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Abstract—A source submits status update jobs to a service fa-
cility for processing and delivery to a monitor. The status updates
belong to service classes with different service requirements. We
model the service requirements using a hyperexponential service
time model. To avoid class-specific bias in the service process,
the system implements an M/G/1/1 blocking queue; new arrivals
are discarded if the server is busy. Using an age-of-information
(AoI) metric to characterize timeliness of the updates, a stochastic
hybrid system (SHS) approach is employed to derive the overall
average AoI and the average AoI for each service class. We
observe that both the overall AoI and class-specific AoI share
a common penalty that is a function of the second moment of
the average service time and they differ chiefly because of their
different arrival rates. We show that each high-probability service
class has an associated age-optimal update arrival rate while low-
probability service classes incur an average age that is always
decreasing in the update arrival rate.

I. INTRODUCTION

Consider a system in which time-stamped raw updates are

processed by a service facility for delivery to a monitor.

The updates belong to different service time classes – some

updates can be processed quickly, while others require longer

service times. Perhaps an update occasionally needs a very

long service time.

One such example is an augmented reality (AR) system in

which images are processed and analyzed, and an update in

the form of an image augmentation is returned to the user.

Object recognition is typically a key step in a broad range of

augmented reality applications. To find a particular object in a

given image input, the system extracts key feature points from

the image input, and then matches all the feature points with

those of the particular object. With a high matching ratio, it

assumes the object has been detected [1], [2]. However, when

there are a large number of objects in the input, there will be

numerous feature points and this will increase the matching

complexity and thus the processing time.

In the AR system, time-stamped images are jobs that are the

input to a processing system. When an input job is processed,

the output, namely an image augmentation, represents an

update. The time-stamp of the update is the time-stamp of the

image from which it was derived. As timeliness is essential in

an AR system, we use the Age-of-Information (AoI) metric

[3] for performance evaluation. Specifically, if the newest

processed update at time t has time-stamp u(t), the age at

the monitor is ∆(t) = t− u(t).
To model such systems, we adopt a hyperexponential ser-

vice time model [4] in which the service time belongs to one of

c classes such that the service time is exponential (µi) with

probability pi, i = 1, . . . , c. Without loss of generality, we

assume the service rates are ordered such that µ1 ≥ · · · ≥ µc.

While service times in a class are memoryless, the composition

of the service time classes yields a service time with memory;

the longer a service time lasts, the more likely it is that the

service time was chosen from a class i with small µi.

We note that the hyperexponential model has been used

to model long-tailed distributions [4]; specifically, a Weibull

distribution was closely approximated by a hyperexponential

PDF with c = 20 service classes and corresponding service

rates that varied over 11 orders of magnitude. While such a

range of service times seems likely to be incompatible with

a timely updating system, this example serves to demonstrate

the flexibility of the hyperexponential model.

In prior work on updates with non-memoryless service times

[5]–[7], it has been observed that average AoI can be reduced

substantially by a simple preemption-in-service mechanism.

Preemption can replace an update that becomes stale while in

service with a fresh update and this can substantially reduce

the AoI. However, in the context of multiple classes of updates,

it is unclear whether this is a desirable approach. Specifically,

class i updates and class j updates may be poor substitutes for

one another. In the AR system example, a larger processing

time would be consistent with a complex image with a large

number of objects to classify. In this case, more images to

classify would suggest the job is more important.

Based on these considerations, we believe that reducing

AoI via preemption in service may be inappropriate for some

applications. In particular, preemption in service will be biased

in that updates with longer service times are more likely to

be preempted. On the other hand, queueing of updates also

remains undesirable. Timeliness is improved when the system

avoids processing updates that have become stale in a queue.

Hence, this work focuses on an M/G/1/1 queueing model with

blocking. If the server is busy, new arrivals are blocked and

discarded. This mechanism avoids queueing but also avoids a

bias against jobs with long service times. Whether an arriving

job goes into service (or is blocked) is independent of its

service class. Moreover, once a job goes into service, it is

guaranteed to finish processing, independent of its class.

A. Related Work

Prior work [8] on the AoI analysis of multi-class queueing

systems has examined peak AoI (PAoI) in multiclass M/G/1

and M/G/1/1 queues. Each traffic class is described by its

arrival rate, and the first and second moments of its service
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Fig. 1. The updating system with hyperexponetial service .

time, and arrival rates are optimized to minimize maxi Ci(Ai),
where Ci(Ai) is the cost of stream i having PAoI of Ai. In a

study of the average AoI for multiple streams arriving at an

M/G/1/1 queue with preemption [9], all streams have the same

general service time and it is shown that increasing the arrival

rate for one class can reduce its AoI, but at the expense of

increased AoI for other customers.

This work differs from these prior M/G/1/1 studies in

that updates belong to different service classes but they all

originate from the same source. The overall update rate λ is

a controllable input but the probability pi that an arriving

job is class i is a property of the application scenario. In

the AR example, the service rates of the classes would

depend on the complexity and variety of the scenario-specific

images. Thus we assume that the pi and µi parameters of the

hyperexponential model characterize the application scenario.

However, the updating system does have the flexibility to adapt

the overall job submission rate λ and this specifies the arrival

rate λi = λpi of class i jobs.

B. Paper Summary

The hyperexponential model permits us to employ the

method of stochastic hybrid systems (SHS) for the analysis of

age. While AoI analysis of the M/G/1/1 blocking queue has

previously appeared [7], SHS enables analysis of the average

AoI for each update class.

In Section II, we provide a short introduction to the SHS

method. SHS analysis of the hyperexponential service system

appears in Section III with derivations of the overall age in

Section III-A and the class-specific age in Section III-B. The

optimal update arrival rate is studied in Section IV and the

paper concludes with a discussion of open issues in Section V.

II. SHS FOR AOI: BACKGROUND

A stochastic hybrid system (SHS) [10] has state [q(t),x(t)]
such that q(t) ∈ Q = {0, . . . ,m} is a continuous-time

finite-state Markov chain and x(t) ∈ R
n is a real-valued

non-negative row vector that describes the continuous-time

evolution of a collection of age-related processes. We will refer

to x(t) as the age vector or AoI process.

For AoI analysis, the SHS approach was introduced in [11],

where it was shown that age tracking can be implemented as a

simplified SHS with non-negative linear reset maps in which

the continuous state is a piecewise linear process [12], a special

case of piecewise deterministic processes [13], [14]. In this

case, the SHS approach yielded a system of first order ordinary

differential equations describing the temporal evolution of the

expected value of the age process. For finite-state systems, this

led to a set of age balance equations and simple conditions [11,

Theorem 4] under which E[x(t)] converges to a fixed point.

In this work, we follow [11], but with a small modification

from [15] in which the age vector tracks the ages of monitors

at specified system locations. We now summarize the basics

of this simplified SHS. For the continuous state x(t), the jth

component xj(t) is the age at an observer/monitor that sees

time-stamped updates that pass through a position j in the

system or network. In short, xj is the age of the freshest update

observed at position j. An observer sees new (fresher) updates

arrive in transitions of the discrete state. In the absence of a

fresher arriving update, the age xj(t) at each observer grows at

unit rate. Thus, in each discrete state q(t) = q, the continuous

state evolves according to ẋ(t) = 1 = [1 1 · · · 1].

In the graphical representation of the Markov chain q(t),
each state q ∈ Q is a node and each transition l is a directed

edge (ql, q
′
l) with transition rate λ(l)δql,q(t). The Kronecker

delta function δql,q ensures that transition l occurs only in state

ql. For each transition l, there is transition reset mapping that

can induce a discontinuous jump in the continuous state x(t).
For AoI analysis, we employ a linear mapping of the form

x
′ = xAl. That is, transition l causes the system to jump

to discrete state q′l and resets the continuous state from x to

x
′ = xAl. For tracking of the age process, the transition reset

maps are binary: Al ∈ {0, 1}n×n
. The linear mappings Al

will depend on the specific network system and the definition

of the age vector x(t).

The transition rates λ(l) describe the continuous-time

Markov chain for q(t) but there are some differences. Unlike

an ordinary continuous-time Markov chain, the SHS may

include self-transitions in which the discrete state is unchanged

because a reset occurs in the continuous state. Furthermore,

for a given pair of states i, j ∈ Q, there may be multiple

transitions l and l′ in which the discrete state jumps from i to

j but the transition maps Al and Al′ are different.

It will be sufficient for average age analysis to define for

all q̂ ∈ Q,

πq̂(t) = E
[

δq̂,q(t)
]

, (1a)

vq̂j(t) = E
[

xj(t)δq̂,q(t)
]

, 1 ≤ j ≤ n, (1b)

and the vector functions

vq̂(t) = [vq̂1(t), . . . , vq̂n(t)] = E
[

x(t)δq̂,q(t)
]

. (1c)

We note that πq̂(t) = E
[

δq̂,q(t)
]

= P[q(t) = q̂] is simply the

probability of the discrete Markov state q̂.

We assume the Markov chain q(t) is ergodic since time-

average age analysis otherwise makes little sense. Un-

der this assumption, the state probability vector π(t) =
[π0(t) · · · πm(t)] always converges to the unique stationary

vector π̄ = [π̄0 · · · π̄m] satisfying

π̄q̄

∑

l∈Lq̄

λ(l) =
∑

l∈L′

q̄

λ(l)π̄ql , q̄ ∈ Q, (2a)

∑

q̄∈Q

π̄q̄ = 1. (2b)

If π(t) = π̄, it is shown [11] that v(t) = [v0(t) · · · vm(t)]
obeys a system of first order differential equations. When this



system is stable, each vq̄(t) = E
[

x(t)δq̄,q(t)
]

converges to a

limit v̄q̄ as t → ∞. In this case,

E[x] ≡ lim
t→∞

E[x(t)] = lim
t→∞

∑

q̄∈Q

E
[

x(t)δq̄,q(t)
]

=
∑

q̄∈Q

v̄q̄ (3)

is the vector of average ages at the set of observers. With

L′
q̄ = {l ∈ L : q′l = q̄}, Lq̄ = {l ∈ L : ql = q̄} (4)

denoting the respective sets of incoming and outgoing transi-

tions for each state q̄, the following theorem provides a simple

way to calculate this average age vector.

Theorem 1: [11, Theorem 4] If the discrete-state Markov

chain q(t) is ergodic with stationary distribution π̄ and we can

find a non-negative solution v̄ = [v̄0 · · · v̄m] such that

v̄q̄

∑

l∈Lq̄

λ(l) = 1π̄q̄ +
∑

l∈L′

q̄

λ(l)
v̄qlAl, q̄ ∈ Q, (5a)

then the vector of average ages is given by

E[x] =
∑

q̄∈Q

v̄q̄. (5b)

In the next section, we use Theorem 1 to find both the

overall age and the class-specific ages for the updating system

with hyperexponential service times.

III. SHS ANALYSIS

The SHS’s for tracking the overall age or the class-specific

age have much in common. We start by describing these

common elements. In both cases, we define x1(t) as the age

of an observer that sees fresh updates that enter service and

x2(t) as the age at the monitor that sees processed jobs that

complete service. Thus n = 2 and the continuous state is

x = [x1 x2].
The discrete state space is Q = {0, . . . , c} such that the

server is idle in state 0 and a class i job is in service in

states i ∈ {1, . . . , c}. The service is non-preemptive but when

the server is busy, new arriving jobs are discarded to prevent

queueing from causing jobs to become stale.

Associated with each state i > 0 is an incoming arrival

transition l = 2i− 1 from state 0 of rate λi = piλ that marks

a class i job going into service. Similarly, state i also has a

rate µi departure transition, with index l = 2i, back to the

idle state for the corresponding service completion. For non-

preemptive processing with discarding of new arrivals when

the server is busy, the SHS Markov chain is shown in Figure 2.

When a transition l occurs, the continuous state jumps from

x to x
′ = xAl. The SHS’s for the overall age and the class-

specific age differ in how x(t) is defined. We now describe

these differences.

A. Overall Age

For the overall average age, every processed job, no matter

what class, yields an update that reduces the age. These

transitions are shown in Table I. We see from the table that

Al is the same matrix A for each arrival transition l. In

the mapping x
′ = xA, the age at the input to the service

0

2 · · ·1 n

1

2

3 4
2n− 1

2n

Fig. 2. SHS Markov chain for the M/G/1/1 blocking system with hyperex-
ponential service times.

facility is set to x′
1 = 0 since the new update is fresh.

However, x′
2 is unchanged since no arrival completes service

in the transition. Similarly, Al is the same matrix D for

each departure transition. Specifically, the transition x
′ = xD

leaves x′
1 = x1 unchanged but resets x′

2 = x1 because the age

x1 update is delivered to the monitor. To summarize,

Al =

{

A = [ 0 0
0 1 ] l = 2i− 1,

D = [ 1 1
0 0 ] l = 2i.

(6)

To employ Theorem 1, we first observe that π̄iµi = π̄0λi,

implying π̄i = π̄0ρi, where ρi = λi/µi is the offered load of

class i jobs. In terms of the total offered load

ρ =

c
∑

i=1

ρi, (7)

(2b) implies the stationary state probabilities are

π̄0 =
1

1 + ρ
, π̄i =

ρi
1 + ρ

, i > 0. (8)

From (5a), we have at q̄ = 0 and at q̄ = i ∈ {1, . . . , c} that

v̄0λ = π̄01 +

c
∑

i=1

µiv̄iD, (9)

v̄iµi = π̄i1 + λiv̄0A. (10)

Substituting (10) into (9) and observing that 1D = 1 and

AD = 0, it follows from (8) that

v̄0 =
1

λ

(

1

1 + ρ
+

c
∑

i=1

ρi1

1 + ρ

)

=
1

λ
. (11)

Since 1A = [0 1], it follows from (10) and (11) that

v̄i =
1

µi

(

ρi1

1 + ρ
+

λi

λ
[0 1]

)

. (12)

From Theorem 1, the average ages of observers at the input

and output of the service facility are

E[x] =
c
∑

i=0

v̄i =
1

λ
+

1

1 + ρ

c
∑

i=1

ρi
µi

+
ρ

λ
[0 1]. (13)

Thus, the average age at the monitor is

∆ = E[x2] =
1 + ρ

λ
+

c
∑

i=1

ρi
1 + ρ

1

µi

. (14)



l ql → q′l λ(l)
xAl Al vqlAl

1 0 → 1 λ1 [ 0 x2] [ 0 0
0 1 ] [ 0 v02]

2 1 → 0 µ1 [x1 x1] [ 1 1
0 0 ] [v11 v11]

...
...

...
...

2n− 1 0 → n λn [ 0 x2] [ 0 0
0 1 ] [ 0 v02]

2n n → 0 µn [x1 x1] [ 1 1
0 0 ] [vn1 vn1]

TABLE I
SHS TRANSITIONS FOR TRACKING THE OVERALL AGE IN THE MARKOV

CHAIN OF FIG. 2.

We see in (14) that job class n with the smallest service rate

µn can dominate the average age. Even though there is no

queueing induced by the “slow truck” effect, an occasional

very long service time can have an outsize effect on the

average age. For comparison, we now analyze the class-

specific AoI.

B. Class-specific Age

Under class-specific age tracking, the continuous state is

used to track only class k jobs. Thus x1(t) is now the age

of an observer that sees fresh class k jobs that enter service

and x2(t) is the age at the monitor that sees processed class

k jobs that complete service. The discrete Markov chain is

unchanged; in state 0, the server is idle and in state i > 0 a

class i job is in service. The non-preemptive blocking queue

service model is unchanged.

The transition reset maps Al have changed because the age

process we track has changed. The new transition reset maps

Al are now shown in Table II. These transitions are shown in

Table II. Using B−k = {1, . . . , n}\{k} to denote the set of

states in which the server is busy with a job not in class k, we

see that continuous state x does not change for transitions into

or out of states q̄ ∈ B−k because these state transitions involve

updates other than those in the targeted class k. However, for

class k arrivals, the transitions into state k reset x1 to x′
1 = 0

since it marks a fresh class k arrival. Similarly a departure

from state k marks a delivery of a class k update to the monitor

and thus x2 is reset to x′
2 = x1, the age of the just delivered

update. Thus,

Al =















A = [ 0 0
0 1 ] , l = 2k − 1,

D = [ 1 1
0 0 ] , l = 2k,

I = [ 1 0
0 1 ] , l = 2i− 1, i ∈ B−k,

I = [ 1 0
0 1 ] , l = 2i, i ∈ B−k.

(15)

To employ Theorem 1, we first observe that the state probabil-

ities π̄i are unchanged and given by (8). We note that appying

(5a) to (15) at q̄ = 0 yields

v̄0λ = π̄01 + µkv̄kD+
∑

i∈B−k

µiv̄iI. (16)

At q̄ = k and q̄ = i ∈ B−k, (5a) and (15) imply

v̄kµk = π̄k1 + λkv̄0A, (17a)

v̄iµi = π̄i1 + λiv̄0I, i ∈ B−k. (17b)

Since AD = 0, it follows from applying (17) to (16) that

l ql → q′l λ(l)
xAl Al vqlAl

2i− 1 0 → i λi [x1 x2] [ 1 0
0 1 ] [v01 v02]

2i i → 0 µ1 [x1 x2] [ 1 0
0 1 ] [vi1 vi2]

2k − 1 0 → k λk [ 0 x2] [ 0 0
0 1 ] [ 0 v02]

2k k → 0 µk [x1 x1] [ 1 1
0 0 ] [vk1 vk1]

TABLE II
SHS TRANSITIONS FOR TRACKING THE CLASS k AGE IN THE MARKOV

CHAIN OF FIG. 2. NOTE THAT i ∈ B
−k REFERS TO ANY CLASS i 6= k.

v̄0λ = π̄01 + π̄k1D+
∑

i∈B−k

(π̄i1 + λiv̄0). (18)

Since π̄k1D = π̄k1, it follows from (8) that

v̄0 =
1

λ−∑i∈B−k
λi

=
1

λk

. (19)

Since 1A = [0 1], applying (8) and (19) to (17) yields

v̄k =
1

µk

[

ρk1

1 + ρ
+ [0 1]

]

(20a)

v̄i =
1

µi

ρi1

1 + ρ
+

ρi
λk

1. (20b)

The average age of class k updates at the monitor is

∆k = E[x2] =

c
∑

i=0

v̄i2 =
1 + ρ

λk

+

c
∑

i=1

ρi
1 + ρ

1

µi

. (21)

Just as we saw for the overall average age (14), see in (21) that

job class n with the smallest service rate µn can still dominate

the average age. We also note that if p1 = · · · = pn, then the

average age ∆k for each class k will be the same. This may

be surprising inasmuch as the classes can have very different

service times.

However, what is perhaps most striking is the similarity of

the overall age ∆ in (14) and the class specific age ∆k in

(21). In both cases, there are two terms; the second term is a

common age penalty function while the first depends only on

the update arrival rate.

IV. OPTIMIZING THE UPDATE ARRIVAL RATE

We now examine how the the arrival rate λ affects the both

the overall and class-specific ages. We start by observing that

δ1 =

c
∑

i=1

pi
µi

, δ2 = 2

c
∑

i=1

pi
µ2
i

(22)

are the first and second moments of the hyperexponential

service time. With this notation, the overall age in (14) is

∆ = δ1

[

1 + λδ1
λδ1

+
1

2

λδ1
1 + λδ1

δ2
δ21

]

. (23)

Defining x = λδ1/(1+λδ1), we observe that all x ∈ [0, 1) are

feasible by selection of λ ≥ 0. Setting d∆/dx = 0 at x = x∗,

we have

x∗ =
√

2δ21/δ2. (24)
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Fig. 3. Class-specific average ages ∆k as a function of the arrival rate λ.
The optimal λ for a specific class k is marked with ◦ if it exists.

If δ2 > 2δ21 , then x∗ < 1 and the age-minimizing arrival rate

λ∗ exists. In short, there is an age-minimizing arrival rate when

the coefficient of variation of the service time is sufficiently

large. On the other hand, if δ2 ≤ 2δ21 , then the overall age is

a decreasing function λ and is minimized as λ → ∞. In this

limit, the system effectively operates as a just-in-time system

in which a fresh update goes into service immediately after a

service completion.

We note that this result has been previously reported in [7] in

the general M/G/1/1 blocking queue.1 Nevertheless, we repeat

this earlier result in order to contrast it to the class-specific

scenario. The class-specific age ∆k in (21) can be written as

∆k = δ1

[

1 + λδ1
λδ1

1

pk
+

1

2

λδ1
1 + λδ1

δ2
δ21

]

. (25)

In this case, setting d∆k/dx = 0 at x = x∗
k yields

x∗
k =

√

2δ21
δ2pk

=
x∗

√
pk

. (26)

For class k updates, there is an age-optimal finite arrival rate

if pkδ2 > 2δ21 and this optimal rate increases as the probability

pk decreases. However, this rate will be suboptimal for other

classes. Moreover, an update class k with pk ≤ 2δ21/δ2 will

prefer λ to be as large as possible.

An example of these tradeoffs appears in Fig. 3. The age-

optimal arrival rate λ is finite for classes 1 and 2. For class 1
with the highest probability p1 = 0.7, the optimal arrival rate

is λ∗ ≈ 0.07. This is suboptimal for class 3 with the smallest

probability p3 = 0.1 as the age ∆3 is a decreasing function

of λ.

V. CONCLUSION

This work reports on AoI analysis of an update processing

system in which updates belonging to multiple service classes

arrive as a rate λ Poisson process and new jobs are discarded

1The optimality of finite λ is analagous to results in [16], [17] which found
that waiting before submitting an update to a non-preemptive system could
outperform the just-in-time policy, particularly when short service times have
high probability.

when the server is busy. With a hyperexponential service time

model to describe these classes, we were able to use SHS

analysis to describe the overall average age and the class-

specific average age.

We observed there is a tension in the system in that low

probability service classes desire the overall arrival rate to be

as high as possible while higher probability classes benefit

from class-specific tuning of the update rate. While this is a

somewhat ambiguous conclusion, it highlights the need for

experimental characterization of updating applications. For

example, if an application enables arriving updates to be

tagged by service class or to be identified by initial pre-

processing, the service facility could implement class-specific

policies for admission and preemption. However, the efficacy

of these policies will depend on properties of that application.
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