxation and 1/2 − ϵ approximation for maximizing a

monotone submodular function under a matroid constraint. In par-

ticular, we get polylogarithmic depth on a PRAM machine with a

rank oracle.

4.2 Matroid Independence Oracles
Recall that an independence oracle forM is an oracle which given

S ⊆ N answers whether S ∈ M or S < M . We give a subroutine that

requires
˜O(n1/2) steps of independence matroid oracle queries and

show that Ω̃(n1/3) steps are necessary. Similar to the case of rank

oracles we use a parallel algorithm from [KUW88] for constructing

a base of a matroid that can be used as the Random Seqence

subroutine while satisfying the random feasibility condition.

Õ(
√
n) upper bound. We use the algorithm from [KUW88] for

constructing a base of a matroid.

Algorithm 5 Parallel Random Seqence for matroid constraint

with independence oracle

Input: matroidM, ground set N
c ← 0,X ← N
while |N | > 0 do
b1, . . . ,b |X | ← random permutation of X

i⋆ ← max{i : {a1, . . . ,ac } ∪ {b1, . . . ,bi } ∈ M}
ac+1, . . . ,ac+i⋆ ← b1, . . . ,bi⋆
c ← c + i⋆

X ← {a ∈ X : {a1, . . . ,ac ,a} ∈ M}
return a1, . . . ,ac

WithAlgorithm 5 as the Random Seqence subroutine for Adap-

tive Seqencing, we obtain the following result with independence

oracles. We defer the proof to the full version of the paper.

Theorem 5. There is an algorithm that obtains, w.p. 1 − o(1), a

1/2−O(ϵ) approximation with O

(
log(n) log

(
k
ϵ

)
1

ϵ 2

)
adaptivity and

O
(√

n log(n) log
(
k
ϵ

)
1

ϵ 2

)
steps of independence queries.

This gives O(log(n) log(k)) adaptivity and
√
n log(n) log(k) steps

of independence queries with 1 − 1/e − ϵ approximation for max-

imizing the multilinear relaxation and 1/2 − ϵ approximation for

maximizing a monotone submodular function under a matroid

constraint. In particular, even with independence oracles we get a

sublinear algorithm in the PRAM model.

Ω̃(n1/3) lower bound. We show that there is no algorithm which

obtains a constant approximation with less than Ω̃(n1/3) steps of
independence queries, even for a cardinality function f (S) = |S |.
We do so by using the same construction for a hard matroid in-

stance as in [KUW88] used to show an Ω̃(n1/3) lower bound on the

number of steps of independence queries for constructing a base

of a matroid. Although the matroid instance is the same, we use a

different approach since the proof technique of [KUW88] does not

hold in our case (see proof and discussion in the full version of the

paper.).

Theorem 6. For any constant α , there is no algorithm with

n1/3

4α log
2 n
− 1 steps of poly(n) matroid queries which, w.p. strictly

greater than n−Ω(logn), obtains an α approximation for maximizing

a cardinality function under a partition matroid constraint when

given an independence oracle.

To the best of our knowledge, the gap between the lower and

upper bounds of ˜Omeдa(n1/3) and O(n1/2) parallel steps for con-
structing a matroid basis given an independence oracle remains

open since [KUW88]. Closing this gap for submodular maximiza-

tion under a matroid constraint given an independence oracle is an

interesting open problem that would also close the gap of [KUW88].

A DISCUSSION ABOUT ADDITIONAL
RESULTS

We discuss several cases for which our results and techniques gen-

eralize.

Cardinality constraint. We first discuss a generalization of Adap-

tive Seqencing that is a O (log(n)) adaptive algorithm that ob-

tains a 1 − 1/e − O(ϵ) approximation with probability 1 − o(1) for
monotone submodular maximization under a cardinality constraint,

which is the special case of a uniform matroid. Instead of sampling

uniformly random subsets of X of size k/r as done in every itera-

tion of the algorithm in [BRS19], it is possible to generate a single

sequence and then add elements to S and discard elements from

X in the same manner as Adaptive Seqencing. We note that

generating a random feasible sequence in parallel is trivial for a

cardinality constraint k , one can simply pick k elements uniformly

at random. Similarly, the elements we add to the solution are ap-

proximately locally optimal and we discard a constant fraction of

elements at every round. A main difference is that for the case of a

cardinality constraint, setting the threshold t to t = (OPT − f (S))/k
is sufficient and, as shown in [BRS19], this threshold only needs

a constant number of updates. Thus, for the case of a cardinality

constraint, we obtain a O(logn) adaptive algorithm with a variant

of the algorithm. In addition, the continuous greedy algorithm is

not needed for a cardinality constraint since adding elements with

marginal contribution which approximates (OPT− f (S))/k at every

iteration guarantees a 1 − 1/e − ϵ approximation.

Non-monotone functions. For maximizing a non-monotone sub-

modular function under a cardinality constraint, similarly as for

the monotone algorithm discussed above, we can also generate a

single sequence instead of multiple random blocks of elements, as

done in [BBS18].

Partition matroids with explicit representation. Special families of

matroids, such as graphical and partition matroids, have explicit

representations. We consider the case where a partition matroid is

given as input to the algorithm not as an oracle but with its explicit

representation, meaning the algorithm is given the parts P1, . . . , Pm
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of the partition matroid and the number p1, . . . ,pm of elements of

each parts allowed by the matroid.

For the more general setting of packing constraints given to

the algorithm as a collection ofm linear constraints, as previously

mentioned, [CQ19] develop a O(log2(m) log(n)) adaptive algorithm
that obtains with high probability a 1 − 1/e − ϵ approximation,

and has polylogarithmic depth on a PRAM machine for partition

matroids.

For partition matroids, we obtain a O

(
log(n) log

(
k
ϵλ

)
1

ϵλ

)
adap-

tive algorithm that, with probability 1 − δ , obtains a 1 − 1/e − O(ϵ)

approximation with λ = O
(
ϵ2 log−1

(
1

δ

))
. This algorithm also has

polylogarithmic depth. This algorithm uses Accelerated Contin-

uous Greedy with the Random Seqence subroutine for rank

oracles since a rank oracle for partition matroids can easily be

constructed in polylogarithmic depth when given the explicit repre-

sentation of the matroid. As mentioned in [CQ19], it is also possible

to obtain a rounding scheme for partition matroids in polylogarith-

mic depth.

Intersection of P matroids. We formally analyze the more general

constraint consisting of the intersection of P matroids in Appen-

dix B.

B MISSING PROOFS FROM SECTION 2
B.1 Quasi-linear Query Complexity
The query complexity of Adaptive Seqencing and Accelerated

Continuous Greedy can be improved from O(nk log(n) log(k)) to
quasi-linear with O(n log(n) log2(k)) queries if we allow

O(log(n) log2(k))

rounds. This is done by finding i⋆ at every iteration of Adaptive

Seqencing by doing binary search of i ∈ [rank(M(S,X ))] instead
of computingXi for all i in parallel. Since there are at most k values

of i , this decrease the query complexity of finding i⋆ from nk to

n logk , but increases the adaptivity by logk .
An important property to be able to perform binary search is to

have |Xi | decreasing in i . We show this with the following lemma.

Lemma 10. At every iteration of Adaptive Sequencing, Xi+1 ⊆
Xi for all i < rank(M(S,X )).

Proof. Assume a ∈ Xi+1. Thus, S ∪ {a1, . . . ,ai } + a ∈ M and

fS∪{a1, ...,ai }(a) ≥ t . By the downward closed property of matroids,

S∪{a1, . . . ,ai−1}+a ∈ M. By submodularity, fS∪{a1, ...,ai−1 }(a) ≥
fS∪{a1, ...,ai }(a) ≥ t . We get that a ∈ Xi . □

Corollary 1. If Adaptive Sequencing finds i⋆ by doing binary

search, then its query complexity is O(n log(n) log2(k))and its adap-
tivity is O(log(n) log2(k)).

B.2 From Expectation to High Probability for
the Combinatorial Algorithm

We generalize Adaptive Seqencing to obtain an algorithm called

Adaptive Seqencing++, described below, which achieves a 1/2−ϵ
approximation with high probability, instead of in expectation.

We note that this generalization is not needed when Adaptive

Seqencing is used as a subroutine of Accelerated Continuous

Greedy for the 1 − 1/e − ϵ result.

Algorithm 6 Adaptive Seqencing++, Adaptive Seqencing

with high probability guarantee

Input: function f , feasibility constraintM

S ← ∅, t ← maxa∈N f (a)
for ∆ iterations do
X ← N
while X , ∅ do
for j = 1 to ρ do (non-adaptivity and in parallel)
a1, . . . ,arank(M(S,X )) ← Random Seqence(M(S,X ))

Xi ← {a ∈ X : S ∪ {a1, . . . ,ai ,a} ∈
M and fS∪{a1, ...,ai }(a) ≥ t}

i⋆ ← min {i : |Xi | ≤ (1 − ϵ)|X |}
S j ← S ∪ {a1, . . . ,ai⋆ }
X j ← Xi⋆

v j ← 1

i⋆
∑i⋆

ℓ=1
fS∪{a1, ...,aℓ−1 }(aℓ)

j⋆ ← argmaxj ∈[ρ]v
j

S ← S j

X ← X j

t ← (1 − ϵ)t
return S

Theorem 1. For any ϵ > 0, there is an O

(
log(n) log

(
k
ϵ

)
1

ϵ 2

)
adaptive algorithm that obtains a 1/2 − O(ϵ) approximation with

probability 1−o(1) for maximizing a monotone submodular function

under a matroid constraint.

Proof. We set ∆ = O
(
1

ϵ log

(
k
ϵ

))
. Initially we have ti ≤ OPT.

After ∆ iterations of Adaptive Seqencing, the final value of t

is tf ≤ (1 − ϵ)∆OPT = O
(
ϵ
k

)
OPT. We begin by adding dummy

elements to S so that |S | = k , which enables pairwise comparisons

between S and O . In particular, we consider S ′, which is S together

with rank(M) − |S | dummy elements a |S |+1, . . . ak such that, for

any T , fT (a) = tf . Thus, by Lemma 2, for dummy elements ai ,
fSi−1 (ai ) = tf ≥ (1 − ϵ)maxa:Si−1∪a∈M fSi−1 (a).

By Lemma 1, there are O(∆ log(n)/ϵ) iterations of the while-loop.
Since each iteration of the while-loop is non-adaptive, Adaptive

Seqencing++ is O(∆ log(n)/ϵ) adaptive
Consider an iteration of the while-loop of Adaptive Seqenc-

ing++. We first argue that for each inner-iteration j,∑
i ∈[i⋆]

fSi−1 (ai ) ≥ (1 − ϵ)
2i⋆t .

We first note that Prai
[
fS∪{a1, ...,ai−1 }(ai ) ≥ t

]
≥ 1 − ϵ by the

definition of i⋆ and the random feasible sequence property. Let Y
be the number of indices i ≤ i⋆ such that fS∪{a1, ...,ai−1 }(ai ) ≥ t .

By Chernoff bound, with µ = E[Y ] ≥ (1 − ϵ)i⋆

Pr

[
Y ≤ (1 − ϵ)(1 − ϵ)i⋆

]
≤ e−ϵ

2(1−ϵ )i⋆/2 ≤ e−ϵ
2(1−ϵ )/2.

Let Z ≤ ρ be the number of inner-iterations j such that Y ≥ (1−

ϵ)(1−ϵ)i⋆. By Chernoff bound, with µ = E[Z ] ≥ (1−e−ϵ
2(1−ϵ )/2)ρ,

Pr

[
Z ≤

1

2

(1 − e−ϵ
2(1−ϵ )/2)ρ

]
≤ e(1−e

−ϵ2(1−ϵ )/2)ρ/8.
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Thus, with ρ = O
(

1

1−e−ϵ2
log

(
∆ logn
ϵδ

))
, we have that with prob-

ability 1 − O (ϵδ/(∆ logn)), there is at least one inner-iteration j
such that Y ≥ (1− ϵ)(1− ϵ)i⋆. Thus

∑
i ∈[i⋆] fSi−1 (ai ) ≥ (1− ϵ)

2i⋆t .
By Lemma 2,∑

i ∈[i⋆]

fSi−1 (ai ) ≥ (1 − ϵ)
3

max

a:Si−1∪a∈M
fSi−1 (a).

By a union bound, this holds over all iterations of the while-loop

of Adaptive Seqencing++ with probability 1− δ and we get that∑
i ∈[k ]

fSi−1 (ai ) ≥ (1 − ϵ)
3

max

a:Si−1∪a∈M
fSi−1 (a).

Let O = {o1, . . . ,ok } such that {a1, . . . ,ai−1,oi } is feasible for

all i , which exists by the augmentation property of matroids. We

conclude that with probability 1 − δ ,

f (S ′) =
∑
i ∈[k ]

E[fSi−1 (ai )]

≥ (1 − ϵ)3 max

a:Si−1∪a∈M
fSi−1 (a)

≥ (1 − ϵ)3
∑
i ∈[k ]

E[fSi−1 (oi )]

≥ (1 − ϵ)3 fS ′(O)

≥ (1 − ϵ)3(OPT − f (S ′))

and since

f (S) = f (S ′) − (rank(M) − |S |)tf ≥ f (S ′) − O(ϵ)OPT,

we conclude that f (S) ≥ (1/2 − O(ϵ))OPT. □

B.3 Intersection of Matroid Constraints
We consider constraintM = ∩Pi=1Mi which is the intersection of

P matroidsMi , i.e. S ∈ M if S ∈ Mi for all i ≤ P . Similarly as for a

single matroid constraint, we denote the size of the largest feasible

set by k . We denote the rank of a set S with respect to matroidMj
by rankj (S). We define spanj (S), called the span of S inMj by:

spanj (S) = {a ∈ N : rankj (S ∪ a) = rankj (S)}

We will use the following claim.

Claim 1 (Prop. 2.2 in [NWF78]). If for ∀t ∈ [k]∑t−1
i=0 σi ≤ t and

pi−1 ≥ pi , with σi ,pi ≥ 0 then:

k−1∑
i=0

piσi ≤
k−1∑
i=0

pi .

Similarly as for a single matroid, we give the approximation

guaranteed obtained by a solution S with near-optimal marginal

contributions for each a ∈ S .

Lemma 11. Assume that S = {a1, . . . ,ak } such that

fSi−1 (ai ) ≥ (1 − ϵ) max

a:Si−1∪a∈M
fSi−1 (a)

where Si = {a1, . . . ,ai }. Then, ifM is the intersection of P matroids,

we have

f (S) ≥

(
1

P + 1
− O(ϵ)

)
OPT.

Proof. Since Si and O are independent sets inMj we have:

rankj (spanj (Si ) ∩O) = |spanj (Si ) ∩O | ≤ |spanj (Si )| = |Si | ≤ i

Define Ui = ∪
P
j=1spanj (Si ), to be the set of elements which are

not part of the maximization at index i + 1 of the procedure, and
hence cannot give value at that stage. We have:

|Ui ∩O | = |(∪
P
j=1spanj (Si )) ∩O | ≤

P∑
j=1
|spanj (Si ) ∩O | ≤ P · i

LetVi = (Ui \Ui−1) ∩O be the elements ofO which are not part of

the maximization at index i , but were part of the maximization at

index i − 1. If a ∈ Vi then it must be that

(1 − ϵ)fSk (a)(1 − ϵ) ≤ fSi−1 (a) ≤ max

b :Si−1∪b ∈M
fSi−1 (b)

where the first inequality is due to submodularity of f . Hence, we
can upper bound:∑

o∈O\Sk

fSk (o) ≤
k∑
i=1

∑
o∈Vi

max

a:Si−1∪a∈M
fSi−1 (a)

=

k∑
i=1
|Vi | max

a:Si−1∪a∈M
fSi−1 (a)

≤ P
k∑
i=1

max

a:Si−1∪a∈M
fSi−1 (a)

where the last inequality uses

∑i
t=1 |Vt | = |Ui ∩ O | ≤ Pi and

the claim due to 1. Together with OPT ≤ f (O ∪ Sk ) ≤ f (Sk ) +∑
o∈O\Sk fSk (o) and fSi−1 (ai ) ≥ (1−ϵ)maxa:Si−1∪a∈M fSi−1 (a) we

get:

f (S) ≥

(
1

P + 1
− O(ϵ)

)
OPT.

as required. □

Since Lemma 2 only uses the downward closed property ofM

and since intersections of matroids are downward closed, Adaptive

Seqencing++ obtains a solution S with near-optimal marginal

contributions for each ai ∈ S = {a1, . . . ,ak }. Combined with the

previous lemma, we obtain the result for intersections of matroids.

Theorem 7. For any ϵ > 0, Adaptive Sequencing++ is an

O

(
log(n) log

(
k
ϵ

)
1

ϵ 2

)
adaptive algorithm that obtains a 1/(P + 1) −

O(ϵ) approximation with probability 1−o(1) for maximizing a mono-

tone submodular function under the intersection of P matroids.

Proof. The first part of the of the proof follows similarly as the

proof for Theorem 3 by using Lemma 2, which also hold for intersec-

tions of matroids, to obtain the near-optimal marginal contributions

of each ai ∈ S with probability 1 − o(1):∑
i ∈[i⋆]

fSi−1 (ai ) ≥ (1 − ϵ)
3

max

a:Si−1∪a∈M
fSi−1 (a).

We then combine this with Lemma 11 to obtain the 1/(P + 1)−O(ϵ)
approximation with probability 1 − o(1). □
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C MISSING PROOFS FROM SECTION 3
Discussion on constant step size λ. In contrast to the continuous

greedy, the accelerated continuous greedy uses constant steps sizes

λ to guarantee low adaptivity. The challenge with using constant λ
is that Fx(λS) is arbitrarily low with S := argmaxT ∈M

∑
a∈T д(a)

due to the overlap in value of elements a with high individual value

д(a). For example, consider ground set N = A ∪ B with

f (S) = min(logn, |S ∩A|) + |S ∩ B |,

x = 0 and S = A. With λ = 1/n, we note that sampling R ∼ λA
where R independently contains each element in S with probability

1/n gives |R | ≤ logn with high probability and we get Fx(λA) =
(1 − o(1))|A|, which is near-optimal for a set of size |A|. However,
with constant λ, then sampling R ∼ λA gives |R | > logn with high

probability. Thus Fx(λA) ≤ log(n) which is arbitrarily far from

optimal for |A| = |B | >> logn since Fx(λB) = λ |B |.

Lemma 5. For a given matroidM assume that

Adaptive Sequencing outputs S ∈ M s.t.

ES [Fx(λS)] ≥ (1 − ϵ)λ(OPT − F (x))

at every iteration of Accelerated Continuous Greedy. Then Ac-

celerated Continuous Greedy outputs x ∈ P(M) s.t.

E[F (x)] ≥ (1 − 1/e − ϵ) OPT.

Proof. First, x ∈ P since it is a convex combinations of λ−1

vectors 1S with S ∈ M. Next, let xi denote the solution x at the

ith iteration of Accelerated Continuous Greedy. The algorithm

increases the value of the solution x by at least (1−ϵ)·λ·(OPT − F (x))
at every iteration. Thus,

F (xi ) ≥ F (xi−1) + (1 − ϵ) · λ · (OPT − F (xi−1)) .

Next, we show by induction on i that

F (xi ) ≥
(
1 − (1 − (1 − ϵ)λ)i

)
OPT.

Observe that

F (xi ) ≥ F (xi−1) + (1 − ϵ)λ (OPT − F (xi−1))

= (1 − ϵ)λOPT + (1 − (1 − ϵ)λ) F (xi−1)

≥ (1 − ϵ)λOPT + (1 − (1 − ϵ)λ)
(
1 − (1 − (1 − ϵ)λ)i−1

)
OPT

=
(
1 − (1 − (1 − ϵ)λ)i

)
OPT

Thus, with i = λ−1, we return solution x = xλ−1 such that

F (x) ≥
(
1 − (1 − (1 − ϵ)λ)λ

−1
)
OPT.

Next, since 1 − x ≤ e−x for all x ∈ R,

(1 − (1 − ϵ)λ)λ
−1

≤

(
e−(1−ϵ )λ

)λ−1
= e−(1−ϵ ).

We conclude that

F (x) ≥
(
1 − e−(1−ϵ )

)
OPT =

(
1 −

eϵ

e

)
OPT

≥

(
1 −

1 + 2ϵ

e

)
OPT

≥

(
1 −

1

e
− ϵ

)
OPT

where the second inequality is since ex ≤ 1 + 2x for 0 < x < 1. □

Lemma 6. Let M be a matroid, then for any feasible sets S =
{a1, . . . ,ak } and O of size k , there exists an ordering of

O = {o1, . . . ,ok } where for all i ∈ [k], Si ∪ Oi+1:k ∈ M and

Si ∩Oi+1:k = ∅.

Proof. The proof is by reverse induction. For i = k , we have
Si ∪Oi+1:k = Sk = S ∈ M by Lemma 2. Consider i < k and assume

that Si+1 ∪ Oi+2:k ∈ M for some ordering oi+2, . . . ,ok of Oi+2:k .

By the downward closed property of matroids, Si ∪Oi+2:k ∈ M.

By the augmentation property of matroids, there exists oi+1 ∈
O \(Si ∪Oi+2:k ) such that Si ∪Oi+2:k +oi+1 = Si ∪Oi+1:k ∈ M. □

Theorem 2. For any ϵ > 0 Accelerated Continuous Greedy

makes O

(
log(n) log

(
k
ϵ 2

)
1

ϵ 2

)
adaptive rounds and obtains a 1 −

1/e −O(ϵ) approximation in expectation for maximizing a monotone

submodular function under a matroid constraint.

Proof. We use step size

λ = O (ϵ)

for Accelerated Continuous Greedy and

∆ = O

(
1

ϵ
log

(
k

ϵλ

))
outer-iterations for Adaptive Seqencing. Thus, by Lemma 1, the

adaptivity is

O

(
∆ logn

λϵ

)
= O

(
log(n) log

(
k

ϵ2

)
1

ϵ2

)
.

By Lemma 8, we have

E[Fx(δS)] ≥ (1 − O(ϵ))λ(OPT − F (x))

at every iteration i . Combining with Lemma 5, we obtain that

E[F (x)] ≥ (1 − e−1 − O(ϵ))OPT.

It remains to round the solution x. We note that there exist

rounding schemeswith arbitrarily small loss that are independent of

the function f [CVZ09, VCZ11] (so they do not perform any queries

to f ). The set S we obtain from rounding the solution x returned by

Accelerated Continuous Greedy with these techniques is thus

a 1 − 1/e − O(ϵ) approximation with no additional adaptivity. □

Lemma 9. Assume that Adaptive Sequencing outputs S ∈ M
s.t. Fx(λS) ≥ αiλ(OPT − F (x)) at every iteration i of Accelerated

Continuous Greedy and that λ
∑λ−1
i=1 αi ≥ 1−ϵ . Then Accelerated

Continuous Greedyoutputs x ∈ P(M) s.t. F (x) ≥ (1 − 1/e − ϵ) OPT.

Proof. First, x ∈ P since it is a convex combinations of λ−1

vectors 1S ∈ M. Next, let xi denote the solution x at the ith iteration
of Accelerated Continuous Greedy. The algorithm increases

the value of the solution x by at least αi · λ · (OPT − F (x)) at every
iteration. Thus,

F (xi ) ≥ F (xi−1) + αi · λ · (OPT − F (xi−1)) .

Next, we show by induction on i that

F (xi ) ≥
©­«1 −

i∏
j=1

(
1 − λα j

)ª®¬ OPT.
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Observe the following, where the first inequality is by the as-

sumption of the lemma, the second by the inductive hypothesis,

and the equalities by rearranging the terms.

F (xi ) ≥ F (xi−1) + αiλ (OPT − F (xi−1))

= αiλOPT + (1 − αiλ) F (xi−1)

≥ αiλOPT + (1 − αiλ)
©­«1 −

i−1∏
j=1

(
1 − λα j

)ª®¬ OPT
= αiλOPT +

©­«1 − αiλ −
i∏
j=1

(
1 − λα j

)ª®¬ OPT
=
©­«1 −

i∏
j=1

(
1 − λα j

)ª®¬ OPT
Thus, with i = λ−1, we return solution x = xλ−1 such that

F (x) ≥ ©­«1 −
λ−1∏
j=1

(
1 − λα j

)ª®¬ OPT.
Since 1 − x ≤ e−x for all x ∈ R,

1 −

λ−1∏
j=1

(
1 − λα j

)
≥ 1 −

λ−1∏
j=1

e−λα j = 1 − e−λ
∑λ−1
j=1 α j

≥ 1 − e−(1−ϵ ) ≥ 1 − e−1 − 2ϵ/e ≥ 1 − e−1 − ϵ

where the second inequality is since ex ≤ 1 + 2x for 0 < x < 1. □

Theorem 3. Accelerated Continuous Greedy is an algorithm

with adaptivity O

(
log(n) log

(
k
ϵλ

)
1

ϵλ

)
that, with probability 1 − δ ,

obtains a 1 − 1/e − O(ϵ) approximation for maximizing a monotone

submodular function under a matroid constaint, with step size λ =

O

(
ϵ2 log−1

(
1

δ

))
.

Proof. We use ∆ = O
(
1

ϵ log

(
k
ϵλ

))
outer-iterations for Adap-

tive Seqencing. Thus, by Lemma 1, the adaptivity isO

(
∆ logn
λϵ

)
=

O

(
log(n) log

(
k
ϵλ

)
1

ϵλ

)
.

By Lemma 8, we have Fx(δS) ≥ αiλ(OPT−F (x)) at every iteration
i with E [αi ] ≥ 1 − ϵ ′ where ϵ ′ = O(ϵ). By a Chernoff bound with

E[λ
∑
i ∈λ−1 αi ] ≥ 1 − ϵ ′,

Pr

λ
∑

i ∈[λ−1]

αi < (1 − ϵ)(1 − ϵ
′)

 ≤ e−ϵ
2(1−ϵ ′)λ−1/2.

Thus, with probability p = 1 − e−ϵ
2(1−ϵ ′)λ−1/2

, λ
∑
i ∈[λ−1] αi ≥

1 − ϵ − ϵ ′. By Lemma 9, we conclude that w.p. p, F (x) ≥ (1 − e−1 −
(ϵ + ϵ ′))OPT. With step size λ = O(ϵ2/log(1/δ )), we get that with
probability 1 − δ , F (x) ≥ (1 − e−1 −O(ϵ))OPT.

It remains to round the solution x. We note that there exist

rounding schemeswith arbitrarily small loss that are independent of

the function f [CVZ09, VCZ11] (so they do not perform any queries

to f ). The set S we obtain from rounding the solution x returned by

Accelerated Continuous Greedy with these techniques is thus

a 1 − 1/e − O(ϵ) approximation with no additional adaptivity. □
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