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Abstract— Pedestrian flows in densely-populated areas may
cause crowd accidents, and effective pedestrian flow regulation
is highly desirable for flow optimization. In this paper, we
investigate the problem of regulating two merging pedestrian
flows by introducing a mobile robot moving within the flow.
The pedestrian flows are regulated through dynamic human-
robot interaction during their collective motion. We propose a
method based on adaptive dynamic programming (ADP) to
learn the optimal motion control of the robot in real time
and the pedestrian outflow through the bottleneck area is
maximized. Extensive simulations are performed using social
force models of pedestrian motion. Simulation results show
that the pedestrian outflow is significantly improved with our
proposed ADP control.

I. INTRODUCTION

Modeling and control of pedestrian collective motion has
received considerable research interests due to increasing de-
mands of effective crowd regulation and evacuation guidance
in public areas such as stadiums, shopping malls and train
stations. Without appropriate guidance and regulation, crowd
disorders, such as blocking, arise when pedestrians aggregate
gradually [1], [2]. Casualties in crowd accidents have drawn
considerable attention from researchers who investigate the
underlying mechanism and seek for solutions to crowd safety
improvement [2], [3]. In this paper, we propose a robot-
assisted pedestrian flow optimization scheme using an adap-
tive dynamic programming (ADP)-based learning method.

Conventional approaches of pedestrian regulation primar-
ily focused on optimal evacuation planning [1], [4], or
optimal design and spatial placement of pedestrian facilities
[5], [6], on the basis of the self-organization behaviors
of pedestrian collective motion. For instance, the study in
[5] suggested that properly placing obstacles in front of
an exit could mitigate crowd congestion and thus improve
the outflow efficiency. However, the optimal placement or
geometrical parameters of static facilities vary with the
changes of pedestrian flow [7], [8]. As a result, once being
placed, static facilities are not easily re-configurable to adapt
to real-time changes of pedestrian flows.
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Previously, the influence of mobile robots on the motion of
pedestrian flows has been studied in simulated environments
[9], [10]. The results demonstrated that the pedestrian flows
can be implicitly controlled through dynamic human-robot
interaction (HRI) without explicit guidance. More recently,
empirical studies [11], [12] were conducted to analyze the
individual and collective motion behavior of pedestrians
under the influence of dynamic HRI. It has been found that
humans are more likely to give way to the robot to avoid
collision, which can be utilized for pedestrian regulation.
These works also show the applicability of utilizing HRI
in replacement of static facilities. However, early works in
this direction used open-loop robot control that is determined
from prior knowledge of HRI characteristics under different
robot motion. In our earlier work [13], we proposed passive
HRI and had a mobile robot adjust its motion to regulate
the pedestrian flow for desired flow velocities. The approach
was verified in a uni-directional exit corridor in [13].

In this paper, we study a complex environment based on
the real-world scenario presented in [2], where pedestrian
flows from different directions merge together and move
through a bottleneck. Compared with the uni-directional
corridor scenario described in [13], the problem studied here
is much more challenging as the outflow at the bottleneck
is a combined result of the behavior of merging flows
and the capacity of the bottleneck. Crowd disasters are
much more likely to occur in merging flow situations rather
than in a uni-directional corridor environment. To regulate
the merging pedestrian flows and achieve optimal regula-
tion performance, we propose a robot-assisted pedestrian
regulation scheme that utilizes passive HRI, and design a
customized ADP learning algorithm to control the robot
motion according to the pedestrian flow monitored in real
time. Our proposed ADP-based robot control method is
data-driven, which only takes the observation of pedestrian
flows as input, and outputs optimal robot control parameters.
Simulation experiments are conducted in Matlab with social
force models used for pedestrian motion. The results show
that significantly more people are evacuated through the
bottleneck, compared with the cases of no-robot regulation
and fixed robot positions or motion frequencies.

The rest of the paper is organized as follows: Section II
describes the problem formulation of the merging pedestrian
flows optimization with robot assistance. Section III intro-
duces the design of our ADP-based learning algorithm for
real-time robot motion control. In Section IV, we present
the simulation results. The conclusion and future work are
provided in Section V.



Fig. 1: The merging pedestrian flow scenario in a bottleneck
area. Pedestrian outflow through the bottleneck is observed
by a surveillance camera. The dashed rectangle indicates the
HRI region, and the red dashed line indicates the observation
line where pedestrian outflow, q(t), is measured.

II. PROBLEM FORMULATION

In this section, we first introduce the merging flows
scenario in a bottleneck area, and then formulate the problem
of pedestrian flow regulation using HRI.

A. Environmental Setup

In this paper, the environment shown in Fig. 1 is selected
for the merging flow optimization problem. The selected
environment is obtained by downscaling the bottleneck area
in the real-world environment studied in [2], where a crowd
stampede occurred in Mina/Makkah in 2006. The size of
the selected environment is 8 m by 8 m with a bottleneck
width w = 4 m. The amount of inflow discharging into
the environment is q1(t) for flow A and q2(t) for flow
B, respectively. We define the HRI region as the dashed
rectangle area, and the observation line as the red dashed
line, where the pedestrian outflow q(t) (i.e., the number of
pedestrians that exit the line per second) is measured by
the pre-installed surveillance camera. The left side of the
observation line is the merging area of the two pedestrian
flows.

A single mobile robot is deployed in the HRI region,
which moves in a pre-selected trajectory to dynamically
interact with the pedestrian flow. The robot’s velocity is
determined by a controller to be designed, which takes
observed real-time pedestrian outflow as feedback. The flow
B is regulated through the effect of passive HRI. The passive
HRI in our particular application domain means that the robot
moves in a pre-selected trajectory which is perpendicular
to the pedestrian flow direction, behaving as a moving
obstacle. The pedestrians adjust their paths or speed to avoid
collision with the robot, and thus passively interact with the
robot. Such HRI behaviors have been empirically verified in
literature [11], [12]. Therefore, desired pedestrian collective
motion can be achieved by optimizing the motion of the
robot.

B. Robot Motion Dynamics

The robot state is defined as xr = [xr1, xr2]T ⊆ R2,
where xr1 and xr2 are the two-dimensional robot positions,
respectively. To focus on the higher-level robot motion

planning problem, a single integrator is used to describe the
simplified robot motion model, that is,

ẋr = ur (1)

where ur = [ur1, ur2]T denotes the vector of robot control
in the directions x and y.

The robot trajectory is pre-selected to be perpendicular
to the moving direction of pedestrian flow B. The selection
of this trajectory is motivated by the recent simulation and
empirical findings of pedestrian behavior under the influence
of HRI in crossing scenarios [10]–[13]. With such interaction
paths, the robot moves to create a “virtual gate” effect that
controls the pedestrian traffic as the pedestrians give way
to the robot or adjust their trajectories to avoid collision
with the robot. The “virtual gate” can be applied in branch
flows merging in an intersection so that the inflows into
the merging area is regulated. We consider the flow A as
the main flow, the discharge of the branch flow (i.e., flow
B) into the merging area is regulated by the robot to avoid
overcrowding that causes congestion at the bottleneck area
(i.e., the flow merging area). The robot movement helps to
maximize the pedestrian outflow through the bottleneck, and
thus improves outflow efficiency.

The robot velocity is set to be zero in direction y, and set
to be a sinusoid-based signal in direction x, that is,[

ur1(t)
ur2(t)

]
=

[
A0Ω sin (Ωt)

0

]
(2)

where A0 is the parameter that determines the maximum
offset of robot position from the center of channel B in
direction x, Ω is the piecewise constant frequency of robot
motion which can be adjusted in real time.

C. Flow Regulation Problem

To formulate the robot-assisted pedestrian regulation prob-
lem, we make the following assumptions for the environment
and the robot:

Environment: A surveillance camera installed in the en-
vironment is used to observe the real-time pedestrian flow
passing through the observation region. Thanks to the ad-
vanced techniques in computer vision and wireless sensor
networks, real-time pedestrian crowd monitoring techniques
(e.g., [14]) can be used.

Mobile Robot: The mobile robot can access the real-time
flow information observed by a surveillance camera. The
robot is controlled by the algorithm proposed in the paper.

We define the merging pedestrian flow regulation problem
as minimizing the difference between the actual instanta-
neous pedestrian outflow q(t) at the observation line and the
maximum bottleneck capacity q∗ during the time interval
[t0,∞]. That is, the pedestrian flow regulation problem is to
find a sequence of robot motion frequency Ω(t) such that

minimize
Ω(t)

J =

∫ ∞
t0

(q(t)− q∗)2
dt (3)

subject to the robot motion dynamics described in (1) and (2).
Note that, since q∗ is selected as the maximum bottleneck



Fig. 2: The overview of the robot-assisted pedestrian regula-
tion scheme. The ADP learning control takes the pedestrian
outflow information as input and the utility r(t) as feedback.
The real-time robot motion frequency Ω(t) is calculated as
output through a feedforward pass. The solid and dashed
lines represent data flow and paths for NN parameter updat-
ing, respectively.

capacity, minimizing J indicates that the outflow through the
bottleneck is maximized.

In the next section, we present the proposed ADP-based
learning control algorithm that solves the optimization prob-
lem defined above.

III. ADP-BASED LEARNING CONTROL DESIGN

A. Overall Structure of Proposed Approach

The overall system diagram is depicted in Fig. 2, which
is composed of robot dynamics, pedestrian dynamics and
HRI, surveillance camera, and ADP learning control. The
robot dynamics is defined in (1) and (2). The surveillance
camera measures the pedestrian outflow in the observation
region and the measured data are passed to the ADP learning
control module to calculate the robot motion control. As
our proposed control method is data-driven, the pedestrian
dynamics and HRI are considered as a black box that is
unknown to the control design (note that we use the social
force model to simulate the pedestrian dynamics and HRI in
our simulations, which is explained in Section IV-A). Instead,
only the observed pedestrian flow information is used as
input to the ADP control algorithm. Note that, unlike our
earlier work [13] where the HRI region and the observation
region are the same, in this paper the two regions are different
without overlap (see Fig. 1). This makes the problem more
challenging as the observed pedestrian flow is the result of
both HRI and merging flow effects.

To solve the robot-assisted flow optimization problem, we
propose a dedicated ADP-based learning controller using
measurements of pedestrian flow as feedback. As shown in
Fig. 2, the ADP control module consists of two networks,
i.e., a critic network and an action network. The input of
critic network includes the difference between the actual

pedestrian outflow q obtained by the surveillance camera and
the desired outflow q∗, i.e. q − q∗, and the robot control
frequency Ω(t). The output of critic network is the estimate
of value function representing the total discounted future
cost. The action network takes the outflow difference q−q∗ as
input, and outputs the robot control frequency Ω(t). Note that
the instantaneous observation of pedestrian outflow is very
fluctuant due to the dynamic nature of pedestrian motion.
Thus, we take the n most recent outflow difference in time
history, i.e., q − q∗ = [q(t) − q∗, q(t − 1) − q∗, ..., q(t −
(n−1))−q∗] as the input of both critic and action networks
to reduce the fluctuation of the instantaneous flow rate q(t)
for the robot control design. Both critic and action network
are three-layer perceptron neural networks (NN) with one
hidden layer of size Nch (the number of hidden nodes) for
critic network and Nah for action network, respectively. The
size of input layer is n+1 for critic network and n for action
network, respectively.

B. ADP Control Design

In our ADP-based learning control design, the utility
function is chosen as

r(t) = (q̄(t)− q∗)2 (4)

where q̄(t) is the averaged n most recent measurement of
q(t), i.e., q̄(t) = 1

n

∑n−1
k=0 q(t−k), based on the reason stated

above.
The summation of discounted utility function r(t) from

current time instance t to the infinite future is defined as

R(t) = r(t) + γr(t+ 1) + γ2r(t+ 2) + ... (5)

where γ is a discount factor for the future cost. We use a
critic network in ADP design to estimate the total discounted
future cost R(t). Thus, the goal of this ADP module is to find
a sequence of robot motion frequency Ω(t) that minimize the
value function J as

J∗(t) = min
u∈Ω
{r(t) + γJ∗(t+ 1)} (6)

where the J function is formulated as the sum of discounted
cost from the current time to infinite future. Introducing the
discount factor γ ∈ [0, 1] in the value function indicates that
we are less concerned with the future cost.

According to the ADP approximation error of Bellman’s
equation, the error function of the critic network is defined
as ec(t) = γJ(t)− [J(t− 1)− r(t)], and the corresponding
objective function is Ec = 1

2e
2
c(t). For the action network,

the error function is defined as ea(t) = J(t) − Uc, where
Uc = 0, and the corresponding objective function is Ea =
1
2e

2
a(t). Once the outflow measurement is available, the

ADP learning control module is executed to calculate the
value function J(t) and the robot frequency control Ω(t)
by the critic network and the action network, respectively.
Then the weights in both networks are updated using the
gradient descent (back-propagation) algorithm to minimize
the objective function Ec(t) and Ea(t) till the maximum
iteration or the error threshold is reached. Then the robot



Algorithm 1: ADP-Based Robot Motion Control
input : q∗: Desired outflow ;

q(t), q(t− 1), ..., q(t− (n− 1)): Time history of
pedestrian outflow measurements ;
output: Robot control ur(t)

1 Initialize: Ω(0) = 0, A0 ;
2 for t← n to Tf do
3 if Outflow q(t) is measured then
4 Call ADP Learning Control module (inputs:

[q(t)− q∗, q(t− 1)− q∗, ..., q(t− (n− 1))− q∗]);
5 Calculate robot motion frequency Ω(t) ;
6 else
7 Ω(t)← Ω(t− 1) ;
8 end
9 Calculate robot control ur(t) using (2);

10 Robot executes control command and interacts with
pedestrian flow;

11 end

motion frequency Ω(t) is calculated with updated weights
and applied to the robot control module. The steps to update
the neural network weight parameters in each network follow
the same process as reported in [15]–[17].

The robot motion control algorithm is summarized in
Algorithm 1. The initial robot’s motion frequency Ω(0) = 0
and A0 is a design constant. When the pedestrian flow q(t)
is observed at time t, our ADP control algorithm is executed
to calculate the robot motion frequency Ω(t), otherwise
the robot motion frequency remains unchanged. Then, the
robot control ur(t) at time t is calculated using (2). In
general, the ADP module finishes all calculation within the
sampling interval of the flow measurement because of the
computational complexity in pedestrian tracking from visual
observation.

IV. SIMULATION AND RESULTS

In this section, we verify and evaluate our robot-assisted
pedestrian regulation method using ADP-based learning con-
trol in Matlab simulations. We first present the simulation
setup and parameters, and then discuss the results of HRI
characteristics obtained in open-loop pedestrian regulation
simulations. Following that, we validate our ADP-based
learning control algorithm for pedestrian flow optimization.

A. Simulation Setup

The simulation environment is shown in Fig. 1. The initial
pedestrian speed is sampled from the Gaussian distribution
N (µ, σ2) with mean µ = 2 m/s and standard deviation σ =
0.3 m/s. The initial robot position (xr1, xr2) = (0.5, 2.5) m,
and initial robot speed is zero. The robot control parameter
A0 = 1.5 m.

The pedestrians’ motion are simulated using the social
force model and the associated parameters reported in [3]
with the additional HRI term used in [13]. The HRI model
is social force-based and uses parameters derived from the
empirical experiments ([18]) to reproduce distinctive motion
behavior of pedestrians in the presence of an interacting
robot. Note that the social force model is commonly used

in robotics and physics communities to simulate pedestrian
dynamics and crowd behaviors ([19], [20]). Although it
may not emulate all aspects of pedestrian motion behavior,
the empirical features characterizing crowd turbulence are
reproduced well by the selected model as evidenced by [3].
As the focus of this paper is to use a robot to mitigate
congestion and thus reduce the risk of crowd turbulence, it
is adequate to use social force model for pedestrian motion
simulation. Note that the social force model is only used to
simulate the pedestrians’ motion. Our proposed ADP control
is data-driven, and does not rely on the pedestrian motion
model. Our approach is applicable to different scenarios
regardless the choice of pedestrian motion model and model
parameters.

The sum of instantaneous inflow A and inflow B is
constant, i.e., q1+q2 = 5 (m·s)−1. We change the ratio of the
two inflows to create two case studies, i.e., Case 1 with inflow
ratio q1/q2 = 3/2 and Case 2 with inflow ratio q1/q2 = 2/3.
The two cases of inflow ratio represent different pedestrian
flow conditions where inflow A is greater than inflow B and
inflow A is less than inflow B, respectively. The bottleneck
capacity of the environment is set as q∗ = 4 (m·s)−1,
according to the simulation results of flow-density relation.
The simulation time of each run is set as Tf = 200 s. The
measurement rate of pedestrian outflow is 1 Hz, and the size
of temporal history of pedestrian outflow measurement is
chosen as n = 5.

The parameters of our ADP control is selected as follows.
The number of hidden nodes in critic network and action
network is set to Nch = 15 and Nah = 12, respectively. The
learning rate ηc = 0.01 for critic network and ηa = 0.01 for
action network. The discount factor γ = 0.95.

B. Open-loop Robot Control

We firstly show the simulation results of open-loop robot
control, which characterize the effect of HRI on the pedes-
trian outflow in the bottleneck environment. We study Case 1
and Case 2 with inflow ratio q1/q2 = 3/2 and q1/q2 = 2/3,
respectively. For each case, the robot is controlled to move
at a set of constant motion frequencies Ω ranging from 0.1
rad/s to 1.5 rad/s with an increment of 0.1 rad/s. We then
calculate the temporal average of pedestrian outflow for each
robot motion frequency Ω.

The snapshots of the open-loop simulation are shown in
Fig. 3. Fig. 4 shows the average outflow vs. robot motion
frequency of the two cases. One can see from the results
that for each case, maximum average outflow can be obtained
when the robot moves at a unique optimal motion frequency,
denoted as Ωopt. The optimal frequency Ωopt is 0.4 rad/s and
0.7 rad/s for Case 1 and Case 2, respectively.

The open-loop robot control results demonstrate the HRI
characteristics for merging flow regulation. We use the results
as the “ground truth” to validate whether our ADP control
algorithm can adjust the robot’s motion frequency to the
optimum by learning from the HRI online. In the next sub-
section of ADP control results, the robot motion frequencies
generated by the ADP learning control will be compared with



(a) t=2 s (b) t=100 s (c) t=200 s

Fig. 3: Snapshots of the open-loop robot control simulation. The circles with blue and red color represent pedestrian flow

A and flow B, respectively. The pink star denotes the robot. The dashed rectangle indicates the HRI region and the vertical

dashed line indicates the bottleneck where outflow is measured.

Ω

Fig. 4: The results of open-loop robot control under different

ratio of pedestrian inflow.

the optimal frequencies for the two case studies presented in

Fig. 4.

C. ADP Control Results

In this section, we present simulation results validating the

effectiveness of our ADP control implemented in Algorithm

1 for pedestrian regulation.

1) Case Studies of Fixed Flow: We performed simulations

of Case 1 and Case 2. From the results of HRI characteristics

generated from the open-loop robot control simulation in Fig.

4, we can see that the robot should move at the frequency of

0.4 rad/s for Case 1 and 0.7 rad/s for Case 2 for maximized

pedestrian outflow. The simulation results of ADP control are

shown in Fig. 5 and Fig. 6 for the two cases, respectively.

For Case 1, one can see from Fig. 5a that the instantaneous

outflow q(t) with robot regulation (black curve) approaches

the maximum bottleneck capacity q∗, while the instantaneous

outflow q(t) without robot regulation (red curve) is much less

than q∗. Particularly, the close-up illustrates the significant

decline in outflow due to crowd congestion without robot

regulation, and it is prevented with robot regulation. As

shown in the upper sub-figure in Fig. 5b, the robot gradually

learns from the observation of pedestrian outflow, and the

motion frequency converges around the optimum, Ωopt = 0.4
rad/s, after approximately 75 s. The red dashed line indicates

the optimal values of the robot motion frequency found from

the HRI characteristics shown in Fig. 4. The lower sub-

figure in Fig. 5b shows the time history of robot control

signal. We further compare the accumulated pedestrian out-

flow,
∫ t

0
q(τ)dτ , which is defined as the total number of

pedestrians that exit the bottleneck per meter, of our ADP

control with that of a) no-robot, b) randomly-chosen fixed

robot position (3, 3.5) m, c) randomly-chosen fixed motion

frequency 1.2 rad/s. The results are plotted in Fig. 5c. We

can see that at time t = 200 s, the accumulated outflow of

the proposed ADP control is 741 people per meter, while the

accumulated outflow without robot regulation is 656 people

per meter. The accumulated outflow at t = 200 s is improved

by 12.9% with our ADP control, compared with the no-

robot case. The accumulated outflow of fixed robot position

and motion frequency is 649 and 710 people per meter,

respectively.

Similarly for Case 2, Fig. 6a shows the time history of

instantaneous outflow q(t) with and without robot regulation.

As shown in the upper sub-figure of Fig. 6b, the robot

motion frequency is gradually learned from the observation

of pedestrian outflow, and converges around the optimum,

Ωopt = 0.7 rad/s, after approximately 80 s. The lower sub-

figure in Fig. 6b shows the time history of robot control

signal. Fig. 6c shows the accumulated outflow,
∫ t

0
q(τ)dτ ,

of the proposed ADP control, compared with that of a)

no-robot, b) randomly-chosen fixed robot position (3, 3.5)
m, c) randomly-chosen fixed motion frequency 1.2 rad/s.

One can see that the accumulated outflow of the proposed

ADP control is 730 people per meter, while the accumulated

outflow without robot regulation is 655 people per meter.

The accumulated outflow at t = 200 s is improved by

11.5% with the ADP control, compared to the no-robot case.

The accumulated outflow of fixed robot position and motion

frequency is 689 and 706 people per meter, respectively.

We can see from the simulation results that our ADP

control achieves the best regulation results of maximizing

the number of people going through the bottleneck area by

observing the pedestrian outflow. Moreover, it is worth noting

that the performance of using a fixed robot position or motion

frequency varies in different cases of inflow ratios. Thus, it

is not possible to randomly select a fixed robot position or

motion frequency for optimal regulation performance without

the prior knowledge of pedestrian flow conditions. On the

contrary, our ADP control can learn the optimal robot motion

only from the real-time observation of pedestrian outflow,

particularly when the pedestrian flow conditions change over

time. Next, we show the online learning capability of our

ADP control in changing flow case.

2) Case Study of Changing Flow: We further present

the simulation results of changing pedestrian flow case to



(a)

Ω

(b) (c)

Fig. 5: Case 1 for pedestrian inflow q1/q2 = 3/2: (a) instantaneous pedestrian outflow, q(t); (b) time history of robot motion

frequency and robot control; (c) accumulated pedestrian outflow,
∫ t

0
q(τ)dτ , with different regulation approaches.

(a)

Ω

(b) (c)

Fig. 6: Case 2 for pedestrian inflow q1/q2 = 2/3: (a) instantaneous pedestrian outflow, q(t); (b) time history of robot motion

frequency and robot control; (c) accumulated pedestrian outflow,
∫ t

0
q(τ)dτ , with different regulation approaches.

(a)

Ω

(b) (c)

Fig. 7: Case 3 for changing pedestrian inflow, where pedestrian inflow ratio changes from q1/q2 = 2/3 to q1/q2 = 3/2
at t = 100 s: (a) instantaneous pedestrian outflow, q(t); (b) time history of robot motion frequency and robot control; (c)

accumulated pedestrian outflow,
∫ t

0
q(τ)dτ , with different regulation approaches.

show the online learning capability of our ADP control. We

create Case 3, where the inflow ratio changes from the initial

value q1/q2 = 2/3 to q1/q2 = 3/2 at t = 100 s. The

robot needs to adaptively change its motion frequency to

maximize the outflow. The simulation results of the changing

flow case are shown in Fig. 7. It can be seen from Fig.

7a that compared to no-robot regulation, our ADP control

achieves higher instantaneous outflow q(t) in spite of the

change of inflows at t = 100 s. Fig. 7b shows that the

robot motion frequency firstly converges around the optimum

Ωopt1 = 0.7 rad/s for inflow ratio q1/q2 = 2/3, and then

converges around Ωopt2 = 0.4 rad/s after the inflow ratio

changes to q1/q2 = 3/2. Fig. 7c shows the accumulated

outflow,
∫ t

0
q(τ)dτ , of our ADP control in comparison with

a) no-robot, b) randomly-chosen fixed robot position (3, 3.5)

m, c) randomly-chosen fixed motion frequency 1.2 rad/s. One

can see that the accumulated outflow with our ADP control is

735 people per meter, while the accumulated outflow without

robot regulation is 646 people per meter. The accumulated

outflow at t = 200 s is improved by 13.8% with the ADP

control, compared to the no-robot case. The accumulated

outflow of fixed robot position and motion frequency is

662 and 687 people per meter, respectively. Thus, our ADP

control is adaptive to the change of pedestrian flow and

adjusts the optimal motion accordingly.

D. Statistical Results
In this subsection, we provide statistical results of the

ADP control performance. In our simulation, the pedestrians’

initial positions and velocities are randomly assigned from

Gaussian distributions and the ADP weights are randomly



TABLE I: Statistical results over 50 runs.

Case No. Case 1 Case 2
Success rate (%) 80 78
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Fig. 8: Statistical results of Case 1 and Case 2 over 50 runs:
(a) convergence time; (b) accumulated outflow. The error
bars indicate the standard deviation.

initialized between [−0.5, 0.5]. We conducted 50 runs for
each of Case 1 and Case 2 to obtain the statistical results.
The duration of each simulation run is set to be 200 s.
We consider a run successful if the output of the ADP
function, i.e. robot motion frequency Ω(t), converges to the
optimal value Ωopt within 200 s in the sense that the average
error between Ω(t) and Ωopt over the most recent 50 s is
smaller than 0.01, i.e.,

∑
t[|Ω(t)− Ωopt|2]/50 < 0.01, for

t ∈ (150, 200]. As presented in Table I, the success rate
for Case 1 and Case 2 is 80% and 78%, respectively. The
statistical results are shown in Fig. 8. One can see from
Fig. 8a that the average convergence time is 83 s with a
standard deviation of 12.6 for Case 1, and 86 s for Case
2 with a standard deviation of 12.1 s. Fig. 8b shows that
the average accumulated outflow in 200 s is 739 people
per meter for Case 1 and 727 people per meter for Case 2.
The standard deviation of accumulated outflow is 7.81 and
9.58 for Case 1 and Case 2, respectively. In comparison,
the average accumulated outflow without regulation is 656
with a standard deviation of 10.6 for Case 1, and 638
with a standard deviation of 11.4 for Case 2. It can be
concluded from the results that the proposed ADP-based
learning method is effective with acceptable success rate. Our
ADP control can adaptively learn the optimal robot motion
to regulate pedestrian flows without the prior knowledge of
HRI characteristics.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigated the merging pedestrian
flow regulation problem in a bottleneck environment. We
proposed to use a mobile robot that dynamically interacts
with pedestrian flows, and designed an ADP-based learning
method for robot motion control. The pedestrian regulation
problem was formulated as an optimal control problem and
a novel ADP control algorithm was developed to solve
the optimal control that adjusts robot motion parameter in
real time. Simulation results demonstrated that our approach
evacuates significantly more people through the bottleneck,
compared with the case without robot regulation. In the
future work, we will consider other ways to deploy the

robot for pedestrian regulation, and study socially-compliant
aspects and multi-robot cooperation.
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