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Abstract— Predictive modeling of a rare event using an
unbalanced data set leads to poor prediction sensitivity.
Although this obstacle is often accompanied by other an-
alytical issues such as a large number of predictors and
multicollinearity, little has been done to address these issues
simultaneously. The objective of this study is to compare
several predictive modeling techniques in this setting. The
unbalanced data set is addressed using four resampling
methods: undersampling, oversampling, hybrid sampling,
and ROSE synthetic data generation. The large number of
predictors is addressed using penalized regression methods
and ensemble methods. The predictive models are evaluated
in terms of sensitivity and F1 score via simulation studies
and applied to the prediction of food deserts in North
Carolina. Our results show that balancing the data via
resampling methods leads to an improved prediction sen-
sitivity for every classifier. The application analysis shows
that resampling also leads to an increase in F1 score for
every classifier while the simulated data showed that the F1
score tended to decrease slightly in most cases. Our findings
may help improve classification performance for unbalanced
rare event data in many other applications.

Keywords: unbalanced data, predictive modeling, penalized re-
gression, variable selection, resampling

1. Introduction
As defined by the USDA, food insecurity is a household-

level economic and social condition of limited or uncertain
access to adequate food. This is in contrast to hunger, which
is an individual level physiological condition which results
from food insecurity. According to the Food Research and
Action Center in 2016, North Carolina had the 14th highest
food insecurity level among all states with 15.1% (603,094)
households experiencing food insecurity [1]. Coined in Scot-
land in the early 1990s, the term “food desert" is used to de-
scribe communities which have limited access to affordable
and nutritious foods [2]. The U.S. Census Bureau conducts
the American Community Survey (ACS) [3] on a yearly
basis to provide social, housing, economic, and demographic
data. A census block is the smallest geographic area for
which they collect and record population data. Census block
groups, typically containing between 600 and 300 people,
are one level above census blocks in terms of geographical

area and are the smallest unit for which the Census Bureau
collects and records sample data. They do not cross census
tract, county, or state boundaries [4].

The motivation of this study stems from an unsuccessful
attempt to build a model to predict the binary food desert
status of U.S. census block groups in North Carolina. The
objective is to build a predictive model for food insecurity
in North Carolina using the predictors statistically selected.
Unfortunately, due to a severe unbalance between the classes
of the response variable, i.e., only 3.3% of observations
are food deserts, prediction sensitivity was low and no
trustworthy inferences could be made. It has been shown
that resampling methods such as oversampling and under-
sampling are effective in improving prediction performance
in such a situation [8-12].

Much of the recent research on resampling methods in
the predictive modeling has involved using decision tree
methods and support vector machines. However, the data
sets used in these studies did not suffer from the large p
problem encountered here. Our data has 2,780 covariates,
i.e., there are 22780 possible combinations of predictors.
This renders traditional variable selection methods, such
as forward and backward selection, too computationally
intensive. Furthermore, many of the predictors in the food
insecurity data set are known to be linear combinations of
others. Thus, multicollinearity is an additional obstacle to
overcome. Modern penalized regression methods perform
simultaneous parameter estimation and variable selection in
a setting with large p and multicollinearity.

We apply oversampling, undersampling, a hybrid of over-
and undersampling, and Random Over-Sampling Examples
(ROSE) [8] synthetic data generation to an unbalanced
binary response variable. These resampling methods are
applied to unbalanced data sets, and result in an equal
distribution of observations from the majority and minority
response classes. It has been shown that these sampling
methods lead to improvement in classification sensitivity,
while each method has drawbacks [7].

Using the original and resampled data sets we train
four penalized logistic regression models, the least absolute
shrinkage and selection operator (LASSO) [12], elastic net
(ENET) [15], smoothly clipped absolute deviation (SCAD)
[17], and minimax concave penalty (MCP) [18], and two
ensemble classifiers, random forest [21] and boosting [22].



These classifiers have been successfully applied to big data
sets. The penalized regression methods used here are highly
interpretable since they shrink many regression coefficients
to exactly zero. Ensemble methods tend to improve pre-
diction accuracy, but lose interpretability by combining the
results from many classifiers.

Correctly classifying the minority observations is the main
purpose of our research, which makes the accuracy itself
an unsuitable performance measure. Sensitivity, often called
recall, measures the proportion of the minority observations
which are correctly classified. Precision measures the pro-
portion of positive predictions which are correct. The F1
score is the harmonic mean of precision and sensitivity. To
achieve a high F1 score, a model needs a high precision and
high sensitivity which makes it ideal for assessing a pre-
dictive model focused on correctly identifying observations
from the minority class.

2. Statistical Methods
In this study, we apply novel combinations of well-known
methods for dealing with a sparse parameter set and unbal-
anced binary response variable. Penalized regression meth-
ods such as LASSO, ENET, SCAD, and MCP as well as
ensemble methods random forest and boosting trees are
well known to handle classification problems involving a
large number of predictors, p. Oversampling, undersampling,
hybrid sampling methods, and synthetic data generation have
been used successfully to overcome an unbalanced response
variable. We apply combinations of these methods to real
and simulated data exhibiting large p and an unbalanced
response variable. In this chapter, we briefly summarize the
theoretical background of the statistical methods selected.

2.1 Penalized Regression Methods
Let Y be the binary response vector, let X be a n × p

predictor matrix, and let β be the p× 1 vector of regression
coefficients. The penalized log-likelihood function is given
by

β̂LOG = argmin
β

[L(β) + Pλ,γ(β)] (1)

where,

L(β) =

N∑
i=1

[ln(1 + eβ
T xi)− yiβTxi] (2)

and Pλ,γ(β) is one of the penalty functions described in the
following.

Penalized regression methods impose a unique penalty
function on the coefficients as in equation (1). The methods
considered here perform simultaneous variable selection and
parameter estimation and are applicable for both continuous
and discrete response variables, making them suitable for
regression or classification problems with large p. For all the
following penalized regression methods, we assume that the

covariate matrix has been standardized by subtracting means
and dividing by the standard deviation of each respective
column.

LASSO. The LASSO, proposed by Tibshirani (1996) [12],
imposes the L1 penalty which is hyperrectangular in nature.
The penalty of LASSO is given by

Pλ,γ(β) = λ

p∑
j=1

|βj |, (3)

which is called the L1 penalty. The regularization param-
eter, λ, is data-driven and calculated via cross-validation
for LASSO and each of the following penalties as well.
The cyclical coordinate descent algorithm (CCDA) along
a regularization path is used to compute solutions to the
LASSO efficiently. The LASSO solution and other penalized
regression solutions are typically computed via CCDA which
solves a series of univariate optimization problems until
some convergence criteria is met.

ENET. LASSO shrinks many coefficients to exactly zero,
which is a highly interpretable form of variable selection,
but can be unstable in a setting involving multicollinearity.
Ridge regression, which imposes the L2 penalty, is known to
perform well in such a setting. The ENET penalty, proposed
by Zou and Hastie (2003) [16], is a convex combination of
the L1 and L2 penalties given by

Pλ,γ(β) = λ

p∑
j=1

[(1− α)|βj |+ αβ2
j ]. (4)

0 ≤ α ≤ 1 controls the trade-off between the L1 and L2

penalties, with α = 0 equivalent to the LASSO and α =
1 equivalent to ridge regression. We set α = 0.5 for the
elastic net penalty which yields a strictly convex constraint
region which still has non-differentiable corners, enabling it
to perform variable selection while remaining more stable
than LASSO among highly correlated predictors [13].

SCAD. LASSO and ENET are both biased estimators and
employ convex penalties. SCAD and MCP are both contin-
uous piecewise non-convex penalties which start equivalent
to the LASSO penalty but weaken as the magnitude of βj
increases. SCAD was introduced by Fan and Li (2001) [17].
The SCAD penalty, defined on [0,∞), is given by

Pλ,γ(β) =


λβ, if β ≤ λ,
γλβ−0.5(β2+λ2)

γ−1 , if λ < β ≤ γλ,
λ2(γ2−1)
2(γ−1) , if β > γλ.

(5)

γ is known as the threshold parameter and determines the
point at which the penalty transitions to the subsequent piece
of the function for SCAD, and MCP which follows.

MCP. The MCP, proposed by Zhang (2010) [18], was
designed to approach to the unbiased estimates faster than



SCAD. The MCP penalty, defined on [0,∞), is given by

Pλ,γ(β) =

{
λβ − β2

2γ , if β ≤ γλ,
1
2γλ

2, if β > γλ.
(6)

Unlike LASSO or ENET, both SCAD and MCP are known
to achieve the oracle property [19], that is, as n → ∞ the
model identifies the zero regression coefficients correctly
with probability approaching 1 while remaining consistent
for non-zero coefficients [20].

2.2 Ensemble Methods
Ensemble methods combine the results of multiple base

statistical learning algorithms to construct an improved
learning algorithm. In this study we apply two ensemble
methods, random forest and boosting for classification.

Random Forest. Random forest employs a resampling
method, closely related to bagging, which decreases variance
of predictions. In bagging, we draw with replacement M
random samples of size n from our training data set of n
observations. A different model is trained and the statistic of
interest is calculated based on each the M random samples.
The final estimate is the mean or mode, for continuous
or discrete random variables respectively, of the values
computed across all M samples. Random forest differs from
bagging in that rather than training on all p predictors at
each node, a subset of size

√
p is drawn at each split in a

given tree. The result is a sequence of highly uncorrelated
classification trees. Random forest is an effective method of
decreasing variance and improving prediction accuracy but
variable selection for individual predictors is not achieved.
Rather, the out-of-the-bag-sample is used to assess variable
importance in terms of mean decrease in accuracy upon
permuting the values of each variable in succession, as
compared to including all variables in the model [7] [13].

Boosting Trees. Boosting is another powerful resampling
method. Unlike random forest, it produces decorrelated
samples through an iterative weighting scheme. Boosting
with classification trees consists of fitting a sequence of trees
in which the first tree is fit to the response variable and each
subsequent tree is fit to the residuals of the previous tree.
Some benefits of boosting trees are the speed, insensitivity
to the scale of the predictors, and relatively high accuracy.
However, they have three hyperparameters to tune and are
sensitive to overfitting the training data. Cross-validation can
help to mitigate these issues [23] [7] [13].

2.3 Resampling Methods for Unbalanced Data
This study applies resampling methods, namely undersam-

pling, oversampling, a hybrid of both, and ROSE synthetic
data generation to overcome an unbalanced data set. All
of these methods have been shown to improve prediction
sensitivity, which is often a primary assessment measure
for the type of classification problem considered here [7]
[10]. For the purpose of illustrating each resampling methods

in the following subsections, we consider a data set of
n = 1000 observations for a binary response variable Yi
such that yi ∈ {0, 1} for i = 1, · · · , 1000. Suppose also that∑1000
i=1 Yi = 100, so that the minority class label ‘1’ makes

up only 10% of the observations.
Oversampling. Oversampling balances the data set by

randomly sampling with replacement, from the minority
class, the same number observations which make up the
majority class [8] and combining the observations from the
resampled minority class and entire majority class into a
single data set. In the example data set, oversampling would
result in a new data set with 1800 observations of which 900
pertain to each class. Potential overfitting of the training data
is a concern with this method.

Undersampling. Undersampling consists of randomly
sampling without replacement, from the majority class, the
same number of observations which make up the minority
class and combining the observations from the sampled
majority class and entire minority class into a balanced data
set [8]. In the example, undersampling generates a data
set with 200 observations of which 100 pertain to each
class. A downside to this approach is that we eliminate
a significant portion of our data set which likely contains
useful information.

Hybrid Sampling. A combination of oversampling and
undersampling which results in a data set with the same
dimensions as the original. First, the minority class is
oversampled sequentially until the number of observations
from the minority class reaches some proportion p of the
desired final sample size n (both of which are required
arguments for the function in the ROSE package in R). Next,
the majority class is undersampled to yield the balanced data
set of size n [8]. In our example, we set n = 1000 and
p = 0.5. The minority set is oversampled until there were
500 observations pertaining to class ’1’, and the majority set
is undersampled to 500 observations, resulting in a data set
with n = 1000 observations.

ROSE. The ROSE method balances the data set by mod-
eling the joint density of a given observation. The process
of data generation for our example data set is as follows.
Let the class labels pertain to the set G = {0, 1}. Let ng for
g = 0, 1 be the number of observations pertaining to class
g, i.e., n0 = 900 and n1 = 100.

1) For i = 1, · · · , 1000:
a) Randomly select g ∈ G with probability 0.5.
b) From the training set, randomly select with re-

placement an observation (yg,xg) from the ng
observations pertaining to the class g.

c) Sample x∗ from KHg
(·,xg), where KHg

is the
estimated probability distribution centered at xg
with covariance matrix Hg .

Upon completing the for loop, the ROSE procedure has
generated an independent data set of 1000 observations, each
with an equal chance of coming from either class. It is



notable that the synthetic data set does not contain any of the
original observations which leaves them available for model
validation [8] [9].

2.4 Assessment Measures for Prediction Perfor-
mance

On an unbalanced testing data set, a classifier that predicts
that every observation comes from the majority class will
appear to do well in terms of accuracy. This is a common
scenario when a classifier is trained on an unbalanced data
set. In many such binary classification tasks, correctly iden-
tifying observations from the minority class is the primary
goal. Therefore, we need an alternative to mean accuracy to
assess the quality of predictions made my our model.
Sensitivity, also known as recall, measures the proportion
of positive cases correctly predicted. It is insensitive to the
unbalanced class distribution. However, a classifier which
predicts that every observation comes from the minority class
will achieve a high sensitivity,

Sensitivity =
TruePositive

TruePositive+ FalseNegative
. (7)

Precision, also known as positive predictive value, measures
the proportion of positive predictions that were correct. This
evaluates the validity of attaining a high sensitivity,

Precision =
TruePositive

TruePositive+ FalsePositive
. (8)

The F1 score is the harmonic mean of precision and sensi-
tivity,

F1 Score =
(
Precision−1 + Sensitivity−1

2

)−1

. (9)

A high sensitivity at the expense of a low precision or a
high precision at the expense of a low sensitivity translates
to a low F1 score, making it an ideal assessment measure
for rare event classification. All of these measures can easily
be obtained from the confusion matrix.

3. Simulation Studies
We applied four sampling methods to real and simu-

lated data in order to balance the classes of the response
variable prior to prediction using penalized and ensemble
classification methods. For comparison, the six classification
algorithms selected were also applied on a simulated data
set that was balanced from the offset. The mean prediction
sensitivity and F1 score computed over 300 iterations are re-
ported to assess the effectiveness of the various classification
algorithm/sampling method combinations.

3.1 Design of Simulations
Each iteration generates independent testing and training

data using the mvrnorm function in the MASS package in
R. We fixed p = 1000 and n = 4000, and considered two
covariance structures, independent and first order autoregres-
sive (AR(1)) with ρ = 0.5 and σ2 = 1.

In the AR(1) covariance structure, correlation is high-
est among adjacent predictors and decreases exponentially
with distance. The true parameter space is given by β =
[3, 3, 0, 3, 2, 0, 2, 0, 0, · · · , 0] where only 5 of the coefficients
are non-zero and the remaining parameters consist of zero
coefficients. To generate the simulated response variable, the
intercept value in the logistic regression was adjusted such
that the minority class comprises approximately 10% of all
observations.

Next, using the ROSE [8] package in R, oversampling,
undersampling, hybrid sampling, and ROSE were applied to
the unbalanced training data set. Finally, the six classification
algorithms were trained using the now balanced training data
sets, as well as the unbalanced training set for reference.
Predictions were then made by all models on the testing
data. The mean sensitivity and F1 score and their respective
standard deviations were calculated over all iterations.

3.2 Results
The results for the Monte Carlo simulations are presented

in Tables 1 and 2. In each cell, the top number represents
the mean and the bottom number in parenthesis represents
the standard deviation.

Table 1 Unbalanced Data: Sensitivity and F1 Score for n =
4000, Independent Covariance

Method Unbalanced Under Over Hybrid Rose
Sens. F1 Sens. F1 Sens. F1 Sens. F1 Sens. F1

Lasso 0.41
(0.08)

0.55
(0.07)

0.95
(0.03)

0.39
(0.05)

0.58
(0.08)

0.59
(0.04)

0.70
(0.07)

0.58
(0.04)

0.47
(0.08)

0.37
(0.05)

ENET 0.20
(0.07)

0.32
(0.09)

0.93
(0.04)

0.34
(0.05)

0.34
(0.07)

0.40
(0.06)

0.46
(0.08)

0.43
(0.05)

0.40
(0.08)

0.329
(0.05)

SCAD 0.67
(0.065)

0.729
(0.04)

0.95
(0.030)

0.45
(0.06)

0.81
(0.08)

0.639
(0.05)

0.85
(0.07)

0.61
(0.05)

0.72
(0.08)

0.46
(0.04)

MCP 0.68
(0.07)

0.73
(0.04)

0.96
(0.03)

0.46
(0.06)

0.78
(0.08)

0.64
(0.04)

0.83
(0.07)

0.61
(0.05)

0.73
(0.07)

0.45
(0.04)

RF 0.00
(0.00)

- 0.84
(0.06)

0.25
(0.03)

0.00
(0.00)

- 0.00
(0.00)

- 0.78
(0.08)

0.39
(0.06)

Boost 0.06
(0.03)

- 0.89
(0.04)

0.31
(0.04)

0.89
(0.04)

0.40
(0.04)

0.88
(0.04)

0.40
(0.04)

0.94
(0.03)

0.34
(0.04)

Table 1 represents the simulation results for the six predictive models
applied to an initially unbalanced data set with n = 4000 and independent
covariance, before and after applying four resampling methods. MCP scored
highest on the unbalanced data and undersampled data. For the other three
resampling methods, boosting attained the highest sensitivity. SCAD, tying
with MCP, attained the highest F1 score. There is a pattern of inferior
performance of all models on the ROSE data set. Sensitivity improved for
all models for all resampling methods. F1 score tended to decrease for
penalized regression methods but improved for ensemble methods.



Table 2 Unbalanced Data: Sensitivity and F1 Score for n =
4000, AR(1) Covariance

Method Unbalanced Under Over Hybrid Rose
Sens. F1 Sens. F1 Sens. F1 Sens. F1 Sens. F1

Lasso 0.72
(0.04)

0.79
(0.03)

0.96
(0.02)

0.66
(0.03)

0.79
(0.04)

0.76
(0.03)

0.86
(0.03)

0.74
(0.03)

0.86
(0.04)

0.65
(0.03)

ENET 0.63
(0.05)

0.74
(0.03)

0.96
(0.02)

0.62
(0.03)

0.70
(0.04)

0.69
(0.03)

0.79
(0.04)

0.67
(0.03)

0.83
(0.04)

0.63
(0.03)

SCAD 0.81
(0.04)

0.84
(0.02)

0.96
(0.02)

0.71
(0.04)

0.88
(0.03)

0.79
(0.03)

0.90
(0.03)

0.77
(0.03)

0.93
(0.03)

0.67
(0.03)

MCP 0.81
(0.04)

0.84
(0.02)

0.96
(0.02)

0.72
(0.04)

0.88
(0.04)

0.78
(0.03)

0.90
(0.03)

0.77
(0.03)

0.94
(0.03)

0.67
(0.03)

RF 0.03
(0.02)

- 0.95
(0.02)

0.57
(0.03)

0.01
(0.01)

- 0.19
(0.06)

- 0.96
(0.02)

0.55
(0.04)

Boost 0.41
(0.04)

0.56
(0.04)

0.95
(0.02)

0.60
(0.03)

0.94
(0.02)

0.63
(0.03)

0.93
(0.02)

0.64
(0.03)

0.97
(0.02)

0.57
(0.03)

Table 2 represents the simulation results of six predictive models applied
to an initially unbalanced data set with n = 4000 and AR(1) covariance,
before and after applying four resampling methods. SCAD and MCP tied
for best performance on the unbalanced data set. All methods attained
the peak sensitivity while MCP attained the highest F1 score, on the
undersampled data set. The non-convex penalized and ensemble methods
performed similarly on the ROSE sampled data set. The distribution of top
scores for the other sampling methods is identical to that of Table 1. No
combination of resampling and classifier led to an improvement over the F1
score attained by SCAD and MCP on the unbalanced data set.. All models
attained higher scores on the ROSE data set with AR(1) covariance than
on the ROSE dataset with independent covariance. Once again, sensitivity
improved for all models across all resampling methods. F1 score tended to
decrease for penalized regression methods across all resampling methods
and improve slightly for ensemble methods.

4. Empirical Study
4.1 Data Source

An ideal data set for the study at hand would include a
binary response variable representing the food desert status
of each block group in North Carolina and a set of mutually
uncorrelated predictors which are associated with food desert
status. A fixed time data set for the current analysis was
compiled from the following sources.

PolicyMap. The binary response variable for this study,
limited supermarket access (LSA) status by block group
in NC, was attained from Reinvestment Fund (2016) via
PolicyMap [6]. LSA status is a measure of whether a block
group is well-served by a supermarket or experiences limited
access. This aligns nicely with the definition of a food desert,
i.e., an area in which residents have limited access to an
affordable and healthy diet. For this reason, we chose LSA
status as a surrogate variable for food desert status. The data
for supermarket location was acquired by Reinvestment Fund
from the 2017 Nielsen TDLinx database [24] and includes
supermarkets, supercenters, limited assortment stores, and
natural food stores, but excludes superettes and dollar stores
due to their lack of healthy food options. To account for
variability in urban and rural areas, population density of
various block groups was considered upon assignment of
LSA status. This is achieved by considering how far the
distance to the nearest supermarket would need to be re-

duced to equal the distance of a well-served block group
of the same population density class. The LSA status was
eventually encoded as a dummy variable having the value of
1 for positive LSA status and 0 for negative LSA status [6],
which we refer to here as positive and negative food desert
status, respectively.

US Census Bureau. The predictor variables used in the
analysis were published by the US Census Bureau in the
2016 American Community Survey [3] and acquired from
American Fact Finder [5]. The matrix of covariates was
obtained from American Fact Finder [5], a public database
on U.S. Census Bureau data, and consists of 2,780 variables
representing 5-year estimates of various social, housing,
economic, and demographic data from the 2016 ACS. The
response variable, limited supermarket access (LSA), which
we are using as a surrogate for food desert status, was
obtained from the Reinvestment Fund through PolicyMap
[6]. Each random variable is discrete numeric and represents
the count of a particular characteristic with respect to the
given block group.

Data Wrangling. The data from Reinvestment Fund and
the US Census Bureau were cleaned using the R statistical
programming language, via the tidyverse package. The data
were combined using census block group number as a
common key. Prior to cleaning, the data set had 6066
observations, each representing a different block group, and
2835 predictor variables associated with each observation.
Any predictor that was missing data for 10 or more obser-
vations was excluded and then all the remaining incomplete
observations were removed. After cleaning, the data set had
final dimensions 6062 x 2780 (45769 KB).

4.2 Analysis and Results
Using 5-fold cross-validation, the classification algorithms

were applied before and after balancing the data set using
the four resampling methods. On each fold, 80% of the food
insecurity data set was allocated to the training set. Using
the ROSE package for R [8], oversampling, undersampling,
hybrid sampling, and ROSE were each applied to the training
portion of the data set. Then, the balanced training data
were used to train the six selected classification algorithms.
LASSO and ENET were applied using the glmnet function
from the glmnet [15] package with α = 1 for LASSO and
α = 0.5 for ENET. SCAD and MCP were applied using the
ncvreg [19] package. Random forest was applied using the
randomForest [21] package. Gradient boosting was applied
using the gbm [22] package with interaction.depth = 1.
500 trees were grown for both random forest and gradient
boosting. Predictions were then made on the testing portion
of the data set. The mean prediction sensitivity and F1 score
were calculated for each fold and averaged. The results are
presented in Table 3.

Since LASSO, SCAD, and MCP all performed well on
the undersampled data set, we chose to examine which



predictor variables were selected as significant by these
models in this setting. We took the intersection of the
significant predictors across all 5-folds of cross-validation.
Ideally, knowing which predictors are associated with pos-
itive food desert status could provide information to help
address the issue of food insecurity throughout the region
being studied, North Carolina in this case. The intersec-
tion of significant predictors contained about 20 predictors
including: ‘Geographical Mobility In The Past Year For
Current Residence–Micropolitan Statistical Area Level –
Moved from principal city’, ‘Employment Status For The
Population ≥ 16 Years – Armed Forces’, ‘Sex By Indus-
try For The Civilian Employed Population ≥ 16 Years –
Male manufacturing’, ‘Sex By Industry For The Civilian
Employed Population ≥ 16 Years – Female Management
of companies and enterprises’, ‘Age By Language Spoken
At Home By Ability To Speak English For The Population
≥ 5 Years – Speak other Indo-European languages and
speak English well’, ‘YEAR STRUCTURE BUILT – build
1939 or earlier’, ‘House Heating Fuel – wood’, ‘Value –
60,000- 69,999$’, ‘Value – 125,000 – 149999$’, ‘Value –
Not computed’, ‘Occupancy Status - Vacant’, ‘Commuting
Characteristics By Sex – female; worked outside state of
residence’, ‘Means Of Transportation To Work By Travel
Time To Work – Public transport 20 – 24 minutes’, ‘House-
hold Type By Household Size – non-family households 4-
people’, ‘Race Of Householder - Householder who is Some
other race alone’, ‘Mortgage Status By Selected Monthly
Owner Costs As A Percentage Of Household Income In The
Past 12 Months – Not computed’, ‘Rent Asked - 550-599$’,
‘Bedrooms By Gross Rent – ≥ 3 bedrooms; cash rent; less
than $300’, ‘Mortgage Status And Selected Monthly Owner
Costs – housing units without a mortgage; 1200-1299$’, and
‘Sex By Industry For The Civilian Employed Population 16
Years And Over - Information’. Some of these variables
seem to be conflicting, such as ‘Value – 125,000 – 149999$’
and ‘Value – 60,000- 69,999$’. It could be informative to
separate food deserts based on population density and run an
individual analysis for each group since it is likely that urban
and rural food deserts have different profiles with respect to
these predictors. This may account for the apparent conflict
among the covariates selected here.

5. Discussion
The resampling methods were vital to the results of each

model in the food insecurity data. Their application led to
an increase in sensitivity and F1 score for essentially every
model. No usable results were obtained by any model on
the unbalanced data set. The ensemble methods failed to
obtain usable results for every combination of resampling.
Among all the resampling methods, undersampling led to
the largest improvement in terms of sensitivity while the
other resampling methods improved the F1 score slightly

Table 3 Food Insecurity Data: Sensitivity and F1 Score

Method Unbalanced Under Over Hybrid Rose
Sens. F1 Sens. F1 Sens. F1 Sens. F1 Sens. F1

Lasso 1.00
(0.00)

0.06
(0.00)

0.71
(0.08)

0.13
(0.02)

0.26
(0.03)

0.20
(0.03)

0.30
(0.07)

0.17
(0.04)

0.47
(0.11)

0.18
(0.04)

ENET 0.00
(0.00)

- 0.72
(0.07)

0.13
(0.02)

0.21
(0.03)

0.17
(0.03)

0.30
(0.04)

0.18
(0.03)

0.46
(0.11)

0.18
(0.04)

SCAD 0.07
(0.04)

0.11
(0.06)

0.69
(0.07)

0.12
(0.02)

0.51
(0.10)

0.16
(0.02)

0.48
(0.06)

0.15
(0.02)

0.53
(0.11)

0.17
(0.03)

MCP 0.06
(0.03)

0.10
(0.05)

0.70
(0.06)

0.12
(0.02)

0.54
(0.08)

0.16
(0.02)

0.57
(0.06)

0.16
(0.02)

0.53
(0.08)

0.17
(0.02)

RF 1.00
(0.00)

0.06
(0.00)

1.00
(0.00)

0.05
(0.00)

1.00
(0.00)

0.06
(0.01)

1.00
(0.00)

0.06
(0.01)

1.00
(0.00)

0.03
(0.00)

Boost 1.00
(0.00)

0.06
(0.00)

1.00
(0.00)

0.05
(0.00)

1.00
(0.00)

0.06
(0.00)

1.00
(0.00)

0.06
(0.00)

1.00
(0.00)

0.06
(0.01)

Table 3 represents the simulation results of the six predictive models using
unbalanced and balanced food insecurity data sets calculated using 5-fold
cross-validation. In each field, the top number represents the mean and
the number in parenthesis is the standard deviation. None of the models
performed well on the unbalanced data set. The sensitivity and F1 score
improved for every model relative to the results from the unbalanced data,
except for random forest and boosting on the ROSE data which, for reasons
we could not identify, both classified all test observations as class ’1’.
LASSO achieved the highest sensitivity of 0.929 on the undersampled data
set, but performed poorly on the oversampled and hybrid sampled data sets.
SCAD and MCP performed well on every resampled data set. Boosting had
the highest F1 score on four of the data sets, ranging from 0.261 to 0.324.

more. SCAD and MCP produced consistent results for every
resampling method.

With respect to the simulated data with independent co-
variance, the only resampling method for which every clas-
sifier performed well was again the undersampling method.
The highest sensitivity was obtained by penalized regression
methods applied to the undersampled data set. No model was
able to improve over the F1 score attained by SCAD or MCP
on the unbalanced data set. Additionally, the sensitivity of
SCAD and MCP on the unbalanced data set was superior
to that of many of the other models on the balanced data
sets. If we knew that the F1 score was a more relevant
measure than sensitivity, we would prefer to use SCAD or
MCP on the unbalanced data set, rather than another model
with a resampling method. SCAD and MCP attained a high
sensitivity for every resampling method.

Considering the simulated data with AR(1) covariance,
similar to the simulations with independent covariance, no
method improved with respect to the F1 score of SCAD
or MCP on the unbalanced data. Only if we knew that
prediction sensitivity were a more relevant measure than F1
score, would we choose to apply resampling methods. With
this covariance structure, ROSE led to prediction results that
were competitive with those from undersampling. This is an
important fact because sometimes the severity of the unbal-
anced data can make undersampling impractical. Boosting
with the ROSE data set achieved the highest sensitivity.
That being said, SCAD and MCP performed consistently
across all resampled data sets again and should be considered
attractive options in this and the previous settings.



Overall, the combination of penalized regression methods
with resampling enabled us to improve the sensitivity and
F1 scores such that we could identify predictors associated
with positive food desert status in NC. This is promising in
that it can help us to gain insight into the social, economic,
demographic, and housing data profiles of food deserts in NC
or elsewhere in the world. This certainly provides motivation
to expand the food desert study to include larger regions.
Additionally, this could help us to develop creative ideas to
address societal problems such as food insecurity or other
similar issues involving rare events.

6. Conclusion
For every simulation except undersampling with penalized

regression led to the highest sensitivity. With AR(1) co-
variance, ROSE with boosting outperformed undersampling
for each classifier with respect to sensitivity, but only by a
slim margin. In every case, random forest performed poorly
on unbalanced data, oversampled data, and hybrid sampled
data sets. For random forest, the introduction of duplicate
observations due to sampling with replacement crippled
the performance. Boosting outperformed SCAD and MCP
by a small margin in a few cases but was also unstable
when applied to the ROSE food insecurity data. SCAD
and MCP were consistent performers across every data
set, in particular when undersampling was performed. The
results of undersampling are promising but as the number
of minority observations m decreases this method becomes
less useful since the final number of observations in the
resampled data set is 2m. Interestingly, ROSE tended to
perform better on data with AR(1) covariance than on data
with independent covariance, making it a highly attractive
option when multicollinearity is present.

There are many facets of this investigation that warrant
future investigation. One can consider new predictive mod-
eling techniques which can reduce false positive results.
Also, there are historical time series data from the ACS that
could be incorporated into this work, and the LSA status is
available for all of the U.S. on PolicyMap. This would enable
a more systematic investigation of the parameters predicted
to be associated with food desert status to gain insight into
the socioeconomic and demographic profiles of food deserts
in various regions of the U.S. The food insecurity data
had only 3% minority observations but our simulated data
approximately contained 10% minority observations due to
the instability in the logistic regression. It is worthwhile to
address this issue as well.
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