Fast Feature Selection
for Linear Value Function Approximation

Bahram Behzadian, Soheil Gharatappeh, Marek Petrik
Department of Computer Science
University of New Hampshire
Durham, NH 03824 USA
{bahram, soheil, mpetrik } @cs.unh.edu

Abstract

Linear value function approximation is a standard approach
to solving reinforcement learning problems with large state
spaces. Since designing good approximation features is dif-
ficult, automatic feature selection is an important research
topic. We propose a new method for feature selection that
is based on a low-rank factorization of the transition matrix.
Our approach derives features directly from high-dimensional
raw inputs, such as image data. The method is easy to imple-
ment using SVD, and our experiments show that it is faster
and more stable than alternative methods.

1 Introduction

Reinforcement learning (RL) methods typically use value
function approximation to solve problems with large state
spaces (Sutton and Barto 1998; Szepesvari 2010). The ap-
proximation makes it possible to generalize from a small
number of samples to the entire state space. Perhaps the
most common methods for value function approximation
are neural networks and linear methods. Neural networks
offer unparalleled expressibility in complex problems, but
linear methods remain popular due to their simplicity, inter-
pretability, ease of use, and low sample and computational
complexity.

This work focuses on batch reinforcement learn-
ing (Lange, Gabel, and Riedmiller 2012). In batch RL, all
domain samples are provided in advance as a batch, and it
is impossible or difficult to gather additional samples. This
is common in many practical domains. In medical applica-
tions, for example, it is usually too dangerous and expensive
to run additional tests, and in ecological applications, it may
take an entire growing season to obtain a new batch of sam-
ples.

Overfitting is a particularly difficult challenge in practical
deployments of batch RL. Detecting that the solution over-
fits the available data can be complex. Using a regular test set
does not work in RL because of the difference between the
sampling policy and the optimized policy. Also, off-policy
policy evaluation remains difficult in large problems (Jiang
and Li 2015). As a result, a solution that overfits the training

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

batch is often discovered only after it has been deployed and
real damage has been done.

With linear approximation, overfitting occurs more easily
when too many features are used. In this paper, we presents
Fast Feature Selection (FFS), a new method that can effec-
tively reduce the number of features in batch RL. To avoid
confusion, we use the term raw features to refer to the natu-
ral features of a given problem. They could, for example, be
the individual pixel values in video games or particular ge-
ographic observations in geospatial applications. Raw fea-
tures are usually numerous, but each feature alone has a low
predictive value. FFS constructs (rather than selects) a small
set of useful features that are a linear combination of the pro-
vided raw features. The constructed features are designed to
be used in concert with LSTD, LSPI, and other related batch
RL methods.

FFS reduces the number of features by computing a low-
rank approximation of the transition matrix after it is com-
pressed using the available raw features. Low-rank matrix
approximation and completion gained popularity from their
use in collaborative filtering (Murphy 2012), but they have
been also applied to reinforcement learning and other ma-
chine learning domains (Ong 2015; Cheng, Asamov, and
Powell 2017; Rendle, Freudenthaler, and Schmidt-Thieme
2010). None of this prior work, however, computes a low-
rank approximation of the compressed transition matrix.

Several feature selection methods for reducing overfit-
ting in RL have been proposed previously, but none of
them explicitly target problems with low-rank (compressed)
transition probabilities. ¢; regularization, popularized by
the LASSO, has been used successfully in reinforcement
learning (Kolter and Ng 2009; Petrik et al. 2010; Le, Ku-
maraswamy, and White 2017). ¢; regularization assumes
that only a few of the features are sufficient to obtain a good
approximation. This is not a reasonable assumption when
individual raw features are of a low quality.

Proto-value functions (Mahadevan and Maggioni 2007)
use the spectral decomposition of the transition probabil-
ity matrix or of a related random walk. Although the spec-
trum of a matrix is closely related to its rank, eigenvector-
based methods provide weak approximation guarantees even
when the majority of the eigenvalues are zero (Petrik 2007).



BEBFs and Krylov are other techniques that work well when
the characteristic polynomial of the transition probability
matrix is of a small degree (Parr et al. 2007; Petrik 2007);
this property is unrelated to the matrix rank.

The closest prior method to FFS is LFD (Song et al.
2016). LFD works by computing 1) a linear encoder that
maps the raw features of a state to a small-dimensional space
and 2) a linear decoder that maps the small-dimensional rep-
resentation back to the raw features. While LFD was not in-
troduced as a low-rank approximation technique, we show
that similarly to FFS, it introduces no additional error when
the matrix of transition probabilities is low-rank. LFD, un-
fortunately, has several limitations. It involves solving a non-
convex optimization problem, is difficult to analyze, and
provides no guidance for deciding on the right number of
features to use.

As the main contribution, this paper proposes and ana-
lyzes FFS both theoretically and empirically. We derive new
bounds that relate the singular values of the transition prob-
ability matrix to the approximation error. As a secondary
contribution, we provide a new interpretation of LFD as a
type of low-rank approximation method. We argue that FFS
improves on LFD in terms of providing fast and predictable
solutions, similar or better practical performance, and guid-
ance on how many features should be selected.

The remainder of the paper is organized as follows. Sec-
tion 2 summarizes the relevant properties of linear value
function approximation in Markov decision processes. Sec-
tion 3 describes FFS and new bounds that relate singular val-
ues of the compressed transition probability matrix to the ap-
proximation error. Section 4 then compares FFS with other
feature construction algorithms, and, finally, the empirical
evaluation in Section 5 indicates that FFS is a promising fea-
ture selection method.

2 Linear Value Function Approximation

In this section, we summarize the background on linear
value function approximation and feature construction.

We consider a reinforcement learning problem formulated
as a Markov decision process (MDP) with states S, actions
A, transition probabilities P : S x A x § — [0, 1], and
rewards r : S x A — R (Puterman 2005). The value of
P(s,a,s") denotes the probability of transitioning to state
s’ after taking an action a in a state s. The objective is to
compute a stationary policy 7 that maximizes the expected
~v—discounted infinite-horizon return. It is well-known that
the value function v™ for a policy = must satisfy the Bellman
optimality condition (e.g., Puterman (2005)):

v =r" +yPTv" (1
where P™ and r™ are the matrix of transition probabilities
and the vector of rewards, respectively, for the policy 7.

Value function approximation becomes necessary in
MDPs with large state spaces. The value function v™ can
then be approximated by a linear combination of features
b1, ..., ¢r € RIS, which are vectors over states. Using the
vector notation, an approximate value function v™ can be
expressed as:

" =dw,

for some vector w = {wy,...,w} of scalar weights that
quantify the importance of features. Here, ® is the feature
matrix of dimensions |S| x k; the columns of this matrix are
the features ¢;.

Numerous algorithms for computing linear value ap-
proximation have been proposed (Sutton and Barto 1998;
Lagoudakis and Parr 2003; Szepesvari 2010). We focus
on fixed-point methods that compute the unique vector of
weights w7 that satisfy the projected Bellman equation (1):

wi = O (r" +yPTOwg) , 2)

where ®* is the Moore-Penrose pseudo-inverse of ® and
d+ = (®TP)~1®T when columns of & are linearly in-
dependent (e.g., Golub and Van Loan (2013)). This equa-
tion follows by applying the orthogonal projection operator
O(PTP) LT to both sides of (1).

The following insight will be important when describing
the FFS method. The fixed-point solution to (2) can be inter-
preted as a value function of an MDP with a linearly com-
pressed transition matrix Pg and a reward vector r7, (Parr et
al. 2008; Szepesvari 2010):

Pl =(®7®)"'®TP™® = dT PO,

3
T3 = (PTR)'RTPT =TT @

The weights w in (2) are equal to the value function for this
compressed MDP. That is, w}, satisfies the Bellman equa-
tion for the compressed MDP:

wg =15 +7Pgwg - )

In order to construct good features, it is essential to be
able to determine their quality in terms of whether they can
express a good approximate value function. The standard
bound on the performance loss of a policy computed using,
for example, approximate policy iteration can be bounded
as a function of the Bellman error (e.g., Williams and Baird
(1993)). To motivate FFS, we use the following result that
shows that the Bellman error can be decomposed into the er-
ror in 1) the compressed rewards, and in 2) the compressed
transition probabilities.

Theorem 1 (Song et al. 2016). Given a policy 7 and fea-
tures ®, the Bellman error of a value function v = dwj
satisfies:

BEg = (™ — &r}) +v (P™® — OPF) wy .

AT AT,

We seek to construct a basis that minimizes both ||AT||,
and ||A%||,. These terms can be used to bound the £, norm
of Bellman error as:

[ BEg [l2 < [AT ]2 + v AR |l2[lwgll2 <

m m h (&)
< [IATll2 + AR Fllwgll2

where the second inequality follows from || X |2 < || X || 7.
The Bellman error (BE) decomposition in (5) has two
main limitations. The first limitation is that it is expressed
in terms of the ¢ norm rather than /., norm, which is
needed for standard Bellman residual bounds (Williams and
Baird 1993). This can be addressed, in part, by using the



weighted ¢ norm bounds (Munos 2007). The second limi-
tation of (5) is that it depends on ||w3||» besides the terms
|IAT ||y, [|AS[, that we focus on. Since [|wZ|l2 can be
problem-dependent, the theoretical analysis of its impact on
the approximation error is beyond the scope of this work.

3 FFS: A Fast Low-Rank Approximation for
Feature Selection

In this section, we describe the proposed method for select-
ing features from a low-rank approximation of the transition
probabilities. To simplify the exposition, we first introduce
the method for the tabular case and then extend it to the batch
RL setting with many raw features in Section 3.1.

Algorithm 1: TFFS: Tabular Fast low-rank Feature Se-
lection
Input: Transition matrix P, rewards r, and number of
features k + 1
1 Compute SVD decomposition of P: P = UXVT ;
2 Assuming decreasing singular values in X, select the
first k columns of U: Uy < [uq, ..., ug];
3 return Approximation features: ® = [Uy, 7).

The Tabular Fast Feature Selection algorithm is summa-
rized in Algorithm 1. Informally, the algorithm selects the
top k left-singular vectors and the reward function for the
features. Our error bounds show that including the reward
function as one of the features is critical. It is not surprising
that when the matrix P is of a rank at most k then using the
first k left-singular vectors will result in no approximation
error. However, such low-rank matrices are rare in practice.
We now show that it is sufficient that the transition matrix P
is close to a low-rank matrix for TFES to achieve small ap-
proximation errors. In order to bound the error, let the SVD
decomposition of P be SVD(P) = ULVT, where

by 0
U=[U, Uy, ©= [01 22], V=W V.
That implies that the transition probability matrix can be ex-
pressed as:
P=U S V] + U0V

Let matrix U; have k columns and let the singular values
be ordered decreasingly. Then, Algorithm 1 generates & =
[U1,7]. The following theorem bounds the error regarding
the largest singular value for a vector not included in the
features.

Theorem 2. Assuming k features ® computed by Algo-
rithm 1, the error terms in Theorem 1 are upper bounded
as:

APy < {32l
1A, =0-
The proof of the theorem is deferred to Appendix A.1.
Theorem 2 implies that if we choose ® in a way that

the singular values in Yo are zero (when the transition ma-
trix is low rank), Ap would be zero. That means that for

a matrix of rank k there is no approximation error because
|Ap|l, = 0. More broadly, when the rank of the matrix is
greater than k, the error is minimized by choosing the sin-
gular vectors with the greatest singular values. That means
that TFES chooses features ® that minimize the error bound
in Theorem 2.

3.1 Using Raw Features

Using TFFS in batch RL is impractical since the transition
matrix and reward vector are usually too large and are not
available directly. The values must instead be estimated from
samples and the raw features.

Algorithm 2: FFS: Fast low-rank Feature Selection
from raw features
Input: Sampled raw features A, next state of raw
feature A’ , rewards r, and number of features
k+1
1 Estimate compressed transition probabilities
P4y =ATA" asin LSTD ;
2 Compute SVD decomposition of P4: Py = UXVT;
3 Compute compressed reward vector: 74 = AVr ;
4 Assuming decreasing singular values in X, select the
first k columns of U: Uy < [uq, ..., ug];

5 return Approximation features: ® = [Uy,7 4].

As described in the introduction, we assume that the do-
main samples include a potentially large number of low-
information raw features. We use A to denote the n x [ ma-
trix of raw features. As with ®, each row corresponds to one
state, and each column corresponds to one raw feature. The
compressed transition matrix is denoted as P4 = ATPA
and compressed rewards are denoted as 74 = AT 7 and are
computed as in (3). To emphasize that the matrix P is not
available, we use A’ = PA to denote the expected value of
features after one step. Using this notation, the compressed
transition probabilities can be expressed as Py = AT A’.

Algorithm 2 describes the FFS method that uses raw fea-
tures. Similarly to TFES, the algorithm computes an SVD

of the transition matrix. Note that the features & are linear
combinations of the raw features. To get the actual state fea-
tures, it is sufficient to compute A® where ® is the output of
Algorithm 2. The matrix ® represents features for P4 and is
of a dimension [ x k where [ is the number of raw features
in A. We omit the details for how the values are estimated
from samples, as this is well known, and refer the interested
reader to Lagoudakis and Parr; Johns, Petrik, and Mahade-
van (2003; 2009).

Using raw features to compress transition probabilities
and rewards is simple and practical, but it is also essential
to understand the consequences of relying on these raw fea-
tures. Because FFS computes features that are a linear com-
bination of the raw features, they cannot express more com-
plex value functions. FFS thus introduces additional error—
akin to bias—but reduces sampling error—akin to variance.
The following theorem shows that the errors due to our ap-



proximation and using raw features merely add up with no
additional interactions.

Theorem 3. Assume that the raw features A for P and com-
puted features ® for P, are normalized, such that ||Al|, =
[|®||2 = 1. Then:

IABT Iy < (AR, + AR, I,
ARy < IAH, + AT I

where the superscript of A indicates the feature matrix for
which the error is computed; for example A}{;A = Py® —

®(Pa)g -
The proof of the theorem is deferred to Appendix A.2.

Note that the normalization of features required in The-
orem 3 can be achieved by multiplying all features by an
appropriate constant, which is an operation that does not af-
fect the approximate value function. Scaling features does,
however, affect the magnitude of wg, which, as we discuss
above, is problem-specific and largely independent of the
feature selection method used.

Perhaps one of the most attractive attributes of FFS is its
simplicity and low computational complexity. Selecting the
essential features only requires computing the singular value
decomposition—for which many efficient methods exist—
and augmenting the result with the reward function. As we
show next, this simple approach is well-motivated by bounds
on approximation errors.

We described FFS in terms of singular value decompo-
sition and showed that when the (compressed) transition
probability matrix has a low rank, the approximation error
is likely to be small. Next, we describe the relationship be-
tween FFS and other feature selection methods in more de-
tail.

4 Related Feature Selection Methods

In this section, we describe similarities and differences be-
tween FFS and related feature construction or selection
methods.

Perhaps the best-known method for feature construction
is the technique of proto-value functions (Mahadevan and
Maggioni 2006; 2007). Proto-value functions are closely re-
lated to spectral approximations (Petrik 2007). This approx-
imation uses the eigenvector decomposition of the transition
matrix P = SAS™!, where S is a matrix with eigenvectors
as its columns and A is a diagonal matrix with eigenvalues
that are sorted from the largest to the smallest. The first &
columns of S are then used as the approximation features.
As with our FFS method, it is beneficial to augment these
features with the reward vector. We will refer to this method
as EIG+R in the numerical results. Surprisingly, unlike with
FFS, which uses top k left-singular vectors, using the top &
eigenvectors does not guarantee zero Bellman residual even
if the rank of P is less than k.

Using the Krylov subspace is another feature selection
approach (Petrik 2007) which has also been referred to as
BEBF (Parr et al. 2007; 2008). The Krylov subspace K is

spanned by the images of r under the first k¥ powers of P
(starting from P° = I):

Ki(P,7) = span{r, Pr,..., P*"1r} .

Petrik (2007) shows that when £ is equal to the degree of the
minimal polynomial, the approximation error is zero. Krylov
methods are more likely to work in different problem set-
tings than either EIG+R or FFS and can be easily combined
with them.

Algorithm 3: LFD: Linear Feature Discovery for a fixed
policy 7 (Song et al. 2016).

t Dy + random(k,!);

21+ 1;

3 while Not Converged do

4 E7 < A+A/D7;_1 ;

5 Dl — (AEZ')JFA/;

6 11+ 1;

7 end

8 return £, // Same role as d in FFS.

Finally, Linear Feature Discovery (LFD) (Song et al.
2016) is a recent feature selection method that is closely re-
lated to FFS. Algorithm 3 depicts a simplified version of
the LFD algorithm, which does not consider the reward vec-
tor and approximates the value function instead of the Q-
function for a fixed policy 7. Recall that A is the matrix of
raw features and A’ = PT.

LFD is motivated by the theory of predictive optimal fea-
ture encoding. A low-rank encoder E7™ is predictively opti-
mal if there exist decoders D7 and D] such that:

AE™DT = P™A, AE™DT =" .

When an encoder and decoder are predictively optimal, then
the Bellman error is 0 (Song et al. 2016). Unfortunately, it
is almost impossible to find problems in practice in which
a predictively optimal controller exists. No bounds on the
Bellman error are known when a controller is merely close
to predictively optimal. This is in contrast with the bounds
in Theorems 2 and 3 that hold for FFS.

Although LFD appears to be quite different from FFS, our
numerical experiments show that it computes solutions that
are similar to the solutions of FFS. We argue that LFD can
be interpreted as a coordinate descent method for computing
the following low-rank approximation problem:

. 712
periD [AED — Al . (6)
This is because the iterative updates of E; and D, in Algo-
rithm 3 are identical to solving the following optimization
problems:

. : . A2
E; + arg Lin |AED;—1 — A'||%
D; < arg min ||AE;D — A'|%

DERkx!

The equivalence follows directly from the orthogonal pro-
jection representation of linear regression. This kind of co-
ordinate descent is a very common heuristic for computing



low-rank matrix completions (Hastie et al. 2015). Unfortu-
nately, the optimization problem in (6) is non-convex and
coordinate descent, like LFD, may only converge to a lo-
cal optimum, if at all. Simple algebraic manipulation reveals
that any set of k singular vectors represents a local mini-
mum of LFD. Finally, we are not aware of any method that
can solve (6) optimally.

Similarly to LFD, FFS solves the following optimization
problem:

. + 47112
perih IED — AT A% . )
This fact follows readily from the SVD decomposition of
A1 A’ and the fact that the Frobenius norm is equal to the
Lo norm of the the singular values (Hastie, Tibshirani, and
Friedman 2009; Golub and Van Loan 2013).

Note that when using tabular features (A = I) the opti-
mization problems (6) and (7) are identical. For any other
raw features, there are two reasons for preferring (7) over
(6). First, FFS is much easier to solve both in theory and in
practice. Second, as Theorem 3 shows, the approximation
error of FFS is simply additive to the error inherent to the
raw features. No such property is known for LFD. In the
next section, we compare the two methods numerically.

S Empirical Evaluation

In this section, we empirically evaluate the quality of
features generated by FFS both with and without using
raw features. We focus on a comparison with LFD which
was empirically shown to outperform radial basis func-
tions (RBFs) (Lagoudakis and Parr 2003), random projec-
tions (Ghavamzadeh et al. 2010), and other methods (Song
et al. 2016).

We first compare the quality of solutions on a range of
synthetic randomly-generated problems. The goal is to en-
sure that the methods behave similarly regardless of the
number of samples, or the type of raw features that are used.
Then, we use an image-based version of the cart-pole bench-
mark, used previously by Song et al. (2016), to evaluate FFS
in more complex settings. This problem is used to evaluate
both the solution quality and the computational complexity
of the methods.

5.1 Synthetic Problems

To compare FFS to other common approaches in feature
selection, we start with small policy evaluation problems.
Since the policy is fixed throughout these experiments, we
omit all references to it. The data matrix A € R™*! only
contains the states where n denotes the number of states and
I the length of each raw feature, with ® € R™*¥ using k
features.

The synthetic problems that we use throughout this sec-
tion have 100 states. The rewards » € R'%0 are generated
uniformly randomly from the interval of [—500, 500). The
stochastic transition probabilities P € [0, 1)100%100 are gen-
erated from the uniform Dirichlet distribution. To ensure that
the rank of P is at most 40, we compute P as a product
P = XY, where X and Y are small-dimensional. The dis-
count factor we use is y = 0.95.

We now proceed by evaluating FFS for both tabular and
image-based features. For the sake of consistency, we use
FFS to refer to both TFFS in a tabular case and FFS when
raw features are available. To evaluate the quality of the
value function approximation, we compute the Bellman
residual of the fixed-point value function, which is a stan-
dard metric used for this purpose. Recall that the Bellman
error can be expressed as

BE = Ar + ’VAPwCIM

where wg is the value-function given in (4). All results we
report in this section are an average of 100 repetitions of the
experiments. All error plots show the /5 norm of the Bellman
error in logarithmic scale.

Case 1: Tabular raw features. In this case, the true tran-
sition probabilities P and the reward function r are known,
and the raw features are an identity matrix: A = I. Therefore
all computations are made concerning the precise represen-
tations of the underlying MDP.

This is the simplest setting, under which SVD simply
reduces to a direct low-rank approximation of the transi-
tion probabilities. That is, the SVD optimization problem
reduces to:

U SV = P|%

min min
Ule]Rnxk ZlVlTeR’”"X”

Similarly, the constructed features will be & = Uj. In
case of FFS, we can simply add the reward vector to fea-
ture’s set ® = [Uy,r]. EIG+R and KRY are implemented
as described in Petrik; Parr et al. (2007; 2008). In case of
EIG+R approach, we use the eigenvectors of P as basis
functions, and then 7 is included. For Krylov basis we cal-
culate ® = K (P, ).

Figure 1 depicts the Bellman error for the exact solution
when the number of features used for value function varies
from 0O to 100. Note that the Bellman error of FFS is zero for
k > 40. This is because the rank of P is 40, and according
to Theorem 2 the first 40 features obtained by FFS are suf-
ficient to get || BE||, = 0. This experiment shows FFS is ro-
bust and generally outperforms other methods. The only ex-
ception is the Krylov method which is more effective when
few features are used but is not numerically stable with more
features. The Krylov method could be combined relatively
easily with FFS to get the best of both bases.

Case 2: Image-based raw features. In this case, the raw
features A are not tabular but instead simulate an image rep-
resentation of states. So the Markov dynamics are experi-
enced only via samples and the functions are represented
using an approximation scheme. The matrix A is created by
randomly allocated zeros and ones similar to the structure of
a binary image. We use LSTD to compute the approximate
value function, as described in Section 2.

The SVD optimization problem now changes as described
in Section 3.1. The constructed features will be ® = A®
and for FFS we include the reward predictor vector [Pa, 7 4]
in the optimization problem. In the case of the EIG+R



10°1
10°
g -2
EL 10 9
> -4
+ 10
J
10
@
10°
—e— EIG+R
10| —=— FFS
10 1« rrp
—— KRY
0 20 40 60 80

Number of Features used for VFA

Figure 1: Bellman error for the exact solution. The tran-
sition matrix is 100 x 100 and has a low rank with
rank(P) = 40. The Input matrix is A = I an identity
matrix.

—— FFS
2001 —— LFD
—— RPr

150

Steps

100+

50+

100 200 300 400 500 600

Number of episodes in the training batch

Figure 3: Average number of balancing steps with k =
50.

method, we multiply the eigenvectors of P4 and r4 with
the raw features. The Krylov basis is constructed as: ¢ =
AK(Pa,ra) where Ky, is the k-th order Krylov operator.

Figure 2 compares the Bellman error for the approximate
solution. FFS again outperforms other methods. LFD is un-
stable when the number of features exceeds the rank of P,
and sometimes it is not possible to obtain the pseudo-inverse
of matrix AFE.

It is worth noting that this section deals with very small
MDPs with only about 100 states. It is expected to see
a more significant gap in Bellman error of these methods
when dealing with large MDPs with enormous and high-
dimensional state spaces. In the next section, we compare
LFD and FFS with random projection approach using a more
significant and more challenging benchmark problem.

AR + yAp Wy

BE

7| —— EIG+R
10 | —=— FFs
—— LFD
—— KRY

0 20 40 60 80

Number of Features used for VFA

Figure 2: Bellman error for the approximate solution. The
transition matrix is 100 x 100 and has a low rank with
rank(P) = 40. The Input matrix is A = random binary
matrix.

2000 mmm FFS
mmm LFD
1750 mmm RPr
1500+
1250+

1000+

Seconds

750

500+

250+

50 100 200 400 600

Number of episodes in the training batch

Figure 4: Mean running time for estimating the Q-
function with k = 50.

5.2 Cart-Pole

These experiments evaluate the similarity between the lin-
ear feature encoding (LFD) approach and the fast feature
selection (FFS) method on a modified version of cart-pole,
which is a standard reinforcement learning benchmark prob-
lem. We use random projections (Ghavamzadeh et al. 2010)
as the baseline. The controller must learn a good policy by
merely observing the image of the cart-pole without direct
observations of the angle and angular velocity of the pole.
This problem is large enough that the computational time
plays an important role, so we also compare the computa-
tional complexity of the three methods.

Note that this is a control benchmark, rather than value
approximation for a fixed policy. Since the goal of RL is to
optimize a policy, results on policy optimization are often
more meaningful than just obtaining a small Bellman resid-
ual which is not sufficient to guarantee that a good policy



will be computed (Johns, Petrik, and Mahadevan 2009).

To obtain training data, we collect the specified number of
trajectories with the starting angle and angular velocity sam-
pled uniformly on [—0.1, 0.1]. The cart position and velocity
are set to zero at each episode.

The algorithm was given three consecutive, rendered,
gray-scale images of the cart-pole. Each image is down sam-
pled to 39 x 50 pixels, so the raw state is a 39 x 50 x 3 =
5850—dimensional vector. We chose three frames to pre-
serve the Markov property of states without manipulating
the cart-pole simulator in OpenAl Gym. We used & = 50
features for all methods.

We follow a setup analogous to Song et al. (2016) by im-
plementing least-squares policy iteration (Lagoudakis and
Parr 2003) to obtain the policy. The training data sets are
produced by running the cart for [50, 100,200,400, 600]
episodes with a random policy. We then run policy iteration
to iterate up to 50 times or until there is no change in the
A’ = P™ A matrix.

The state of the pole in the classic cart-pole problem is
described by its angle and angular velocity. However, in
the image-based implementation, the agent does not observe
this information. Song et al. (2016) chose two successive
frames to show the state of the pole. To preserve the Marko-
vian property of the state, they had to modify the simulator
and force the angular velocity to match the change in angle
per time step 6 = (0’ — 0) /5t. We, instead, use the standard
simulator from OpenAl Gym and choose the last three con-
secutive frames rather than two. Three consecutive frames
are sufficient to infer 6 and 6 and construct a proper Markov
state. Intriguingly, no linear feature construction methods
work well in the original problem definition when using only
the last two frames.

The performance of the learned policy is reported for 100
repetitions to obtain the average number of balancing steps.
Figure 3 displays the average number of steps during which
the pole kept its balance using the same training data sets.
For each episode, a maximum of 200 steps was allowed to
run. This result shows that on the larger training sets the poli-
cies obtained from FFS and LFD are quite similar, but with
small training sets, FFS shows a better performance. Both
methods outperform random projection (RPr) significantly.

Figure 4 depicts the average running time of LFD and FFS
for obtaining the value function with £ = 50. The computa-
tion time of FFS grows very slowly as the number of training
episodes increases; at 600 training episodes, the maximum
number of episodes tested, FFS is 10 times faster than LFD.
Therefore, LFD would likely be impractical in large prob-
lems with many training episodes.

Both FFS and LFD implementations use randomized
SVD in all computations including the computation of
pseudo-inverses. The result is usually very close to truncated
singular value decomposition. Randomized SVD is fast on
large matrices on which we need to extract only a small
number of singular vectors. It reduces the time to compute
k top singular values for an m x n matrix from O(mnk) to
O(mnlog(k)) (Halko, Martinsson, and Tropp 2011).

In comparison to black box methods such as neural net-
works, linear value functions are more interpretable: their

Frame 1 Frame 2 Frame 3

)
DI

I |

i

Figure 5: Value function in jet color-map.

Left

NO-OP

Right

=

behavior is more transparent from an analysis standpoint and
feature engineering standpoint. It is comparatively simple
to gain some insight into the reasons for which a particular
choice of features succeeds or fails. When the features are
normalized, the magnitude of each parameter is related to
the importance of the corresponding feature in the approxi-
mation (Lagoudakis and Parr 2003).

Figure 5 shows the learned coefficients of Q-function for
three actions (left, right and no-op) using color codes. The
g-values are obtained by the inner product of raw features
(3-frames of cart-pole) and these coefficients. They are com-
puted by the FFS method from 400 training episodes with
random policy. In this experiment, the raw images, taken
from the cart-pole environment in OpenAl Gym toolkit,
are preprocessed, converted to gray-scale and normalized.
Therefore, the pole in the raw images is in black, and the
value of black pixels are close to zero. Other areas in the
raw features are in white, so these pixel values are closer to
one. It is interesting to see how the linear value function cap-
tures the dynamics of the pole (the cart is stationary). If the
pole is imbalanced, the value function is smaller since the
blue area in Figure 5 represents negative scalars.

6 Conclusion

We propose FFS, a new feature construction technique that
computes a low-rank approximation of the transition proba-
bilities. We believe that FFS is a promising method for fea-
ture selection in batch reinforcement learning. It is very sim-
ple to implement, fast to run, and relatively easy to analyze.
A particular strength of FFS is that it is easy to judge its ef-
fectiveness by singular values of features not included in the
approximation (Theorem 2).

In terms of future work, it is important to study how com-
mon it is for reinforcement learning to exhibit the low-rank
property exploited by FFS. This is most likely to vary de-
pending on the domain, problem size, and amount of batch
data. We suspect that in most applications, a combination of
several methods, such as FFS and BEBEF, is likely to yield
the best and most robust results. Finally, it would be inter-
esting to study the impact of FFS on finite-sample bounds



and robustness in RL.

7 Acknowledgments

We thank the anonymous reviewers for helpful comments
and suggestions. This work was supported by the National
Science Foundation under Grant No. IIS-1717368.

A Technical Proofs
A.1 Proof of Theorem 2

Proof of Theorem 2. From the definition of Ap and Py we
get the following equality:

Ap =UXVTU, — U (UTU) T UTUSVTU, .

Recall that singular vectors are orthonormal which implies
that (UJU;)"! =Tand UJU = [I; 0]. Substituting these
terms into the equality above, we get:

[Ap[l, = [(USVT — U1 5, V1)UL,
S NUEVT = UiZa Vi, )|Un]l -
Simple algebraic manipulation shows that
[USVT = U5 ViTlly, = |[Zall, and |[Uh]l, = 1 be-
cause U is an unitary matrix. This establishes the inequality
for Ap; the result for A, follows directly from the proper-

ties of orthogonal projection since 7 itself is included in the
features. O

A.2 Proof of Theorem 3

Proof of Theorem 3. We show the result only for Ap; the
result for A,. follows similarly. From the definition of A,

AA ~ ~
|88, = [[p42 - a3ra],

Now, by adding a zero (APA(/IS — AP,;®) and applying the
triangle inequality, we get:

|a8%|| = |PA® — APA® + APA® - 4GP,

, <

< |[PA® — APAB| + |[APAG - AGP,;
2 2

Given (A®)* = ®+A* and the property of the com-
pressed transition matrix in Equation (3) we can show:

227, < 1P apas|2] +
+||Pa® — B(Pa)g | 1Al

The theorem then follows directly from algebraic manipula-
tion and the fact that the features are normalized. O

References

Cheng, B.; Asamov, T.; and Powell, W. B. 2017. Low-rank
value function approximation for co-optimization of battery
storage. IEEE Transactions on Smart Grid 3053.

Ghavamzadeh, M.; Lazaric, A.; Maillard, O.; and Munos,
R. 2010. LSTD with random projections. In Advances in
Neural Information Processing Systems (NIPS), 721-729.

Golub, G. H., and Van Loan, C. F. 2013. Matrix computa-
tions.

Halko, N.; Martinsson, P.-G.; and Tropp, J. A. 2011. Finding
structure with randomness: Probabilistic algorithms for con-
structing approximate matrix decompositions. SIAM review
53(2):217-288.

Hastie, T.; Mazumder, R.; Lee, J.; and Zadeh, R. 2015. Ma-
trix completion and low-rank svd via fast alternating least

squares. Journal of Machine Learning Research 16:3367—
3402.

Hastie, T.; Tibshirani, R.; and Friedman, J. 2009. The ele-
ments of statistical learning. 2nd edition.

Jiang, N., and Li, L. 2015. Doubly robust Off-policy value
evaluation for reinforcement learning. In International Con-
ference on Machine Learning (ICML).

Johns, J.; Petrik, M.; and Mahadevan, S. 2009. Hybrid least-
squares algorithms for approximate policy evaluation. Ma-
chine Learning 76(2):243-256.

Kolter, J. Z., and Ng, A. Y. 2009. Regularization and fea-
ture selection in least-squares temporal difference learning.
In International Conference on Machine Learning (ICML),
521-528. ACM.

Lagoudakis, M. G., and Parr, R. 2003. Least-squares
policy iteration. Journal of machine learning research
4(Dec):1107-1149.

Lange, S.; Gabel, T.; and Riedmiller, M. 2012. Batch re-
inforcement learning. In Reinforcement learning. Springer.
45-73.

Le, L.; Kumaraswamy, R.; and White, M. 2017. Learning
sparse representations in reinforcement learning with sparse
coding. In International Joint Conference on Artificial In-
telligence (IJCAI), 2067-2073.

Mahadevan, S., and Maggioni, M. 2006. Value function
approximation with diffusion wavelets and laplacian eigen-
functions. In Advances in Neural Information Processing
Systems (NIPS), 843-850.

Mahadevan, S., and Maggioni, M. 2007. Proto-value func-
tions: A laplacian framework for learning representation and
control in markov decision processes. Journal of Machine
Learning Research 8:2169-2231.

Munos, R. 2007. Performance bounds in Lp-norm for ap-
proximate value iteration. SIAM journal on control and op-
timization 46(2):541-561.

Murphy, K. P. 2012. Machine learning: a probabilistic per-
spective. MIT press.

Ong, H. Y. 2015. Value function approximation via low-rank
models. arXiv preprint arXiv:1509.00061.



Parr, R.; Painter-Wakefield, C.; Li, L.; and Littman, M. 2007.
Analyzing feature generation for value-function approxima-
tion. In International Conference on Machine Learning

(ICML), 737-T744.

Parr, R.; Li, L.; Taylor, G.; Painter-Wakefield, C.; and
Littman, M. L. 2008. An analysis of linear models, lin-
ear value-function approximation, and feature selection for
reinforcement learning. In International Joint Conference
on Artificial Intelligence (IJCAI), 752-759.

Petrik, M.; Taylor, G.; Parr, R.; and Zilberstein, S. 2010.
Feature selection using regularization in approximate linear
programs for Markov decision processes. In International
Conference on Machine Learning (ICML).

Petrik, M. 2007. An analysis of Laplacian methods for value
function approximation in MDPs. 1In International Joint
Conference on Artificial Intelligence (IJCAI), volume 35,
2574-2579.

Puterman, M. L. 2005. Markov decision processes: Discrete
stochastic dynamic programming. John Wiley & Sons, Inc.

Rendle, S.; Freudenthaler, C.; and Schmidt-Thieme, L.
2010. Factorizing personalized Markov chains for next-
basket recommendation. In International Conference on
World Wide Web (WWW), 811-820.

Song, Z.; Parr, R. E.; Liao, X.; and Carin, L. 2016. Linear
feature encoding for reinforcement learning. In Advances in
Neural Information Processing Systems (NIPS), 4224-4232.
Sutton, R. S., and Barto, A. 1998. Reinforcement learning.

Szepesvari, C. 2010. Algorithms for Reinforcement Learn-
ing. Morgan & Claypool Publishers.

Williams, R. J., and Baird, L. C. 1993. Tight perfor-
mance bounds on greedy policies based on imperfect value

functions. Technical report, College of Computer Science,
Northeastern University.



