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Abstract

We describe two efficient, and exact, algorithms
for computing Bellman updates in robust Markov
decision processes (MDPs). The first algorithm
uses a homotopy continuation method to compute
updates for L -constrained s, a-rectangular ambi-
guity sets. It runs in quasi-linear time for plain L,
norms and also generalizes to weighted L; norms.
The second algorithm uses bisection to compute
updates for robust MDPs with s-rectangular am-
biguity sets. This algorithm, when combined with
the homotopy method, also has a quasi-linear run-
time. Unlike previous methods, our algorithms
compute the primal solution in addition to the op-
timal objective value, which makes them useful
in policy iteration methods. Our experimental re-
sults indicate that the proposed methods are over
1,000 times faster than Gurobi, a state-of-the-art
commercial optimization package, for small in-
stances, and the performance gap grows consider-
ably with problem size.

1. Introduction

Markov decision processes (MDPs) provide a versatile
methodology for modeling dynamic decision problems un-
der uncertainty (Bertsekas & Tsitsiklis, 1996; Sutton &
Barto, 1998; Puterman, 2005). By assuming that transi-
tion probabilities and rewards are known precisely, however,
MDPs are sensitive to model and sample errors. In re-
cent years, the reinforcement learning literature has studied
robust MDPs (RMDPs), which assume that the transition
probabilities and/or rewards are uncertain and can take on
any plausible value from a so-called ambiguity set (also
known as an uncertainty set) to mitigate the errors (Xu &
Mannor, 2006; 2009; Mannor et al., 2012; Petrik, 2012;
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Hanasusanto & Kuhn, 2013; Tamar et al., 2014; Delgado
et al., 2016; Petrik et al., 2016). RMDPs are reminiscent of
dynamic zero-sum games: the decision maker chooses the
best actions, while an adversarial nature chooses the worst
plausible transition probabilities.

The majority of the RMDP literature assumes that the am-
biguity set is rectangular, in which case the analysis and
computation become particularly convenient (Iyengar, 2005;
Nilim & El Ghaoui, 2005; Le Tallec, 2007; Kaufman &
Schaefer, 2013; Wiesemann et al., 2013). RMDPs with rect-
angular ambiguity sets are optimized by stationary (that is,
history-independent) policies, and they satisfy a robust Bell-
man optimality equation which allows the optimal policy to
be computed using value or policy iteration in polynomial
time (Hansen et al., 2013). Polynomial time complexity is,
however, often insufficient. In all but the smallest RMDPs,
computing the worst-case realization of the transition prob-
abilities involves solving at least a linear program (LP). The
runtime of LP solvers can grow cubically with the number of
states. Although modern LP solvers are very efficient, solv-
ing an LP to compute the Bellman update for each state and
iteration becomes prohibitively expensive even for problems
with only a few hundred states.

In this paper, we develop new algorithms that mitigate the
computational concerns for RMDPs with ambiguity sets
constrained by plain and weighted L; norms. Such ambigu-
ity sets are common in reinforcement learning and opera-
tions research for two main reasons (Iyengar, 2005; Strehl
et al., 2009; Jaksch et al., 2010; Petrik & Subramanian,
2014; Taleghan et al., 2015; Petrik et al., 2016). First, it
is easy to construct them from samples using Hoeffding-
style bounds (Weissman et al., 2003). Second, they are
convenient to work with computationally, since the worst
transition probabilities can be computed using LPs.

Our main contributions are two efficient, and exact, algo-
rithms for computing Bellman updates in RMDPs. The
first algorithm uses a homotopy continuation approach (Van-
derbei, 2001) for RMDPs with so-called s, a-rectangular
ambiguity sets that are constrained by weighted L; norms.
s, a-rectangular ambiguity sets assume that nature can ob-
serve the decision-maker’s actions before choosing the worst
plausible realization of the transition probabilities (Le Tal-
lec, 2007; Wiesemann et al., 2013). Using these sets resem-
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bles the adaptive offline adversary model. The homotopy
method starts with a singleton ambiguity set, for which
computing the worst response is trivial, and then it traces
nature’s response with the increasing ambiguity set size. Its
computational complexity is O(SAlog.S), where S is the
number of states and A is the number of actions.

Our second algorithm uses a novel bisection approach to
solve RMDPs with s-rectangular ambiguity sets. These am-
biguity sets assume a weaker nature that must commit to a
realization of the transition probabilities before observing
the decision-maker’s actions (Le Tallec, 2007; Wiesemann
et al., 2013). Using s-rectangular ambiguity sets resembles
the oblivious adversary model and provides less conserva-
tive solutions. They are, however, much more computation-
ally challenging since the decision maker’s optimal policy
can be randomized (Wiesemann et al., 2013). When the
bisection method is combined with our homotopy method
for L-constrained ambiguity sets, its time complexity is
O(SAlog(SA)). We emphasize that the complexity is inde-
pendent of any approximation constant ¢ which is unusual
for bisection methods.

Problem-specific optimization methods are often needed to
solve machine learning problems, which are large but exhibit
simple structure. Quasi-linear-time algorithms for comput-
ing Bellman updates for RMDPs with L;-constrained s, a-
rectangular ambiguity sets have been proposed before (Iyen-
gar, 2005; Strehl et al., 2009; Petrik & Subramanian, 2014).
Our methods, in comparison, generalize to weighted L
norms and s-rectangular ambiguity sets, which are impor-
tant in preventing overly conservative solutions in many
data-driven settings (Nilim & El Ghaoui, 2005; Le Tallec,
2007; Wiesemann et al., 2013). The algorithms can also be
used with (modified) robust policy iteration (Kaufman &
Schaefer, 2013) because they compute the worst probability
realizations, unlike prior work. Modified policy iteration can
solve RMDPs many times faster than value iteration (Kauf-
man & Schaefer, 2013).

The proposed homotopy method is also related to LARS, a
homotopy method for solving the LASSO problem (Drori
& Donoho, 2006; Hastie et al., 2009; Murphy, 2012), and
also to fast methods for computing efficient projections onto
the L, ball (Duchi et al., 2008; Thai et al., 2015). Unlike
this prior work, computing the worst transition probabilities
is complicated by the need to respect constraints on transi-
tions probabilities. Our homotopy method also works in the
more general case of weighted L1 norms, which have not
been tackled previously and have a very different solution
structure from the plain L, case. A bisection method has
been previously proposed for robust MDPs, but that algo-
rithm solves a different s, a-rectangular problem (Nilim &
El Ghaoui, 2005).

The remainder of the paper is organized as follows. Sec-

tion 2 describes basic RMDP models. Section 3 then intro-
duces the new homotopy method for s, a-rectangular ambi-
guity sets. Section 4 describes the new bisection method for
s-rectangular ambiguity sets. The bisection method takes
advantage of the optimal solution paths generated by the ho-
motopy method. Finally, Section 5 compares our algorithms
with Gurobi, one of the leading commercial LP solvers.
While we describe and evaluate the methods in the context
of a tabular value function, they easily generalize to robust
value function approximation methods (Tamar et al., 2014).

Notation: We use A® to denote the probability simplex in
Rf_. Symbols 1 and 0 denote vectors of all ones and zeros,
respectively, of the size appropriate to their context.

2. Robust Bellman Updates

We consider a Robust Markov Decision Process (RMDP)
with a finite number of states . = {1, ..., .S} and actions
o/ ={1,...,A}. Every action can be taken in every state.
Choosing an action a € &7 in a state s € . yields a reward
7s,« € R and results in a stochastic transition to a new state
s’ according to the transition probabilities p; o, € A®. The
probability p is, however, unknown and is constrained to be
in the ambiguity set &7 (which is also sometimes referred to
as an uncertainty set).

A common objective in RMDPs is to compute a stationary
randomized policy 7 : .# — A that maximizes the return
p for the worst plausible realization of transition probabili-
ties:

i 2D)s 1
nax miny p(m,p) ¢))

where Il is the set of all stationary randomized policies
and p(m,p) is the return. When assuming an infinite-
horizon ~y-discounted objective, the return is p(mw,p) =
E[Y g7 7s,,4, | where Sy = s is the initial state, the
state random variables Sy, . . . are distributed according to p
and actions Ay, ... are distributed according to 7. But our
results also apply directly to finite-horizon problems.

The problem (1) is NP-hard in general but solvable in poly-
nomial time when &7 is s, a-rectangular (Nilim & El Ghaoui,
2005; Iyengar, 2005). In s, a-rectangular RMDPs, ambigu-
ity sets are defined independently for each state s and action
a: Ps,q € Psq ratherthanp € 2.

We focus particularly on ambiguity sets defined with re-
spect to a norm-bounded distance from a known nominal
transition probability p. Formally, the s, a-rectangular am-
biguity set for s € . and a € & is P, = {p € A’

IPs,a — Pl < Koo} for agiven ks, > 0 and anorm || - ||.
Recall that the Q-function in regular MDPs is defined as
s, = Ts,a + 7 - Pa 4v for some value function v € RS,
The Q-function ¢ € R%*4 for s, a-rectangular RMDPs is
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Figure 1. Example function ¢s,,(£) for an ambiguity set con-
strained by the L, norm.

defined as:

QS,a(g) - mln {Tsa +7 P v ||p_;58,a|| < g} (2)

peEA
Figure 1 depicts an example of the value of a g as a function
of &. Finally, the optimal value function v* € R in this
RMDP model must satisfy the robust Bellman optimality
equation (Iyengar, 2005):

*
- 3
vy =max min g7,(¢) 3)

where ¢* is defined in terms of v*. We use £ as an optimiza-
tion parameter in the robust g function, and we use ¢ and
Ks,q as Tobustness budgets of the RMDP.

In s-rectangular RMDPs, the ambiguity set is defined in-
dependently for each state s: p;. € 5. The norm
constrained s-rectangular ambiguity set becomes: &, =
{(m e A5, .pac A% Yy lPsa— Pall < ris)
for a given Iig > 0. The optimal value function v* € R
must satisfy the following robust Bellman optimality equa-
tion (Wiesemann et al., 2013):

Y G<k) @

acof

vy = max mln{Zda 0%.0(&a)

deAA EeRA

Here, d, represents the probability of taking an action a
in this state: m(s,a) = d, for the state s above. Optimal
policies in s-rectangular RMDPs may be randomized.

3. Homotopy for s, a-rectangular Sets

In this section, we consider the problem of efficiently com-
puting the worst-case response of nature in RMDPs with
s, a-rectangular ambiguity sets. This amounts to comput-
ing the function g¢; () in (2) for some state s and action
a. Our homotopy method assumes that the ambiguity set
emerges from the intersection of the probability simplex
and a w-weighted L, norm ball, where the norm is defined
as ||z]l1,w = > q wilz;|. The weights w > 0 must be
positive but need not sum to 1 or any other specific number.

Since our focus in this section is restricted to computing the
function g; 4 (&) for a fixed state s and action a, we drop
the subscripts and refer to the function as ¢(¢), the nominal
probabilities as p € A, and the degree of ambiguity as x €
R_ . To further simplify notation, we define z = r; ,1+~vyv
to obtain:

¢(§) = min {pTz

pe

Dlp-phe <€) O

Problem (5) can be readily formulated as a linear program:

_ ; T
0= pettitns 77
subjectto p—p <1l (%)
p—p<l (%) ©
p=0 (Z)
1Tp=1, w'l=¢

We assume in (6) that the constraint w'l < ¢ is binding,
which will be the case for all £ of interest to our homotopy
method. Note that when the constraint w'l < £ is not
binding, ¢(&) will not change for any greater value of .

Algorithm 1: Homotopy method for ¢(&).

Input: LP parameters: z,w, p
Initialize £ < 0.0, p < p, X; = 0 and
Q1=4q(0)=p"z k<« 2;

// Derivatives for basic solutions
for donori=1...5do

for receiver j =1...5 do
Case CI (i € L"): o j < #i—%ifwitw;;
Case C2 (1 € %/)Z Bi,j < Zj*zi/—wi,+wj;

end
end
Sort (a; ; and f3; ;) in ascending order of their
derivatives to get the bases B, ..., Br;
fori=1...Tdo

if B; is feasible then
Compute maximum possible increase A€ in
¢ for Bj to remain feasible;
if A¢ > 0 then
Update £ < & + A&, update objective
value using derivative;
Record breakpoint:
ke k+1,Xp & Qk < q(&);
end

end

end

The remainder of the function ¢(£) will be constant:
Xk+1 — 00, Qk+1 — ka k+—k+1;

return Breakpoints X1 j, and values Q1. .

The basic idea of homotopy methods is to trace the optimal
solution to an optimization problem while increasing the
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Figure 2. Example evolution of the minimizer in ¢(§) when nature is limited by an unweighted (leff) and weighted (right) L1 norm. The
plots show the optimal solution p for any £ and not only where marked with points. The point markers indicate breakpoints where the

solution switches to a new optimal basis.

value of some parameter (Garrigues & El Ghaoui, 2009;
Asif & Romberg, 2009). One starts with a parameter value
for which the problem is easy to solve. In our case, we
choose ¢ = 0 since the only feasible response of nature is
p = P, and solving ¢(0) amounts to computing a Bellman
update in a non-robust MDP. We then track the optimal p as
the value of ¢ increases. Implementing a homotopy method
in the context of a linear program such as (6) is especially
convenient since ¢(&) and p are piecewise linear in & (Van-
derbei, 2001). Intuitively, p is linear in £ for each basic
feasible solution in (6), and a breakpoint (or a ‘knot’) occurs
whenever the currently optimal basis becomes infeasible. A
similar argument shows that ¢(§) is piecewise linear, too.

Before proving the correctness of our homotopy method,
we describe the algorithm informally. The bases of interest,
which correspond to a subset of the extreme points of the
feasible set in (6), have a particularly simple structure. For
each such basis, the value of exactly two components of
p change as & increases. For p to be a valid probability
distribution, it must sum to 1, and therefore one component
increases and the other component decreases. We use the
term donor for the component that decreases and donates
some of its mass to the receiver component.

Given an optimal basis with a donor-receiver pair, we trace
the optimal solution p as £ increases. Once the basis be-
comes infeasible, we switch to a feasible basis whose objec-
tive value decreases fastest when increasing &. For example,
consider a problem with uniform weights w = 1 and an
increase of £ by AE. If 4 is the donor and j the receiver, then
Ap; = —A¢/2 and Ap; = A/2, and the objective value
changes by (z; — z;)A¢/2. The examples below illustrate
the paths traced by the optimal solution p.

Example 1. Consider the function q(§) in (5) for an RMDP
with 4 states, z = [4,3,2,1], p = [0.2,0.3,0.4,0.1], and
uniform weights w = 1. Figure 2(left) depicts the evolution
of the optimal p as a function of &. The only receiver in all
bases is component 3, and the donors are the components 0,
1, and 2 (in order of increasing £). Section 3.1 shows that

for uniform w, the component with the smallest value of z
is always the sole receiver.

Example 2. Consider the function q(§) in (5) for an RMDP
with 4 states, z = [2.9,0.9,1.5,0.0], p = [0.2,0.3,0.3,0.2],
and non-uniform weights w = [1,1,2,2]. Figure 2(right)
depicts the evolution of the optimal p as a function of &.
The donor-receiver pairs are (0,1), (1,3), and (2, 3). This
example shows that when w is not uniform, several compo-
nents can serve as receivers, and some components can be
both receivers and donors for different values of &.

The homotopy algorithm is described in Algorithm 1. We
first prove the structure of the bases described above and
then compute the derivatives of the optimal objective value.
The section concludes by proving the optimality of the ho-
motopy solution as well as analyzing its computational com-
plexity.

In the following, we use the sets %,.%, % C {1,...,S}
to denote which inequalities in (6) are active in a particular
basis. For example, i € % indicates that p; — p; = [;, and
j € Z indicates that p; = 0. The letter % () stands for
upper (lower) bounds on p, and & for zero. Note that some
constraints may be inactive in the basis and still hold with
equality or even be violated.

Our homotopy approach is based on tracing the basic feasi-
ble solutions. Since (6) has 25 variables (p and [), each set
of 25 constraints (inequalities and/or equalities) in (6) that
are satisfied as equalities and that are linearly independent
define a basis, see, e.g., Definition 2.9 in Bertsimas & Tsit-
siklis (1997). In particular, each basis is uniquely defined by
the elements in the sets %, %, and Z. Welet 0 = % N.¥
denote the components 7 for which both the lower and the
upper bounds hold with equality, that is, for which p; = p;.
Moreover, we let %' = % \ (0 U %) denote the com-
ponents ¢ for which the upper bounds (but not the lower
bounds) hold with equality and for which p; > 0, that is, for
which p; > p;. Likewise, we let &' = £\ (0U %) denote
the components ¢ for which the lower bounds (but not the



Fast Bellman Updates for Robust MDPs

upper bounds) hold with equality and for which p; > 0, that
is, for which p; > p; > 0. We first show that any basis to
(6) satisfies |%'| + |.£'| < 2.

Lemma 1. Assume a basis (possibly infeasible) to (6) is
defined by %, £ and % . We then have |%'| + |-£'| < 2.

The lemma follows from algebraic manipulation and the
fact that & N 2 = (), which in turn follows from the linear
independence of the constraints defining a basis. The full
proof is technical and is deferred to Appendix A.1.

We now show that %7’ U ¢’ precisely contains the donors
and receivers. From Lemma 1 we can then conclude that in
any basis, there is at most one donor-receiver pair.

Lemma 2. Assume a basis to (0) is defined by %, £ and
%, and let p and q be the derivatives of p and q with respect
to & for this basis. We then have:

CY) IfL ={itand %' = {j}, then

Zj — Zi L -1 p 1
J

q= ) = )
w; + W wi + wj

(C2) If & =0and %' = {i,j}, then

Zj — Zi . —1 . 1
pi = p; =

q: ) b -
—w; + Wj Wi — Wy w; — W

The lemma follows from algebraic manipulation of the con-
straints that define a particular basis. We defer the proof to
Appendix A.2. We note that there are potential bases to (6)
with 7' = 0,.¢" = {i,j} (Case C3), and |.L" |+ |%'| < 2
(Case C4) as well. This is the case when £ = 0, when p
solves (6) for all £ € R, at breakpoints of the function ¢(§&)
or when the optimal solution p satisfies ||p — p||1,, < &.
Since none of these cases is relevant for our homotopy
method, we do not further elaborate on them.

Algorithm 1 summarizes the homotopy method. As ex-
plained above, it follows each basis as & increases as long as
it is feasible. The basis becomes infeasible either because
some p; or some [; is reduced to 0. In that case, the algo-
rithm determines the new optimal basis. Since the function
q(&) is convex, it is only necessary to search for bases that
have derivatives ¢ no smaller than the previous basis. For
ease of exposition, Algorithm 1 assumes that there are no
ties between the derivatives. It is straightforward but tedious
to generalize the proofs to the presence of ties.

Note that we designed Algorithm 1 to generate the entire
solution path of ¢(§). If the goal is to compute the function
q for a particular value of &, this is not necessary. However,
the bisection method that we describe in the next section
will require the entire path in order to compute solutions to
s-rectangular problems.

The following theorem states the correctness of the pro-
posed homotopy algorithm. It shows that the function q is a

piecewise linear function defined by the output generated
by Algorithm 1.

Theorem 1. Let X, and Q.. be the output of Algo-
rithm 1. Then, q(&) is a piecewise linear function with
breakpoints X that satisfies ¢(X;) = Q;, 1 =1,...,n.

A detailed proof of Theorem 1 is deferred to Appendix A.3.
Broadly speaking, the theorem can be proved by contradic-
tion. Since each point X in the algorithm corresponds to the
value of ¢ for some feasible basis, the output generated by
Algorithm 1 provides an upper bound on the function g(§).
Assume to the contrary that the output does not coincide
point-wise with the function ¢(&). In that case, there must
be a basis that is not considered by the homotopy method
and that has a strictly smaller derivative than all other fea-
sible bases for some value of £. This, however, contradicts
the way in which bases are chosen by the algorithm.

3.1. Complexity

A naive implementation of Algorithm 1 has a computational
complexity of S? because it enumerates all pairs of indexes.
Although this would be an improvement over the typical
O(S?) time complexity of LP algorithms, having a close
to linear time algorithm is preferable. In fact, we observed
numerically that the naive implementation performs on par
with LP solvers and sometimes even slower. In this section,
we describe a way to take advantage of a simple structural
property to dramatically speed up Algorithm 1.

The homotopy method transfers probability mass along the
components with the greatest possible difference in z value
and the smallest cumulative weight. A component ¢, there-
fore, cannot be a receiver if there is another component j
with a smaller z; and w;. The component ; is said to be
dominated and can be eliminated from the set of receivers
as the following lemma states.

Lemma 3. Consider a component i € . such that there is
a component j € S \{i} with(1) z; < z;, and (2) w; < w;.
Then, Algorithm 1 will never choose to follow a basis such
thati € U’

The proof shows that using j instead of ¢ as a receiver leads
to a steeper decrease in the objective value and does not
introduce any infeasibility. The proof is in Appendix A.4.

In case of ties, when multiple components satisfy z; = z;
and w; = wyj, it is sufficient to choose one of them as a pos-
sible receiver and eliminate others. The components that are
not dominated and can be receivers can easily be identified
in O(Slog S) using Algorithm 3 (in Appendix B.1).

It can be shown for uniform w that only the smallest compo-
nent of z is not dominated and can serve as a receiver. In this
case, our the homotopy method takes at most S steps. More
generally, if the weights w come from at most C' distinct
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Figure 3. Visualization of the s-rectangular Bellman update with
the response functions g1, g2, g3 for 3 actions.

classes, then each class contains at most one receiver. The
following corollary summarizes this fact.

Corollary 1. If wi.. s € €, Algorithm I and 3 run in
total time O(|€| - Slog(|€| - S)) and output X, ..., with
n<|é|-S.

4. Bisection for s-rectangular Sets

In this section, we turn to RMDPs with s-rectangular am-
biguity sets. Building upon the fact that ¢(£) is piecewise
linear, as detailed in Section 3, we propose an efficient bisec-
tion method for computing the s-rectangular Bellman update
(4). Although we focus on ambiguity sets constrained by the
L1 norm, our approach readily generalizes to other norms.

For the remainder of this section, our goal is to compute
the Bellman update for an arbitrary, but fixed, state s € .%.
To simplify notation, we drop the subscript for this state
s. The nominal transition probabilities under action a are
Pa € A®, the reward is 7, € R, the L; normed weight
vector is w, € R¥, and the degree of ambiguity is .

We will show below that for s-rectangular ambiguity sets,
the following optimization problem is an equivalent refor-
mulation of the robust Bellman update in (4):

Znel]l%{u : an_l(u)gff}, 7

where ¢, ! is defined as the following optimization problem:

gz (w) = min {||p — Palliw, : Ta +YP v <u}. (8)

pEAS

The intuition behind (7) is as follows. In the robust Bellman
update (4), the adversarial nature chooses the transition
probabilities p,, a € <7, so as to minimize the value of the
Bellman update Y, d,, - (rq +7 plv) while adhering to the
ambiguity budget via ) | &, < w for &, = [[pa — Pall1,w. -
In problem (8), ¢; ! (u) can be interpreted as the minimum
ambiguity budget ||p — Po]|1,, assigned to action a € &

that allows nature to ensure that a results in a value to-go
rq-+7 p' v not exceeding u. Any value of  that is feasible in
(7) thus implies that within the specified overall ambiguity
budget of k, nature can ensure that every action a € o
results in a value to-go not exceeding u. Minimizing u in
(7) thus determines the transition probabilities that lead to
the lowest value to-go under any decision rule d,, which in
turn is tantamount to solving the robust Bellman update (4).

Figure 3 shows an example with 3 actions and ¢y, g2, g3.
If nature wants to achieve the value of u depicted in the
figure, then the smallest values for &; such that ¢(&;) < u,
i = 1,2, 3, are indicated with points, and a budget of kK =
& + & + &5 is required to ensure a value to-go of at most u.

Algorithm 2: Bisection algorithm to solve (7)

Input: e: desired precision,
Umin: Maximum known u for which (7) is infeasible
Umax: Minimum known v for which (7) is feasible
// Assumption: Umin < ©* < Umax
while U0 — Umin > 2 € do
Split interval [t , Umax] in half:
U < (umin + umax)/2;
Check feasibility of the mid point u:
R IR
if s < x then
When u is feasible update the feasible upper
‘ bound: Upmax < U;
else
When u infeasible update the infeasible
lower bound: Uy, < u;

end

end
return (Umin + Umax)/2;

The reformulation (7) can be solved by a bisection algorithm,
as summarized in Algorithm 2. Bisection is a natural ap-
proach for the one-dimensional optimization problem in (7).
It is efficient because the functions ¢! (u) are piecewise
linear with a small number of segments when the ambiguity
sets are constrained by the L; norm. That is, ¢(£) is piece-
wise linear with breakpoints X, and values Q; = ¢(X;)
withn € O(|%|X) (from Corollary 1). The inverse function
¢~ *(u) is also piecewise linear with breakpoints Q1. and
corresponding values of X; = ¢~1(Q;); care needs to be
taken to define ¢~!(u) = oo for u < Q,,. The following
theorem states the correctness of (7).

Theorem 2. The optimal objective values of (4) and (7)
coincide.

The proof is deferred to Appendix A.5. It employs strong
linear programming duality and algebraic manipulation.

Algorithm 2 only computes the objective value of the robust
Bellman update and not the optimal d or p values. These val-
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ues are necessary when implementing variations of policy
iteration which are vastly more efficient than value itera-
tion (Kaufman & Schaefer, 2013). As we show, the value of
d can be computed from the derivatives of ¢, ' (£) and the
optimal ©* in linear time. As this procedure is simple but
technical, we defer it to Appendix A.6.

4.1. Computational Complexity

The runtime of Algorithm 2 depends on the desired level
of precision. It is possible to eliminate this dependence by
taking advantage of the piecewise linearity of ¢, (£) and
q; ' (u). Because the extension is simple, but tedious, we
defer it to Appendix B.2. The idea is to choose the median
breakpoint between Ui, and um.x instead of the mean
value. Bisections then continue until g, ! are affine on the
interval [Umin, Umax] for all a. Then, u* can be obtained by
solving two equations with two unknowns. Appendix B.2
describes this method in Algorithm 4 and proves the follow-
ing complexity statement.

Theorem 3. Assuming that all ;! are piecewise linear
with at most |€'| S segments, then the worst-case time com-

plexity of Algorithm 4 is O(|€| S A log(|€| S A)).

5. Numerical Results

In this section, we evaluate the numerical performance of the
proposed algorithms by measuring their times to compute
a single Bellman update. Note that since the methods are
exact, they have no effect on the number of iterations taken
by the (approximate) policy or value iteration method.

We focus on three sets of domains with very disparate char-
acteristics. The first set of problems are generated randomly.
The transition probabilities are sampled from a uniform
distribution supported on [0, 1] and are subsequently nor-
malized. The rewards are zero, and the value functions
are sampled i.i.d. from the uniform distribution on [0, 1].
The weights w of the L; norm are sampled i.i.d. from the
uniform distribution on [0.5, 2] (very large/small weights
are omitted since they simplify the optimization). These
random problems have dense transition probabilities, and
many actions have similar Q-values, which makes them
particularly challenging.

We use the classic inventory management problem (Zipkin,
2000) to generate the second set of instances. The holding
cost, purchase cost, and sale price are 0.1, 1.0, and 1.6,
respectively. There are no backlogs, and the inventory is
limited by the number of states S. The demand is sampled
from a normal distribution with mean S/2 and standard
deviation S/5. The weights for the L; norm are set to w; =
10/p; (as suggested for the Lo norm in Iyengar (2005))
and clamped to the interval [0.3, 3.0]. The initial state is 0
(no inventory), and the value function is linear with slope

1. Inventory problems are more structured and sparse, and
their Q-values are more diverse.

The third set of instances involves simple reinforcement
learning benchmark problems. These numerical results are
reported in Appendix D.

We compare the proposed methods with Gurobi 7.5, a state-
of-the-art commercial LP solver. A comparison with related
algorithms, such as those in Petrik & Subramanian (2014)
and Iyengar (2005), is omitted because they are special cases
of the homotopy method for the plain L; norm and do not
generalize. We are unaware of any prior fast method for
computing s-rectangular Bellman updates.

A number of methods have been proposed for choosing
appropriate values of x in RMDPs and reinforcement
learning (Weissman et al., 2003; Wiesemann et al., 2013;
Taleghan et al., 2015; Petrik et al., 2016). Instead of using a
specific value of x, we examine the runtime of all methods
on a range of possible x values.

The remainder of the section presents timing results first
for the s, a-rectangular homotopy method and then for the
s-rectangular bisection method. The homotopy method uses
Algorithm 3 to eliminate dominated donor-receiver pairs.
The bisection method is implemented as in Algorithm 2,
except that it stops if all g, * are affine and computes u* as
in Algorithm 4. All results were generated on a PC with
i7-6700 3.4 GHz CPU with 32 GB RAM. All algorithms
were implemented in C++ and the code is available from the
publications section of http://cs.unh.edu/~mpetrik.

5.1. s, a-rectangular Ambiguity

In our first benchmarks, we compute ¢ ,(§) for a single
state s and action a. We vary the number of states from
50 to 400 in increments of 50. Since the L1 norm distance
between two distributions is always between 0 and 2, we
consider £ € {0.0,0.25,0.5,0.75,...,1.75,2.0} and re-
port average performances over those sizes. The same
values are used for the weighted L; norm although they may
be greater than 2. The results are averaged over 5 runs.

Figure 4 shows the timing results for the two domains. To
enhance clarity, we omit confidence intervals which are very
small. The figure compares the times needed to solve the
robust Bellman update for both the weighted and the plain
L1 norms in the same plot.

Several important conclusions can be drawn from Figure 4.
First, the homotopy method for the plain L; norm is about
1,000 times faster than Gurobi, and the generic homo-
topy method for weighted L; norms is about 100 times
faster. Second, there is virtually no difference between
Gurobi’s runtimes for the weighted and unweighted prob-
lems. Weights slow down the homotopy method signifi-
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Figure 4. Comparison of the time to compute ¢(£) with the homotopy method (Hom), Gurobi (Gur), and the nominal MDP (Nom). The
suffixes “.w” and “.u” refer to the weighted and unweighted L; norms, respectively. The runtimes correspond to randomly generated (left)

and inventory management problems (right).
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Figure 5. Comparison of the time to solve (4) with the bisection (Bis) method and the other approaches from Figure 4. We use the
abbreviations from Figure 4. The presented runtimes correspond to randomly generated (/eff) and inventory management problems (right).

cantly in random problems but much less so in the inven-
tory problem. This is caused by the uniformly distributed
weights w in random problems, which imply that fewer com-
ponents can be eliminated using Lemma 3. Finally, while
the speedup over Gurobi is considerable, it does not increase
significantly as the number of states .S increases.

5.2. s-rectangular Ambiguity

In the s-rectangular case, the bisection method is used to
compute (4) for a single state s. We consider problems with
S = 25,...,200 states in increments of 25 and let A = S.
We let the size of the ambiguity sets vary with the number
of actions: x € {0.0,0.25- A,0.5- A,0.75- A, ..., 1.75-
A,2.0 - A} for both the weighted and the unweighted L,
norm. All algorithms are affected minimally by the choice
of k. The results are averaged over 5 runs.

Figure 5 shows the timing results for the two problem do-
mains. We can make several observations. First, the bisec-
tion method is 1,000 to 10,000 times faster than Gurobi.
Second, the speedup increases with S. With 200 states and
actions, the bisection method is up to 1,500 times faster
than Gurobi in the inventory domain and up to 49,000 times
faster in the random domain and an intermediate choice of k.
Additional experimental results, which we omit here, show

that the runtimes of all methods are quite insensitive to x
and the state-to-action ratio. Finally, the bisection method
is about 10 times slower than the nominal solution.

6. Conclusion

We proposed two new methods for computing robust
Bellman updates. Our new algorithms have a computa-
tional complexity of O(S A log(S A)) for plain and cer-
tain weighted L norms, which is almost as efficient as
the O(S A) complexity of Bellman updates in nominal,
non-robust MDPs. While the worst-case complexity for
weighted L; norms is quadratic, we proposed an elimina-
tion procedure to reduce the complexity in typical instances.

Our empirical results show significant speedups over a lead-
ing LP solver. We achieve meaningful speedups of 100-
1,000 times for s, a-rectangular ambiguity sets, but they
do not increase with problem size. For s-rectangular am-
biguity sets, on the other hand, we achieve speedups of
1,000-10,000 times and they increase with problem size.

Future work should address extensions of the methods to
generic L, norms, Wasserstein balls, as well as their use in
practical problems.
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