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Abstract
We present a blended conditional gradient ap-
proach for minimizing a smooth convex function
over a polytope P , combining the Frank–Wolfe
algorithm (also called conditional gradient) with
gradient-based steps, different from away steps
and pairwise steps, but still achieving linear con-
vergence for strongly convex functions, along
with good practical performance. Our approach
retains all favorable properties of conditional gra-
dient algorithms, notably avoidance of projections
onto P and maintenance of iterates as sparse con-
vex combinations of a limited number of extreme
points of P . The algorithm is lazy, making use
of inexpensive inexact solutions of the linear pro-
gramming subproblem that characterizes the con-
ditional gradient approach. It decreases measures
of optimality rapidly, both in the number of itera-
tions and in wall-clock time, outperforming even
the lazy conditional gradient algorithms of (Braun
et al., 2017). We also present a streamlined ver-
sion of the algorithm that applies when P is the
probability simplex.

1. Introduction
A common paradigm in convex optimization is minimiza-
tion of a smooth convex function f over a polytope P .
The conditional gradient (CG) algorithm, also known as
“Frank–Wolfe” (Frank & Wolfe, 1956), (Levitin & Polyak,
1966) is enjoying renewed popularity because it can be im-
plemented efficiently to solve important problems in data
analysis. It is a first-order method, requiring access to gradi-
ents∇f(x) and function values f(x). In its original form,
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CG employs a linear programming (LP) oracle to minimize
a linear function over the polytope P at each iteration. The
cost of this operation depends on the complexity of P .

In this work, we describe a blended conditional gradient
(BCG) approach, which takes one of several types of steps
on the basis of the gradient∇f at the current point. Our ap-
proach maintains an “active vertex set,” consisting of some
solutions from previous iterations. Building on (Braun et al.,
2017), BCG uses a “weak-separation oracle” to find a vertex
of P for which the linear objective attains some fraction
of the reduction in f promised by the LP oracle, typically
by searching among the current set of active vertices. If no
vertex yielding acceptable reduction can be found, the LP
oracle used in the original FW algorithm may be deployed.
On other iterations, BCG employs a “simplex descent ora-
cle,” which takes a step within the convex hull of the active
vertices, yielding progress either via reduction in function
value (a “descent step”) or via culling of the active vertex
set (a “drop step”). The size of the active vertex set typi-
cally remains small, which benefits both the efficiency of
the method and the “sparsity” of the final solution (i.e., its
representation as a convex combination of a relatively small
number of vertices).

BCG has similar theoretical convergence rates to several
other variants of CG that have been studied recently, in-
cluding pairwise-step and away-step variants and the lazy
variants of (Braun et al., 2017). In several cases, we observe
better empirical convergence for BCG than for these other
variants. While the lazy variant of (Braun et al., 2017) has
an advantage over baseline CG when the LP oracle is expen-
sive, our BCG approach consistently outperforms the other
variants in more general circumstances, both in per-iteration
progress and in wall-clock time.

Related work

There has been an extensive body of work on conditional
gradient algorithms; see the excellent overview of (Jaggi,
2013). Here we review only those papers most closely
related to our work.

Our main inspiration comes from (Braun et al., 2017; Lan
et al., 2017), which introduces the weak-separation oracle
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as a lazy alternative to calling the LP oracle in every it-
eration. It is influenced too by the method of (Rao et al.,
2015), which maintains an active vertex set, using projected
descent steps to improve the objective over the convex hull
of this set, and culling the set on some steps to keep its size
under control. While the latter method is a heuristic with
no proven convergence bounds beyond those inherited from
the standard Frank–Wolfe method, our BCG algorithm em-
ploys a criterion for optimal trade-off between the various
steps, with a proven convergence rate equal to state-of-the-
art Frank–Wolfe variants up to a constant factor.

Our main result shows linear convergence of BCG for
strongly convex functions. Linearly convergent variants
of CG were studied as early as (Guélat & Marcotte, 1986)
for special cases and (Garber & Hazan, 2013) for the gen-
eral case (though the latter work involves very large con-
stants). More recently, linear convergence has been estab-
lished for various pairwise-step and away-step variants of
CG in (Lacoste-Julien & Jaggi, 2015), where the concept of
an active vertex set is used to improve performance. Other
memory-efficient decomposition-invariant variants were de-
scribed in (Garber & Meshi, 2016) and (Bashiri & Zhang,
2017). Modification of descent directions and step sizes,
reminiscent of the drop steps used in BCG, have been con-
sidered by (Freund & Grigas, 2016; Freund et al., 2017).
The use of an inexpensive oracle based on a subset of the
vertices of P , as an alternative to the full LP oracle, has
been considered in (Kerdreux et al., 2018b). (Garber et al.,
2018) proposes a fast variant of conditional gradients for
matrix recovery problems.

BCG is quite distinct from the fully-corrective Frank–Wolfe
algorithm (FCFW) (see, for example, (Holloway, 1974;
Lacoste-Julien & Jaggi, 2015)). Both approaches maintain
active vertex sets, generate iterates that lie in the convex
hulls of these sets, and alternate between Frank–Wolfe steps
generating new vertices and correction steps optimizing
within the current active vertex set. However, convergence
analyses of the FCFW algorithm assume that the correction
steps have unit cost, though they can be quite expensive in
practice, requiring multiple evaluations of the gradient∇f .
For BCG, by contrast, we assume only a single step of gra-
dient descent type having unit cost (disregarding cost of line
search). For further explanation of the differences between
BCG and FCFW, see computational results in Figure 12 and
discussion in Appendix D.

Contribution

Our contribution can be summarized as follows:

Blended Conditional Gradients (BCG). The BCG approach
blends different types of descent steps: the traditional CG
steps of (Frank & Wolfe, 1956), the lazified CG steps of
(Braun et al., 2017), and gradient descent steps over the

convex hull of the current active vertex set. It avoids projec-
tions onto P or onto the convex hull of the active vertices,
and does not use away steps and pairwise steps, which
are elements of other popular variants of CG. It achieves
linear convergence for strongly convex functions (see The-
orem 3.1), and O(1/t) convergence after t iterations for
general smooth functions. While the linear convergence
proof of the Away-step Frank–Wolfe Algorithm (Lacoste-
Julien & Jaggi, 2015, Theorem 1, Footnote 4) requires the
objective function f to be defined on the Minkowski sum
P − P + P , BCG does not need f to be defined outside
the polytope P . The algorithm has complexity comparable
to pairwise-step or away-step variants of conditional gra-
dients, both in per-iteration running time and in the space
required to store vertices and iterates. It is affine-invariant
and parameter-free; estimates of such parameters as smooth-
ness, strong convexity, or the diameter of P are not required.
It maintains iterates as (often sparse) convex combinations
of vertices, typically much sparser than the baseline CG
methods, a property that is important for some applications.
Such sparsity is due to the aggressive reuse of active ver-
tices, and the fact that new vertices are added only as a kind
of last resort. In wall-clock time as well as per-iteration
progress, our computational results show that BCG can be
orders of magnitude faster than competimg CG methods on
some problems.

Simplex Gradient Descent (SiGD). In Section 4, we de-
scribe a new projection-free gradient descent procedure for
minimizing a smooth function over the probability simplex,
which can be used to implement the “simplex descent oracle”
required by BCG.

Computational Experiments. We demonstrate the excel-
lent computational behavior of BCG compared to other
CG algorithms on standard problems, including video co-
localization, sparse regression, structured SVM training,
and structured regression. We observe significant compu-
tational speedups and in several cases empirically better
convergence rates.

Outline

We summarize preliminary material in Section 2, including
the two oracles that are the foundation of our BCG proce-
dure. BCG is described and analyzed in Section 3, establish-
ing linear convergence rates. The simplex gradient descent
routine, which implements the simplex descent oracle, is
described in Section 4. Our computational experiments
are summarized in Section 5; more extensive experiments
appear in Appendix D. Variants on the analysis and other
auxiliary materials are relegated to the appendix. We men-
tion in particular a variant of BCG that applies when P is
the probability simplex, a special case that admits several
simplifications and improvements to the analysis.
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2. Preliminaries
We use the following notation: ei is the i-th coordinate
vector, 1 := (1, . . . , 1) = e1 + e2 + · · · is the all-ones
vector, ‖·‖ denotes the Euclidean norm (`2-norm), D =
diam(P ) = supu,v∈P ‖u − v‖2 is the `2-diameter of P ,
and convS denotes the convex hull of a set S of points. The
probability simplex ∆k := conv{e1, . . . , ek} is the convex
hull of the coordinate vectors in dimension k.

Let f be a differentiable convex function. Recall that f is L-
smooth if f(y)−f(x)−∇f(x)(y−x) ≤ L‖y−x‖2/2 for
all x, y ∈ P . The function f has curvature C if f(γy+(1−
γ)x) ≤ f(x) + γ∇f(x)(y − x) +Cγ2/2, for all x, y ∈ P
and 0 ≤ γ ≤ 1. (Note that an L-smooth function always
has curvature C ≤ LD2.) Finally, f is strongly convex if
for some α > 0 we have f(y)− f(x)−∇f(x)(y − x) ≥
α‖y − x‖2/2, for all x, y ∈ P . We use the following fact
about strongly convex function when optimizing over P .
Fact 2.1 (Geometric strong convexity guarantee). (Lacoste-
Julien & Jaggi, 2015, Theorem 6 and Eq. (28)) Given a
strongly convex function f , there is a value µ > 0 called the
geometric strong convexity such that

f(x)−min
y∈P

f(y) ≤ (maxy∈S,z∈P ∇f(x)(y − z))2

2µ

for any x ∈ P and for any subset S of the vertices of P for
which x lies in the convex hull of S.

The value of µ depends both on f and the geometry of P .

2.1. Simplex Descent Oracle

Given a convex objective function f and an ordered finite
set S = {v1, . . . , vk} of points, we define fS : ∆k → R as
follows:

fS(λ) := f

(
k∑
i=1

λivi

)
. (1)

When fS is LfS -smooth, Oracle 1 returns an improving
point x′ in convS together with a vertex set S′ ⊆ S such
that x′ ∈ convS′.

Oracle 1 Simplex Descent Oracle SiDO(x, S, f)

Input: finite set S ⊆ Rn, point x ∈ convS, convex
smooth function f : convS → Rn;

Output: finite set S′ ⊆ S, point x′ ∈ convS′ satisfying
either

drop step: f(x′) ≤ f(x) and S′ 6= S

descent step:

f(x)−f(x′) ≥ [maxu,v∈S ∇f(x)(u−v)]2/(4LfS )

In Section 4 we provide an implementation (Algorithm 2)

of this oracle via a single descent step, which avoids pro-
jection and does not require knowledge of the smoothness
parameter LfS .

2.2. Weak-Separation Oracle

Oracle 2 Weak-Separation Oracle LPsepP (c, x,Φ,K)

Input: linear objective c ∈ Rn, point x ∈ P , accuracy
K ≥ 1, gap estimate Φ > 0;

Output: Either (1) vertex y ∈ P with c(x− y) ≥ Φ/K, or
(2) false: c(x− z) ≤ Φ for all z ∈ P .

The weak-separation oracle Oracle 2 was introduced in
(Braun et al., 2017) to replace the LP oracle traditionally
used in the CG method. Provided with a point x ∈ P ,
a linear objective c, a target reduction value Φ > 0, and
an inexactness factor K ≥ 1, it decides whether there ex-
ists y ∈ P with cx − cy ≥ Φ/K, or else certifies that
cx− cz ≤ Φ for all z ∈ P . In our applications, c = ∇f(x)
is the gradient of the objective at the current iterate x. Or-
acle 2 could be implemented simply by the standard LP
oracle of minimizing cz over z ∈ P . However, it allows
more efficient implementations, including the following.
(1) Caching: testing previously obtained vertices y ∈ P
(specifically, vertices in the current active vertex set) to see
if one of them satisfies cx − cy ≥ Φ/K. If not, the tradi-
tional LP oracle could be called to either find a new vertex of
P satisfying this bound, or else to certify that cx− cz ≤ Φ
for all z ∈ P , and (2) Early Termination: Terminating the
LP procedure as soon as a vertex of P has been discovered
that satisfies cx− cy ≥ Φ/K. (This technique requires an
LP implementation that generates vertices as iterates.) If
the LP procedure runs to termination without finding such
a point, it has certified that cx− cz ≤ Φ for all z ∈ P . In
(Braun et al., 2017) these techniques resulted in orders-of-
magnitude speedups in wall-clock time in the computational
tests, as well as sparse convex combinations of vertices for
the iterates xt, a desirable property in many contexts.

3. Blended Conditional Gradients
Our BCG approach is specified as Algorithm 1. We dis-
cuss the algorithm in this section and establish its con-
vergence rate. The algorithm expresses each iterate xt,
t = 0, 1, 2, . . . as a convex combination of the elements
of the active vertex set, denoted by St, as in the Pairwise
and Away-step variants of CG. At each iteration, the al-
gorithm calls either Oracle 1 or Oracle 2 in search of the
next iterate, whichever promises the smaller function value,
using a test in Line 6 based on an estimate of the dual gap.
The same greedy principle is used in the Away-step CG ap-
proach, and its lazy variants. A critical role in the algorithm
(and particularly in the test of Line 6) is played by the value
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Φt, which is a current estimate of the primal gap — the
difference between the current function value f(xt) and the
optimal function value over P . When Oracle 2 returns false,
the curent value of Φt is discovered to be an overestimate
of the dual gap, so it is halved (Line 13) and we proceed to
the next iteration. In subsequent discussion, we refer to Φt
as the “gap estimate.”

Algorithm 1 Blended Conditional Gradients (BCG)
Input: smooth convex function f , start vertex x0 ∈ P ,

weak-separation oracle LPsepP , accuracy K ≥ 1
Output: points xt in P for t = 1, . . . , T

1: Φ0 ← maxv∈P ∇f(x0)(x0 − v)/2 {Initial gap
estimate}

2: S0 ← {x0}
3: for t = 0 to T − 1 do
4: vAt ← argmaxv∈St

∇f(xt)v

5: vFW−St ← argminv∈St
∇f(xt)v

6: if∇f(xt)(v
A
t − vFW−St ) ≥ Φt then

7: xt+1, St+1 ← SiDO(xt, St) {either a drop step
or a descent step}

8: Φt+1 ← Φt
9: else

10: vt ← LPsepP (∇f(xt), xt,Φt,K)
11: if vt = false then
12: xt+1 ← xt
13: Φt+1 ← Φt/2 {gap step}
14: St+1 ← St
15: else
16: xt+1 ← argminx∈[xt,vt] f(x) {FW step, with

line search}
17: Choose St+1 ⊆ St ∪ {vt} minimal such that

xt+1 ∈ convSt+1.
18: Φt+1 ← Φt
19: end if
20: end if
21: end for

In Line 17, the active set St+1 is required to be minimal.
By Caratheodory’s theorem, this requirement ensures that
|St+1| ≤ dimP + 1. In practice, the St are invariably
small and no explicit reduction in size is necessary. The
key requirement, in theory and practice, is that if after a call
to Oracle SiDO the new iterate xt+1 lies on a face of the
convex hull of the vertices in St, then at least one element of
St is dropped to form St+1. This requirement ensures that
the local pairwise gap in Line 6 is not too large due to stale
vertices in St, which can block progress. Small size of the
sets St is crucial to the efficiency of the algorithm, in rapidly
determining the maximizer and minimizer of ∇f(xt) over
the active set St in Lines 4 and 5.

The constants in the convergence rate described in our
main theorem (Theorem 3.1 below) depend on a modified

curvature-like parameter of the function f . Given a vertex
set S of P , recall from Section 2.1 the smoothness parame-
ter LfS of the function fS : ∆k → R defined by (1). Define
the simplicial curvature C∆ to be

C∆ := max
S : |S|≤2 dimP

LfS (2)

to be the maximum of the LfS over all possible active sets.
This affine-invariant parameter depends both on the shape
of P and the function f . This is the relative smoothness
constant Lf,A from the predecessor of (Gutman & Peña,
2019), namely (Gutman & Peña, 2018, Definiton 2a), with
an additional restriction: the simplex is restricted to faces of
dimension at most 2 dimP , which appears as a bound on
the size of S in our formulation. This restriction improves
the constant by removing dependence on the number of
vertices of the polytope, and can probably replace the origi-
nal constant in convergence bounds. We can immediately
see the effect in the common case of L-smooth functions,
that the simplicial curvature is of reasonable magnitude,
specifically,

C∆ ≤ LD2(dimP )

2
,

where D is the diameter of P . This result follows from
(2) and the bound on LfS from Lemma A.1 in the ap-
pendix. This bound is not directly comparable with the
upper bound Lf,A ≤ LD2/4 in (Gutman & Peña, 2018,
Corollary 2), because the latter uses the 1-norm on the stan-
dard simplex, while we use the 2-norm, the norm used by
projected gradients and our simplex gradient descent. The
additional factor dimP is explained by the n-dimensional
standard simplex having constant minimum width 2 in 1-
norm, but having minimum width dependent on the dimen-
sion n (specifically, Θ(1/

√
n)) in the 2-norm. Recall that

the minimum width of a convex body P ⊆ Rn in norm
‖·‖ is minφ maxu,v∈P φ(u− v), where φ runs over all lin-
ear maps Rn → R having dual norm ‖φ‖∗ = 1. For the
2-norm, this is just the minimum distance between parallel
hyperplanes such that P lies between the two hyperplanes.

For another comparison, recall the curvature bound C ≤
LD2. Note, however, that the algorithm and convergence
rate below are affine invariant, and the only restriction on
the function f is that it has finite simplicial curvature. This
restriction readily provides the curvature bound

C ≤ 2C∆, (3)

where the factor 2 arises as the square of the diameter of
the standard simplex ∆k. (See Lemma A.2 in the appendix
for details.) Note that S is allowed to be large enough so
that every point of P is in the convex hull of some vertex
subset S, by Caratheodory’s theorem, and that the simplicial
curvature provides an upper bound on the curvature



Blended Conditional Gradients

We describe the convergence of BCG (Algorithm 1) in the
following theorem.

Theorem 3.1. Let f be a strongly convex, smooth func-
tion over the polytope P with simplicial curvature C∆ and
geometric strong convexity µ. Then Algorithm 1 ensures
f(xT ) − f(x∗) ≤ ε, where x∗ is an optimal solution to f
in P for some iteration index T that satisfies

T ≤
⌈

log
2Φ0

ε

⌉
+ 8K

⌈
log

Φ0

2KC∆

⌉
+

64K2C∆

µ

⌈
log

4KC∆

ε

⌉
= O

(
C∆

µ
log

Φ0

ε

)
, (4)

where log denotes logarithms to the base 2.

For smooth but not necessarily strongly convex func-
tions f , the algorithm ensures f(xT ) − f(x∗) ≤ ε after
T = O(max{C∆,Φ0}/ε) iterations by a similar argument,
which is omitted.

Proof. The proof tracks that of (Braun et al., 2017). We
divide the iteration sequence into epochs that are demarcated
by the gap steps, that is, the iterations for which the weak-
separation oracle (Oracle 2) returns the value false, which
results in Φt being halved for the next iteration. We then
bound the number of iterates within each epoch. The result
is obtained by aggregating across epochs.

We start by a well-known bound on the function value using
the Frank–Wolfe point vFWt := argminv∈P ∇f(xt)v at
iteration t, which follows from convexity:

f(xt)−f(x∗) ≤ ∇f(xt)(xt−x∗) ≤ ∇f(xt)(xt−vFWt ).

If iteration t− 1 is a gap step, we have using xt = xt−1 and
Φt = Φt−1/2 that

f(xt)− f(x∗) ≤ ∇f(xt)(xt − vFWt ) ≤ 2Φt. (5)

This bound also holds at t = 0, by definition of Φ0. Thus
Algorithm 1 is guaranteed to satisfy f(xT )− f(x∗) ≤ ε at
some iterate T such that T − 1 is a gap step and 2ΦT ≤ ε.
Therefore, the total number of gap steps NΦ required to
reach this point satisfies

NΦ ≤
⌈

log
2Φ0

ε

⌉
, (6)

which is also a bound on the total number of epochs. The
next stage of the proof finds bounds on the number of itera-
tions of each type within an individual epoch.

If iteration t − 1 is a gap step, we have xt = xt−1 and
Φt = Φt−1/2, and because the condition is false at Line 6
of Algorithm 1, we have

∇f(xt)(v
A
t − xt) ≤ ∇f(xt)(v

A
t − vFW−St ) ≤ 2Φt. (7)

This condition also holds trivially at t = 0, since vA0 =
vFW−S0 = x0. By summing (5) and (7), we obtain
∇f(xt)(v

A
t − vFWt ) ≤ 4Φt, so it follows from Fact 2.1

that f(xt)− f(x∗) ≤ [∇f(xt)(v
A
t −v

FW
t )]2

2µ ≤ 8Φ2
t

µ . By com-
bining this inequality with (5), we obtain

f(xt)− f(x∗) ≤ min
{

8Φ2
t/µ, 2Φt

}
, (8)

for all t such that either t = 0 or else t− 1 is a gap step. In
fact, (8) holds for all t, because (1) the sequence of function
values {f(xs)}s is non-increasing; and (2) Φs = Φt for all
s in the epoch that starts at iteration t.

We now consider the epoch that starts at iteration t, and
use s to index the iterations within this epoch. Note that
Φs = Φt for all s in this epoch.

We distinguish three types of iterations besides gap step.
The first type is a Frank–Wolfe step, taken when the weak-
separation oracle returns an improving vertex vs ∈ P such
that ∇f(xs)(xs − vs) ≥ Φs/K = Φt/K (Line 16). Us-
ing the definition of curvature C, we have by standard
Frank–Wolfe arguments that (c.f., (Braun et al., 2017)).

f(xs)− f(xs+1) ≥ Φs
2K

min

{
1,

Φs
KC

}
≥ Φt

2K
min

{
1,

Φt
2KC∆

}
,

(9)

where we used Φs = Φt and C ≤ 2C∆ (from (3)). We
denote by N t

FW the number of Frank–Wolfe iterations in the
epoch starting at iteration t.

The second type of iteration is a descent step, in which
Oracle SiDO (Line 7) returns a point xs+1 that lies in the
relative interior of convSs and with strictly smaller function
value. We thus have Ss+1 = Ss and, by the definition of
Oracle SiDO, together with (2), it follows that

f(xs)− f(xs+1) ≥ [∇f(xs)(v
A
s − vFW−Ss )]2

4C∆

≥ Φ2
s

4C∆
=

Φ2
t

4C∆
.

(10)

We denote by N t
desc the number of descent steps that take

place in the epoch that starts at iteration t.

The third type of iteration is one in which Oracle 1 returns
a point xs+1 lying on a face of the convex hull of Ss, so
that Ss+1 is strictly smaller than Ss. Similarly to the Away-
step Frank–Wolfe algorithm of (Lacoste-Julien & Jaggi,
2015), we call these steps drop steps, and denote by N t

drop
the number of such steps that take place in the epoch that
starts at iteration t. Note that since Ss is expanded only at
Frank–Wolfe steps, and then only by at most one element,
the total number of drop steps across the whole algorithm
cannot exceed the total number of Frank–Wolfe steps. We



Blended Conditional Gradients

use this fact and (6) in bounding the total number of itera-
tions T required for f(xT )− f(x∗) ≤ ε:

T ≤ NΦ +Ndesc +NFW +Ndrop

≤
⌈

log
2Φ0

ε

⌉
+Ndesc + 2NFW

=

⌈
log

2Φ0

ε

⌉
+

∑
t:epoch start

(N t
desc + 2N t

FW).

(11)

Here Ndesc denotes the total number of descent steps, NFW
the total number of Frank–Wolfe steps, and Ndrop the total
number of drop steps, which is bounded by NFW, as just
discussed.

Next, we seek bounds on the iteration counts N t
desc and

N t
FW within the epoch starting with iteration t. For the total

decrease in function value during the epoch, Equations (9)
and (10) provide a lower bound, while f(xt) − f(x∗) is
an obvious upper bound, leading to the following estimate
using (8).

• If Φt ≥ 2KC∆ then

2Φt ≥ f(xt)− f(x∗) ≥ N t
desc

Φ2
t

4C∆
+N t

FW
Φt
2K

≥ N t
desc

ΦtK

2
+N t

FW
Φt
2K
≥ (N t

desc + 2N t
FW)

Φt
4K

,

hence

N t
desc + 2N t

FW ≤ 8K. (12)

• If Φt < 2KC∆, a similar argument provides

8Φ2
t

µ
≥ f(xt)− f(x∗) ≥ N t

desc
Φ2
t

4C∆
+N t

FW
Φ2
t

4K2C∆

≥ (N t
desc + 2N t

FW)
Φ2
t

8K2C∆
,

leading to

N t
desc + 2N t

FW ≤
64K2C∆

µ
. (13)

There are at most⌈
log

Φ0

2KC∆

⌉
epochs in the regime with Φt ≥ 2KC∆,⌈

log
2KC∆

ε/2

⌉
epochs in the regime with Φt < 2KC∆.

Combining (11) with the bounds (12) and (13) on N t
FW and

N t
desc, we obtain (4).

4. Simplex Gradient Descent
Here we describe the Simplex Gradient Descent approach
(Algorithm 2), an implementation of the SiDO oracle (Ora-
cle 1). Algorithm 2 requires only O(|S|) operations beyond
the evaluation of ∇f(x) and the cost of line search. (It is
assumed that x is represented as a convex combination of
vertices of P , which is updated during Oracle 1.) Apart
from the (trivial) computation of the projection of ∇f(x)
onto the linear space spanned by ∆k, no projections are
computed. Thus, Algorithm 2 is typically faster even than a
step of Frank–Wolfe, for typical small sets S.

Alternative implementations of Oracle 1 are described in
Section C.1. Section C.2 describes the special case in which
P itself is a probability simplex. Here, BCG and its ora-
cles are combined into a single, simple method with better
constants in the convergence bounds.

In the algorithm, the form c1 denotes the scalar product of
c and 1, i.e., the sum of entries of c.

Algorithm 2 Simplex Gradient Descent Step (SiGD)
Input: polyhedron P , smooth convex function f : P → R,

subset S = {v1, v2, . . . , vk} of vertices of P , point
x ∈ convS

Output: set S′ ⊆ S, point x′ ∈ convS′

1: Decompose x as a convex combination x =
∑k
i=1 λivi,

with
∑k
i=1 λi = 1 and λi ≥ 0, i = 1, 2, . . . , k

2: c← [∇f(x)v1, . . . ,∇f(x)vk] {c = ∇fS(λ); see (1)}

3: d← c− (c1)1/k {Projection onto the hyperplane of
∆k}

4: if d = 0 then
5: return x′ = v1, S′ = {v1} {Arbitrary vertex}
6: end if
7: η ← max{η ≥ 0 : λ− ηd ≥ 0}
8: y ← x− η

∑
i divi

9: if f(x) ≥ f(y) then
10: x′ ← y
11: Choose S′ ⊆ S, S′ 6= S with x′ ∈ convS′.
12: else
13: x′ ← argminz∈[x,y] f(z)
14: S′ ← S
15: end if
16: return x′, S′

To verify the validity of Algorithm 2 as an implementation
of Oracle 1, note first that since y lies on a face of convS
by definition, it is always possible to choose a proper subset
S′ ⊆ S in Line 11, for example, S′ := {vi : λi > ηdi}.
The following lemma shows that with the choice h := fS ,
Algorithm 2 correctly implements Oracle 1.
Lemma 4.1. Let ∆k be the probability simplex in k di-
mensions and suppose that h : ∆k → R is an Lh-smooth
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function. Given some λ ∈ ∆k, define d := ∇h(λ) −
(∇h(λ)1/k)1 and let η ≥ 0 be the largest value for which
τ := λ − ηd ≥ 0. Let λ′ := argminz∈[λ,τ ] h(z). Then
either h(λ) ≥ h(τ) or

h(λ)− h(λ′) ≥ [max1≤i,j≤k∇h(λ)(ei − ej)]2

4Lh
.

Proof. Let g(ζ) := h(ζ−(ζ1)1/k), then∇g(ζ) = ∇h(ζ−
(ζ1)1/k)− (∇h(ζ − (ζ1)1/k)1)1/k, and g is clearly Lh-
smooth, too. In particular,∇g(λ) = d.

From standard gradient descent bounds, not repeated here,
we have the following inequalities, for γ ≤ min{η, 1/Lh}:

h(λ)− h(λ− γd) = g(λ)− g(λ− γ∇g(λ))

≥ γ ‖∇g(λ)‖22
2

≥ γ [max1≤i,j≤k∇g(λ)(ei − ej)]2

4

= γ
[max1≤i,j≤k∇h(λ)(ei − ej)]2

4
, (14)

where the second inequality uses that the `2-diameter of the
∆k is 2, and the last equality follows from∇g(λ)(ei−ej) =
∇h(λ)(ei − ej).

When η ≥ 1/Lh, we conclude that h(λ′) ≤ h(λ −
(1/Lh)d) ≤ h(λ), hence

h(λ)− h(λ′) ≥
[maxi,j∈{1,2,...,k}∇h(λ)(ei − ej)]2

4Lh
,

which is the second case of the lemma. When η < 1/Lh,
then setting γ = η in (14) clearly provides h(λ)−h(τ) ≥ 0,
which is the first case of the lemma.

5. Computational Experiments (Summary)
To compare our experiments to previous work, we used
problems and instances similar to those in (Lacoste-Julien &
Jaggi, 2015; Garber & Meshi, 2016; Rao et al., 2015; Braun
et al., 2017; Lan et al., 2017). These include structured re-
gression, sparse regression, video co-localization, sparse sig-
nal recovery, matrix completion, and Lasso. We compared
various algorithms denoted by the following acronyms: our
algorithm (BCG), the Away-step Frank–Wolfe algorithm
(ACG) and the Pairwise Frank–Wolfe algorithm (PCG) from
(Lacoste-Julien & Jaggi, 2015; Garber & Meshi, 2016), the
vanilla Frank–Wolfe algorithm (CG), as well as their lazi-
fied versions from (Braun et al., 2017). We add a prefix ‘L’
for the lazified versions. Figure 1 summarizes our results
on four test problems. Further details and more extensive
computational results are reported in Appendix D.

Performance Comparison

We implemented Algorithm 1 as outlined above and used
SiGD (Algorithm 2) for the descent steps as described in

Section 4. For line search in Line 13 of Algorithm 2, we
perform standard backtracking, and for Line 16 of Algo-
rithm 1, we do ternary search. In Figure 1, each of the four
plots itself contains four subplots depicting results of four
variants of CG on a single instance. The two subplots in
each upper row measure progress in the logarithm (to base
2) of the function value, while the two subplots in each
lower row report the logarithm of the gap estimate Φt from
Algorithm 1. The subplots in the left column of each plot
report performance in terms of number of iterations, while
the subplots in the right column report wall-clock time.

As discussed earlier, 2Φt upper bounds the primal gap
(the difference between the function value at the current
iterate and the optimal function value). The lazified al-
gorithms (including BCG) halve Φt occasionally, which
provides a stair-like appearance in the graphs. In imple-
mentations, if a stronger bound on the primal gap is avail-
able (e.g., from an LP oracle call), we reset Φt to half of
that value, thus removing unnecessary successive halving
steps. For the non-lazified algorithms, we plot the dual gap
maxv∈P ∇f(xt)(xt − v) as a gap estimate. The dual gap
does not necessarily decrease in a monotone fashion (though
of course the primal gap is monotone decreasing), so the
plots have a zigzag appearance in some instances.

6. Final Remarks
In (Lan et al., 2017), an accelerated method based on weak
separation and conditional gradient sliding was described.
This method provided optimal tradeoffs between (stochastic)
first-order oracle calls and weak-separation oracle calls. An
open question is whether the same tradeoffs and acceleration
could be realized by replacing SiGD (Algorithm 2) by an
accelerated method.

After an earlier version of our work appeared online, (Ker-
dreux et al., 2018a) introduced the Hölder Error Bound con-
dition (also known as sharpness or the Łojasiewicz growth
condition). This is a family of conditions parameterized
by 0 < p ≤ 1, interpolating between strongly convex
(p = 0) and convex functions (p = 1). For such functions,
convergence rate O(1/εp) has been shown for Away-step
Frank–Wolfe algorithms, among others. Our analysis can
be similarly extended to objective functions satisfying this
condition, leading to similar convergence rates.
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Figure1.Fourrepresentativeexamples.(Upper-left)Sparsesignalrecovery:minx∈Rn:x 1≤τ y−Φx
2
2,whereΦisofsize1000×3000

withdensity0.05.BCGmade1402iterationswith155callstotheweak-separationoracleLPsepP.Thefinalsolutionisaconvex
combinationof152vertices.(Upper-right)Lasso.Wesolveminx∈P Ax−b

2withPbeingthe(scaled)1-ball.Aisa400×2000
matrixwith100non-zeros.BCGmade2130iterations,callingLPsepP477times,withthefinalsolutionbeingaconvexcombinationof
462vertices.(Lower-left)StructuredregressionovertheBirkhoffpolytopeofdimension50.BCGmade2057iterationswith524callsto
LPsepP.Thefinalsolutionisaconvexcombinationof524vertices.(Lower-right)Videoco-localizationovernetgen12bpolytope
withanunderlying5000-vertexgraph.BCGmade140iterations,with36callstoLPsepP.Thefinalsolutionisaconvexcombinationof
35vertices.
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A. Upper bound on simplicial curvature
Lemma A.1. Let f : P → R be an L-smooth function over
a polytope P with diameter D in some norm ‖·‖. Let S be
a set of vertices of P . Then the function fS from Section 2.1
is smooth with smoothness parameter at most

LfS ≤
LD2|S|

4
.

Proof. Let S = {v1, . . . , vk}. Recall that fS : ∆k → R
is defined on the probability simplex via fS(α) := f(Aα),
whereA is the linear operator defined viaAα :=

∑k
i=1 αivi.

We need to show

fS(α)−fS(β)−∇fS(β)(α−β) ≤ LD2|S|
8

·‖α−β‖22,

α, β ∈ ∆k. (15)

We start by expressing the left-hand side in terms of f and
applying the smoothness of f :

fS(α)− fS(β)−∇fS(β)(α− β)

= f(Aα)− f(Aβ)−∇f(Aβ) · (Aα−Aβ)

≤ L

2
· ‖Aα−Aβ‖2.

(16)

Let γ+ := max{α− β, 0} and γ− := max{β − α, 0} with
the maximum taken coordinatewise. Then α−β = γ+−γ−
with γ+ and γ− nonnegative vectors with disjoint support.
In particular,

‖α− β‖22 = ‖γ+ − γ−‖22 = ‖γ+‖22 + ‖γ−‖22. (17)

Let 1 denote the vector of length k with all its coordinates
1. Since 1α = 1β = 1, we have 1γ+ = 1γ−. Let t denote
this last quantity, which is clearly nonnegative. If t = 0
then γ+ = γ− = 0 and α = β, hence the claimed (15)
is obvious. If t > 0 then γ+/t and γ−/t are points of the
simplex ∆k, therefore

D ≥ ‖A(γ+/t)−A(γ−/t)‖ =
‖Aα−Aβ‖

t
. (18)

Using (17) with k+ and k− denoting the number of non-zero
coordinates of γ+ and γ−, respectively, we obtain

‖α− β‖22 = ‖γ+‖22 + ‖γ−‖22 ≥ t2
(

1

k+
+

1

k−

)
≥ t2 · 4

k+ + k−
≥ 4t2

k
.

(19)

By (18) and (19) we conclude that ‖Aα−Aβ‖2 ≤ kD2‖α−
β‖22/4, which together with (16) proves the claim (15).

Lemma A.2. Let f : P → R be a convex function over a
polytope P with finite simplicial curvature C∆. Then f has
curvature at most

C ≤ 2C∆.

Proof. Let x, y ∈ P be two distinct points of P . The line
through x and y intersects P in a segment [w, z], where w
and z are points on the boundary of P , i.e., contained in
facets of P , which have dimension dimP −1. Therefore by
Caratheodory’s theorem there are vertex sets Sw, Sz of P of
size at most dimP with w ∈ convSw and z ∈ convSz . As
such x, y ∈ convS with S := Sw ∪ Sz and |S| ≤ 2 dimP .

Reusing the notation from the proof of Lemma A.1, let
k := |S| and A be a linear transformation with S =
{Ae1, . . . , Aek} and fS(ζ) = f(Aζ) for all ζ ∈ ∆k. Since
x, y ∈ convS, there are α, β ∈ ∆k with x = Aα and
y = Aβ. Therefore by smoothness of fS together with
LfS ≤ C∆ and ‖β − α‖ ≤

√
2:

f(γy + (1− γ)x)− f(x)− γ∇f(x)(y − x)

= f(γAβ+(1−γ)Aα)−f(Aα)−γ∇f(Aα)·(Aβ−Aα)

= fS(γβ + (1− γ)α)− fS(α)− γ∇fS(α)(β − α)

≤ LfS‖γ(β − α)‖2

2
=
LfS‖β − α‖2

2
· γ2 ≤ C∆γ2

showing that C ≤ 2C∆ as claimed.

B. Algorithmic enhancements
We describe various enhancements that can be made to the
BCG algorithm, to improve its practical performance while
staying broadly within the framework above. Computational
testing with these enhancements is reported in Section D.

B.1. Sparsity and culling of active sets

Sparse solutions (which in the current context means “solu-
tions that are a convex combination of a small number of ver-
tices of P ”) are desirable for many applications. Techniques
for promoting sparse solutions in conditional gradients were
considered in (Rao et al., 2015). In many situations, a sparse
approximate solution can be identified at the cost of some
increase in the value of the objective function.

We explored two sparsification approaches, which can be
applied separately or together, and performed preliminary
computational tests for a few of our experiments in Sec-
tion D.

(i) Promoting drop steps. Here we relax Line 9 in Algo-
rithm 2 from testing f(y) ≥ f(x) to f(y) ≥ f(x)− ε,
where ε := min{max{p,0}

2 , ε0} with ε0 ∈ R some up-
per bound on the accepted potential increase in objec-
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tive function value and p being the amount of reduction
in f achieved on the latest iteration. This technique
allows a controlled increase of the objective function
value in return for additional sparsity. The same con-
vergence analysis will apply, with an additional factor
of 2 in the estimates of the total number of iterations.

(ii) Post-optimization. Once the considered algorithm
has stopped with active set S0, solution x0, and dual
gap d0, we re-run the algorithm with the same ob-
jective function f over the facet convS0, i.e., we
solve minx∈conv S0

f(x) terminating when the dual
gap reaches d0.

These approaches can sparsify the solutions of the baseline
algorithms Away-step Frank–Wolfe, Pairwise Frank–Wolfe,
and lazy Pairwise Frank–Wolfe; see (Rao et al., 2015). We
observed, however, that the iterates generated by BCG are
often quite sparse. In fact, the solutions produced by BCG
are sparser than those produced by the baseline algorithms
even when sparsification is used in the benchmarks but not
in BCG! This effect is not surprising, as BCG adds new
vertices to the active vertex set only when really necessary
for ensuring further progress in the optimization.

Two representative examples are shown in Table 1, where
we report the effect of sparsification in the size of the active
set as well as the increase in objective function value.

We also compared evolution of the function value and size of
the active set. BCG decreases function value much more for
the same number of vertices because, by design, it performs
more descent on a given active set; see Figure 2.

B.2. Blending with pairwise steps

Algorithm 1 mixes descent steps with Frank–Wolfe steps.
One might be tempted to replace the Frank–Wolfe steps
with (seemingly stronger) pairwise steps, as the informa-
tion needed for the latter steps is computed in any case. In
our tests, however, this variant did not substantially differ
in practical performance from the one that uses the stan-
dard Frank–Wolfe step (see Figure 9). The explanation
is that BCG uses descent steps that typically provide bet-
ter directions than either Frank–Wolfe steps or pairwise
steps. When the pairwise gap over the active set is small,
the Frank–Wolfe and pairwise directions typically offer a
similar amount of reduction in f .

C. Algorithmic Variations
C.1. Alternative implementations of Oracle 1

Algorithm 2 is probably the least expensive possible imple-
mentation of Oracle 1, in general. We may consider other
implementations, based on projected gradient descent, that

aim to decrease f by a greater amount in each step and
possibly make more extensive reductions to the set S. Pro-
jected gradient descent would seek to minimize fS along
the piecewise-linear path {proj∆k(λ−γ∇fS(λ)) | γ ≥ 0}.
Such a search is more expensive, but may result in a new
active set S′ that is significantly smaller than the current set
S and, since the reduction in fS is at least as great as the
reduction on the interval γ ∈ [0, η] alone, it also satisfies
the requirements of Oracle 1.

More advanced methods for optimizing over the simplex
could also be considered, for example, mirror descent (see
(Nemirovski & Yudin, 1983)) and accelerated versions of
mirror descent and projected gradient descent; see (Lan,
2017) for a good overview. The effects of these alternatives
on the overall convergence rate of Algorithm 1 has not been
studied; the analysis is complicated significantly by the lack
of guaranteed improvement in each (inner) iteration.

The accelerated versions are considered in the computa-
tional tests in Section D, but on the examples we tried, the
inexpensive implementation of Algorithm 2 usually gave
the fastest overall performance. We have not tested mirror
descent versions.

C.2. Simplex Gradient Descent as a stand-alone
algorithm

We describe a variant of Algorithm 1 for the special case in
which P is the probability simplex ∆k. Since optimization
of a linear function over ∆k is trivial, we use the standard
LP oracle in place of the weak-separation oracle (Oracle 2),
resulting in the non-lazy variant Algorithm 3. Observe
that the per-iteration cost is only O(k). In cases of k very
large, we could also formulate a version of Algorithm 3 that
uses a weak-separation oracle (Oracle 2) to evaluate only a
subset of the coordinates of the gradient, as in coordinate
descent. The resulting algorithm would be an interpolation
of Algorithm 3 below and Algorithm 1; details are left to
the reader.

When line search is too expensive, one might replace
Line 14 by xt+1 = (1 − 1/Lf )xt + y/Lf , and Line 17
by xt+1 = (1 − 2/(t + 2))xt + (2/(t + 2))ew. These
employ the standard step sizes for (projected) gradient de-
scent and the Frank–Wolfe algorithm, and yield the required
descent guarantees.

We now describe convergence rates for Algorithm 3, noting
that better constants are available in the convergence rate
expression than those obtained from a direct application of
Theorem 3.1.

Corollary C.1. Let f be an α-strongly convex and Lf -
smooth function over the probability simplex ∆k with k ≥ 2.
Let x∗ be a minimum point of f in ∆k. Then Algorithm 3
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Table 1. Size of active set and percentage increase in function value after sparsification. (No sparsification performed for BCG.) Left:
Video Co-localization over netgen 08a. Since we use LPCG and PCG as benchmarks, we report (i) separately as well. Right: Matrix
Completion over movielens100k instance. BCG without sparsification provides sparser solutions than the baseline methods with
sparsification. In the last column, we report the percentage increase in objective function value due to sparsification. (Because this quantity
is not affine invariant, this value should serve only to rank the quality of solutions.)

vanilla (i) (i), (ii) ∆f(x)

PCG 112 62 60 2.6%
LPCG 94 70 64 0.1%
BCG 60 59 40 0.0%

vanilla (i), (ii) ∆f(x)

ACG 300 298 7.4%
PCG 358 255 8.2%
BCG 211 211 0.0%

Algorithm 3 Stand-Alone Simplex Gradient Descent
Input: convex function f
Output: points xt in ∆k for t = 1, . . . , T

1: x0 = e1

2: for t = 0 to T − 1 do
3: St ← {i : xt,i > 0}
4: at ← argmaxi∈St

∇f(xt)i
5: st ← argmini∈St

∇f(xt)i
6: wt ← argmin1≤i≤k∇f(xt)i
7: if ∇f(xt)at −∇f(xt)st > ∇f(xt)xt −∇f(xt)wt

then

8: di =

{
∇f(xt)i −

∑
j∈S ∇f(xt)j/|St| i ∈ St

0 i /∈ St
for i = 1, 2, . . . , k

9: η = max{γ : xt − γd ≥ 0} {ratio test}
10: y = xt − ηd
11: if f(xt) ≥ f(y) then
12: xt+1 ← y {drop step}
13: else
14: xt+1 ← argminx∈[xt,y] f(x) {descent step}
15: end if
16: else
17: xt+1 ← argminx∈[x,ewt ] f(x) {FW step}
18: end if
19: end for

converges with rate

f(xT )− f(x∗) ≤
(

1− α

4Lfk

)T
· (f(x0)− f(x∗)) ,

T = 1, 2, . . . .

If f is not strongly convex (that is, α = 0), we have

f(xT )− f(x∗) ≤ 8Lf
T

, T = 1, 2, . . . .

Proof. The structure of the proof is similar to that of
(Lacoste-Julien & Jaggi, 2015, Theorem 8). Recall from
(Lacoste-Julien & Jaggi, 2015, §B.1) that the pyramidal

width of the probability simplex is W ≥ 2/
√
k, so that the

geometric strong convexity of f is µ ≥ 4α/k. The diameter
of ∆k is D =

√
2, and it is easily seen that C∆ = Lf and

C ≤ LfD2/2 = Lf .

To maintain the same notation as in the proof of Theo-
rem 3.1, we define vAt = eat , vFW−St = est and vFWt =
ewt

. In particular, we have ∇f(xt)wt
= ∇f(xt)v

FW
t ,

∇f(xt)st = ∇f(xt)v
FW−S
t , and ∇f(xt)at = ∇f(xt)v

A
t .

Let ht := f(xt)− f(x∗).

In the proof, we use several elementary estimates. First, by
convexity of f and the definition of the Frank–Wolfe step,
we have

ht = f(xt)− f(x∗) ≤ ∇f(xt)(xt − vFWt ). (20)

Second, by Fact 2.1 and the estimate µ ≥ 4α/k for geomet-
ric strong convexity, we obtain

ht ≤
[∇f(xt)(v

A
t − vFWt )]2

8α/k
. (21)

Let us consider a fixed iteration t. Suppose first that we
take a descent step (Line 14), in particular, ∇f(xt)(v

A
t −

vFW−St ) ≥ ∇f(xt)(xt − vFWt ) from Line 7 which, to-
gether with∇f(xt)xt ≥ ∇f(xt)v

FW−S , yields

2∇f(xt)(v
A
t − vFW−St ) ≥ ∇f(xt)(v

A
t − vFWt ). (22)

By Lemma 4.1, we have

f(xt)− f(xt+1) ≥
[
∇f(xt)(v

A − vFW−S)
]2

4Lf

≥
[
∇f(xt)(v

A − vFW )
]2

16Lf
≥ α

2Lfk
· ht,

where the second inequality follows from (22) and the third
inequality follows from (21).

If a Frank–Wolfe step is taken (Line 17), we have similarly
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to (9) that

f(xt)−f(xt+1) ≥ ∇f(xt)(xt − vFW )

2

·min

{
1,
∇f(xt)(xt − vFW )

2Lf

}
.

Combining with (20), we have either f(xt) − f(xt+1) ≥
ht/2 or

f(xt)− f(xt+1) ≥ [∇f(xt)(xt − vFW )]2

4Lf

≥
[
∇f(xt)(v

A − vFW )
]2

16Lf
≥ α

2Lfk
· ht.

Since α ≤ Lf , the latter is always smaller than the former,
and hence is a lower bound that holds for all Frank–Wolfe
steps.

Since f(xt) − f(xt+1) = ht − ht+1, we have ht+1 ≤
(1−α/(2Lfk))ht for descent steps and Frank–Wolfe steps,
while obviously ht+1 ≤ ht for drop steps (Line 12). For
any given iteration counter T , let Tdesc be the number of
descent steps taken before iteration T , TFW be the number
of Frank–Wolfe steps taken before iteration T , and Tdrop be
the number of drop steps taken before iteration T . We have
Tdrop ≤ TFW, so that similarly to (11)

T = Tdesc + TFW + Tdrop ≤ Tdesc + 2TFW. (23)

By compounding the decrease at each iteration, and using
(23) together with the identity (1− ε/2)2 ≥ (1− ε) for any
ε ∈ (0, 1), we have

hT ≤
(

1− α

2Lfk

)Tdesc+TFW

h0 ≤
(

1− α

2Lfk

)T/2
h0

≤
(

1− α

4Lfk

)T
· h0.

The case for the smooth but not strongly convex functions
is similar: we obtain for descent steps

ht − ht+1 = f(xt)− f(xt+1)

≥
[
∇f(xt)(v

A − vFW−S)
]2

4Lf

≥
[
∇f(xt)(x− vFW )

]2
4Lf

≥ h2
t

4Lf
,

(24)

where the second inequality follows from (20).

For Frank–Wolfe steps, we have by standard estimations

ht+1 ≤

{
ht − h2

t/(4Lf ) if ht ≤ 2Lf ,
Lf ≤ ht/2 otherwise.

(25)

Given an iteration T , we define Tdrop, TFW and Tdesc as
above, and show by induction that

hT ≤
4Lf

Tdesc + TFW
, for T ≥ 1. (26)

Equation (26), i.e., hT ≤ 8Lf/T easily follows from this
via Tdrop ≤ TFW. Note that the first step is necessarily a
Frank–Wolfe step, hence the denominator is never 0.

If iteration T is a drop step, then T > 1, and the claim is
obvious by induction from hT ≥ hT−1. Hence we assume
that iteration T is either a descent step or a Frank–Wolfe
step. If Tdesc+TFW ≤ 2 then by (24) or (25) we obtain either
hT ≤ Lf < 2Lf or hT ≤ hT−1 − h2

T−1/(4Lf ) ≤ 2Lf ,
without using any upper bound on hT−1, proving (26) in
this case. Note that this includes the case T = 1, the start
of the induction.

Finally, if Tdesc + TFW ≥ 3, then hT−1 ≤ 4Lf/(Tdesc +
TFW−1) ≤ 2Lf by induction, therefore a familiar argument
using (24) or (25) provides

hT ≤
4Lf

Tdesc + TFW − 1
− 4Lf

(Tdesc + TFW − 1)2

≤ 4Lf
Tdesc + TFW

,

proving (26) in this case, too, finishing the proof.

D. Computational experiments
To compare our experiments to previous work we used
problems and instances similar to those in (Lacoste-Julien
& Jaggi, 2015; Garber & Meshi, 2016; Rao et al., 2015;
Braun et al., 2017; Lan et al., 2017). These problems in-
clude structured regression, sparse regression, video co-
localization, sparse signal recovery, matrix completion, and
Lasso. In particular, we compared our algorithm to the
Pairwise Frank–Wolfe algorithm from (Lacoste-Julien &
Jaggi, 2015; Garber & Meshi, 2016) and the lazified Pair-
wise Frank–Wolfe algorithm from (Braun et al., 2017). We
also benchmarked against the lazified versions of the vanilla
Frank–Wolfe and the Away-step Frank–Wolfe as presented
in (Braun et al., 2017) for completeness. We implemented
our code in Python 3.6 using Gurobi (see (Gurobi Op-
timization, 2016)) as the LP solver for complex feasible
regions; as well as obvious direct implementations for the
probability simplex, the cube and the `1-ball. As feasible
regions, we used instances from MIPLIB2010 (see (Koch
et al., 2011)), as done before in (Braun et al., 2017), along
with some of the examples in (Bashiri & Zhang, 2017). We
used quadratic objective functions for the tests with random
coefficients, making sure that the global minimum lies out-
side the feasible region, to make the optimization problem
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Figure2.ComparisonofACG,PCGandLPCGagainstBCGinfunctionvalueandsizeoftheactiveset.Left:VideoCo-Localization
instance.Right:Sparsesignalrecovery.

non-trivial;seebelowintherespectivesectionsformore
details.

Everyplotcontainsfourdiagramsdepictingresultsofa
singleinstance.Theupperrowmeasuresprogressinthe
logarithmofthefunctionvalue,whilethelowerrowdoes
sointhelogarithmofthegapestimate.Theleftcolumn
measuresperformanceinthenumberofiterations,while
therightcolumndoessoinwall-clocktime.Inthegraphs
wewillcomparevariousalgorithmsdenotedbythefollow-
ingabbreviations:PairwiseFrank–Wolfe(PCG),Away-step
Frank–Wolfe(ACG),(vanilla)Frank–Wolfe(CG),blended
conditionalgradients(BCG);weindicatethelazifiedver-
sionsof(Braunetal.,2017)byprefixingwithan‘L’.All
testswereconductedwithaninstance-dependent,fixedtime
limit,whichcanbeeasilyreadofftheplots.

ThevalueΦtprovidedbythealgorithmisanestimateofthe
primalgapf(xt)−f(x

∗).Thelazifiedversions(including
BCG)useittoestimatetherequiredstepwiseprogress,halv-
ingitoccasionally,whichprovidesastair-likeappearance
inthegraphsforthedualprogress.Notethatifthecertifi-
cationintheweak-separationoraclethatc(z−x)≥Φfor
allz∈PisobtainedfromtheoriginalLPoracle(which
computestheactualoptimumofcyovery∈P),thenwe
updatethegapestimateΦt+1withthatvalue;otherwisethe
oraclewouldcontinuetoreturnfalseanywayuntilΦdrops
belowthatvalue.Forthenon-lazifiedalgorithms,weplot
thedualgapmaxv∈P∇f(xt)(xt−v).

Performancecomparison

WeimplementedAlgorithm1asoutlinedaboveandused
SiGDforthedescentstepsasdescribedinSection4.For

linesearchinLine13ofAlgorithm2weperformstandard
backtrackinglinesearch,andforLine16ofAlgorithm1,we
doternarysearch.Weprovidefourrepresentativeexample
plotsinFigure1tosummarizeourresults.

Lasso. WetestedBCGonlassoinstancesandcompared
themtovanillaFrank–Wolfe,Away-stepFrank–Wolfe,and
PairwiseFrank–Wolfe.WegeneratedLassoinstancessimi-
larto(Lacoste-Julien&Jaggi,2015),whichhasalsoalso
beenusedbyseveralfollow-uppapersasbenchmark.Here
wesolveminx∈P Ax−b

2withPbeingthe(scaled)1-
ball. Weconsideredinstancesofvaryingsizesandthere-
sults(aswellasdetailsabouttheinstance)canbefound
inFigure3.Notethatwedidnotbenchmarkanyofthe
lazifiedversionsof(Braunetal.,2017)here,becausethe
linearprogrammingoracleissosimplethatlazificationis
notbeneficialandweusedtheLPoracledirectly.

Videoco-localizationinstances. WealsotestedBCGon
videoco-localizationinstancesasdonein(Lacoste-Julien&
Jaggi,2015).Itwasshownin(Joulinetal.,2014)thatvideo
co-localizationcanbenaturallyreformulatedasoptimizing
aquadraticfunctionoveraflow(orpath)polytope.Tothis
end,weruntestsonthesameflowpolytopeinstancesas
usedin(Lanetal.,2017)(obtainedfromhttp://lime.
cs.elte.hu/̃kpeter/data/mcf/road/).Wede-
picttheresultsinFigure4.

Structuredregression. WealsocomparedBCGagainst
PCGandLPCGonstructuredregressionproblems,where
weminimizeaquadraticobjectivefunctionoverpolytopes
correspondingtohardoptimizationproblemsusedasbench-
marksine.g.,(Braunetal.,2017;Lanetal.,2017;Bashiri

http://lime.cs.elte.hu/~kpeter/data/mcf/road/
http://lime.cs.elte.hu/~kpeter/data/mcf/road/
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& Zhang, 2017). As in Lasso, we minimize a least-squares
objective but instead of the `1-ball, the feasible regions are
the polytopes from MIPLIB2010 (see (Koch et al., 2011)).
Additionally, we compare ACG, PCG, and vanilla CG over
the Birkhoff polytope for which linear optimization is fast
(we are using the Hungarian algorithm), so that there is little
gain to be expected from lazification. See Figures 5 and 6
for results.

Matrix completion. Clearly, our algorithm also works di-
rectly over compact convex sets, even though with a weaker
theoretical bound of O(1/ε) as convex sets need not have a
pyramidal width bounded away from 0, and linear optimiza-
tion might dominate the cost, and hence the advantage of
lazification and BCG might be even greater empirically.

To this end, we also considered Matrix Completion instances
over the spectrahedron S = {X � 0 : Tr [X] = 1} ⊆
Rn×n, where we solve the problem:

min
X∈S

∑
(i,j)∈L

(Xi,j − Ti,j)2,

where D = {Ti,j | (i, j) ∈ L} ⊆ R is a data set.
In our tests we used the data sets Movie Lens 100k
and Movie Lens 1m from https://grouplens.org/
datasets/movielens/ We subsampled in the 1m case
to generate 3 different instances.

As in the case of the Lasso benchmarks, we benchmark
against ACG, PCG, and CG, as the linear programming
oracle is simple and there is no gain to be expected from
lazification. In the case of matrix completion, the perfor-
mance of BCG is quite comparable to ACG, PCG, and CG
in iterations, which makes sense over the spectrahedron,
because the gradient approximations computed by the linear
optimization oracle are essentially identical to the actual
gradient, so that there is no gain from the blending with
descent steps. In wall-clock time, vanilla CG performs best
as the algorithm has the lowest implementation overhead
beyond the oracle calls compared to BCG, ACG, and PCG
(see Figure 7) and in particular does not have to maintain
the (large) active set.

Sparse signal recovery. We also performed computa-
tional experiments on the sparse signal recovery instances
from (Rao et al., 2015), which have the following form:

x̂ = argmin
x∈Rn:‖x‖1≤τ

‖y − Φx‖22.

We chose a variety of parameters in our tests, including one
test that matches the setup in (Rao et al., 2015). As in the
case of the Lasso benchmarks, we benchmark against ACG,
PCG, and CG, as the linear programming oracle is simple
and there is no gain to be expected from lazification. The
results are shown in Figure 8.

PGD vs. SiGD as subroutine

To demonstrate the superiority of SiGD over PGD we also
tested two implementations of BCG, once with standard
PGD as subroutine and once with SiGD as subroutine. The
results can be found in Figure 9 (right): while PGD and
SiGD compare essentially identical in per-iteration progress,
in terms of wall clock time the SiGD variant is much faster.
For comparison, we also plotted LPCG on the same instance.

Pairwise steps vs. Frank–Wolfe steps

As pointed out in Section B.2, a natural extension is to
replace the Frank–Wolfe steps in Line 16 of Algorithm 1
with pairwise steps, since the information required is readily
available. In Figure 9 (left) we depict representative behav-
ior: Little to no advantage when taking the more complex
pairwise step. This is expected as the Frank–Wolfe steps are
only needed to add new vertices as the drop steps are sub-
sumed the steps from the SiDO oracle. Note that BCG with
Frank–Wolfe steps is slightly faster per iteration, allowing
for more steps within the time limit.

Comparison between lazified variants and BCG

For completeness, we also ran tests for BCG against various
other lazified variants of conditional gradient descent. The
results are consistent with our observations from before
which we depict in Figure 10.

Standard vs. accelerated version

Another natural variant of our algorithm is to replace the
SiDO subroutine with its accelerated variant (both possible
for PGD and SiGD). As expected, due to the small size of
the subproblem, we did not observe any significant speedup
from acceleration; see Figure 11.

Comparison to Fully-Corrective Frank–Wolfe

As mentioned in the introduction, BCG is quite different
from FCFW. BCG is much faster and, in fact, FCFW is
usually already outpeformed by the much more efficient
Pairwise-step CG (PCG), except in some special cases. In
Figure 12, the left column compares FCFW and BCG only
across those iterations where FW steps were taken; for com-
pleteness, we also implemented a variant FCFW (fixed steps)
where only a fixed number of descent steps in the correction
subroutine are performed. As expected FCFW has a better
“per-FW-iteration performance,” because it performs full
correction. The excessive cost of FCFW’s correction rou-
tine shows up in the wall-clock time (right column), where
FCFW is outperformed even by vanilla pairwise-step CG.
This becomes even more apparent when the iterations in the
correction subroutine are broken out and reported as well
(see middle column). For purposes of comparison, BCG

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
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and FCFW used both SiGD steps in the subroutine. (This
actually gives an advantage to FCFW, as SiGD was not
known until the current paper.) The per-iteration progress of
FCFW is poor, due to spending many iterations to optimize
over active sets that are irrelevant for the optimal solution.
Our tests highlight the fact that correction steps do not have
constant cost in practice.
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Figure3.ComparisonofBCG,ACG,PCGandCGonLassoinstances.Upper-left:Aisa400×2000matrixwith100non-zeros.BCG
made2130iterations,callingtheLPoracle477times,withthefinalsolutionbeingaconvexcombinationof462verticesgivingthe
sparsity.Upper-right:Aisa200×200matrixwith100non-zeros.BCGmade13952iterations,callingtheLPoracle258times,withthe
finalsolutionbeingaconvexcombinationof197verticesgivingthesparsity.Lower-left:Aisa500×3000matrixwith100non-zeros.
BCGmade3314iterations,callingtheLPoracle609times,withthefinalsolutionbeingaconvexcombinationof605verticesgivingthe
sparsity.Lower-right:Aisa1000×1000matrixwith200non-zeros.BCGmade2328iterations,callingtheLPoracle1007times,with
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graph.BCGmade202iterations,calledLPsepP56timesandthefinalsolutionisaconvexcombinationof56vertices.Upper-Right:
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Figure5.ComparisonofBCG,LPCGandPCGonstructuredregressioninstances.Upper-Left:Overthedisctompolytope.BCGmade
3526iterationswith1410LPsepPcallsandthefinalsolutionisaconvexcombinationof85vertices.Upper-Right:Overamaxcut
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Figure6.ComparisonofBCG,ACG,PCGandCGovertheBirkhoffpolytope.Upper-Left:Dimension50.BCGmade2057iterations
with524LPsepPcallsandthefinalsolutionisaconvexcombinationof524vertices.Upper-Right:Dimension100.BCGmade151
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andCGinallcases.
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Figure7.ComparisonofBCG,ACG,PCGandCGonmatrixcompletioninstancesoverthespectrahedron.Upper-Left:Overthemovie
lens100kdataset.BCGmade519iterationswith346LPsepP callsandthefinalsolutionisaconvexcombinationof333vertices.
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Figure8.ComparisonofBCG,ACG,PCGandCGonasparsesignalrecoveryproblem.Upper-Left:Dimensionis5000×1000density
is0.1.BCGmade547iterationswith102LPsepPcallsandthefinalsolutionisaconvexcombinationof102vertices.Upper-Right:
Dimensionis1000×3000densityis0.05.BCGmade1402iterationswith155LPsepP callsandthefinalsolutionisaconvex
combinationof152vertices.Lower-Left:Dimensionis10000×1000densityis0.05.BCGmade997iterationswith87LPsepPcalls
andthefinalsolutionisaconvexcombinationof52vertices.Lower-right:dimensionis5000×2000densityis0.05.BCGmade1569
iterationswith124LPsepPcallsandthefinalsolutionisaconvexcombinationof103vertices.BCGoutperformsallotheralgorithmsin
allexamplessignificantly.
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Figure9.ComparisonofBCGvariantsonasmallvideoco-localizationinstance(instancenetgen10a).Left:BCGwithvanilla
Frank–Wolfesteps(red)andwithpairwisesteps(purple).Performanceisessentiallyequivalentherewhichmatchesourobservationson
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otherinstances.Right:ComparisonoforacleimplementationsPGDandSiGD.SiGDissignificantlyfasterinwall-clocktime.
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Figure10.ComparisonofBCG,LCG,ACG,andPCG.Left:Structuredregressioninstanceoverthespanningtreepolytopeoverthe
completegraphwith11nodesdemonstratingsignificantperformancedifferenceinimprovingthefunctionvalueandclosingthedualgap;
BCGmade3031iterations,LPsepPwascalled1501times(almostalwaysterminatedearly)andfinalsolutionisaconvexcombination
of232verticesonly.Right:Structuredregressionoverthedisctompolytope;BCGmade346iterations,LPsepPwascalled71times,
andfinalsolutionisaconvexcombinationof39verticesonly.Observethatnotonlythefunctionvaluedecreasesfaster,butthegap
estimate,too.
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Figure11.ComparisonofBCG,acceleratedBCGandLPCG.Left:Onamediumsizevideoco-localizationinstance(netgen12b).
Right:Onalargervideoco-localizationinstance(roadpaths01DCa).Heretheacceleratedversionis(slightly)betteriniterations
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butnotinwall-clocktimethough.Thesefindingsarerepresentativeofallourothertests.

Figure12.ComparisontoFCFWacrossFWiterations,(all)iterations,andwall-clocktimeonaLassoinstance.Testrunwith40stime
limit.InthistestweexplicitlycomputedthedualgapofBCG,ratherthanusingtheestimateΦt.
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