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Abstract

The goal of this paper is to estimate the 6D pose and

dimensions of unseen object instances in an RGB-D im-

age. Contrary to “instance-level” 6D pose estimation tasks,

our problem assumes that no exact object CAD models are

available during either training or testing time. To han-

dle different and unseen object instances in a given cate-

gory, we introduce Normalized Object Coordinate Space

(NOCS)—a shared canonical representation for all possi-

ble object instances within a category. Our region-based

neural network is then trained to directly infer the corre-

spondence from observed pixels to this shared object repre-

sentation (NOCS) along with other object information such

as class label and instance mask. These predictions can be

combined with the depth map to jointly estimate the metric

6D pose and dimensions of multiple objects in a cluttered

scene. To train our network, we present a new context-

aware technique to generate large amounts of fully anno-

tated mixed reality data. To further improve our model and

evaluate its performance on real data, we also provide a

fully annotated real-world dataset with large environment

and instance variation. Extensive experiments demonstrate

that the proposed method is able to robustly estimate the

pose and size of unseen object instances in real environ-

ments while also achieving state-of-the-art performance on

standard 6D pose estimation benchmarks.

1. Introduction

Detecting objects, and estimating their 3D position, ori-

entation and size is an important requirement in virtual

and augmented reality (AR), robotics, and 3D scene un-

derstanding. These applications require operation in new

environments that may contain previously unseen object

instances. Past work has explored the instance-level 6D

pose estimation problem [35, 44, 26, 49, 5, 27] where ex-

act CAD models and their sizes are available beforehand.

� https://hughw19.github.io/NOCS_CVPR2019

Figure 1. We present a method for category-level 6D pose and

size estimation of multiple unseen objects in an RGB-D image. A

novel normalized object coordinate space (NOCS) representation

(color-coded in (b)) allows us to consistently define 6D pose at the

category-level. We obtain the full metric 6D pose (axes in (c)) and

the dimensions (red bounding boxes in (c)) for unseen objects.

Unfortunately, these techniques cannot be used in general

settings where the vast majority of the objects have never

been seen before and have no known CAD models. On

the other hand, category-level 3D object detection meth-

ods [41, 34, 8, 32, 47, 11] can estimate object class la-

bels and 3D bounding boxes without requiring exact CAD

models. However, the estimated 3D bounding boxes are

viewpoint-dependent and do not encode the precise orien-

tation of objects. Thus, both these classes of methods fall

short of the requirements of applications that need the 6D

pose and 3 non-uniform scale parameters (encoding dimen-

sions) of unseen objects.

In this paper, we aim to bridge the gap between these two

families of approaches by presenting, to our knowledge, the

first method for category-level 6D pose and size estima-

tion of multiple objects—a challenging problem for novel

object instances. Since we cannot use CAD models for un-

seen objects, the first challenge is to find a representation

that allows definition of 6D pose and size for different ob-

jects in a particular category. The second challenge is the

unavailability of large-scale datasets for training and test-

ing. Datasets such as SUN RGB-D [39] or NYU v2 [38]

lack annotations for precise 6D pose and size, or do not

contain table-scale object categories—exactly the types of

objects that arise in table-top or desktop manipulation tasks

for which knowing the 6D pose and size would be useful.
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To address the representation challenge, we formulate

the problem as finding correspondences between object pix-

els to normalized coordinates in a shared object descrip-

tion space (see Section 3). We define a shared space

called the Normalized Object Coordinate Space (NOCS)

in which all objects are contained within a common normal-

ized space, and all instances within a category are consis-

tently oriented. This enables 6D pose and size estimation,

even for unseen object instances. At the core of our method

is a convolutional neural network (CNN) that jointly esti-

mates the object class, instance mask, and a NOCS map

of multiple objects from a single RGB image. Intuitively,

the NOCS map captures the normalized shape of the visible

parts of the object by predicting dense correspondences be-

tween object pixels and the NOCS. Our CNN estimates the

NOCS map by formulating it either as a pixel regression or

classification problem. The NOCS map is then used with

the depth map to estimate the full metric 6D pose and size

of the objects using a pose fitting method.

To address the data challenge, we introduce a spatially

context-aware mixed reality method to automatically gener-

ate large amounts of data (275K training, 25K testing) com-

posed of realistic-looking synthetic objects from ShapeNet-

Core [7] composited with real tabletop scenes. This ap-

proach allows the automatic generation of realistic data with

object clutter and full ground truth annotations for class la-

bel, instance mask, NOCS map, 6D pose, and size. We

also present a real-world dataset for training and testing

with 18 different scenes and ground truth 6D pose and size

annotations for 6 object categories, and in total 42 unique

instances. To our knowledge, ours is the largest and most

comprehensive training and testing datasets for 6D pose and

size, and 3D object detection tasks.

Our method uses input from a commodity RGB-D sen-

sor and is designed to handle both symmetric and asymmet-

ric objects, making it suitable for many applications. Fig-

ure 1 shows examples of our method operating on a tabletop

scene with multiple objects unseen during training. In sum-

mary, the main contributions of this work are:

• Normalized Object Coordinate Space (NOCS), a uni-

fied shared space that allows different but related ob-

jects to have a common reference frame enabling 6D

pose and size estimation of unseen objects.

• A CNN that jointly predicts class label, instance mask,

and NOCS map of multiple unseen objects in RGB im-

ages. We use the NOCS map together with the depth

map in a pose fitting algorithm to estimate the full met-

ric 6D pose and dimensions of objects.

• Datasets: A spatially context-aware mixed reality

technique to composite synthetic objects within real

images allowing us to generate a large annotated

dataset to train our CNN. We also present fully anno-

tated real-world datasets for training and testing.

2. Related Work

In this section, we focus on reviewing related work

on category-level 3D object detection, instance-level 6D

pose estimation, category-level 4 DoF pose estimation from

RGB-D images, and different data generation strategies.

Category-Level 3D Object Detection: One of the

challenges in predicting the 6D pose and size of objects

is localizing them in the scene and finding their physical

sizes, which can be formulated as a 3D detection prob-

lem [52, 21, 20, 30, 13]. Notable attempts include [41, 53]

who take 3D volumetric data as input to directly detect ob-

jects in 3D. Another line of work [34, 19, 9, 28] proposes

to first produce 2D object proposals in 2D image and then

project the proposal into 3D space to further refine the fi-

nal 3D bounding box location. The techniques described

above reach impressive 3D detection rates, but unfortu-

nately solely focus on finding the bounding volume of ob-

jects and do not predict the 6D pose of the objects.

Instance-Level 6 DoF Pose Estimation: Given its prac-

tical importance, there is a large body of work focusing on

instance-level 6D pose estimation. Here, the task is to in-

fer the 3D location and 3D rotation of objects (no scale),

assuming exact 3D CAD models and size of these objects

are available during training. The state of the art can be

broadly categorized as template matching or object coordi-

nates regression techniques. Template matching techniques

align 3D CAD models to observed 3D point clouds with al-

gorithms such as iterative closest point [3, 51], or use hand

crafted local descriptors to further guide the alignment pro-

cess [25, 10]. This family of techniques often suffer from

inter- and intra-object occlusions, which is typical when we

have only partial scans of objects. The second category of

approaches based on object coordinates regression aim to

regress the object surface position corresponding to each

object pixel. Such techniques have been successfully em-

ployed for body pose estimation [43, 17], camera relocal-

ization [37, 46] and 6D object pose estimation [4].

Both the above approaches need exact 3D models of the

objects during training and test time. Besides the practi-

cal limitation in storing all 3D CAD models or learned ob-

ject coordinate regressors in memory at test time, capturing

high-fidelity and complete 3D models of a very large array

of objects is a challenging task. Although our approach is

inspired by object coordinate regression techniques, it also

significantly differs from the above approaches since we no

longer require complete and high-fidelity 3D CAD models

of objects at test time.

Category-Level 4 DoF Pose Estimation: There has

been some work on category-level pose estimation [19, 40,

18, 33, 6], however they all make simplifying assumptions.

First, these algorithms constrain the rotation prediction to

be only along the gravity direction (only four degrees of

freedom). Second, they focus on a few big room-scale ob-
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ject categories (e.g., chairs, sofa, beds or cars) and do not

take object symmetry into account [19, 40, 18]. On the

contrary, we estimate the pose of a variety of hand-scale

objects, which are often much more challenging than the

bigger room-scale objects due to larger pose variation. Our

method also predicts full 6D pose and size without assum-

ing the objects gravity direction. Finally, our method runs

at interactive frame rates (0.5 s per frame), which is signif-

icantly faster than alternative approaches (∼70 s per frame

for [19], 25 mins per frame for [40]).

Training Data Generation: A major challenge with

training CNNs is the lack of training data with sufficient cat-

egory, instance, pose, clutter, and lighting variation. There

have been several efforts aimed at constructing real-world

datasets containing object labels (e.g., [38, 39, 48]). Unfor-

tunately, these datasets tend to be relatively small, mostly

due to the high cost (time and money) associated with

ground truth annotation. This limitation is a motivator for

other works (e.g., [33, 42, 49]) which generate data that

is exclusively synthetic allowing the generation of large

amounts of perfectly annotated training data at a smaller

cost. For the sake of simplicity, all these datasets ignore a

combination of factors (material, sensor noise, and lighting)

which creates a de-facto domain gap between the synthetic

and real data distributions. To reduce this gap, [12] have

generated datasets that mix real and synthetic data by ren-

dering virtual objects on real backgrounds. While the back-

grounds are realistic, the rendered objects are flying mid-

air and out of context [12], which prevent algorithms from

making use of important contextual cues.

We introduce a new mixed reality method to automati-

cally generate large amounts of data composed of synthetic

renderings of objects and real backgrounds in a context-

aware manner which makes it more realistic. This is sup-

ported by experiments that show that our context-aware

training data enables the model to generalize better to real-

word test data. We also present a real-world dataset to fur-

ther improve learning and for evaluation.

3. Background and Overview

Category-Level 6D Object Pose and Size Estimation:

We focus on the problem of estimating the 3 rotation, 3

translation, and 3 scale parameters (dimensions) of object

instances. The solution to this problem can be visualized

as a tight oriented bounding box around an object (see

Figure 1). Although not previously observed, these ob-

jects come from known object categories (e.g., camera) for

which training samples have been observed during training.

This task is particularly challenging since we cannot use

CAD models at test time and 6D pose is not well-defined

for unseen objects. To overcome this, we propose a new

representation that defines a shared object space enabling

the definition of 6D pose and size for unseen objects.

Figure 2. The Normalized Object Coordinate Space (NOCS) is a

3D space contained within a unit cube. For a given object cate-

gory, we use canonically oriented instances and normalize them to

lie within the NOCS. Each (x, y, z) position in the NOCS is vi-

sualized as an RGB color tuple. We train our network on the per-

spective projection of the NOCS on the RGB image, the NOCS

map (bottom left inset). At test time, the network regresses the

NOCS map which is then used together with the depth map for 6D

pose and size estimation.

Normalized Object Coordinate Space (NOCS): The

NOCS is defined as a 3D space contained within a unit cube

i.e., {x, y, z} ∈ [0, 1]. Given a shape collection of known

object CAD models for each category, we normalize their

size by uniformly scaling the object such that the diagonal

of its tight bounding box has a length of 1 and is centered

within the NOCS space (see Figure 2). Furthermore, we

align the object center and orientation consistently across

the same category. We use models from ShapeNetCore [7]

which are already canonicalized for scale, position, and ori-

entation. Figure 2 shows examples of canonicalized shapes

in the camera category. Our representation allows each ver-

tex of a shape to be represented as a tuple (x, y, z) within

the NOCS (color coded in Figure 2).

Our CNN predicts the 2D perspective projection of the

color-coded NOCS coordinates, i.e., a NOCS map (bottom

left in Figure 2). There are multiple ways to interpret a

NOCS map: (1) as a shape reconstruction in NOCS of the

observed parts of the object, or (2) as dense pixel–NOCS

correspondences. Our CNN learns to generalize shape pre-

diction for unseen objects, or alternatively learns to pre-

dict object pixel–NOCS correspondences when trained on

a large shape collection. This representation is more robust

than other approaches (e.g., bounding boxes) since we can

operate even when the object is only partially visible.

Method Overview: Figure 3 illustrates our approach

which uses an RGB image and a depth map as input. The

CNN estimates the class label, instance mask, and the

NOCS map from only the RGB image. We do not use the

depth map in the CNN because we would like to exploit

existing RGB datasets like COCO, which do not contain

depth, to improve performance. The NOCS map encodes
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Figure 3. The inputs to our method are the RGB and depth images of a scene with multiple objects. Our CNN predicts the class label,

instance mask, and NOCS map (color-coded) for each object in the RGB image. We then use the NOCS maps for each object together with

the depth image to obtain the full metric 6D pose and size (axes and tight red bounding boxes), even if the object was never seen before.

the shape and size of the objects in a normalized space. We

can therefore use the depth map at a later stage to lift this

normalized space, and to predict the full metric 6D object

pose and size using robust outlier removal and alignment

techniques.

Our CNN is built upon the Mask R-CNN framework [22]

with improvements to jointly predict NOCS maps in addi-

tion to class labels, and instance masks. Section 5 contains

more details on our improvements and new loss functions

that can handle symmetric objects. During training, we use

ground truth images rendered with a new Context-Aware

MixEd ReAlity (CAMERA) approach (see Section 4). This

large dataset allows us to generalize to new instances from

new categories at testing time. To further bridge the domain

gap we also use a smaller real-world dataset.

4. Datasets

A major challenge in category-level 3D detection, and

6D pose and size estimation is the unavailability of ground

truth data. While there have been several attempts like NYU

v2 [38] and SUNRGB-D [39], they have important limita-

tions. First, they do not provide 6D pose of objects and fo-

cus on just 3D bounding boxes. Second, applications such

as augmented reality and robotics benefit from hand-scale

objects in tabletop settings which are missing from current

datasets which focus on on larger objects such as as chairs

and tables. Finally, these datasets do not contain annota-

tions for the type of ground truth we need (i.e., NOCS maps)

and contain limited number of examples.

4.1. ContextAware Mixed Reality Approach

To facilitate the generation of large amounts of train-

ing data with ground truth for hand-scale objects, we pro-

pose a new Context-Aware MixEd ReAlity (CAMERA)

approach which addresses the limitations of previous ap-

proaches, and makes data generation less time consuming

and significantly more cost-effective. It combines real back-

ground images with synthetically rendered foreground ob-

jects in a context-aware manner i.e., the synthetic objects

are rendered and composited into real scenes with plausible

physical locations, lighting, and scale (see Figure 4). This

mixed reality approach allows us to generate significantly

larger amounts of training data than previously available.

Real Scenes: We use real RGB-D images of 31 widely

vaying indoor scenes as background (Figure 4 middle).

Our focus is on tabletop scenes since the majority of in-

door human-centric spaces consist of tabletop surfaces with

hand-scale objects. In total, we collected 553 images for the

31 scenes, 4 of which were set aside for validation.

Synthetic Objects: To render realistic looking objects

in the above real scenes, we picked hand-scale objects from

ShapeNetCore [7], manually removing any that did not look

real or had topology problems. In total, we picked 6 object

categories—bottle, bowl, camera, can, laptop, and mug. We

also created a distractor category consisting of object in-

stances from categories not listed above such as monitor,

phone, and guitar. This improves robustness when making

predictions for our primary categories even if other objects

are present in the scene. Our curated version of ShapeNet-

Core consists of 1085 individual object instances of which

we set aside 184 instances for validation.

Context-Aware Compositing: To improve realism, we

composite virtual objects in a context-aware manner i.e., we

place then where they would naturally occur (e.g., on sup-

porting surfaces) with plausible lighting. We use a plane

detection algorithm [14] to obtain pixel-level plane segmen-

tation in real images. Subsequently, we sample random lo-

cations and orientations on the segmented plane where syn-

thetic objects could be placed. We then place several virtual

light sources to mimic real indoor lighting conditions. Fi-

nally, we combine the rendered and real images to produce

a realistic composite with perfect ground truth NOCS maps,

masks, and class labels.

In total, we render 300K composited images, of which

25K are set aside for validation. To our knowledge, this the
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Figure 4. We use a Context-Aware MixEd ReAlity (CAMERA) approach to generate data by combining real images of tabletop scenes,

detect planar surfaces, and render synthetic objects onto the planar surfaces (left). Since the objects are synthetic, we obtain accurate

ground truth for class label, instance mask, NOCS map, and 6D pose and size. Our approach is fast, cost-effective, and results in realistic

and plausible images (middle). We also gather a real-world dataset for training, testing, and validation (right).

largest dataset for category-level 6D pose and size estima-

tion. Our mixed reality compositing technique was imple-

mented using the Unity game engine [2] with custom plu-

gins for plane detection and point sampling (all of which

will be publicly released). The images generated using our

method look plausible and realistic resulting in improved

generalization compared to using non-context aware data.

4.2. RealWorld Data

To further improve and validate our algorithm’s real-

world performance under challenging clutter and lighting

conditions, we captured two real-world datasets: (1) a real-

world training dataset that supplements the mixed reality

data we generated earlier, (2) a real-world testing dataset to

evaluate the performance of 6D pose and size estimation.

We developed a semi-automatic method to annotate ground

truth object pose and size. Figure 4 shows examples of our

real-world data.

We captured 8K RGB-D frames (4300 for training, 950

for validation and 2750 for testing) of 18 different real

scenes (7 for training, 5 for validation, and 6 for testing)

using a Structure Sensor [1]. For each of the training and

testing subsets, we used 6 categories and 3 unique instances

per category. For the validation set we use 6 categories with

1 unique instance per category. We place more than 5 object

instances in each scene to simulate real-world clutter. For

each instance, we obtained a clean and accurate 3D mesh

using an RGB-D reconstruction algorithm that we devel-

oped for this purpose. In total, our combined datasets con-

tain 18 different real scenes, 42 unique object instances

spanning 6 categories making it the most comprehensive

dataset for category-level 6D pose and size estimation.

5. Method

Figure 3 shows our method for 6D pose and size estima-

tion of multiple previously unseen objects from an RGB-D

image. A CNN predicts class labels, masks, and NOCS

maps of objects. We then use the NOCS map and the depth

map to estimate the metric 6D pose and size of objects.

5.1. NOCS Map Prediction CNN

The goal of our CNN is to estimate class labels, instance

masks, and NOCS maps of objects based purely on RGB

images. We build upon the region-based Mask R-CNN

framework [22] since it has demonstrated state-of-the-art

performance on 2D object detection and instance segmen-

tation tasks, is modular and flexible, fast, and can easily be

augmented to predict NOCS maps as described below.

5.1.1 NOCS Map Head

Mask R-CNN builds upon the Faster R-CNN architec-

ture [36] and consists of two modules—a module to propose

regions potentially containing objects, and a detector to de-

tect and classify objects within regions. Additionally, it also

predicts the instance masks of objects within the regions.

Figure 5. NOCS map head architecture. We add three additional

heads to the Mask R-CNN architecture to predict the x, y, z coor-

dinates of the NOCS map (colored boxes). These heads can either

be used for direct pixel regression or classification (best). We use

ReLU activation and 3×3 convolutions.

Our main contribution is the addition of 3 head architec-

tures to Mask R-CNN for predicting the x, y, z components

of the NOCS maps (see Figure 5). For each proposed region

of interest (ROI), the output of a head is of size 28×28×N,

where N is the number of categories and each category con-

taining the x (or y, z) coordinates for all detected objects in

that category. Similar to the mask head, we use the object

category prior to look up the corresponding prediction chan-

nel during testing. During training, only the NOCS map
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component from the ground truth object category is used

in the loss function. We use a ResNet50 [24] backbone to-

gether with Feature Pyramid Network (FPN).

Regression vs. Classification: To predict the NOCS

map, we can either regress each pixel value or treat it as a

classification problem by discretizing the pixel values (de-

noted by (B) in Figure 5). Direct regression is presumably a

harder task with the potential to introduce instability during

training. Similarly, pixel classification with large number

of classes (e.g., B = 128, 256) could introduce more pa-

rameters making training even more challenging than direct

regression. Our experiments revealed that pixel classifica-

tion with B = 32 performed better than direct regression.

Loss Function: The class, box, and mask heads of our

network use the same loss functions as described in [22].

For the NOCS map heads, we use two loss functions: a

standard softmax loss function for classification, and the

following soft L1 loss function for regression which makes

learning more robust.

L(y,y∗) =
1

n

{

5 (y − y∗)2, |y − y∗| ≤ 0.1

|y − y∗| − 0.05, |y − y∗| > 0.1
,

∀y ∈ N,y∗ ∈ Np,

where y ∈ R3 is the ground truth NOCS map pixel value,

y∗ is the predicted NOCS map pixel value, n is the number

of mask pixels inside the ROI, I and Ip are the ground truth

and predicted NOCS maps.

Object Symmetry: Many common household objects

(e.g., bottle) exihibit symmetry about an axis. Our NOCS

representation does not take symmetries into account which

resulted in large errors for some object classes. To mit-

igate this issue, we introduce a variant of our loss func-

tion that takes symmetries into account. For each cate-

gory in our training data, we define an axis of symme-

try. Pre-defined rotations about this axis result in NOCS

maps that produce identical loss function values. For in-

stance, a cuboid with a square top has a vertical symmetry

axis. Rotation by angles, θ = {0◦, 90◦, 180◦, 270◦} on this

axis leads to identical NOCS maps and therefore have the

same loss. For non-symmetric objects, θ = 0◦ is unique.

We found that a |θ| ≤ 6 is enough to handle most sym-

metric categories. We generate ground truth NOCS maps,

{ỹ1, . . . , ỹ|θ|}, that are rotated |θ| times along the symme-

try axis. We then define our symmetric loss function, Ls as

Ls = mini=1,...,|θ| L (ỹi,y
∗) , where y∗ denotes the pre-

dicted NOCS map pixel (x, y, z).
Training Protocol: We initialize the ResNet50 back-

bone, RPN and FPN with the weights trained on 2D in-

stance segmentation task on the COCO dataset[31]. For all

heads, we use the initialization technique proposed in [23].

We use a batch size of 2, initial learning rate of 0.001, and

an SGD optimizer with a momentum of 0.9 and a 1×10−4

weight decay. In the first stage of training, we freeze the

ResNet50 weights and only train the layers in the heads, the

RPN and FPN for 10K iterations. In the second stage, we

freeze ResNet50 layers below level 4 and train for 3K iter-

ations. In the final stage, we freeze ResNet50 layers below

level 3 for another 70K iterations. When switching to each

stage, we decrease the learning rate by a factor of 10.

5.2. 6D Pose and Size Estimation

Our goal is to estimate the full metric 6D pose and di-

mensions of detected objects by using the NOCS map and

input depth map. To this end, we use the RGB-D camera

intrinsics and extrinsics to align the depth image to color

image. We then apply the predicted object mask to obtain a

3D point cloud Pm of the detected object. We also use the

NOCS map to obtain a 3D representation of Pn. We then

estimate the scales, rotation, and translation that transforms

the Pn to Pm. We use the Umeyama algorithm [45] for this

7 dimensional rigid transformation estimation problem, and

RANSAC [15] for outlier removal. Please see the supple-

mentary materials for qualitative results.

6. Experiments and Results

Metrics: We report results on both 3D object detection,

and 6D pose estimation metrics. To evaluate 3D detection

and object dimension estimation, we use the intersection

over union (IoU) metric with a threshold of 50% [16]. For

6D pose estimation, we report the average precision of ob-

ject instances for which the error is less than m cm for trans-

lation and n◦ for rotation similar to [37, 29]. We decouple

object detection from 6D pose evaluation since it gives a

clearer picture of performance. We set a detection thresh-

old of 10% bounding box overlap between prediction and

ground truth to ensure that most objects are included in the

evaluation. For symmetric object categories (bottle, bowl,

and can), we allow the predicted 3D bounding box to freely

rotate around the object’s vertical axis with no penalty. We

perform special processing for the mug category by making

it symmetric when the handle is not visible since it is hard to

judge its pose in such cases, even for humans. We use [50]

to detect handle visibility for CAMERA data and manually

annotate for real data.

Baselines: Since we know of no other methods for

category-level 6D pose and size estimation, we built our

own baseline to help compare performance. It consists of

the Mask R-CNN network trained on the same data but

without the NOCS map heads. We use the predicted in-

stance mask to obtain a 3D point cloud of the object from

the depth map. We align (using ICP [3]) the masked point

cloud to one randomly chosen model from the correspond-

ing category. For instance-level 6D pose estimation, we

present results that can readily be compared with [49].
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Evaluation Data: All our experiments use one or both

of these evaluation datasets: (1) the CAMERA valida-

tion dataset (CAMERA25), and (2) a 2.75K real dataset

(REAL275) with ground truth annotations. Since real data

is limited, this allows us to investigate performance without

entangling pose estimation and domain generalization.

6.1. CategoryLevel 6D Pose and Size Estimation

Test on CAMERA25: We report category-level results

for our method with the CNN trained only on the 275K

CAMERA training set (CAMERA*). We test performance

on CAMERA25 which is composed of objects and back-

grounds completely unseen during training. We achieve a

mean average precision (mAP) of 83.9% for 3D IoU at 50%

and an mAP of 40.9% for the (5◦, 5 cm) metric. (5◦, 5 cm)

is a strict metric for estimating 6D pose even for known in-

stances [49, 5, 35]. See Figure 6 for more details.

Figure 6. 3D detection and 6D pose estimation results on CAM-

ERA25 when our network is trained on CAMERA*.

Test on REAL275: We then train our network on a com-

bination of CAMERA*, the real-world dataset (REAL*),

with weak supervision from COCO [31], and evaluate it on

the real-world test set. Since COCO does not have ground

truth NOCS maps, we do not use NOCS loss during train-

ing. We use 20K COCO images that contain instances in

our categories. To balance between these datasets, for each

minibatch we select images from the three data sources,

with a probability of 60% for CAMERA*, 20% for COCO,

and 20% for REAL*. This network is the best performing

model which we use to produce all visual results (Figure 8).

In the real test set, we achieved an mAP of 76.4% for

3D IoU at 50%, an mAP 10.2% for the (5◦, 5 cm) met-

ric, and an mAP of 23.1% for (10◦, 5 cm) metric. In com-

parison, the baseline algorithm (Mask RCNN + ICP align-

ment) achieves an mAP of 43.8% for 3D IoU at 50%,and

an mAP of 0.8% for both (5◦, 5 cm) and (10◦, 5 cm) met-

ric, which is significantly lower than our algorithm’s perfor-

mance. Figures 7 shows more detailed analysis and com-

parison. This experiment demonstrates that by learning

to predict the dense NOCS map, our algorithm is able to

provide additional detailed information about the object’s

shape, parts and visibility, which are all critical for correct

estimation the object’s 6D pose and sizes.

Figure 7. Result on REAL275 test set, average precision (AP) vs.

different thresholds on 3D IoU, rotation error, and translation error.

6.2. Ablation Studies

CAMERA Approach: To evaluate our CAMERA data

generation approach, we conducted an experiment with our

network trained on different training data combinations. For

this experiment, we set the network architecture to regress

the NOCS maps. Table 1 shows the performance of our

network on the REAL275 test set.

We also created a variant of CAMERA* where the im-

ages are composited in a non-context aware manner (de-

noted by B in Table 1). As shown in the table, using only

CAMERA* results in poor performance due to domain gap.

We see progressive improvements on adding COCO and

REAL*. Training only on REAL*, or REAL* and COCO

tend to overfit to the training data due to small dataset size.

Training on CAMERA* with COCO and REAL* lead to

the best results. Furthermore, we see that non-context aware

data results in worse performance than context-aware data

indicating that our CAMERA approach is useful.

Data mAP

CAMERA* COCO REAL* 3D25 3D50

5 ◦ 10◦ 10◦

5 cm 5 cm 10cm

C 51.7 36.7 3.4 20.4 21.7

C X 57.6 41.0 3.3 17.0 17.1

X 61.9 47.5 6.5 18.5 18.6

X X 71.0 53.0 7.6 16.3 16.6

C X 79.2 69.7 6.9 20.0 21.2

C X X 79.6 72.4 8.1 23.4 23.7

B 42.6 36.5 0.7 14.1 14.2

B X X 79.1 71.7 7.9 19.3 19.4

Table 1. Validating CAMERA approach. C represents the unmodi-

fied CAMERA* data while B denotes a non-context aware version

of CAMERA*. We report AP for 5 different metrics, where 3D25

and 3D25 represent 3D IoU at 25% and 50%, respectively.

Classification vs. Regression: On both CAMERA25

and REAL275, pixel classification is consistently better

than regression. Using 32 bins is best for pose estimation

while 128 bins is better on detections (see Table 2).

Symmetry Loss: This loss is critical for many everyday

symmetric object categories. To study the effect of symme-

try loss, we conduct ablation experiments on the regression
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Figure 8. Qualitative result on REAL275 test set. Top row shows the predicted NOCS maps color coded. Bottom row shows the quality of

6D pose (axis) and size estimation (red tight bounding box).

network on both CAMERA25 and REAL275 set. Table 2

shows that the pose accuracy degrades significantly, partic-

ularly for 6D pose, if the symmetry loss is not used.

Data Network

mAP

3D25 3D50

5 ◦ 10◦ 10◦

5 cm 5 cm 10cm

CAMERA25

Reg. 89.3 80.9 29.2 53.7 54.5

Reg. w/o Sym. 86.6 79.9 14.7 38.5 40.0

32 bins 91.1 83.9 40.9 64.6 65.1

128 bins 91.4 85.3 38.8 61.7 62.2

REAL275

Reg. 79.6 72.4 8.1 23.4 23.1

Reg. w/o Sym. 82.7 73.8 1.3 9.1 9.3

32 bins 84.8 78.0 10.0 25.2 25.8

128 bins 84.9 80.5 9.5 26.7 26.7

Table 2. Network architectures and losses. Reg. represents re-

gression network trained with soft L1 loss; 32 bins and 128 bins

represent classification networks with the corresponding numbers

of bins, respectively.

6.3. Instancelevel 6D Pose Estimation

We also evaluate our method on instance-level 6D pose

estimation task on OccludedLINEMOD [25] and compare

with PoseCNN [49]. The OccludedLINEMOD dataset has

9 object instances and provides a CAD model for each in-

stance. It has 1214 images with annotated ground truth 6D

pose. We follow the protocols from [44, 26] and randomly

select 15% of the dataset as training images. We then gen-

erate 15000 synthetic images using the technique described

in Section 4.

Figure 9. Result on OcculudedLINEMOD. Here we show the av-

erage precision (AP) vs. different thresholds on 3D IoU, rotation

error, and translation error.

Using 32-bin classification network, we achieve a de-

tection rate of 94.7%, an mAP of 88.4% for 3D IoU at

50%, an mAP 13.9% for the (5◦, 5 cm) metric, and an

mAP of 33.5% for (10◦, 5 cm) metric. This is substan-

tially higher than PoseCNN [49] which only achieves an

mAP of 1.7% without iterative pose refinement (reported in

[29]). Figure 9 provide a more detailed analysis. This ex-

periment demonstrates that while our approach designed for

category-level pose estimation, it can also achieve state-of-

the-art performance on standard 6D pose estimation bench-

marks.

With the 2D projection metric, which measures the aver-

age pixel distance between ground truth and estimated ob-

ject poses, we achieve 30.2% mAP on 2D projection at 5

pixel. Our method significantly outperforms PoseCNN [49]

by a large margin, which reported 17.2% mAP on 2D pro-

jection at 5 pixel in [29]. Please see the supplementary doc-

ument for detailed comparison.

Limitations and Future Work: To our knowledge, ours

is the first approach to solve the category-level 6D pose and

size estimation problem. There are still many open issues

that need to be addressed. First, in our approach, the pose

estimation is conditioned on the region proposals and cat-

egory prediction which could be incorrect and negatively

affect the results. Second, our approach rely on the depth

image to lift NOCS prediction to real-world coordinates.

Future work should investigate estimating 6D pose and size

directly from RGB images.

7. Conclusion

We presented a method for category-level 6D pose
and size estimation of previously unseen object instances.
We presented a new normalized object coordinate space
(NOCS) that allows us to define a shared space with consis-
tent object scaling and orientation. We propose a CNN that
predicts NOCS maps that can be used with the depth map to
estimate the full metric 6D pose and size of unseen objects
using a pose fitting method. Our approach has important
applications in areas like augmented reality, robotics, and
3D scene understanding.
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