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INVERSE PROBLEM FOR COMPACT FINSLER MANIFOLDS
WITH THE BOUNDARY DISTANCE MAP

MAARTEN V. DE HOOP °, JOONAS ILMAVIRTA t, MATTI LASSAS ©,
AND TEEMU SAKSALA © *

ABSTRACT. We prove that the boundary distance map of a smooth compact
Finsler manifold with smooth boundary determines its topological and differ-
ential structures. We construct the optimal fiberwise open subset of its tangent
bundle and show that the boundary distance map determines the Finsler func-
tion in this set but not in its exterior. If the Finsler function is fiberwise real
analytic, it is determined uniquely. We also discuss the smoothness of the
distance function between interior and boundary points.

1. INTRODUCTION

This paper is devoted to an inverse problem for smooth compact Finsler mani-
folds with smooth boundaries. We prove that the boundary distance map of such
a manifold determines its topological and differential structures. In general, the
boundary distance map is not sufficient to determine the Finsler function in those
directions which correspond to geodesics that are either trapped or are not distance
minimizers to terminal boundary points. To prove our result, we embed a Finsler
manifold with boundary into a function space and use smooth boundary distance
functions to give a coordinate structure and the Finsler function where possible.

This geometric problem arises from the propagation of singularities from a point
source for the elastic wave equation. The point source can be natural (e.g. an
earthquake as a source of seismic waves) or artificial (e.g. produced by the bound-
ary control method or by a wave sent in scattering from a point scatterer). Due
to polarization effects, there are singularities propagating at various speeds. We
study the first arrivals and thus restrict our attention to the fastest singularities
(corresponding to so-called ¢P-polarization, informally “pressure waves”). They
follow the geodesic flow of a Finsler manifold, as we shall explain in more detail in
section 2.

An elastic body — e.g. a planet — can be modeled as a manifold, where distance
is measured in travel time: The distance between two points is the shortest time
it takes for a wave to go from one point to the other. If the material is elliptically
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anisotropic, then this elastic geometry is Riemannian. However, this sets a very
stringent assumption on the stiffness tensor describing the elastic system, and Rie-
mannian geometry is therefore insufficient to describe the propagation of seismic
waves in the Earth. We make no structural assumptions on the stiffness tensor
apart from the physically necessary symmetry and positivity properties, and this
leads necessarily to Finsler geometry.

The inverse problem introduced above can be rephrased as the following prob-
lem in geophysics. Imagine that earthquakes occur at known times but unknown
locations within Earth’s interior and arrival times are measured everywhere on the
surface. Are such travel time measurements sufficient to determine the possibly
anisotropic elastic wave speed everywhere in the interior and pinpoint the loca-
tions of the earthquakes? While earthquake times are not known in practice, this
is a fundamental mathematical problem that underlies more elaborate geophysical
scenarios. In the Riemannian realm the corresponding result [27, 29] is a crucial
stepping stone towards the results of [7, 17, 19, 26, 30, 35]. We expect that so-
lutions to inverse problems for the fully anisotropic elastic wave equation rely on
geometrical results similar to the ones presented in this paper.

1.1. Main results. We let (M, F') be a smooth compact, connected Finsler man-
ifold with smooth boundary OM (For the basic of theory of Finsler manifolds see
the appendix (Section A) at the end of this paper.). We denote the tangent bundle
of M by TM and use the notation (x,y) for points in T'M, where z is a base point
and y is a vector in the fiber T, M. The notations T*M and (x,p) are reserved for
the cotangent bundle and its points respectively.

We write dp : M x M — R for the non-symmetric distance function given by a
Finsler function F. For a given z € M the boundary distance function related to x
is

Ty OM — [0,00), ry(2) =dp(z,2).
We denote R(M™) = {r, : x € M} the collection of all boundary distance
functions. In this paper, we study the inverse problem with boundary distance data
M) (ROM™), 0M)

Inverse problem 1.1. Do the boundary distance data (1) determine (M, F) up to
isometry?

We emphasize that we do not assume dp to be symmetric and therefore data (1)
contain only information where the distance is measured from the points of A"
to points in M. We note that for any x € M,

re(z) = d;(z,x), z € 0M,

-
where F is the Finsler function
-

(2) F (l',y) = F(‘Tu _y)
Therefore, data (1) are equivalent to the data
({de(2): OM = R € MY OM),
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where the distance is measured from the boundary to the interior. In [27, 29] it is
shown that the data (1) determine a Riemannian manifold (M, g) up to isometry.
In the Finsler case this is not generally true. Next we explain what can be obtained
from the Finslerian boundary distance data (1).

Notation 1.2. For a Finsler manifold (M, F) with boundary, we denote by

G(M, F) the set of points (z,y) € TM\ 0, x € M™ for which the geodesic starting
at x in direction y reaches the boundary in finite time t(x,y) and is minimizing
between x and z(x,y) := Yz (t(x,y)) € OM, that is

Yo,y (0, t(z,y)) C Mt

We emphasize that for any interior point x € M™ and for any y € T, M it holds
that t(z,y) > 0.

Since for any (z,y) € TM \ {0} and a > 0 it holds that 7, 4y (t) = vz 4(at),
we notice that G(M, F) is a conic set. Let (z,y) € G(M,F), then t(z,ay) =
a"(z,y) and z(z,y) = z(x,ay) for any a > 0. Moreover if F(y) = 1, then
t(l‘, y) = dF(xv Z(LL', y))

We show that the data (1) determine the Finsler function in the closure of the set
G(M, F) and that the data (1) are not sufficient to recover the Finsler function F on
TM™\ G(M, F). The reason is that the data (1) do not provide any information
about the geodesics that are trapped in M or do not minimize the distance
between the point of origin and the terminal boundary point. Therefore, to recover
the Finsler function F globally we assume that for every € M the function
F(z,): T,M \ {0} — R is real analytic. We call such a Finsler function fiberwise
real analytic. For instance Finsler functions F(x,y) = /¢.(y,y), where g is a
Riemannian metric, and Randers metrics are fiberwise real analytic. In Section 2
we show that also the Finsler metric related to the fastest polarization of elastic
waves is fiberwise real analytic.

Now we formulate our main theorems. If (M, F;), i € {1,2} are smooth, con-
nected, compact Finsler manifolds with smooth boundaries, we call a smooth map
O: (M, F1) — (Mas, F3) a Finslerian isomorphism if it is a diffeomorphism which
satisfies

Fi(z,y) = Fo(®(x), Pry), (x,y) € TM;.
Here @, is the pushforward by ®. We say that the boundary distance data of
manifolds (M;, F;), i = 1,2 agree, if there exists a diffeomorphism ¢: OM; — dMs
such that

(3) {re, 171 € Mf”t} ={rg,0¢:15 € M;”t} C C(0M,).

We emphasize that this is an equality of non-indexed sets and we do not know the
point x; corresponding to the function rg,.

Our first main result shows that the boundary distance data (1) determine a
manifold upto a diffeomorphism and a Finsler function in an optimal set.

Theorem 1.3. Let (M;, F;), i = 1,2 be smooth, connected, compact Finsler mani-
folds with smooth boundaries. We suppose that there exists a diffeomorphism
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¢: OMy — OMsy so that (3) holds. Then there is a diffeomorphism U: My — My
so that U|gnr, = ¢. The sets G(My, F1) and G(My, UV*Fy) coincide and in this set
) = U*Fy, where the pullback V*Fy : TMy — R is the function

U*Fy : TMy — R, U Fy(z,y) = Fo(¥(z), U,y).

Moreover, for any (zo,y0) € TMi" \ G(M, F1) there exists a smooth Finsler
function Fs: TMy — [0,00) so that dp, (z,2) = dp,(x,2) for all z € My and z €
8M1 but F1 7§ Fg.

Remark 1.4. The set G(M,F) can be large or small as the following examples
illustrate. If every geodesic of (M, F) is minimizing, then it holds that G(M,F) =
TM. This holds for instance on simple Riemannian manifolds. If M is any subset
of S% larger than the hemisphere and if F is given by the round metric, then T M\
G(M, F) contains an open non-empty set U whose canonical projection to M is an

open neighborhood of the equator.

Our second main result shows that the boundary distance data (1) determine a
fiberwise Finsler manifold upto isometry.

Theorem 1.5. Let (M;, F;), i = 1,2 be smooth, connected, compact Finsler mani-
folds with smooth boundary. We suppose that there exists a diffeomorphism

¢: OMy; — OMy such that (3) holds. If Finsler functions F; are fiberwise real
analytic, then there exists a Finslerian isometry ¥: (My, F1) — (Ma, F») so that
Vlom, = ¢.

Remark 1.6. In Theorems 1.8 and 1.5 we measure distances from the interior to
the boundary. If we measure in the opposite direction, from boundary to the interior,
this corresponds to the data (1) given with respect to the reversed Finsler function

—
F (x,y). Our results give uniqueness for F and therefore F'. That is, our main
results hold no matter which way distances are measured.

1.1.1. Outline of the proofs of the main results. Theorem 1.5 essentially follows
from Theorem 1.3. We split the proof of Theorem 1.3 into four parts (subsections
3.1-3.4). In the first part, we show that the data (1) determine r, for any x € M.
Then we study the properties of the map R : M 3 x +— r, € L®°(OM) and show
that this map is a topological embedding. We use the map R to construct a map
U : (M, Fy) — (Ma, F») that will be shown to be a homeomorphism. In the second
part, we show that the map W is a diffeomorphism. In the third part we connect the
set G(M, F') to smoothness of the distance functions of the form dp(-, z), z € IM.
In the final section we use this to prove that the map ¥ is a Finslerian isometry.

We have included in this paper a supplemental Section 4 and the appendix (Sec-
tion A), which contain necessary material for the proof of Theorem 1.3. We have
also included some well-known results and properties in the Riemannian case while
providing a detailed background of compact Finsler manifolds with and without
boundary for the proof given in Section 3. To the best of our knowledge, most of
this material cannot be found in the literature.
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1.2. Background and related work.

1.2.1. Geometric inverse problems. The claim and proof of Theorem 1.3 are a mod-
ification of a similar result in a Riemannian case given in [27, 29]. The Riemannian
version was first proven in [29]. In [27] also the construction of smooth structure
is considered. The Riemannian version of Theorem 1.3 is related to many other
geometric inverse problems. For instance, it is a crucial step in proving uniqueness
for Gel’fand’s inverse boundary spectral problem [27]. Gel'fand’s problem concerns
the question whether the data

{OM, (\j, Oudbjlona)j=y }

determine (M, g) up to isometry. Above (\;, ¢;) are the Dirichlet eigenvalues and
the corresponding L2-orthonormal eigenfunctions of the Laplace-Beltrami operator.
Belishev and Kurylev provide an affirmative answer to this problem in [7].

We recall that the Riemannian wave operator is a globally hyperbolic linear par-
tial differential operator of real principal type. Therefore, the Riemannian distance
function and the propagation of a singularity initiated by a point source in space
time are related to one another. In other words, r,(z) = t(z) — s, where t(z) is
the time when the singularity initiated by the point source (s,z) € (0,00) x M
hits z € M. If the initial time s is unknown, but the arrival times ¢(z),z € M
are known, then one obtains a boundary distance difference function D, (21, 22) :=
re(z1) — ro(22), 21,22 € OM. In [35] it is shown that if U C N is a compact subset
of a closed Riemannian manifold (N, g) and U™ # (), then distance difference data
{(U,g|v),{Ds: U xU — R |z € N}} determine (N, g) up to isometry. This result
was recently generalized to complete Riemannian manifolds [26] and for compact
Riemannian manifolds with boundary [19].

If the sign in the definition of the distance difference functions is changed, we
arrive at the distance sum functions,

(4) D (z1,22) = d(z1,2) + d(22,2), x € M, 21,22 € OM.

These functions give the lengths of the broken geodesics, that is, the union of the
shortest geodesics connecting z; to  and the shortest geodesics connecting x to 2.
Also, the gradients of D} (21, z2) with respect to z; and zs give the velocity vectors
of these geodesics. The inverse problem of determining the manifold (M, g) from
the broken geodesic data, consisting of the initial and the final points and directions,
and the total length, of the broken geodesics, has been considered in [30]. In [30]
the authors show that broken geodesic data determine the boundary distance data
and use then the results of [27, 29] to prove that the broken geodesic data determine
the Riemannian manifold up to isometry.

We let u be the solution of the Riemannian wave equation with a point source at
(s,z) € (0,00) x M. In [20, 22] it is shown that the image, A, of the wavefront set
of u, under the canonical isomorphism T*M > (x,p) — ¢ (x)p; € TM, coincides
with the image of the unit sphere S; M at x under the geodesic flow of g. Thus
ANO(SM), where SM is the unit sphere bundle of (M, g), coincides with the exit
directions of geodesics emitted from p. In [36] the authors show that if (M, g) is
a compact smooth non-trapping Riemannian manifold with smooth strictly convex
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boundary, then generically the scattering data of point sources {OM, Ron (M)}
determine (M, g) up to isometry. Here, Rop(z) € Rop (M), © € M stands for the
collection of tangential components to boundary of exit directions of geodesics from
x to OM.

A classical geometric inverse problem, that is closely related to the distance
functions, asks: Does the Dirichlet-to-Neumann mapping of a Riemannian wave
operator determine a Riemannian manifold up to isometry? For the full boundary
data this problem was solved originally in [7] using the Boundary control method.
Partial boundary data questions have been sudied for instance in [34, 41]. Recently
[32] extended these results for connection Laplacians. Lately also inverse problems
related to non-linear hyperbolic equations have been studied extensively [31, 37, 54].
For a review of inverse boundary value problems for partial differential equations
see [33, 52].

Another well studied geometric inverse problem formulated with the distance
functions is the Boundary rigidity problem. This problem asks: Does the boundary
distance function dp: OM x OM — R, that gives a distance between any two
boundary points, determine (M, F') up to isometry? For the best to our knowledge
this problem has not been studied in Finsler geometry. For a general Riemannian
manifold the problem is false: Suppose the manifold contains a domain with very
slow wave speed, such that all the geodesics starting and ending at the boundary
avoid this domain. Then in this domain one can perturb the metric in such a way
that the boundary distance function does not change. It was conjectured in [40]
that for all compact simple Riemannian manifolds the answer is affirmative. In two
dimensions it was solved in [46]. For higher dimensional case the problem is still
open, but different variations of it has been considered for instance in [16, 49, 50].
The Boundary distance data (1), studied in this paper, is much larger data than the
knowledge of the boundary distance function. Therefore we can obtain the optimal
determination of (M, F'), as explained in theorems 1.3 and 1.5, even though we pose
no geometric conditions on (M, F).

1.2.2. Finsler and Riemannian geometry. We refer to the monographs [5, 48] for the
development of Finsler manifolds without boundaries. We point out that two major
differences occur between the Riemannian and Finslerian realms that are related to
the proof of Theorem 1.3. In Riemannian geometry the relation between T'M and
T*M is simple; raising and lowering indices provides a fiberwise linear isomorphism.
In Finsler geometry this is not possible, since the Legendre transform (see (58)) is
not linear in the fibers. For this reason, we have to be more careful in the analysis
of distance functions and the connection of their differential to the velocity fields of
geodesics. Moreover the Finslerian gradient is not a linear operator.

The second issue arises from the lack of a natural linear connection compatible
with F' on vector bundle 7: TM — M, where 7(z,y) = « is the canonical projection
to the base point. In Section 4 we consider properties of Chern connection V, which
is a torsion free linear connection on the pullback bundle 7’': 7*TM — TM (see
[4, 14, 15]). We derive natural compatibility relations for V and the fundamental
tensor field g on 7T M g (see [48, Section 5.2] and Lemma 4.2) in a special case. In
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[47] Shen proved the general version of the compatibility relations. We use Lemma
4.2 to formulate the initial conditions for so-called transverse vector fields (see [13,
Section I11.6]) with respect to OM along boundary normal geodesics. After this we
give a definition of an index form related to these vector fields and use it to prove
results similar to classical theorems, originally by Jacobi, related to the minizing of
geodesics after focal points (for the Riemannian case, see for instance [13, Section
I11.6]).

Inverse problems arising from elastic equations have been also extensively stud-
ied. See e.g. [1, 3, 6, 23, 25, 43, 44].

2. FrRoM ELASTICITY TO FINSLER GEOMETRY

The main physical motivation of this paper is to obtain a geometric and coor-
dinate invariant point of view to the inverse problems related to the propagation
of seismic waves. The seismic waves are modelled by the anisotropic elastic wave
equation in R'3. This elastic system can be microlocally decoupled to 3 different
polarizations [51]. In this section, we introduce a connection between the fastest
polarization (known as the quasi pressure polarization and denoted by qP) and the
Finsler geometry. More over it turns out that the Finsler metric arising from elas-
ticity is fiberwise real analytic. We use the typical notation and terminology of the
seismological literature, see for instance [12]. We let ¢;jxe(x) be the smooth stiffness
tensor on R3 which satisfies the symmetry

(5) Cijke(2) = Cjine(x) = cpeij(x), x € R3.

We also assume that the density p(x) is a smooth function of z and define density—
normalized elastic moduli

Cijre(z)
Akl (I) = ——
N p(@)
The elastic wave operator P, related to a;jie, is given by
0? 0
Py = 5%@ — Qijke (x)@w + lower order terms.
For every (x,p) € R3 x R3 we define a square matrix I'(z, p), by
(6) Lie(2,p) = aijre(x)p™p’.

The matrix I'(x, p) is called the Christoffel matriz. Due to (5) the matrix I'(x, p)
is symmetric. One also assumes that I'(x, p) is positive definite for every (z,p) €

R3 x (R3\ {0}).
The principal symbol 6(¢, z,w, p) of the operator P is then given by

Since the matrix I'(z,p) is positive definite and symmetric, it has three positive
eigenvalues A" (z,p), m € {1,2,3}.
We assume that

(7) N(w,p) > A" (@,p), m € {23}, (z,p) €R® x (R®\ {0}).
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Then it follows from the Implicit Function Theorem that A\ (x,p) and a related unit
eigenvector ¢! (x,p) are smooth with respect to (z,p). See for instance [21, Chapter
11, Theorem 2] for more details. Moreover the function A\!(z,p) is homogeneous of
degree 2 with respect to p.

To keep the notation simple, we write from now on A := A\ (x,p) and q := ¢*(z, p).
We use I'¢ = A¢q and (6) to compute the Hessian of A(x,p) with respect to p. We
obtain

(8)  Hess,(Az.p)) = 2(Dale,p) + (D9)” (A, )] = T(z,p)) Dg).

where Dgq is the Jacobian of g(x, p) with respect to p and the superscript T stands
for transpose. Since I'(g(x,p)) is positive definite it follows from (7) and (8) that
the Hessian of A(z,p) is also positive definite. We note that a similar result has
been presented in [2] under the assumption the stiffness tensor is homogeneous and
transversely isotropic.

We define a continuous function f(z,p) := \/A(z,p), which is smooth outside
R3 x {0}. We conclude with summarizing the properties of the function f

o f:R3x (R?\ {0}) — (0,00) is smooth, real analytic on the fibers;

e for every (z,p) € R® x R® and s € R it holds that f(z,sp) = |s|f(z,p);

o for every (z,p) € R® x (R?\ {0}) the Hessian of §f? is symmetric and
positive definite with respect to p.

Therefore, f is a convex norm on the cotangent space. Finally, we define a Finsler
function F' to be the Legendre transform of f. Thus the bicharacteristic curves of
Hamiltonian 3 (\(z,p) — 1) are given by the co-geodesic flow of F. Moreover the ¢P
group velocities are given by the Finsler structure.

Another geometrical inverse problem on Finsler manifolds, using exterior geo-
desic sphere data, is presented in [18], extending an earlier result on Riemannian
manifolds [17].

3. PROOF OF THEOREM 1.3

In this section we provide a proof of Theorem 1.3. The proof is divided into four
parts. In the first part, we consider the topology and introduce a homeomorphism
U from (My, F1) onto (Ms, Fy). The second part is devoted to proving that home-
omorphism ¥ is smooth and has a smooth inverse. In the third part, we study
smoothness of a distance function dg (-, z), z € OM in those interior points « where
a distance minimizing curve from z to z is a geodesic contained in the interior.
Then, in the final part, we use the result obtained in the third part to prove that
the Finsler functions Fy, ¥*F, coincide in the set G(Mi, Fy) (recall Notation 1.2),
but not necessarily in its exterior.
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3.1. Topology. Here, we define a map ¥: (M, Fy) — (Ms, F») that will be shown
to satisfy the claim of Theorem 1.3. Whenever we do not need to distinguish
manifolds M7 and My we drop the subindices.

We start with showing that data (1) determine the function r,: 9M — M for
any x € OM. By the triangle inequality and the continuity of distance function
dr(-,z) on M we have

9)  r2(2) :=dp(x,2) = sup (dr(q,2) —dp(q, ) = sup (rg(z) —re(x))
geEMint qeMint

for all z € 9M. Thus data (1) determine r,, moreover (3) and (9) imply
(10) {'f‘ml T EMl}Z{TgCZO(bZJJgEMQ}CC(aMl).

Since OM is compact it holds that for any € M the corresponding bound-
ary distance function 7, belongs to C(OM) C L*(0M). By (1) and (9) we have
recovered the mapping

(11) R: M — COM), R(z)=r,.
In the next proposition, we study the properties of this map.

Proposition 3.1. Let (M, F) be a smooth compact Finsler manifold with smooth
boundary. The map R given by (11) is a topological embedding.

Proof. Since M is compact, dr is a complete non-symmetric (path) metric, and by
[11, Theorem 2.5.23] for any z1,x2 € M there exists a distance minimizing curve
~v:[0,dp(x1,22)] = M from 1 to x2. Moreover, whenever a,b € [0, dp(x1,22)] are
such that v((a,b)) C M then v: [a,b] — M is a geodesic.

Since the unit sphere bundle SM := F~1{1} is compact there exists a universal
constant L > 1, such that for all x, x5 € M we have

1
(12) Edp(xl,.fg) S dF(.IQ,.Il) S LdF(.Il,.IQ).

We let x1,22 € M and z € OM. By triangular inequality we have
|dp(x1,2) — dp(ze, 2)| < Ldp(x1,x2).

Thus ||rz;, — 72, |lec < Ldp(21,21), which proves that the map R is continuous.

We suppose then that r,, = ry, for some x;,29 € M. We let z be one of
the closest boundary points to ;. Then z is also a closest boundary point to zs.
Denote 7y, (z) = h. If h = 0 then 27 = z and thus x; = z3. We suppose then that
h > 0, which means that x; and x5 are interior points of M. We let v be a unit
speed distance minimizing curve from x; to z. Then v is a geodesic and 4(h) is
an outward pointing normal vector to M (see Lemma A.5 in the appendix for the
details). Since + is also a distance minimizer from x5 to z, we have proved

I :§ (h) = T2,

where Y (t) :=~(h—1).

The injectivity of R implies that it is a topological embedding, as any continuous
one-to-one map from a compact space to a Hausdorff space is an embedding. O
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Next we define maps
: C(OMy) — C(0Ms), ®(f)=fop "
and
(13) Ui My = My, U=R;'0odoRy
Here R; is defined as R in (11). The main theorem of the section is the following

Theorem 3.2. Let (M;, F;),i = 1,2 be as in Theorem 1.3. Then the map V: My —
My given by (13) is a homeomoprhism. Moreover Ulgy, = ¢.

Proof. By (10) and Proposition 3.1 it holds that ¥ is well defined. Clearly the map
® is a homeomorphism and therefore ¥ is a homeomorphism.
We let 21 € OM;. Then (P o Rq)(z1) is ry, for some zo € My. Since

ras (¢(21)) = [(® 0 R1)(21)(d(21)) = 72, (21) = 0.
This proves ¥(z1) = ¢(x1). O

3.2. Differentiable structure. Here, we show that the map ¥: M; — M is a
diffeomorphism. We split the study in two cases, near the boundary and far from
the boundary. We begin with the former one.

We extend (M, F) to a closed Finsler manifold (N, H) to facilitate the study of
boundary points.

We let VTn be the inward pointing unit normal vector field to M with respect to

+—
reversed Finsler function F. We define the normal exponential map exp®: OM x
R — N so that

< «—
expt(z,s) :== exp, (s vin (2)),
-
where e;(_pz is the exponential map of the reversed Finsler function H.

Lemma 3.3. There exists h > 0 such that M is contained in the image of the
normal map. Moreover there exists r > 0 such that exp™: OM x [0,7) — M is a
diffeomorphism onto its image.

Proof. Define
h = max{dp(z,0M):z € M} +c,
for any ¢ > 0. Since N is compact the map exp': OM x [0,h) — N is well defined.

Moreover it holds that any interior point can be connected to any of its closest

boundary points via distance minimizing geodesic that is normal to the boundary.
Therefore we conclude that M C expt(0M x [0, h)).
Notice that

expt(2,8) = (6, (5,0 (2)),

— —
where ¢; is the geodesic flow of H. Since Vin i$ a smooth unit length vector field,
this proves that exp’ is smooth.
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We let z € M. Give any local coordinates (z/, f) near z such that floy =
0 is a boundary defining function. Then with respect to coordinates (z’,t) for
(OM x (—h,h)) we have

D.i(2' oexpt) Z(z' oexpt) idy—1 a
Dexpt(z,0) = = o . ,
Do (foexph) Z(foexp) 0 df(vin)

where @,0 € R"~! and df( Vin ) # 0, since Vin is 1Ot tangential to OM and f is a
boundary defining function. Thus the Jacobian exp(z,0) is invertible and by the
Inverse Function Theorem exp™ is a local diffeomorphism.

Next we show that there exists r € (0,h) such that expt: OM x [0,7) — M
is a diffeomorphism onto its image. If this does not hold, there exists a sequence
(z;)52; € M such that

expj‘(zjl», sj) = x; = exp™ (27, 57)

for some sj— — 0,7 € {1,2} as j — oo and for some boundary points zjl and zJ2 such
that (z1,s1) # (#2,52). Then dp(x;,0M) — 0 as j — oo and by the compactness
of N we may assume that ; — = € OM. Let € > 0 and choose j € N so that
dp(xj,x),s5 < e Then for i € {1,2} it holds that

dp(a:,zj-) <dp(z,z;)+ dF(xj,z;-) < 2Le

where L is the constant of (12). Therefore, 2§ — x as j — oo for i € {1,2}. This

is a contradiction to the local diffeomorphism property of exp'. Thus there exists
r > 0 that satisfies the claim of this lemma. O

We immediately obtain

Corollary 3.4. Let (M, F) be compact Finsler manifold with smooth boundary that
is isometrically embedded into a closed Finsler manifold (N, H). Let us denote

U(OM,€):={x e M :dp(x,0M) < €}.
There ezists € > 0 and a diffeomorphism U(OM,€) > x — (z(x),s(x)) € (OM x
[0,€)), such that
i (@ 2(2)) = dp (, OM) = 5(a).

Proof. The claim follows from Lemma, 3.3, if we denote (z(z), s(x)) := (exp)~!(z).
|

We then consider points far from the boundary. Our goal is to show that for
every zg € M there exists points (z;)?_; C M and a neighborhood U of zg such
that the map

Uszxw (dp(z,2:))iy

is a coordinate map. To do this we need to set up some notation.
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Definition 3.5. Let z € OM. We say that
Ton (2) := sup{t > 0 : dp(expT(z,t), 2) = dp(exp(2,t),0M) = t},
is the boundary cut distance to z. Then we define the collection of boundary cut
points o(OM) as follows
a(OM) = {expt(z,Ton(2)) : 2 € OM}.

The set o(OM) is not empty and the next lemma explains why we cannot use
the coordinate structure given by Lemma 3.4 far from OM.

Lemma 3.6. Let z € OM and tg = Tom(2). Then at least one of the following
holds
(1) The map exp™ is singular at (z,t).
(2) There exists ¢ € OM, q # z such that exp(z,to) = exp(q, to).
Moreover for any t € [0,to) the map exp™ is non-singular at (z,t).
Proof. The proof of the first claim is a modification of the proof of [53, Chapter 13,

Propostion 2.2]. The proof of the last claim is long. It is considered in detail in
Section 4. g

Lemma 3.7. The function Ton: OM — R is continuous.

Proof. The proof is a modification of the proofs of [28, Lemma 2.1.15] and [53,
Chapter 13, Proposition 2.9]. O

Recall that the cut distance function of the extended manifold (N, H) is defined
as

(14)  7(z,v) =sup{t > 0:du(z,v(t)) =t}, (xr,v) €TN, F(z,v)=1.
We call a point vy »(7(z,v)) an ordinary cut point to x. In the next Lemma we

show that a boundary cut point always occurs before an ordinary cut point.

Lemma 3.8. For any z € OM it holds that
— —
T (2, Vin (2)) > oM (2),
«
where T is the cut distance function of the reversed Finsler metric H.

Proof. The proof is a modification of the proof of [27, Lemma 2.13]. O

Corollary 3.9. Let 1 € M and z,, € OM be a closest boundary point to x.
There exist neighborhoods U C M of x1 and V' of z,, such that for every (z,z) €
(U x (OM NV)) there exists the unique distance minimizing unit speed geodesic 7y,
from x to z and moreover v, .[0,dp(z,y))) C M,

Proof. The claim follows from the Implicit Function Theorem, Lemmas A.2 and

3.8, and the fact that gm is transversal to the boundary.
O
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We let z € OM and define an evaluation function E,: R(M) — R by E,(r) =
r(z). We note that the functions F, correspond to the distance function
dp(-,z): M — R via the equation

(15) dp(z,2) = (E, o R)(z).

Since z € M was an arbitrary point we note that the function dp: M x OM — R
is determined by the data (1) in the sense of (15).

We define the ezit time function
(16) Tewit: SM™ —[0,00],  Tewit(2,v) := inf{t > 0: v, (t) € IM}.

Lemma 3.10. If (z,v) € SM™ is such that Tezit(z,v) < 00 and Yz o (Tezit(z,v))
is transversal to OM then there exists a neighborhood U C SM of (z,v) such that
Texit|u 18 well defined and C°-smooth.

Proof. Since 4., (to) is not tangential to M the claim follows from the Implicit
Function Theorem in boundary coordinates. ]

Take an interior point z € M near which we want to construct a system of
coordinates. We let v € S; M be such that the geodesic v,,, emanating from z to
the direction v is the shortest curve between x and a terminal boundary point z,.
By Lemma 3.8 these two points are not conjugate along 7 .

We let U C SM be so small neighborhood of (z,v) that the exit time function
Tezit: U — R is defined and smooth. We have thus assumed that x and z, =
YVa,o(Tewit (€, v)) are connected minimally and without conjugate points by 7y .-

We let £, : T,M — T*M be the Legendre transform, (to recall the definition see
(58) in the appendix). It and its inverse are smooth outside the origin. Thus the
distance function dp (-, z5) is smooth near = and its differential at x is €, (v) € T} M
(see Lemma A .4).

Pick any u € T M \ {0} with (u,v) =0. For s € R, denote

) + sy
Rl (v) +su)

Here F* is the dual of F', (see (60)). The map s +— vs € Sy M is smooth.

Consider the geodesics 7, starting at x in the direction vs. Since vy o (Tegit (2, v))
is transversal to OM, then s — 7, (Tezit (2, vs)) is smooth near s = 0. Also since z
is not an ordinary cut point to 7y, (Tezit(z,vs)) at s = 0, it is not either an ordinary
cut point to vy, (Tegit (%, vs)) when |s| is small. Therefore, for s sufficiently close to
zero the distance function to 7,, (Texit (€, vs)) is smooth near x.

The differential of the distance function at x amounts to

_ ly(v) +su
L) = T )

Therefore, for any u with the required property there is a small non-zero s so that

there is a distance function to a boundary point which is smooth near = and the

differential at x is %'
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We take n — 1 covectors uq,...,u,—1 € Ty M so that the set
{le(v),ur,...;up_1y CToM
is linearly independent and each w; € Ty M is orthogonal to v € T, M. For each
i=1,...,n—1 we take s; # 0 so that
L. (V) + s;u;
F*(ly(v) + siu;)
is the differential of a distance function to a boundary point as described above.

This gives rise to distance functions to n boundary points close to one another.
These functions are smooth near x and the differentials are

0 () L (v) + s1uq . L (V) 4+ Sp_1Un—1 '

"TFE(lp(v) + s1u1)’ T FF (L (V) + Sp—1tn—1)
This set is linearly independent, so the distance functions give a smooth system of
coordinates in a neighborhood of z. Thus we obtain

Lemma 3.11. Let x9 € M. There is a neighborhood U of xo and points
21y, 2n € OM, where z1 is a closest boundary point to xg, so that the mapping
U>sazw— (dp(x,2;)), is a smooth coordinate map.

Moreover there exists an open neighborhood V. C OM of z1 such that the distance
function dp: U x V — R is smooth and the set

Vim {2 € VI det(fay... 2, (2)
is open and dense in V"1 :=V x --- x V. Where

(17) Jeor, Zn(x) = DJ?Z2 ----- Zn('r)7

;éo}.

T=I0

2, stands for the pushforward of the map
Fervon(@) = (dp(z,2))1ey) €R™, z €U

Proof. It remains to show that the set V is open and dense in V"1, Clearly the
function

.....

G: V"™ SR, G(za,...,2n) = det(fe,.. -, (z0))
is continuous. Thus V = V=1 \ G71{0} is open. Since the Legendre transform is
an metric isometry between fibers, we have for every z € V

d(dr (- 2))|e € S M :={p € T;,M : F*(p) = 1}

(For the details see Lemma A.4 in the appendix.). We let (e;)7_; be a basis of T,; M
and define a map T': (T M)"~' — R by

T((u))ig = det(M(Lyy (v), ugy ... up)),

where £,,(v) is as in the discussion before this lemma and M (£, (v), u1, ..., Un—1)
is a real n x n matrix with columns ¢, (v), u1, ..., u,—_1, with respect to basis (e;)?_;
of Ty M. Notice that (T; M)™~! is a real analytic manifold and T is a multivariable
polynomial, and thus a real analytic function. Moreover by the discussion before
this lemma we know that T is not identically zero. Therefore, it follows from [24,
Lemma 4.3] that T-'{0} C (T M)"~! is nowhere dense. Since determinant is
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multilinear and the map V' > z + d(dF (-, 2))|z, € Sy, M is a smooth embedding, it
follows that ¥V C V"~ is dense. |

Now we are ready to prove the main theorem
Theorem 3.12. The mapping ¥ given in (13) is a diffeomorphism.

Proof. We let xy € M;. We suppose first that z¢ is an interior point. By the data
(10) it holds that z € OM; is a mimimizer of dp, (zo, -)|aas, if and only if ¢(z) € IM,
is a minimizer of dp, (¥ (o), -)|ons, - We let z; be a minimizer of dp, (xo, -)|aar, - Since
the map ¢: M7 — OM, is a diffeomorphism it follows from the Lemma 3.11 that
there exist points zs,..., 2z, € dM; and a neighborhood U C M; of zy such that
the maps U 3> 21 — (dp, (21, 2;))", and

U(U) 3 x5 = (dp, (w2, 9(2:))) iy = (dry (8 (22), 2i))iey

are smooth coordinate maps. Thus with respect to these coordinates it holds that
the local representation of ¥ near zq is an indentity map of R™. This proves that
¥ is a local diffeomorphism near any interior point of Mj.

We consider next the boundary case. We denote
U = {z1 € M, : there exists precisely one minimizer for dp, (z1,)|aar, }'".

By (10) and since ¥ is a homeomorphism, it holds that

(18) _
U(U) = {29 € My : there exists precisely one minimizer for dg, (v2,)|anr, }'".

By Lemma 3.3 it follows that there exists € > 0 and open neighborhood V- C U C M;
of OM; such that the maps

eXpI%1 :OM; x [0,¢) =V, and
expf2 : OMs x [0,€) = U (V)

are diffeomorphisms. Moreover due to Lemma 3.4 for every z € V it holds that
x = expg, (2(x), s(x)), where z(x) is the minimizer of dp, (z,-)lon, and s(z) =
dp, (x,z(x)). Therefore, by (18) it holds that

(expz,)  (¥(p) = (¢(2(p)), s(p)).

Thus we have proved that with respect to coordinates (V, (expg, )~*) and
(¥(V), (expg,) ") the local representation of ¥ is

(OM7 x [0,€)) 3 (2,8) = (é(2), s) € (OM2 x [0,€)).

Since ¢: OM; — OMs is a diffeomorphism we have proved that ¥ is a local diffeo-
morphism near dMj.

By Theorem 3.2 the map V is one-to-one and we have proved that ¥ is a diffeo-
morphism. O
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3.3. Smoothness of the boundary distance function. Here we consider the
smoothness of a boundary distance function and show that the closure of
(19)

G(M,F) :={(z,y) € G(M,F): x € M™ dp(-, 2(x,y)) is C>® at £} Uyt TM,
where Oy TM C I(TM) is the collection of outward pointing vectors (excluding
tangential ones), coincides with the set G(M, F) (see Definition 1.2). This will be
used in the next subsection to reconstruct F' in G(M, F).

We note that if (x,y) € G(M, F), with F(y) =1 then

Texit (:I;a y) = t(.’II, y)u

where t(z,y) is as in Definition 1.2. We assume below in this section that all vectors
are of unit length.

For those (z,2) € M™ x OM for which dp(-,2) is smooth at x we can use the
differential of the distance function to determine the image of the distance mini-
mizing geodesic from z to z. In this sense our problem is related to the Finslerian
version of Hilbert’s 4** problem which is: To recover Finsler metric from the im-
ages of the geodesics. In this setting the problem has been studied for instance in
[8, 9, 10, 39, 45].

The main result in this section is

Proposition 3.13. For any smooth connected and compact Finsler manifold (M, F')
with smooth boundary it holds that

= JE—

G(M,F)=G(M,F).

We need a couple of auxiliary results to prove this proposition. We state these
auxiliary results below and prove them after the proof of Proposition 3.13.

Lemma 3.14. Let x1,29 € M and let c: [0,1] = M be a rectifiable curve from 1 to
xy. Let to € (0,1) be such that c(to) € OM. If there exits 6 > 0 such that c|j,—s 1]
is a geodesic and lim; ~, ¢(t) is transversal to OM then there exists a rectifiable
curve a: [0,1] = M from x1 to xg such that

L(a) < L(c).

Lemma 3.15. Suppose that (x,v) € G(M, F). If the exit direction is transversal to
the boundary then for any s € (0, Tegit(x,v)) the point (2',v") = (Ypu(8), Yo u(s)) €

~

G(M, F).
Lemma 3.16. Suppose that (z,v) € G(M, F), and the exit direction 1 is tangential
to the boundary at z. Assume that there exists h > 0 such that for any h' € (0,h)
the geodesic ;z{h/ 2 [0, Tewit(z,0)] = M is well defined, where
fh’ = = " — S TZM.
F (27_77+ n I/in)
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Then there ezist sequences (h;)32;, (€;)52; C R such that hj,e; >0, hj,e; — 0 as
— —
J — o0 and moreover the geodesic Yz, is a distance minimizing curve of (M, F)

—
from z to Y 2., (Tewit(z,v) — €;) for any j € N that is large enough.

~

Proof of Proposition 3.13. Since the sets G(M, F') and G(M, F') are conical it suf-
fices to prove that

= —

GM,F)NSM =G(M,F)n SM.

We first prove G(M, F) C G(M, F), which implies G(M, F) C G(M, F). We let
(x,v) € G(M, F). If z € M then clearly (x,v) € G(M, F). If (z,v) € OpusTM
then due to transversality of v and T,0M there exists ¢ > 0 such that for every
t € (0,¢) we have

(Voo (=) Yz0(—t)) € G(M, F).
Thus (z,v) € G(M, F).

Next we show that G(M,F) c G(M,F). We let (z,v) € G(M,F). Lemma
3.15 implies that for any s € (0, Tegit(z,v)) we have (V4 0(8), Y20(s)) € G(M, F) if
V.0 (Tewit (x,v)) is transversal to M. This implies, (z,v) € G(M, F).

Therefore, we assume that (Vs o (Tewit (,0)), Va0 (Tezit (2, v))) := (2,7) is tangen-
tial to OM. We let (N, H) be a smooth complete Finsler manifold without boundary
that extends (M, E) and II C T, N be the two dimensional vector subspace spanned
by {1, Vin}. If @ € (0, Tegit (2, v)) is small enough, then

S(a) := {exp, (w) € N : w €I, J?(Z,w) < a}

is a C'-smooth hyper surface of N with a coordinate system given by n and Vin.
We note that possible after choosing smaller a the set S(a) N 9M is given by a

C'-smooth graph (s, c(s)) € S(a) such that for s < 0 we have ¢(s) < 0. This follows

since QM is a smooth co-dimension 1 manifold and with respect to the coordinates

(1, Vin) of S(a) we have (—t,0) = Vo v (Tewit (T, 0) — t) and Yy o (Tezit (x,v) — t) does

not hit M, if ¢ € (0,a). Thus for any h > 0 and t € (0,a) the geodesic f?z)gh7
0+ h Ui,

—

F(z,—n+h 1/:1)

&n =

of the Finsler function H, satisfies ;z,ih (t) € Mt

Since the interval [0, Teqit(z,v) — 5] is compact and vz ([0, Tezit(z,v) — §]) C
M. There exists 7 > 0 such that for all ¢ € [0, Tegit(x,v) — &] we have
dr(Yz,0(t),0M) < r. Therefore, the continuity of the exponential map implies that
for any h > 0 small enough and t € (0, Tegit (2, v)] we have ;z,ih (t) € Mt

We note that Lemma 3.16 implies that for any h, e > 0 that are small enough we

have
(2,0 = ( ﬁ?z@h (t(z,v) —€), _;%Eb, (t(z,v) — e)) € G(M,F).
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Then Lemma 3.15 implies (2/,v') € G(M, F). Taking h and € to zero we finally
obtain (z,v) € G(M, F). O

Proof of Lemma 8.14. Since limy ~;, ¢(t) is transversal to M, there exists € € (0, 6)
such that c|¢,—c 1) is a geodesic in Mt We let (M, F) be any compact Finsler
manifold that extends (M, F') and for which c(to) is an interior point. Since ¢|, _
is also a geodesic of the extended manifold (1\7 F ), it follows from [48, Proposition
11.3.1] that there exists t1 € (o — €,t0) such that for z := c(t1), z := (c(to)) we
have

(to — t1) = dp(w, 2) = dp(, 2) = Teait(w, E(t1)),
and the exponential map of (]T/[/ , F ) is a C*-diffeomorphism from

{y e TuM : F(y) < 2(to — 1)}

onto a metric ball Bz (z,2(to —t1)) of (]Tj, F).

Since limy ~, ¢(t) is transversal to OM it follows from the Implicit Function
Theorem that there exists a neighborhood U C S;M of v := é(¢1) where the
function gt is smooth and 7Tegit(z, w) < 2(tg — t1), whenever w € U. We let

C = {rw eT,M:we U7 re [OaTem't(xuw)]}'

Then exp,,(C) contains an open neighborhood of z in M. Since path ¢ is continuous
there exists to > to such that exp, (c(t2)) € C, and moreover

F(x,expgl(c(tg))) = dﬁ(xv C(tQ)) = dF(xv C(tQ))v

since for any w € U the radial geodesic vy, of (]Tj F ) has the minimal length
among all curves connecting x t0 v . (£),t € (0,2(to — £1)).

If we denote by ¢ the geodesic of (M , ﬁ) that satisfies the initial condition
(¢(0),¢(0)) = (x,é(t1)), then it leaves M at z. Therefore, there exits a geodesic
v of (M, F) connecting x = ¢(t1) to ¢(t2) which satisfies

‘C(C|[t1,t2]) > ‘C(V)
This implies the claim. 0

Proof of Lemma 3.15. We note first that it follows from the Implicit Function The-
orem that there exists a neighborhood U C SM of (x,v) such that function 7egq¢ is
smooth in U. Therefore, the mapping
U> (gv U)) — (Z(i, U)), 77(57 w)) = (Vi,w (Texit (ffv ’LU)), 75,’11) (Texit (gv ’LU)))

is smooth and without loss of generality we may assume 7(Z,w) is transverse to
OM for any (z,w) € U.

We let (N, H) be any compact Finsler manifold without boundary extending
(M, F). We set (z/,v") :== (Y2,0(8),Jz0(s)) and it follows that the points z’ and
z := z(z,v) are not conjugate along 7y, ,. Therefore, the exponential map exp,,

of Finsler function H is a diffeomorphism in a neighborhood V' C T,/ N of hv', for
h := (Tewit(z,v) — s) onto some neighborhood of z in N. Moreover

h=dp(x,z)>dy(2, 2).
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To finish the proof, we show that we can find a smooth Finsler manifold (]Tj , F ) so

that M ¢ M C N, F = Hly, 2 € Mt and there exists a neighborhood A ¢ Mt

of 2’ so that
-

dp(Z,2) =F (z,exp; (%)), T € A
<

Above the exponential map is given with respect to F. This implies (2/,v') €

G(M, F) and since s € (0, Teait(x,v)) was arbitrary we have (z,v) € G(M, F).

We let Wy be the image of V' under the orthogonal projection y +— % on
SeN. We let 9 € (0,dp(2',0M)) be so small that for any w € S,/ M geodesic
Ya' wl[o,ro) 15 @ distance minimizer of H and contained in M nt - Tn addition we
define

I := {exp, (row) € M™ 1w € (SpN) \ Wo}.
Since this set is compact it follows from the triangle inequality that there exists
€o > 0 which satisfies

(20) ro +dr(T,2) > dr(2', 2) + €0,
as otherwise there would exist a F—distance minimizing curve from z to x which is
not C! at a’.
For p € N and r > 0 we define
“—
By (p,7) :={q € N :du(q,p) <r}.

Since the points 2’ and z are not conjugate along +, , we can choose a neighborhood
set Wi C Wy of v/, and 2¢; < €, § > 0 such that

B (2,261) C (exp, ((0,h +8) x Wi))N Br (2, €0))

and the geodesic 7, is the shortest curve from z’ to z contained in exp,, ([0, h +
5) X Wl))

We write M, := M U EH (2,ker), for k € {1,2}. Finally, we let (M, F) be any
smooth compact Finsler manifold with boundary such that

MycMcM, and F=H|g
If 8 is a distance minimizing curve of (1\7, F) from 2’ to z it is a geodesic of (M, F')
for t < rg. Therefore, we have that 5 = v, ,, if 5(0) € Wy. If 8(0) € (Wy\ W1), then

£ hits oM transversally outside E u (2,2¢1), which cannot happen due to Lemma
3.14. If B(0) € (S N) \ Wy then by (20) we have

ro+dp (T, 2) — €0 > dp(a', 2) > dp(2',2) > ro + 51+ 26y,
where s1 > 0 is the time it takes to travel from T to (EH (2,2€¢1) N M) along the
curve 3. We note that S(rg + s1) is contained in M which implies
S1+ €9 > dF(F,Z)

Thus we arrive at a contradiction 0 > 2¢;, and we have proven that 7, , is the
unique distance minimizing curve of (M, F') connecting z’ to z.
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Since 2’ and z are not conjugate points along 7, ., the exponential map of the
“—

reversed Finsler function F is a diffeomorphism from a neighborhood of —hn €
T.M, n :=n(xz,v) to a neighborhood of #’. Thus the local distance function

< —

4 ola,2) =F (= (&5.) (@)

is smooth near ' and due to earlier part of this proof it coincides with dz (-, z) at
/
x'.

We suppose that there exists a sequence (z;)32; C M that converges to 2’ and

for which it holds that

(21> dﬁ(xjvz) < p(xjvz)'
< —~ -

We let 8 be a distance minimizing curve of F' from z to x;. Since (M, F) is a
compact (non-symmetric) metric space it follows form [42] there exists a rectifiable
curve o connecting z to z’, that is a uniform limit of §; and whose length is not
greater than dz(2', z). This implies B (t) = vz,w(h —t), since 7, ,, is the unique F
distance minimizer from z’ to z.

Since z € M™*, there exists R > 0 such that for every ji € N the curve 3;(¢) is

—

a geodesic of (M, F) if t € [0, R]. Therefore,
(22) Bj(0) = —n € S.M

and the continuity of the exit time function 7..;; implies that there exists J € N
—
such that for every j > J the curve §; is a geodesic of (M, F). Thus (21) and (22)
—

contradict with the assumption that exp, is a diffeomorphism near —hn. Therefore,
(21) cannot hold and we have that dz(-,2) and the local distance function p(-, 2)
coincide near z’. Hence there exists a neighborhood A C M®™* of 2’ in which we
have

dF('vz) = dﬁ('vz) = p(-,Z),

due to continuity of the exit time function. O

Proof of Lemma 8.16. We let (z,n) be the exit point and direction of ~,.,. We
let (]Tj , F ) be any compact Finsler manifold for which z € M and choose s €
(0, Tegit(z,v)) and denote ¢ = £(s) := Tegit(x,v) —s. Then for 2’ := (y.(s)) the
point z is not a conjugate point along 7, ,. Since the conjugate distance function
is lower continuous [48, Section 12.1] there exist neighborhoods V' C T, M of —¢n
and U C M of Va0 ([S; Tewit (€, v)]) such that for any y € V the shortest curve that
is contained in U and connects z to the point z(y) :zegpz (y) € U, is the geodesic
t — exp, (ty), t € [0,1].

We let ()52, (€;)52; C R be such that hj,e; > 0, hj,€; — 0as j — oo. Denote

—n+h; Vin

-
xj =Yz, (=€), where &, := =————"—. Then z; — 2’ as j — co. We
’ F(z,=n+h; Vin)
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“
let ¢; : [0,¢] — M be a distance minimizing curve of (M, F) from z to x;. Then we
have

L(c;) — L as j —> o0.
Due to [42] we can without loss of generality assume that curves c¢; converge uni-
formly to a rectifiable curve cs, from z to ', that satisfies

L(coo) < L.

Then [48, Proposition 11.3.1] implies ¢ zszﬁn lj0,¢], since otherwise there would
exist a distance minimizing curve of (M, F) from z to z that is not C'-smooth at

z’. Since ¢; ﬁﬁz,*nl[o,a uniformly in [0, £] there exists J € N such that for all j > J

we have (e;?pz)_l(:tj) € V and the image of ¢; is contained in U. Thus after unit
speed reparametrization of ¢; we have, ¢;(t) :ﬁz,ﬁh]‘ (t) for any t € [0,£ — ¢;].

We recall that above we had ¢ = 7ezit(2,v) — s. The claim of this lemma follows
using a diagonal argument for sequence (¢)52,, (h?)%2, C (0,1) which are chosen

K2

as above for s; € (0, Tegit(,v)), j € N, such that s; — 0 when j — 0. O

3.4. Finsler structure. In this section, we prove that the data (1) determine the
set G(M, F), (see (19)) and the Finsler function F on it. Again we deal separately
with interior and boundary cases.

Lemma 3.17. Let x € M™. The set TIMQCA?(M, F) contains an open non-empty
set. Moreover the data (1) determine the set T, M NG(M,F) and F on it.

Proof. We let z, € OM be a closest boundary point to . By Lemma 3.8 the
function dp(-, z,;) is smooth at x. Moreover

o

vi= =7 (dp(z, 22)) € SaM N G(M’ F).

-
Zx,Vin (Zr)

Thus the set S, M NG (M, F) is not empty. By Lemma 3.8 there exists a neighbor-
hood U C S, M of v that is contained in G(M, F).
Next, we prove the latter claim. We let z € 9M be such that the function dg (-, z)

—
is smooth at . We let v €S, M. Then

(23)  d(dy(z)| =90 (v,°) —l, (v) if and only if s, —o(dr(z, 2)) = z,

x

-
where gy (-,-) is the hessian of 1F?(z,y) with respect to y variables and ¢, is the
—

Legendre transform of Finsler function F at x. The property (23) implies that the

set

(24) Az) == {d(df(z, N| 1z €0M, d;(z, ) is C° at x}

x

satisfies
A(a) = b, (S,M N(~G(M, F))).
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N\ *
Since the Legendre transform is an isometry the dual map ( F) is constant 1

o\ *
on A(z). As the function ( F) is positively homogeneous of order 1 we have

determined (F) on Ry A(z) :={rp e Ty M : p € A(z), r > 0}. Recall that the

components of the Legendre satisfy

(25) (@00), =5 (555 (7)) @n)n

for all p € T;* M. Since (F) is recovered on Ry A(x) the equation (25) determines

(£,)~" on Ry A(z). Therefore,
T,M 0 (~G(M, F)) = (£,) 7 (R4 A(x)) and
F= ((F)) on T,M N (=G (M, F)).
Finally,

-
F(z,y) = F (z,—y).

This concludes the proof. O

Lemma 3.18. Let x € M{". Then

~ ~

G(Ml,Fl) NT,M, = G(Ml, \I/*FQ) NT,M;

and

~

Fi(y) = F2(Yyy), y € (G(My, Fr) NTM).
Proof. The mapping V is a diffeomorphism that satisfies

(26) dF2(‘IJ(')a¢('))|M1><3M1 :dFl('a')|M1><3M1'

Thus for any z € OM; the function dp, (¥(-), #(z)) is smooth at ¥(x) if and only if
dp, (-, 2) is smooth at z. Therefore, the claims follow by applying the differential of
M to the both sides of (26) and using (23)—(25). O

Next, we consider the boundary case.
Lemma 3.19. Let x € OM. Then data (1) determine F on
OoutTMNT, M ={y €T, M : gy, (Vin,y) < 0}.
Proof. We let y € T, M \ {0} be an outward pointing vector that is not tangential
to the boundary. We let b > a > 0 and choose any smooth curve c: [a,b] — M such

that _
c((a,b)) € M™ ¢(b) =z, ¢(b) = y.

Recal that with respect to the geodesic coordinates at x we have dp(z,c(t)) =
F(exp,(c(t))). Since F is continuous we have

(27) tim 5 g = ).
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Since y € T, M \ {0} was an arbitrary outward pointing vector the data (1) and
(27) determine F' on the set OpTM NT, M. O

Lemma 3.20. For any (x,y) € OputT My it holds that
Fi((z,y)) = F2(Va(z,y)).
Proof. The claim follows from (26) and (27). O

Now we are ready to give a proof of Theorem 1.3.

Proof of Theorem 1.3. By theorems 3.2 and 3.12 the map ¥: M; — M, is a diffeo-
morphism, and the pullback ¥* F; of F, gives a Finsler function on M;. By Lemmas
3.18 and 3.20 we have proved that G(My, Fy) and G(M;, U* F3) coincide and in this
set F1 = \I’*FQ

We still have to show that the data (1) are not sufficient to guarantee that Fy

and Fy coincide in TM{™ \ G(M;,F). We denote a manifold M; by M and a

Finsler function Fy by F. If TM™*\ G(M, F) is not empty, we choose (xo,vg) €

TM™\ G(M,F), F(vo) =1 and a neighborhood V.C TM™\ G(M, F) of (zg,vo)
such that

(28) distp(r(V),0M) > 0.

We denote the orthogonal projection of V' to the unit sphere bundle of (M, F') by
W. We let o € C§° (W) be non-negative and define a function

(29) H:RxTM - R, H(s,y)= (1—!—504(%))F(y).

We show that there exists ¢ > 0 such that for any s € (—¢,¢€) the function
H(s,-): TM — R is a Finsler function.

Since « is compactly supported it holds, for |s| small enough, that H(s,-) is
non-negative, continuous and H(s,y) = 0 if and only if y = 0. Moreover H(s,-) is
smooth outside the zero section of M. Clearly also the scaling property H (s, ty) =
tH(s,y), t >0 is valid.

We let (z,y) be a smooth coordinate system of T M near (xg,v9). To prove that
H(s,-) is a Finsler function, we have to show that for every (z,y) € TM \ {0} the
Hessian

%B(Zi 6%]‘]#(57 () = %azi % (1 Sa(%))%ﬂw)z}

is symmetric and positive definite. Since H?(s, (z,-)): TM — R is smooth outside
0 it follows that the Hessian is symmetric, and a € C§°(W) implies

10 0 ,,

38y ogr 1 (5 (@) = gij(2,y) + Ofs)

where g;; is the Hessian of 3 F2. Therefore, for |s| small enough H(s,-): TM — R
is a Finsler function.




24 M. V. DE HOOP, J. ILMAVIRTA, M. LASSAS, AND T. SAKSALA

We let € > 0 be so small that H(s,-) is a Finsler function for s € (0,€). We prove
that for any z € M and z € OM
(30) dp(s,)(z,2) = dp(z, 2).
This implies that the boundary distance data of F' and H (s, ) coincide.

If c: [0,1] — M is any piecewise C'-smooth curve, (29) implies
(31) £r(0) < Lo ©).
Welet x € M and z € M. Since M is compact there exists a F-distance minimizing
curve c: [0,dp(z, 2)] - M from x to z. We let I,J C [0,dr(z, z)] be a partition
[0,dF(x, 2)] such that

c(t) € M™ if and only if t€ 1.

Then I is open in [0,dp(x,2)] and J is closed. On set I the curve ¢ is a union of
distance minimizing geodesic segments of F' which have end points in M. Thus
for any ¢ € I we have ¢(t) € G(M, F). This and (28) imply

dr(z,2) = Lr(c) = Lu(s,)(c),
and the equation (30) follows from (31). O

4. THE PROOF OF LEMMA 3.6

In this section, we denote by (N, F') a compact, connected smooth Finsler man-
ifold without boundary. We present the second variation formula in the case when
the variation curves start from a smooth submanifold S of N. We introduce the
concept of a focal distance and connect it to the degeneracy of the normal expo-
nential map exp® of surface S. We use the results of this section to complete the
proof of Lemma 3.6

We define a pullback vector bundle 7*TN over TN \ {0} such that for every
(xz,y) € TN\ {0} the corresponding fiber is T, N. Notice that 7*T'N is then defined
by the following equation

TN = {((z,y), (z,y")) € (TN \ {0}) x T,N : x € N}.

We let (x,y) be a local coordinates for TN. We define a local frame (0;)!, for
TN by

0

(32) Oiliaay = (@) 5= )-
and a local co-vector field on TN by

. . o . 9

1. 7 1 3.7 1 2

oy' :=dy' + Njdz’, Nj(z,y):= 8ij (z,y).

Above the functions G are the geodesic coefficients of F' in coordinates (z,y) (see
(55) in A). Notice that Biyi is a dual vector to 6y* and a dual vector chi to da' is
given by

6o 0 ;0

(33) 5z ox Loyl
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Therefore, vectors dz’ and dy? are linearly independet for all 7,5 € {1,...,n} and
it holds that
(34) T*(TN \ {0}) = span {dz"'} @ span {§y'} = H*(TN) @ V*(TN).
We relate 7* TN locally to H*(T'N) and to V*(T'N) by mappings
(35) 0; — dx’ and 0; — 6y, i € {1,...,n}.

We denote the collection of smooth sections of 7*T'N by S(n*T'N). The Chern
connection is defined on 7*T'N by

(36) V:T(TN)x S(x*TN) — S(r*TN), VxU = {dUi(X) + U (X)}ai

where T(T'N) is the collection of all smooth vector fields on TN \ {0} and the
connection one forms w} on TN \ {0} are given by

(37) wi(z,y) = Ty (2, y)da",
and functions T, (x,y) are defined by [48, equation (5.25)]. They satisfy
(38) y'Ti(e,y) = Nj(w,y)  and  Tj =T,

See [48, equations (5.24) and (5.25)].
Notice that any vector field X on T'N, that is locally given by

) -0
X=X'—+X'—
16:614_ Yoyt

defines a section X € S(7*TN) by
X(z,y) = X, (2,9)0;.
Lemma 4.1. Let XY, Z be vector fields on TN. Then

X!, X! € C®(TN)

—~—

(39) VxY —VyX =[X,Y].
Proof. Equation (39) follows from the definition of the Chern connection and (38).
O
The fundamental tensor g on 7*T'N is defined by
g(Uu V) = gij(xu y)Ul(xu y)Vz(xa y)u Uu Ve S(F*TN)v ((E, y) € TN7

where glj(x7y> = gy(%a %)

Recall that if X = Xi % + X; L= is in T(TN), then DrX = X} 52 € TN.

Lemma 4.2. Let XY, Z be vector fields on TN. Then
(40) Yo(X.2)| = [o(VvX.2)+9(X.Vy2)

DrnX

Proof. The proof is a direct evaluation in coordinates, using that g;; is homogeneous
of order zero with respect to directional variables. It is important to evaluate
Yg(X,Z) at DrX as for an arbitrary direction, (40) does not hold, since the Cartan
tensor does not vanish identically.

O
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If V(z) = Vi(z) 52 is a vector field on N then Viz,y) = Vi(z) 52+ is a horizontal

vector field on TN. We call V a horizontal lift of V. We define a covariant derivative
D; of smooth vector field V' on geodesic v as

0
ox?

(41) DV (t) = {Vi(t) + VI (NI (5(1) }

()
In the next lemma we relate the covariant derivative to the Chern connection.
Lemma 4.3. Let t — c(t) be a geodesic on (N, F) and V be a smooth vector field

on c that is extendible. Write V(x) = Vi(x)z2:. Then Viz,y) = VH(@)05| (2,y) is a
smooth section of S(m*TN) and

(42) DV = V.V,
Proof. To prove the claim, we use (38) and do a direct evaluation in coordinates. [

We now consider variations of a geodesic 7 : [0, h] — N normal to a hypersurface
S so that one endpoint stays on S and the other one is fixed. We denote the starting
point of v by z9 € S. For a smooth curve ¢ on S we assume that a variation
I'(s,t) satisfies I'(s,0) = o(s), ['(s,h) = ~v(h), and T'(0,t) = ~(¢) for all values of
the time ¢ € [0,h] and the variation parameter s near zero. The variation field
J(t) := %F(s, t)]s=0 is a vector field along v and satisfies the boundary conditions
J(0) = 6(0) and J(h) = 0. We additionally assume that the variation is normal:
95(,.J) = 0.

The second variation formula (see [48, Chapter 10]) and equations (40)—(42)
imply that

62

h ~
S| = [ 9RO ~ Ry (10), J0)de + 9(V 57 - Vo, )
s 0

v

s=0

where R(.,y(-) is the Riemannian curvature tensor (see [48, Chapter 6]). If J is a
Jacobi field, the expression simplifies to

32
= L(T(s, )

To discuss geodesic variations of v, we consider normal Jacobi fields J along « that
satisty

= g(V;0 — V5], J)

s=0 v

=0.

v

(43) J(0) € TS and (v W vgf)

We let J be the collection of all normal Jacobi fields on « that satisfy (43) and
Jo ={J € J : J(h) = 0}. Following [13], we call J the space of transverse Jacobi
fields.

Lemma 4.4. A vector field J on v is a transverse Jacobi field if and only if

(44) J(t) = Dexpt )tn for some n = J(0) € T.,S.
t

(2o,
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Proof. We let € > 0 and U C S be a neighborhood of zy be such that the normal
exponential map expt: U x (—e,¢) — N is a diffeomorphsim onto its image. We
define a unit length vector field W, that is orthogonal to .S, by

9 .
W(I) = & eXpJ_(th) = Vz,v(2) (t)v (Zat) eU x (_676)5

where z = expt(z,t).
For any z € U the geodesic v, , () of F'is also a geodesic of the local Riemannian
metric

1
gw (x) := Hess, (EF(I’ y)2) LFW(I),

that is normal to S. This implies that the normal exponential maps of F' and gy
coincide in U x (—¢, €) and moreover D; = D}V where D; is the covariant derivative
of F (given in (41)) and D}" is the covariant derivative of Riemannian metric gy

on Yz u(z)-

Now we are ready to prove the claim of this lemma. We let o(s) € S be a
smooth curve with initial conditions o(0) = 29 and 6(0) = n = J(0). Define
I'(s,t) = expt(o(s),t). Then I'(0,t) = v(t) and all the variation curves t — I'(s,t)
are geodesics. Therefore, the variation field

0
V(t) = gl—‘(s,t) s t € (—e¢,¢)
is a Jacobi field of F' that satisfies
0
V(0) = =—TI(s,t = Dexpt 7(0) = 1.
0) =5, (s,t) o exp (Z07O)U( )=mn

Therefore, it suffices to show that D;J(0) = D;V(0). We note that since gy is a
Riemannian metric the following symmetry holds true,

0 0
45 Di— =D;—,
(45) fos ot
along any transverse curve s — I'(s,t). Above Dy is a covariant derivative of gy
along transverse curve I'(-,t). We also assume that ¢ can be extended to a smooth

vector field Y on N. Then the equation (45) implies

D,V(0)=VyW| =V,W,

where V is the Riemannian connection of gy. To end the proof we still have to
show the first equation of the following

—~—
—_~—

V,W = VaW = Vi = D, J(0),

where V is the Chern connection of F. The proof of this claim is a direct compu-
tations in local coordinates. O

We obtain the following lemma as a direct consequence

Lemma 4.5. Set J is a real vector space of dimension n — 1.
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Proof. The claim follows since the dimension of S is n — 1 and the operator given
by (44) is linear in 7,5 and onto at t = 0. O

Similarly to the spaces J and Jy of Jacobi fields defined above, we denote by V
the collection of piecewise smooth normal vector fields along v satisfying (43) and
by Vy the subspace vanishing at y(h). On Vy we define the index form

h
(16) VW)= fy 95(DiV (1), DW(2)) = g5 (R4 (V(2)), W ())dt
- VAV’ 7).
9V 4(0) )

Lemma 4.6. The index form I on Vy is a symmetric bilinear form.

Proof. Clearly, I is bilinear. It is proven in [48, Section 8.1] that for all z € N and
y,v,w € T, N, it holds that

9y(Ry(v), w) = gy (v, Ry(w)).

Since V, W are normal to ¥, the equation

VV| D) =g(VoW| v
VTV g7 =97 W) P)
follows from (40) and the symmetry of the second fundamental form (see [48, Section
14.4]). O

Lemma 4.7. Assume that v is not self-intersecting on [0,h]. We let V € V. There
exists § > 0 and a variation T'(s,t): (§,0) x [0,h] — N of v whose variation field
LT(s,t)|s=0 is V and T'(s,0) is a smooth curve on S. Moreover ift,...,ty € [0, h]
are the points where V' is not smooth then T': (6,0) x (t;,tiy1) — N smooth.

Proof. We let W be a smooth vector field that is an extension of 4(t) in a neigh-
borhood of ([0, h]). Using the Fermi coordinates of S, with respect to the local
Riemannian metric gy, we can construct a Riemannian metric g in some neighbor-
hood of ¥([0, h]) such that S is a geodesic submanifold of § and ~ is a geodesic of
g that is g-normal to S. Then we use the following variation to prove the claim of
this lemma.

We let § > 0 and define a variation of v with
(47) F(Svt) = expﬁ(’)/(t)v SV(t))v te [07 h]u s € (_57 6)7

where exp; is the exponential map of metric tensor g. Since S is a geodesic sub
manifold with respect to g we have that

F(S,O) = eXPg(”Y(O)a SV(O)) € Sa S (_57 5)
Moreover

O ps.)] _ = Dlexpgw)] V(D) = V()

The claim is proven. g

For a given vector field V' € Vy we call the variation of ~(¢) given by (47) the
variation related to V.
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Definition 4.8. We say that v(h) is a focal point of S if the set Jy contains a
non-zero Jacobi field.

Lemma 4.9. The point y(h) is a focal point of S if and only if D exp™ is singular
at (zo,h).

Proof. The claim follows from Lemma 4.4. O

We define the quantities 7s(2) and 7¢(z9) as

(48) 7s(20) = sup{t > 0 : t = dr (20,720 () = dr (S, 20,0 (1))}
and
(49) Tr(20) = inf{t > 0 : v(¢) is a focal point to S}.

We note that 7g is analogous to 7oy given in Definition 3.5. Our final goal is to
show that 7¢(z0) < 77(20). This completes the proof of Lemma 3.6. To check the
inequality, we still have to state one auxiliary result

Lemma 4.10. If 74(29) > h, then Index form I is positive definite on Vy. If
Tr(20) = h, then I is positive semidefinite on Vo and I(V,V) = 0 if and only if
Ved.

Proof. The proof is a modification of the proof of [13, Theorem I1.5.4]. O

Lemma 4.11. Suppose that 7;(z0) < h. Then there exists W € Vy such that
(W, W) < 0.

Moreover

(50) 7s(20) < 7¢(20).

Proof. Denote 7¢(z9) := to < h. Choose a non-zero J € J that vanishes at ¢.
Define
J(t), t <ty

Vi) = { 0, ¢ € [to, h).

By previous Lemma it holds that I(V,V) = 0. Since D;J(ty) # 0 there exists a
non-zero smooth vector field X € Vy on v that satisfies

suppX C (0,h) and X (to) = —D.J (to).
Therefore if € > 0 is small enough I(V + eX,V + eX) is negative.
Finally, we prove (50). We denote W :=V + eX. We let I'(s, t) be the variation
of y(¢) that is related to W. Since v is a geodesic we have
L L (s.) = 0 and L £(T(s.)) = I(W.W) < 0
I 5,7)) =0and - $,4)) = g .

Therefore, v cannot minimize the lenght from S to (k). Thus the inequality (50)
is valid. g
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APPENDIX A. BASICS OF COMPACT FINSLER MANIFOLDS

In this appendix, we summarize some basic theory of compact Finsler manifolds.
This section is intended for the readers having background in imaging methods and
elasticity. We follow the notation of [48] and use it as a main reference. The main
goal is to prove that if z € M and z, € OM is a closest boundary point to z, that
is the minimizer of dr(z,-)|on or dp(-, z)|an, then the distance minimizing curve
from x to z; or from z, to x respectfully is a geodesic that is perpendicular to the
boundary. Readers who are not familiar with Finsler geometry are encouraged to
read this section before embarking to the proof of Theorem 1.3 presented in Section
3.

Most of the claims and the proofs given in this section are modifications of
similar theorems in Riemannian geometry. We refer to the classical material where
the Riemannian version is presented.

We let N be a n-dimensional, compact, connected smooth manifold without
boundary. We reserve the notation T'N for the tangent bundle of N and say that a
function F': TN — [0,00) is a Finsler function if

(1) F: TN\ {0} — [0,00) is smooth
(2) For each x € N the restriction F': T,N — [0, 00) is a Minkowski norm.
Recall that for a vector space V a function F: V — [0, 00) is called a Minkowski
norm if the following hold
e F: V\ {0} — R is smooth.
e For every y € V and s > 0 it holds that F(sy) = sF(y).
e For every y € V' \ {0} the function g,: V' x V — R is a symmetric positive
definite bilinear form, where
(51) gy(v,w) := %%%{F%y—l—sv—l—twﬂ
We call the pair (N, F') a Finsler manifold.

The length of a piecewise smooth curve ¢: I — N, [ is an interval, is defined as

(52) £(c) = / F(t)dt.
I
For every z1,22 € N we define
dp(z1,22) = inf L(c),

CECzl,mg

s=t=0
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where Cy, », is the collection of piecewise smooth curves starting at z; and ending
at z2. The function dp: N x N — [0,00) is a non-symmetric path metric related
to F', meaning that for some z1,z2 € N the distance dp(z1,z2) need not coincide
with dp(z2,21) (see [5, Section 6.2]).

We note that for all z1, 25 € N it holds that

(53) dp(z1,22) = dl;(wz,ivl),

where F is the reversed Finsler function F (x,y) = F(z,—y).

We use the notation g;;(z,y) for the component functions of the Hessian of §F?
as in (51). A C! curve y: I — N, with a constant speed F(§(t)) = ¢ > 0, is a
geodesic of Finsler manifold (N, F') if y(¢) solves the system of geodesic equations

(54) ) +2GH(Y(t) =0, i€ {l,...,m}.
Here, G¢: TN — R is given in local coordinates (z,y) by

i 71 il 3gjl(:1:,y) 89]"6(517,?4) j.k
(55) G'(z,y) = 19 (I,y){2 T }y Y

Since F%(z,y) is positively homogeneous of degree two with respect to y variables,
it follows from (55) that G* is positively homogeneous of degree two with respect to
y, but not necessarily quadratic in y. Therefore, the geodesic equation (54) is not
preserved if the orientation of the curve  is reversed.

We define a vector field G, by

i 0 i 9
(56) Gz,y)=y'55 —2G (w,y)a—yi-
A curve 7y is a geodesic of F' if and only if v = 7(c), where ¢ is an integral curve
of G. Due to ODE theory for a given initial conditions (x,y) € TN there exists
the unique solution v, , of (54), defined on maximal interval containing 0. Thus by
defining G locally with (56), it extends to a global vector field on TN. We call G
the geodesic vector field.

Lemma A.1. Let ¢ be an integral curve of geodesic vector field G, then F(c(t)) is
a constant.

Proof. For the proof see [48, Section 5.4]. O

We use the notations ¢; for the geodesic flow of F on TN and (x,v) for points
in SN. By Lemma A.1 we know that for (z,v) € SN and for any ¢ € R in the flow
domain of (z,v) it holds that ¢;(x,v) € SN. Since SN is compact we have proven
that ¢ on SN is a global flow (see for instance [38, Theorem 17.11]), which means
that the map

¢: Rx SN - SN

is well defined. Therefore, we can define the exponential mapping exp,, + € N by
(57) expx(y) = 7T(¢1 (xu y)) = '71,1/(1)7 y € T:N.

Moreover in [48, Section 11.4], it is shown that for any points x1,z2 € N there
exists a globally minimizing geodesic from x; to zs.
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In the following, we relate the smoothness of a distance function to distance mini-
mizing property of geodesics. This is done via the cut distance function 7: SN — R,
which is defined by

T(x,v) =sup{t > 0: dp(z,vz,,(t)) = t}.
In the next lemma, we collect properties of the cut distance function.
Lemma A.2. Let (z,v) € SN and tg = 7(x,v). At least one of the following
holds:

(1) The exponential map exp,, of F, is singular at tov.
(2) There existsn € SyN, n# v such that exp, (tov) = exp,(ton).

Moreover for any t € [0,ty) the map exp, is non-singular at tv. Also the map
7: SN — R is continuous.

Proof. See [48, Chapter 12] or [5, Chapter 8|. O
In the next lemma, we consider the regularity of the function dp

Lemma A.3. Let (z1,v1) € SN, 0 < t1 < 7(x1,v1) and T2 = Yay 0, (t1). Then
there exists neighborhoods U of x1 and V' of xa respectively such that the distance
function dp: U x V — R is smooth.

Proof. Since the cut distance function 7 is continuous, there exist a neighborhood
U’ C SM of (z1,v1) and € > 0 such that for any ¢ € (t; —€,t1 +¢) and (x,v) € U’
holds t < 7(x,v).
Consider a smooth function
E:U x (t1 —€t1 +¢€) > ((z,v),t) = (z,exp, tv) € N x N.

Since for every ((z,v),t) € U’ x (t1 —¢,t1+€) we have that the exponential map exp,,
is not singular at vt € T, N, the Jacobian of E is invertible in U’ x (t; —e¢, t1+¢). Thus
the Inverse Function Theorem implies the existence of the neighborhood U x V' C
N x N of (x1,22) such that E is a diffeomorphism onto U x V. Therefore the map

UxV 3 (z,y)—exp, 'y TN

is smooth.
By the definition of the cut distance function and [48, Section 11.4], the following
equation holds for any (z,y) € U x V,

dF(xv y) = F(JJ, exp;I y)
This implies the claim as F' is smooth outside the zero section. 0

The duality map between the tangent bundle and the cotangent bundle is given
by the Legendre transform ¢: TN \ {0} — T*N \ {0} which is defined by

(58) Uz,y) = La(y) == gy(y,-) € TLN, yeT,N.

The Legendre transform is a diffeomorphism and for all @ > 0 and (z,y) € TN\ {0}
we have

(59) Uz, ay) = al(z,y).



BOUNDARY DISTANCE MAP ON FINSLER MANIFOLDS 33

(see [48, Section 3.1]). The dual F* of the Finsler function F', which is given by
(60) F*(z,p) = sup p(v), (z,p)€T"N,
vESL. N

is a Finsler function on 7*N and the Legendre transform ¢, satisfies

F(z,v) = F*(x,0,(v)).

We let S C N be a smooth submanifold of co-dimension 1. Tt is shown in [48,
Section 2.3] that for every z € S there exists precisely two unit vectors vy, 2 € S, N
such that

T.S={yeT.N:g,(vi,y) =0}, ie{1,2}.
Vectors v1,v5 € S, N are called the unit normals of S. Notice that generally v; #
—U9.

In the next lemma, we relate the Legendre transform of the velocity field of a

distance minimizing geodesic to the differential of the distance function.

Lemma A.4. Let 1 € N and x5 € N be such that dp(x1,-) is smooth at xo. Then

(61) ddp(z1,°)| =G40, 00 Farw(8),7)] € T,,N,
x2 t=dp(z1,22)
where vz, 15 the unique distance minimizing unit speed geodesic from x1 to x».
Proof. Denote to = dp(x1,z2) and
S(x1,t0) = exp, {w € T, N : F(w) = to}.
Recall that
(62) dr(z1,exp,, (tw)) = F(tw) =t, t>0, we S; N

if tw is close to tov. We use a shorthand notation d for the function dp(z1,-). We
take a t-derivative from the both sides of (62) to obtain

(63) d(dr) (D exp,, |tww) = d(dr)

exp,,, (tw)

(Y1, (1)) = 1.

exp,, (tw)

Due to (63) the set S(z1,t0) is a regular level set of dp near x2, and moreover (62)
implies
TI2S(I1, to) = ker d(dp)

T2
Thus it suffices to prove that
kerg"yzl,v(to)(;ymhv(to)v ) = Twzs(‘rlvto)'
Notice that for any w € Ty, M, such that g,(v,w) = 0 holds
1d

(64) 0 = gg (tv, tw) = §£[F2](t(v + sw)) = tod(dr) N (D exp,, |twtw).

Therefore, d(dF)|Csz1(tv) (D exp,, |twtw) = 0 and (Dexp,, |totow) € Tp,S(x1,t0).
Recall that J(t) := Dexp,, |wtw is the unique Jacobi field with initial conditions
J(0) =0, D;J(0) = w. By Gauss’ Lemma [48, Lemma 11.2.1] we have

0= gv(vvw) = g"yzl,u(to)(;ywhv(to)v Dexpwl |tovw))'
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In the above, we used the identity
Gro, (tv1, tve) = t2gy, (v1,v2), t > 0; v1,v9 € T,N.
This implies that
ker g5, (to) (Yar.0(t0), ) = {D expy, [tgow : gu(v, w) = 0} = To, S (21, to),
since dim v+ = dim T}, S(21, o) and D exp,, |t,v is not degenerate. O

Lemma A.5. Let S C N be a smooth closed submanifold of co-dimension 1. Let
x € N. A distance minimizing curve from S to x (from x to S) is a geodesic that
is orthogonal to S at the initial (terminal) point.

Proof. Since S is compact there exists a closest point z, € S to x. We denote
h =dp(z,z;). Since (N, F) is complete there exists a distance minimizing geodesic
v from z to z,.

We suppose first that dp(x,-) is smooth at z,. We denote r(z) = dp(x,z)
for z € S. Since z, is a minimal point of r we have dgr(z,) = 0. Here dg is
the differrential operator of smooth manifold S. Then dgr = ¢*d(dp(x,-)), where
t:S < N. Thus d(dp(x,-)) vanishes on T, S. By (61) it holds that

d(dp(z,))|z = g5 (7(h),-) # 0.

Thus 4(h) is normal to S at z,.

If dp(x,-) is not smooth at z, there exists ¢ > 0 such that for any t € (¢, h)
dp(y(t),-) is smooth at z,. By the first part of the proof it follows that 4(h) is
perpendicular to S.

Due to (53) the second claim for the reversed distance function can be proven in

P
the same way, upon replacing F' by F. g
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