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Abstract
We introduce the bilinear bandit problem with
low-rank structure in which an action takes the
form of a pair of arms from two different en-
tity types, and the reward is a bilinear function
of the known feature vectors of the arms. The
unknown in the problem is a d1 by d2 matrix
⇥∗ that defines the reward, and has low rank
r �min{d1, d2}. Determination of ⇥∗ with this
low-rank structure poses a significant challenge
in finding the right exploration-exploitation trade-
off. In this work, we propose a new two-stage al-
gorithm called “Explore-Subspace-Then-Refine”
(ESTR). The first stage is an explicit subspace
exploration, while the second stage is a linear
bandit algorithm called “almost-low-dimensional
OFUL” (LowOFUL) that exploits and further re-
fines the estimated subspace via a regularization
technique. We show that the regret of ESTR is
Õ((d1 + d2)

3�2√rT ) where Õ hides logarithmic
factors and T is the time horizon, which improves
upon the regret of Õ(d1d2

√
T ) attained for a

naı̈ve linear bandit reduction. We conjecture that
the regret bound of ESTR is unimprovable up to
polylogarithmic factors, and our preliminary ex-
periment shows that ESTR outperforms a naı̈ve
linear bandit reduction.

1 Introduction
Consider a drug discovery application where scientists
would like to choose a (drug, protein) pair and measure
whether the pair exhibits the desired interaction (Luo et al.,
2017). Over many repetitions of this step, one would like to
maximize the number of discovered pairs with the desired
interaction. Similarly, an online dating service may want
to choose a (female, male) pair from the user pool, match
them, and receive feedback about whether they like each
other or not. For clothing websites, the recommendation
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system may want to choose a pair of items (top, bottom) for
a customer, whose appeal depends in part on whether they
match. In these applications, the two types of entities are
recommended and evaluated as a unit. Having feature vec-
tors of the entities available,1 the system must explore and
learn what features of the two entities jointly predict positive
feedback in order to make effective recommendations.

The recommendation system aims to obtain large rewards
(the amount of positive feedback) but does not know ahead
of time the relationship between the features and the feed-
back. The system thus faces two conflicting goals: choosing
pairs that (i) maximally help estimate the relationship (“ex-
ploration”) but which may give small rewards and (ii) re-
turn relatively large, but possibly suboptimal, rewards (“ex-
ploitation”), given the limited information obtained from the
feedback collected so far. Such an exploration-exploitation
dilemma can be formulated as a multi-armed bandit prob-
lem (Lai & Robbins, 1985; Auer et al., 2002). When the
feature vectors are available for each arm, one can postulate
simple reward structures such as (generalized) linear models
to allow a large or even infinite number of arms (Auer, 2002;
Dani et al., 2008; Abbasi-Yadkori et al., 2011; Filippi et al.,
2010), a paradigm that has received much attention dur-
ing the past decade, with such applications as online news
recommendations (Li et al., 2010). Less is known for the
situation we consider here, in which the recommendation
(action) involves two different entity types and forms a bi-
linear structure. The closest work we are aware of is Kveton
et al. (2017) whose action structure is the same as ours but
without arm feature vectors. Factored bandits (Zimmert &
Seldin, 2018) provide a more general view with L entity
types rather than two, but they do not utilize arm features
nor the low-rank structure. Our problem is different from
dueling bandits (Yue et al., 2012a) or bandits with unknown
user segment (Bhargava et al., 2017), which choose two
arms from the same entity set rather than from two different

entity types. Section 7 below contains detailed comparisons
to related work.

This paper introduces the bilinear bandit problem with low-
rank structure. In each round t, an algorithm chooses a left
arm xt from X ⊆ Rd1 and a right arm zt from Z ⊆ Rd2 , and

1 The feature vectors can be obtained either directly from the
entity description (for example, hobbies or age) or by other prepro-
cessing techniques (for example, embedding).
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observes a noisy reward of a bilinear form:
yt = x

�
t⇥
∗zt + ⌘t , (1)

where ⇥∗ ∈ Rd1×d2 is an unknown parameter and ⌘t is
a �-sub-Gaussian random variable conditioning on xt, zt,
and all the observations before (and excluding) time t. De-
noting by r the rank of ⇥∗, we assume that r is small
(r � min{d1, d2}), which means that the reward is gov-
erned by a few factors. Such low-rank appears in many
recommendation applications (Ma et al., 2008). Our choice
of reward model is popular and arguably natural; for exam-
ple, the same model was used in Luo et al. (2017) for drug
discovery.

The goal is to maximize the cumulative reward up to time T .
Equivalently, we aim to minimize the cumulative regret:2

RegretT =
T

�
t=1� max

x∈X ,z∈Z x
�⇥∗z − x�t⇥∗zt� . (2)

A naive approach to this problem is to reduce the bilinear
problem to a linear problem, as follows:

x�⇥∗z = �vec(xz�),vec(⇥∗)� . (3)

Throughout the paper, we focus on the regime in which the
numbers of possible actions N1 ∶= �X � ∈ N+ ∪ {∞} and
N2 ∶= �Z � ∈ N+ ∪ {∞} are much larger than dimensions
d1 and d2, respectively.3 The reduction above allows us
to use the standard linear bandit algorithms (see, for exam-
ple, (Abbasi-Yadkori et al., 2011)) in the d1d2-dimensional
space and achieve regret of Õ(d1d2

√
T ), where Õ hides

logarithmic factors. However, d1d2 can be large, making
this regret bound take an undesirably large value. Moreover,
the regret does not decrease as r gets smaller, since the
reduction hinders us from exploiting the low-rank structure.

We address the following challenge: Can we design an al-
gorithm for the bilinear bandit problem that exploits the
low-rank structure and enjoys regret strictly smaller than
Õ(d1d2

√
T )? We answer the question in the affirmative

by proposing Explore Subspace Then Refine (ESTR), an ap-
proach that achieves a regret bound of Õ((d1+d2)3�2

√
rT ).

ESTR consists of two stages. In the first stage, we estimate
the row and column subspace by randomly sampling from
a subset of arms, chosen carefully. In the second stage, we
leverage the estimated subspace by invoking an approach
called almost-low-dimensional OFUL (LowOFUL), a vari-
ant of OFUL (Abbasi-Yadkori et al., 2011) that uses regu-
larization to penalize the subspaces that are apparently not

spanned by the rows and columns (respectively) of ⇥∗. We
2This regret definition is actually called pseudo regret; we refer

to Bubeck & Cesa-Bianchi (2012, Section 1) for detail.
3Otherwise, one can reduce the problem to the standard K-

armed bandit problem and enjoy regret of Õ(
√
N1N2T ).

With SupLinRel (Auer, 2002), one may also achieve
Õ(

�

d1d2T log(N1N2)), but this approach wastes a lot of
samples and does not allow an infinite number of arms.

conjecture that our regret upper bound is minimax optimal
up to polylogarithmic factors based on the fact that the bilin-
ear model has a much lower expected signal strength than
the linear model. We provide a detailed argument on the
lower bound in Section 5.

While the idea of having an explicit exploration stage, so-
called Explore-Then-Commit (ETC), is not new, the way we
exploit the subspace with LowOFUL is novel for two rea-
sons. First, the standard ETC commits to the estimated pa-
rameter without refining and is thus known to have O(

√
T )

regret only for “smooth” arm sets such as the unit ball (Rus-
mevichientong & Tsitsiklis, 2010; Abbasi-Yadkori et al.,
2009). This means that the estimate refining is necessary
for generic arm sets. Second, after the first stage that out-
puts a subspace estimate, it is tempting to project all the
arms onto the identified subspaces (r dimensions for each
row and column space), and naively invoke OFUL in the
r2-dimensional space. However, the subspace mismatch
invalidates the upper confidence bound used in OFUL; i.e.,
the confidence bound does not actually bound the mean
reward.

Attempts to correct the confidence bound so that it is faithful
are not trivial, and we are unaware of a solution that leads to
improved regret bounds. Departing from completely com-
mitting to the identified subspaces, LowOFUL works with
the full d1d2-dimensional space, but penalizes the subspace
that is complementary to the estimated subspace, thus con-
tinuing to refine the subspace. We calibrate the amount of
regularization to be a function of the subspace estimation
error; this is the key to achieving our final regret bound.

We remark that our bandit problem can be modified slightly
for the setting in which the arm zt is considered as a context,
obtained from the environment. This situation arises, for
example, in recommendation systems where Z is the set of
users represented by indicator vectors (i.e., d2 = N2) and X
is the set of items. Such a setting is similar to Cesa-Bianchi
et al. (2013), but we assume that ⇥∗ is low-rank rather than
knowing the graph information. Furthermore, when the user
information is available, one can take Z as the set of user
feature vectors.

The paper is structured as follows. In Section 2, we define
the problem formally and provide a sketch of the main con-
tribution. Sections 3 and 4 describe the details of stages 1
and 2 of ESTR, respectively. We elaborate our conjecture
on the regret lower bound in Section 5. After presenting
our preliminary experimental results in Section 6, we dis-
cuss related work in Section 7 and propose future research
directions in Section 8.
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Input: time horizon T , the exploration length T1, the rank r of ⇥∗, and the spectral bounds SF , S2, and Sr of ⇥∗.
Stage 1 (Section 3)

• Solve (approximately)
arg max

distinct x(1),...,x(d1)∈X �the smallest eigenvalue of �x(1), . . . ,x(d1)�� (4)

and define X = {x(1),�,x(d1)}. Define Z similarly.
• For T1 rounds, choose a pair of arms from X ×Z, pulling each pair the same number of times to the extent possible.

That is, choose each pair � T1

d1d2
� times, then choose T1 −d1d2�

T1

d1d2
� pairs uniformly at random without replacement.

• Let K̃ be a matrix such that K̃ij is the average reward of pulling the arm (x(i),z(j)). Invoke a noisy matrix recovery
algorithm (e.g., OptSpace (Keshavan et al., 2010)) with K̃ and the rank r to obtain an estimate K̂.

• Let ⇥̂ =X−1K̂(Z�)−1 where X = [(x(1))�; � ; (x(d1))�] ∈ Rd1×d1 (abusing notation) and Z is defined similarly.
• Let ⇥̂ = ÛŜV̂� be the SVD of ⇥̂. Let Û⊥ and V̂⊥ be orthonormal bases of the complementary subspaces of Û and
V̂, respectively.

• Let �(T1) be the subspace angle error bound such that, with high probability,
�Û�⊥U∗�F �V̂�⊥V∗�F ≤ �(T1) (5)

where ⇥∗ =U∗S∗V∗� is the SVD of ⇥∗.
Stage 2 (Section 4)

• Rotate the arm sets: X ′ = �[ÛÛ⊥]�x ∶ x ∈ X� and Z ′ = �[V̂V̂⊥]�z ∶ z ∈ Z�.
• Define a vectorized arm set so that the last (d1 − r) ⋅ (d2 − r) components are from the complementary subspaces:

A = �[vec(x1∶rz�1∶r);vec(xr+1∶d1z
�
1∶r);vec(x1∶rz�r+1∶d2

);vec(xr+1∶d1z
�
r+1∶d2

)] ∈ Rd1d2 ∶ x ∈ X ′, z ∈ Z ′� .

• For T2 = T − T1 rounds, invoke LowOFUL with the arm set A, the low dimension k = (d1 + d2)r − r
2, and �(T1).

Figure 1. A sketch of Explore Subspace Then Refine (ESTR)

2 Preliminaries

We define the problem formally as follows. Let X ⊆ Rd1

and Z ⊆ Rd2 be the left and right arm space, respectively.
Define N1 = �X � and N2 = �Z �. (Either or both can be in-
finite.) We assume that both the left and right arms have
Euclidean norm at most 1: �x�2 ≤ 1 and �z�2 ≤ 1 for all
x ∈ X and z ∈ Z . Without loss of generality, we assume
X (Z) spans the whole d1 (d2) dimensional space (respec-
tively) since, if not, one can project the arm set to a lower-
dimensional space that is now fully spanned.4 We assume
d2 = ⇥(d1) and define d =max{d1, d2}. If A is a positive
integer, we use notation [A] = {1,2, . . . ,A}. We denote by
vi∶j the (j − i + 1)-dimensional vector taking values from
the coordinates from i to j from v. Similarly, we define
Mi∶j,k∶` ∈ R(j−i+1)×(`−k+1) to be a submatrix taking values
from M with the row indices from i to j and the column
indices from k to `. We denote by vi the i-th component of
the vector v and by Mij the entry of a matrix M located at
the i-th row and j-th column. Denote by ⌃k(M) the k-th
largest singular value, and define ⌃max(M) = ⌃1(M). Let
⌃min(M) be the smallest nonzero singular value of M. �M�
denotes the determinant of a matrix M.

4 In this case, we effectively work with a projected version of
⇥∗, and its rank may become smaller as well.

The protocol of the bilinear bandit problem is as follows. At
time t, the algorithm chooses a pair of arms (xt,zt) ∈ X ×Z
and receives a noisy reward yt according to (1). We make
the standard assumptions in linear bandits: the Frobenius
and operator norms of ⇥∗ are bounded by known constants,
�⇥∗�F ≤ SF and �⇥∗�2 ≤ S2,5 and the sub-Gaussian scale
� of ⌘t is known to the algorithm. We denote by s∗i the i-th
largest singular value of ⇥∗. We assume that the rank r
of the matrix is known and that s∗r ≥ Sr for some known
Sr > 0. 6

The main contribution of this paper is the first nontrivial
upper bound on the achievable regret for the bilinear bandit
problem. In this section, we provide a sketch of the overall
result and the key insight. For simplicity, we omit constants
and variables other than d, r, and T . Our proposed ESTR
algorithm enjoys the following regret bound, which strictly
improves the naive linear bandit reduction when r � d.
Theorem 1 (An informal version of Corollary 2). Under

mild assumptions, the regret of ESTR is Õ(d3�2√rT ) with

high probability.

5 When S2 is not known, one can set S2 = SF . In some
applications, S2 is known. For example, the binary model yt ∼
Bernoulli((x�t⇥∗zt) + 1)�2), we can evidently set S2 = 1.

6In practice, one can perform rank estimation after the first
stage (see, for example, Keshavan et al. (2010)).
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We conjecture that the regret bound above is minimax opti-
mal up to polylogarithmic factors since the expected signal
strength in the bilinear model is much weaker than the linear
model. We elaborate on this argument in Section 5.

We describe ESTR in Figure 1. The algorithm proceeds in
two stages. In the first stage, we estimate the column and
row subspace of ⇥∗ from noisy rank-one measurements
using a matrix recovery algorithm. Specifically, we first
identify d1 and d2 arms from the set X and Z in such a way
that the smallest singular values of the matrices formed from
these arms are maximized approximately (see (4)), which is
a form of submatrix selection problem (details in Section 3).
We emphasize that finding the exact solution is not neces-
sary here since Theorem 1 has a mild dependency on the
smallest eigenvalue found when approximating (4). We then
use the popular matrix recovery algorithm, OptSpace (Ke-
shavan et al., 2010) to estimate ⇥∗. The sin⇥ theorem of
Wedin (Stewart & Sun, 1990) is used to convert the matrix
recovery error bound from OptSpace to the desired subspace
angle guarantee (5) with �(T1) = O �

d3r
T1
�. The regret in-

curred in stage 1 is bounded trivially by T1�⇥
∗
�2.

In the second stage, we transform the problem into a d1d2-
dimensional linear bandit problem and invoke LowOFUL
that we introduce in Section 4. This technique projects the
arms onto both the estimated subspace and its complemen-
tary subspace and uses �(T1) to penalize weights in the
complementary subspaces Û⊥ and V̂⊥. LowOFUL enjoys
regret bound Õ((dr +

√
T�(T1))

√
T − T1) during T − T1

rounds. By combining with the regret for the first stage, we
obtain an overall regret of

T1 + �dr +
√

T
d3r

T1
�

√

T .

Choosing T1 to minimize this expression, we obtain a regret
bound of Õ(d3�2√rT ).
3 Stage 1: Subspace estimation
The goal of stage 1 is to estimate the row and column sub-
spaces for the true parameter ⇥∗. How should we choose
which arm pairs to pull, and what guarantee can we obtain
on the subspace estimation error? One could choose to
apply a noisy matrix recovery algorithm with affine rank
minimization (Recht et al., 2010; Mohan & Fazel, 2010) to
the measurements attained from the arm pulls. However,
these methods require the measurements to be Gaussian or
Rademacher, so their guarantees depend on satisfaction of a
RIP property (Recht et al., 2010), or, for rank-one projection
measurements, an RUB property (Cai et al., 2015). Such
assumptions are not suitable for our setting since measure-
ments are restricted to the arbitrarily given arm sets X and
Z . Uniform sampling from the arm set cannot guarantee
RIP, as the arm set itself can be heavily biased in certain

directions.

We design a simple reduction procedure though matrix re-
covery with noisy entry observations, leaving a more so-
phisticated treatment as future work. The d1 arms in X are
chosen according to the criterion (4), which is a combinato-
rial problem that is hard to solve exactly. Our analysis does
not require its exact solution, however; it is enough that the
objective value is nonzero (that is, the matrix X constructed
from these d1 arms is nonsingular). (Similar comments hold
for the matrix Z.) We remark that the problem (4) is shown
to be NP-hard by Çivril & Magdon-Ismail (2009) and is
related to finding submatrices with favorable spectral prop-
erties (Çivril & Magdon-Ismail, 2007; Tropp, 2009), but a
thorough review on algorithms and their limits is beyond the
scope of the paper. For our experiments, simple methods
such as random selection were sufficient; we describe our
implementation in the supplementary material.

If K∗ is the matrix defined by K∗ij = x(i)�⇥∗z(j), each
time step of stage 1 obtains a noisy estimate of one element
of K∗. Since multiple measurements of each entry are
made, in general, we compute average measurements for
each entry. A matrix recovery algorithm applied to this
matrix of average measurements yields the estimate K̂ of
the rank-r matrix K∗. Since K∗ = X⇥∗Z�, we estimate
⇥∗ by ⇥̂ = X−1K̂(Z�)−1 and then compute the subspace
estimate Û ∈ Rd1×r and V̂ ∈ Rd2×r by applying SVD to ⇥̂.

We choose the recovery algorithm OptSpace by Keshavan
et al. (2010) because of its strong (near-optimal) guarantee.
Denoting the SVD of K∗ by URV�, we use the matrix
incoherence definition from Keshavan et al. (2010) and let
(µ0, µ1) be the smallest values such that for all i ∈ [d1], j ∈
[d2],

r

�

k=1
U2
ik ≤ µ0r�d1,

r

�

k=1
V 2
jk ≤ µ0r�d2, and

�

r

�

k=1
Uik(⌃k(K

∗
)�⌃max(K

∗
))Vjk� ≤ µ1

�
r

d1d2
.

Define the condition number  = ⌃max(K
∗
)�⌃min(K

∗
).

We present the guarantee of OptSpace (Keshavan et al.,
2010) in a paraphrased form. (The proof of this result, and
all subsequent proofs, are deferred to the supplementary
material.)
Theorem 2. There exists a constant C0 such that for T1 ≥

C0�
2
(µ2

0 + µ
2
1)

6

⌃min(K∗)2 dr(r + log d), we have that, with

probability at least 1 − 2�d32,

�K̂ −K∗�F ≤ C1
2�

d3�2√r
√
T1

(6)

where C1 is an absolute constant.

The original theorem from Keshavan et al. (2010) assumes
T1 ≤ d1d2 and does not allow repeated sampling. However,



Bilinear Bandits with Low-rank Structure

we show in the proof that the same guarantee holds for
T1 > d1d2 since repeated sampling of entries has the effect
of reducing the noise parameter �.

Our recovery of an estimate K̂ of K∗ implies the bound
�⇥̂ −⇥∗�F ≤ �X−1�2�Z−1�2⌧ where ⌧ is the RHS of (6).
However, our goal in stage 1 is to obtain bounds on
the subspace estimation errors. That is, given the SVDs
⇥̂ = ÛŜV̂� and ⇥∗ =U∗S∗V∗�, we wish to identify how
close Û (V̂) is to U∗ (V∗ respectively). Such guarantees
on the subspace error can be obtained via the sin⇥ the-
orem by Stewart & Sun (1990), which we restate in our
supplementary material. Roughly, this theorem bounds the
canonical angles between two subspaces by the Frobenius
norm of the difference between the two matrices. Recall
that s∗r is the r-th largest singular value of ⇥∗.
Theorem 3. Suppose we invoke OptSpace to compute K̂
as an estimate of the matrix K∗. After stage 1 of ESTR

with T1 satisfying the condition of Theorem 2, we have, with

probability at least 1 − 2�d32,

�Û�⊥U∗�F �V̂�⊥V∗�F ≤ �X
−1
�
2
2�Z

−1
�
2
2

(s∗r)2 ⌧2 (7)

where ⌧ = C1
2�d3�2√r�√T1.

4 Stage 2: Almost-low-dimensional linear
bandits

The goal of stage 2 is to exploit the subspaces Û and V̂
estimated in stage 1 to perform efficient bandit learning. At
first, it is tempting to project all the left and right arms to r-
dimensional subspaces using Û and V̂, respectively, which
seems to be a bilinear bandit problem with an r by r un-
known matrix. One can then reduce it to an r2-dimensional
linear bandit problem and solve it by standard algorithms
such as OFUL (Abbasi-Yadkori et al., 2011). Indeed, if Û
and V̂ exactly span the row and column spaces of ⇥∗, this
strategy yields a regret bound of Õ(r2

√
T ). In reality, these

matrices (subspaces) are not exact, so there is model mis-
match, making it difficult to apply standard regret analysis.
The upper confidence bound (UCB) used in popular algo-
rithms becomes invalid, and there is no known correction
that leads to a regret bound lower than Õ(d1d2

√
T ), to the

best of our knowledge.

In this section, we show how stage 2 of our approach avoids
the mismatch issue by returning to the full d1d2-dimensional
space, allowing the subspace estimates to be inexact, but
penalizing those components that are complementary to Û
and V̂. This effectively constrains the hypothesis space to
be much smaller than the full d1d2-dimensional space. We
show how the bilinear bandit problem with good subspace
estimates can be turned into the almost low-dimensional

linear bandit problem, and how much penalization / regu-
larization is needed to achieve a low overall regret bound.

Finally, we state our main theorem showing the overall
regret bound of ESTR.
Reduction to linear bandits. Recall that ⇥∗ =

U∗S∗V∗� is the SVD of ⇥∗ (where S∗ is r × r diago-
nal) and that Û⊥ and V̂⊥ are the complementary subspace
of Û and V̂ respectively. Let M = [Û Û⊥]�⇥∗[V̂ V̂⊥] be
a rotated version of ⇥∗. Then we have

⇥∗ = [Û Û⊥]M[V̂ V̂⊥]� and

x�⇥∗z = ([Û Û⊥]�x)�M([V̂ V̂⊥]�z) .
Thus, the bilinear bandit problem with the unknown ⇥∗
with arm sets X and Z is equivalent to the one with the
unknown M with arm sets X ′ = {x′ = [Û Û⊥]�x � x ∈ X}
and Z ′ (defined similarly). As mentioned earlier, this prob-
lem can be cast as a d1d2-dimensional linear bandit problem
by considering the unknown vector ✓∗ = vec(M). The dif-
ference is, however, that we have learnt something about the
subspace in stage 1. We define ✓∗ to be a rearranged version
of vec(M) so that the last (d1 − r) ⋅ (d2 − r) dimensions of
✓∗ are Mij for i ∈ {r + 1, . . . , d1} and j ∈ {r + 1, . . . , d2};
that is, letting k ∶= d1d2 − (d1 − r) ⋅ (d2 − r),
✓∗1∶k = [vec(M1∶r,1∶r); vec(Mr+1∶d1,1∶r); vec(M1∶r,r+1∶d2)],

✓∗k+1∶p = vec(Mr+1∶d1,r+1∶d2) .

Then we have
�✓∗k+1∶p�22 = �

i>r∧j>r
M2

ij = �Û
�⊥(U∗S∗V∗�)V̂⊥�2F

≤ �Û�⊥U∗�2F �S∗�22�V̂�⊥V∗�2F ,
(9)

which implies �✓∗k+1∶p�2 = O(d3r�T1) by Theorem 3. Our
knowledge on the subspace results in the knowledge of the
norm of certain coordinates! Can we exploit this knowl-
edge to enjoy a better regret bound than Õ(d1d2

√
T )? We

answer this question in the affirmative below.
Almost-low-dimensional OFUL (LowOFUL). We now
focus on an abstraction of the conversion described in
the previous paragraph, which we call the almost-low-

dimensional linear bandit problem. In the standard lin-
ear bandit problem in p dimensions, the player chooses an
arm at at time t from an arm set A ⊆ Rp and observes
a noisy reward yt = �at,✓

∗
� + ⌘t, where the noise ⌘t has

the same properties as in (1). We assume that �a�2 ≤ 1
for all a ∈ A, and �✓∗�2 ≤ B for some known constant
B > 0. In almost-low-dimensional linear bandits, we have
additional knowledge that �✓∗k+1∶p�2 ≤ B⊥ for some index
k and some constant B⊥ (ideally � B). This means that
all-but-k dimensions of ✓∗ are close to zero.

To exploit the extra knowledge on the unknown, we propose
almost-low-dimensional OFUL (LowOFUL) that extends
the standard linear bandit algorithm OFUL (Abbasi-Yadkori
et al., 2011). To describe OFUL, define the design matrix
A ∈ Rt×p with rows a�s , s = 1,2, . . . , t and the vector of
rewards y = [y1, . . . , yt]

�. The key estimator is based on
regression with the standard squared `2-norm regularizer, as
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Algorithm 1 LowOFUL
1: Input: T , k, the arm set A ⊆ Rp, failure rate �, and

positive constants B, B⊥, �, �⊥.
2: Set ⇤ = diag(�, . . . ,�,�⊥, . . . ,�⊥) where � occupies

the first k diagonal entries.
3: for t = 1,2, . . . , T do
4: Compute at = argmaxa∈Amax✓∈ct−1 �✓,a�.
5: Pull arm at.
6: Receive reward yt.
7: Set ct as (12).
8: end for

follows:

✓̂t = argmin
✓

1

2
�A✓ − y�22 +

�

2
�✓�22 = (�I +A

�A)−1A�y .

(10)

OFUL then defines a confidence ellipsoid around ✓̂t based
on which one can compute an upper confidence bound
on the mean reward of any arm. In our variant, we al-
low a different regularization for each coordinate, replac-
ing the regularizer �

2 �✓�
2
2 by 1

2�✓�
2
⇤ =

1
2✓
�⇤✓ for some

positive diagonal matrix ⇤. Specifically, we define ⇤ =
diag(�, . . . ,�,�⊥, . . . ,�⊥), where � occupies the first k di-
agonal entries and �⊥ the last p − k positions. With this
modification, the estimator becomes

✓̂t = argmin
✓

1

2
�A✓ − y�22 +

1

2
�✓�2⇤ = (⇤ +A

�A)−1A�y .

(11)

Define Vt = ⇤+∑
t
s=1 ata�t = ⇤+A�A and let � be the fail-

ure rate we are willing to endure. The confidence ellipsoid
for ✓∗ is

ct = �✓ ∶ �✓ − ✓̂t�Vt ≤

�

�t� where

�

�t = �

�

�
��log

�Vt�

�⇤��2
+

√

�B +
�

�⊥B⊥.
(12)

This ellipsoid enjoys the following guarantee, which is
a direct consequence of Valko et al. (2014, Lemma 3)
that is based on the self-normalized martingale inequality
of Abbasi-Yadkori et al. (2011, Theorem 1).
Lemma 1. With probability at least 1 − �, we have ✓∗ ∈ ct
for all t ≥ 1.

We summarize LowOFUL in Algorithm 1,
where max✓∈ct−1 �✓,a� can be simplified to
�✓̂t−1,a� +√�t−1�a�V−1t−1 .

We now state the regret bound of LowOFUL in Theorem 4,
which is based on the standard linear bandit regret analysis
dating back to Auer (2002).
Theorem 4. The regret of LowOFUL is, with probability at

least 1 − �,

O

�

�

�

�

�
��log

�VT �

�⇤�

�

�

�

�

�

�
��log

�VT �

�⇤��2
+

√

�B +
�

�⊥B⊥
�

�

�

⋅

√

T
�

�

�

.

(13)

In the standard linear bandit setting where �⊥ = � and
B⊥ = B, we recover the regret bound Õ(p

√
T ) of OFUL,

since log �VT ��⇤� = O(p
√
T ) (Abbasi-Yadkori et al., 2011,

Lemma 10).

To alleviate the dependence on p in the regret bound, we
propose a carefully chosen value of �⊥ in the following
corollary.
Corollary 1. Then, the regret of LowOFUL with �⊥ =

T
k log(1+T

� ) is, with probability at least 1 − �,

Õ �(�k +
√

k�B +
√

TB⊥)
√

T� .

The bound improves the dependence on dimensionality from
p to k, but introduces an extra factor of

√
T to B⊥, result-

ing in linear regret. While this choice is not interesting
in general, we show that it is useful for our case: Since
�✓∗k+1∶p�2 = O(1�T1), we can set B⊥ = O(1�T1) to be a
valid upper bound of �✓∗k+1∶p�2. By setting T1 = ⇥(

√
T ),

the regret bound in Corollary 1 scales with
√
T rather than

T .

Concretely, using (9), we set
B = SF and B⊥ = S2 ⋅ �(T1) where

�(T1) =
�X−1�22�Z−1�22
(Sr)

2
⋅C2

1 �
S2

Sr
�

4

�2.
d3r

T1
.

(14)

B and B⊥ are valid upper bounds of �✓∗�2 and �✓∗k+1∶p�2,
respectively, with high probability. Note we must use S2,
Sr, and S2�Sr instead of s∗1 , s∗r , and , respectively, since
the latter variables are unknown to the learner.

Overall regret. Theorem 5 shows the overall regret bound
of ESTR.
Theorem 5. Suppose we run ESTR (Algorithm 1) with T1 ≥

C0�
2
(µ2

0 + µ
2
1)

6

⌃min(K∗)2 dr(r + log d). We invoke LowO-

FUL in stage 2 with p = d1d2, k = r ⋅(d1+d2−r), ✓
∗

defined

as (8), the rotated arm sets X
′

and Z
′
, �⊥ = T2

k log(1+T2��) ,
and B and B⊥ as in (14). The regret of ESTR is, with prob-

ability at least 1 − � − 2�d32,

Õ �s∗1T1 + T ⋅
�X−1�22�Z−1�22(S5

2�S
6
r )�

2d3r

T1
� .

One can see that there exists an optimal choice of T1, which
we state in the following corollary.
Corollary 2. Suppose the assumptions in Theorem 5 hold.

If T1 = ⇥ ��X
−1
�2�Z

−1
�2

S2
2

S3
r
�d3�2√rT�, then the regret of
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ESTR is, with probability at least1− −2�d32,

Õ�
S32
S3r
�X−1�2�Z

−1�2 d
3�2
√
rT�.

Note that, for our problem, the incoherence constantsµ0
andµ1do not play an important role with large enoughT.

Remark One might notice that we can also regularize
the submatricesMr+1∶d1,1∶randM1∶r,r+1∶d2 since they
are coming partly from the complementary subspace of
Ûand partly from the complement ofV̂(but not both).
In practice, such a regularization can be done to reduce
the regret slightly, but it does not affect the order of
the regret. We do not have sufficient decrease in the
magnitude to provide interesting bounds. One can show
that, while�Mr+1∶d1,r+1∶d2�

2
F =O(1�T1), the quantities

�M1∶r,r+1∶d2�
2
Fand�Mr+1∶d1,1∶r�

2
FareO(1�

√
T1).

5 Lower bound

A simple lower bound is⌦(d
√
T), since when the arm set

Zis a singleton the problem reduces to ad1-dimensional
linear bandit problem. We have attempted to extend ex-
isting lower-bound proof techniques inRusmevichientong
& Tsitsiklis(2010),Dani et al.(2008), andLattimore &
Szepesv́ari(2018), but the bilinear nature of the problem
introduces cross terms between the left and right arm, which
are difficult to deal with in general. However, we conjecture
that the lower bound is⌦(d3�2

√
rT). We provide an infor-

mal argument below that the dependence ondmust bed3�2

based on the observation that the rank-one bilinear reward
model’s signal-to-noise ratio (SNR) is significantly worse
than that of the linear reward model.

Consider a rank-one⇥∗that can be decomposed asuv�

for someu,v∈{±1�
√
d}d. Suppose the left and right arm

sets areX=Z={±1�
√
d}d. Let us choosextandzt

uniformly at random (which is the sort of pure exploration
that must be performed initially). Then a simple calculation
shows that the expected squared signal strength with such
a random choice isE�x�t⇥

∗zt�
2= 1

d2
. In contrast, the

expected squared signal strength for a linear reward model
isE�x�tu�

2=1
d
. The effect of this is analogous to increasing

the sub-Gaussian scale parameter of the noise⌘tby a factor
of
√
d. We thus conjecture that the

√
ddifference in the

SNR introduces the dependenced3�2in the regret rather
thand.

6 Experiments

We present a preliminary experimental result and discuss
practical concerns.

Bandits in practice requires tuning the exploration rate to
perform well, which is usually done by adjusting the con-
fidence bound width (Chapelle & Li,2011;Li et al.,2010;

Figure 2.Simulation results ford=8andr=1. Our method
ESTR-OS, its variant ESTR-BM, and an implicit exploration vari-
ant of ESTR called ISSE all outperform the baseline linear bandit
method OFUL.

Zhang et al.,2016), which amounts to replacingtwithct
for somec>0for OFUL or its variants (including LowO-
FUL). An efficient parameter tuning in bandits is an open
problem and is beyond our scope. For the sake of compari-
son, we tunecby grid search and report the result with the
smallest average regret. For ESTR, the value ofT1used in
the proof involves some unknown constants; to account for
this, we tuneT1by grid search. We consider the following
methods:

•OFUL: The OFUL reduction described in(3), which
ignores the low-rank structure.

•ESTR-OS: Our proposed method; we simplifyB⊥
in (14) toS2

2d3r�T1.

•ESTR-BM: We replace OptSpace with the Burer-
Monteiro formulation and perform the alternating min-
imization (Burer & Monteiro,2003).

•ISSE (Implicit SubSpace Exploration): LowOFUL
with a heuristic subspace estimation that avoids an
explicit exploration stage. We split the time intervals
with knots att∈{100.5,101,101.5,...}. At the begin-
ning timet′of each interval, we perform the matrix
recovery with the Burer-Monteiro formulation using
all the past data, estimate the subspaces, and use them
to initialize LowOFUL withB⊥=S2

2d3r�t′and all
the past data.

Note that OFUL and ISSE only require tuningcwhereas
ESTR methods require tuning bothcandT1.

We run our simulation withd1=d2=8,r=1, =0.01.We
set =1for both OFUL and LowOFUL. We draw 16 arms
from the unit sphere for each arm setXandZand simulate
the bandit game forT=104iterations, which we repeat 60
times for each method. Figure2plots the average regret
of the methods and the .95 confidence intervals. All the
methods outperform OFUL, and the regret differences from
OFUL are statistically significant. We observe that ESTR-
BM performs better than ESTR-OS. We believe this is due
to our limit on the number of iterations of OptSpace set to
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1000, which we imposed due to its slow convergence in our
experiments.7 The Burer-Monteiro formulation, however,
converged within 200 iterations. Finally, ISSE performs
close to ESTR-BM, but with a larger variance. Although
ISSE does not have a theoretical guarantee, it does not
require tuning T1 and performs better than OFUL.

7 Related work
There exist a few studies on pulling a pair of arms as a unit
action, as we do. Kveton et al. (2017) consider the K-armed
bandit with N1 left arms and N2 right arms. The expected
rewards can be represented as a matrix R̄ ∈ RN1×N2 where
the authors assume R̄ has rank r � min{N1,N2}. The
main difference from our setting is that they do not as-
sume that the arm features are available, so our work is
related to Kveton et al. (2017) in the same way as the linear
bandits are related to K-armed bandits. The problem con-
sidered in Katariya et al. (2017b) is essentially a rank-one
version of Kveton et al. (2017), which is motivated by a
click-feedback model called position-based model with N1

items and N2 positions. This work is further extended to
have a tighter KL-based bound by Katariya et al. (2017a).
All these studies successfully exploit the low-rank structure
to enjoy regret bounds that scale with r(N1 +N2) rather
than N1N2. Zimmert & Seldin (2018) propose a more
generic problem called factored bandits whose action set is
a product of atomic L action sets rather than two. While
they achieve generality by not require to know the explicit
reward model, factored bandits do not leverage the known
arm features nor the low-rank structure, resulting in large
regret in our problem.

There are other works that exploit the low-rank structure of
the reward matrix, although the action is just a single arm
pull. Sen et al. (2017) consider the contextual bandit setting
where there are N1 discrete contexts and N2 arms, but do not
take into account the observed features of contexts or arms.
Under the so-called separability assumption, the authors
make use of Hottopix algorithm to exploit the low-rank
structure. Gopalan et al. (2016) consider a similar setting,
but employ the robust tensor power method for recovery.
Kawale et al. (2015) study essentially the same problem, but
make assumptions on the prior that generates the unknown
matrix and perform online matrix factorization with particle
filtering to leverage the low-rank structure. These studies
also exploit the low-rank structure successfully and enjoy
regret bounds that scale much better than N1N2.

There has been a plethora of contextual bandit studies that
exploit structures other than the low-rank-ness, where the
context is usually the user identity or features. For example,
Gentile et al. (2014) and its followup studies (Li et al., 2016;

7 We used the authors’ C implementation that is wrapped in
python (https://github.com/strin/pyOptSpace).

Gentile et al., 2017) leverage the clustering structure of
the contexts. In Cesa-Bianchi et al. (2013) and Vaswani
et al. (2017), a graph structure of the users is leveraged to
enjoy regret bound that is lower than running bandits on
each context (i.e., user) independently. Deshmukh et al.
(2017) introduce a multitask learning view and exploit arm
similarity information via kernels, but their regret guarantee
is valid only when the similarity is known ahead of time.
In this vein, if we think of the right arm set Z as tasks,
we effectively assume different parameters for each task
but with a low-rank structure. That is, the parameters can
be written as a linear combination of a few hidden factors,
which are estimated on the fly rather than being known in
advance. Johnson et al. (2016) consider low-rank structured
bandits but in a different setup. Their reward model has
expected reward of the form tr(X�t⇥∗) with the arm Xt ∈

Rd×p and the unknown ⇥∗ ∈ Rd×p. While Xt corresponds
to xtz

�
t in our setting, they consider a continuous arm set

only, so their algorithm cannot be applied to our problem.

Our subroutine LowOFUL is quite similar to SpectralUCB
of (Valko et al., 2014), which is designed specifically for
graph-structured arms in which expected rewards of the two
arms are close to each other (i.e., “smooth”) when there
is an edge between them. Although technical ingredients
for Corollary 1 stem from Valko et al. (2014), LowOFUL
is for an inherently different setup in which we design the
regularization matrix ⇤ to maximally exploit the subspace
knowledge and minimize the regret, rather than receiving
⇤ from the environment as a part of the problem definition.
Gilton & Willett (2017) study a similar regularizer in the
context of sparse linear bandits under the assumption that
a superset of the sparse locations is known ahead of time.
Yue et al. (2012b) consider a setup similar to LowOFUL.
They assume an estimate of the subspace is available, but
their regret bound still depends on the total dimension p.

8 Conclusion
In this paper, we introduced the bilinear low-rank bandit
problem and proposed the first algorithm with a nontrivial
regret guarantee. Our study opens up several future research
directions. First, there is currently no nontrivial lower bound,
and showing whether the regret of Õ(d3�2√rT ) is tight or
not remains open. Second, while our algorithm improves
the regret bound over the trivial linear bandit reduction,
the algorithm requires to tune an extra parameter T1. It
would be more natural to continuously update the subspace
estimate and the amount of regularization, just like ISSE.
However, proving a theoretical guarantee would be chal-
lenging since most matrix recovery algorithms require some
sort of uniform sampling with a “nice” set of measurements.
We speculate that one can employ randomized arm selection
and use importance-weighted data to perform effective and
provable matrix recoveries on-the-fly.

https://github.com/strin/pyOptSpace
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Abstract
We introduce the bilinear bandit problem with
low-rank structure in which an action takes the
form of a pair of arms from two different en-
tity types, and the reward is a bilinear function
of the known feature vectors of the arms. The
unknown in the problem is a d1 by d2 matrix
Θ∗ that defines the reward, and has low rank
r ≪ min{d1, d2}. Determination of Θ∗ with this
low-rank structure poses a significant challenge
in finding the right exploration-exploitation trade-
off. In this work, we propose a new two-stage al-
gorithm called “Explore-Subspace-Then-Refine”
(ESTR). The first stage is an explicit subspace
exploration, while the second stage is a linear
bandit algorithm called “almost-low-dimensional
OFUL” (LowOFUL) that exploits and further re-
fines the estimated subspace via a regularization
technique. We show that the regret of ESTR is
Õ((d1 + d2)

3/2
√
rT ) where Õ hides logarithmic

factors and T is the time horizon, which improves
upon the regret of Õ(d1d2

√
T ) attained for a

naı̈ve linear bandit reduction. We conjecture that
the regret bound of ESTR is unimprovable up to
polylogarithmic factors, and our preliminary ex-
periment shows that ESTR outperforms a naı̈ve
linear bandit reduction.

1 Introduction

Consider a drug discovery application where scientists
would like to choose a (drug, protein) pair and measure
whether the pair exhibits the desired interaction (Luo et al.,
2017). Over many repetitions of this step, one would like to
maximize the number of discovered pairs with the desired
interaction. Similarly, an online dating service may want
to choose a (female, male) pair from the user pool, match
them, and receive feedback about whether they like each
other or not. For clothing websites, the recommendation

1Boston University 2University of Chicago 3University of
Wisconsin-Madison. Correspondence to: Kwang-Sung Jun
<kwangsungjun@gmail.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

system may want to choose a pair of items (top, bottom) for
a customer, whose appeal depends in part on whether they
match. In these applications, the two types of entities are
recommended and evaluated as a unit. Having feature vec-
tors of the entities available,1 the system must explore and
learn what features of the two entities jointly predict positive
feedback in order to make effective recommendations.

The recommendation system aims to obtain large rewards
(the amount of positive feedback) but does not know ahead
of time the relationship between the features and the feed-
back. The system thus faces two conflicting goals: choosing
pairs that (i) maximally help estimate the relationship (“ex-
ploration”) but which may give small rewards and (ii) re-
turn relatively large, but possibly suboptimal, rewards (“ex-
ploitation”), given the limited information obtained from the
feedback collected so far. Such an exploration-exploitation
dilemma can be formulated as a multi-armed bandit prob-
lem (Lai & Robbins, 1985; Auer et al., 2002). When the
feature vectors are available for each arm, one can postulate
simple reward structures such as (generalized) linear models
to allow a large or even infinite number of arms (Auer, 2002;
Dani et al., 2008; Abbasi-Yadkori et al., 2011; Filippi et al.,
2010), a paradigm that has received much attention dur-
ing the past decade, with such applications as online news
recommendations (Li et al., 2010). Less is known for the
situation we consider here, in which the recommendation
(action) involves two different entity types and forms a bi-
linear structure. The closest work we are aware of is Kveton
et al. (2017) whose action structure is the same as ours but
without arm feature vectors. Factored bandits (Zimmert &
Seldin, 2018) provide a more general view with L entity
types rather than two, but they do not utilize arm features
nor the low-rank structure. Our problem is different from
dueling bandits (Yue et al., 2012a) or bandits with unknown
user segment (Bhargava et al., 2017), which choose two
arms from the same entity set rather than from two different
entity types. Section 7 below contains detailed comparisons
to related work.

This paper introduces the bilinear bandit problem with low-
rank structure. In each round t, an algorithm chooses a left
arm xt from X ⊆ Rd1 and a right arm zt from Z ⊆ Rd2 , and

1 The feature vectors can be obtained either directly from the
entity description (for example, hobbies or age) or by other prepro-
cessing techniques (for example, embedding).
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observes a noisy reward of a bilinear form:
yt = x⊺tΘ

∗zt + ηt , (1)

where Θ∗ ∈ Rd1×d2 is an unknown parameter and ηt is
a σ-sub-Gaussian random variable conditioning on xt, zt,
and all the observations before (and excluding) time t. De-
noting by r the rank of Θ∗, we assume that r is small
(r ≪ min{d1, d2}), which means that the reward is gov-
erned by a few factors. Such low-rank appears in many
recommendation applications (Ma et al., 2008). Our choice
of reward model is popular and arguably natural; for exam-
ple, the same model was used in Luo et al. (2017) for drug
discovery.

The goal is to maximize the cumulative reward up to time T .
Equivalently, we aim to minimize the cumulative regret:2

RegretT =
T

∑
t=1

{ max
x∈X ,z∈Z

x⊺Θ∗z − x⊺tΘ
∗zt} . (2)

A naive approach to this problem is to reduce the bilinear
problem to a linear problem, as follows:

x⊺Θ∗z = ⟨vec(xz⊺),vec(Θ∗
)⟩ . (3)

Throughout the paper, we focus on the regime in which the
numbers of possible actions N1 ∶= ∣X ∣ ∈ N+ ∪ {∞} and
N2 ∶= ∣Z ∣ ∈ N+ ∪ {∞} are much larger than dimensions
d1 and d2, respectively.3 The reduction above allows us
to use the standard linear bandit algorithms (see, for exam-
ple, (Abbasi-Yadkori et al., 2011)) in the d1d2-dimensional
space and achieve regret of Õ(d1d2

√
T ), where Õ hides

logarithmic factors. However, d1d2 can be large, making
this regret bound take an undesirably large value. Moreover,
the regret does not decrease as r gets smaller, since the
reduction hinders us from exploiting the low-rank structure.

We address the following challenge: Can we design an al-
gorithm for the bilinear bandit problem that exploits the
low-rank structure and enjoys regret strictly smaller than
Õ(d1d2

√
T )? We answer the question in the affirmative

by proposing Explore Subspace Then Refine (ESTR), an ap-
proach that achieves a regret bound of Õ((d1+d2)

3/2
√
rT ).

ESTR consists of two stages. In the first stage, we estimate
the row and column subspace by randomly sampling from
a subset of arms, chosen carefully. In the second stage, we
leverage the estimated subspace by invoking an approach
called almost-low-dimensional OFUL (LowOFUL), a vari-
ant of OFUL (Abbasi-Yadkori et al., 2011) that uses regu-
larization to penalize the subspaces that are apparently not
spanned by the rows and columns (respectively) of Θ∗. We

2This regret definition is actually called pseudo regret; we refer
to Bubeck & Cesa-Bianchi (2012, Section 1) for detail.

3Otherwise, one can reduce the problem to the standard K-
armed bandit problem and enjoy regret of Õ(

√

N1N2T ).
With SupLinRel (Auer, 2002), one may also achieve
Õ(

√

d1d2T log(N1N2)), but this approach wastes a lot of
samples and does not allow an infinite number of arms.

conjecture that our regret upper bound is minimax optimal
up to polylogarithmic factors based on the fact that the bilin-
ear model has a much lower expected signal strength than
the linear model. We provide a detailed argument on the
lower bound in Section 5.

While the idea of having an explicit exploration stage, so-
called Explore-Then-Commit (ETC), is not new, the way we
exploit the subspace with LowOFUL is novel for two rea-
sons. First, the standard ETC commits to the estimated pa-
rameter without refining and is thus known to have O(

√
T )

regret only for “smooth” arm sets such as the unit ball (Rus-
mevichientong & Tsitsiklis, 2010; Abbasi-Yadkori et al.,
2009). This means that the estimate refining is necessary
for generic arm sets. Second, after the first stage that out-
puts a subspace estimate, it is tempting to project all the
arms onto the identified subspaces (r dimensions for each
row and column space), and naively invoke OFUL in the
r2-dimensional space. However, the subspace mismatch
invalidates the upper confidence bound used in OFUL; i.e.,
the confidence bound does not actually bound the mean
reward.

Attempts to correct the confidence bound so that it is faithful
are not trivial, and we are unaware of a solution that leads to
improved regret bounds. Departing from completely com-
mitting to the identified subspaces, LowOFUL works with
the full d1d2-dimensional space, but penalizes the subspace
that is complementary to the estimated subspace, thus con-
tinuing to refine the subspace. We calibrate the amount of
regularization to be a function of the subspace estimation
error; this is the key to achieving our final regret bound.

We remark that our bandit problem can be modified slightly
for the setting in which the arm zt is considered as a context,
obtained from the environment. This situation arises, for
example, in recommendation systems where Z is the set of
users represented by indicator vectors (i.e., d2 = N2) and X
is the set of items. Such a setting is similar to Cesa-Bianchi
et al. (2013), but we assume that Θ∗ is low-rank rather than
knowing the graph information. Furthermore, when the user
information is available, one can take Z as the set of user
feature vectors.

The paper is structured as follows. In Section 2, we define
the problem formally and provide a sketch of the main con-
tribution. Sections 3 and 4 describe the details of stages 1
and 2 of ESTR, respectively. We elaborate our conjecture
on the regret lower bound in Section 5. After presenting
our preliminary experimental results in Section 6, we dis-
cuss related work in Section 7 and propose future research
directions in Section 8.
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Input: time horizon T , the exploration length T1, the rank r of Θ∗, and the spectral bounds SF , S2, and Sr of Θ∗.

Stage 1 (Section 3)
• Solve (approximately)

arg max
distinct x(1),...,x(d1)∈X

(the smallest eigenvalue of [x(1), . . . ,x(d1)]) (4)

and define X = {x(1),⋯,x(d1)}. Define Z similarly.
• For T1 rounds, choose a pair of arms from X ×Z, pulling each pair the same number of times to the extent possible.

That is, choose each pair ⌊ T1

d1d2
⌋ times, then choose T1 −d1d2⌊

T1

d1d2
⌋ pairs uniformly at random without replacement.

• Let K̃ be a matrix such that K̃ij is the average reward of pulling the arm (x(i),z(j)). Invoke a noisy matrix recovery
algorithm (e.g., OptSpace (Keshavan et al., 2010)) with K̃ and the rank r to obtain an estimate K̂.

• Let Θ̂ = X−1K̂(Z⊺)−1 where X = [(x(1))⊺; ⋯ ; (x(d1))⊺] ∈ Rd1×d1 (abusing notation) and Z is defined similarly.
• Let Θ̂ = ÛŜV̂⊺ be the SVD of Θ̂. Let Û⊥ and V̂⊥ be orthonormal bases of the complementary subspaces of Û and

V̂, respectively.
• Let γ(T1) be the subspace angle error bound such that, with high probability,

∥Û⊺
⊥U

∗
∥F ∥V̂⊺

⊥V
∗
∥F ≤ γ(T1) (5)

where Θ∗ = U∗S∗V∗⊺ is the SVD of Θ∗.

Stage 2 (Section 4)
• Rotate the arm sets: X ′ = {[ÛÛ⊥]

⊺x ∶ x ∈ X} and Z ′ = {[V̂V̂⊥]
⊺z ∶ z ∈ Z}.

• Define a vectorized arm set so that the last (d1 − r) ⋅ (d2 − r) components are from the complementary subspaces:
A = {[vec(x1∶rz

⊺
1∶r); vec(xr+1∶d1z

⊺
1∶r); vec(x1∶rz

⊺
r+1∶d2

); vec(xr+1∶d1z
⊺
r+1∶d2

)] ∈ Rd1d2 ∶ x ∈ X
′, z ∈ Z ′} .

• For T2 = T − T1 rounds, invoke LowOFUL with the arm set A, the low dimension k = (d1 + d2)r − r
2, and γ(T1).

Figure 1. A sketch of Explore Subspace Then Refine (ESTR)

2 Preliminaries

We define the problem formally as follows. Let X ⊆ Rd1
and Z ⊆ Rd2 be the left and right arm space, respectively.
Define N1 = ∣X ∣ and N2 = ∣Z ∣. (Either or both can be in-
finite.) We assume that both the left and right arms have
Euclidean norm at most 1: ∥x∥2 ≤ 1 and ∥z∥2 ≤ 1 for all
x ∈ X and z ∈ Z . Without loss of generality, we assume
X (Z) spans the whole d1 (d2) dimensional space (respec-
tively) since, if not, one can project the arm set to a lower-
dimensional space that is now fully spanned.4 We assume
d2 = Θ(d1) and define d = max{d1, d2}. If A is a positive
integer, we use notation [A] = {1,2, . . . ,A}. We denote by
vi∶j the (j − i + 1)-dimensional vector taking values from
the coordinates from i to j from v. Similarly, we define
Mi∶j,k∶` ∈ R(j−i+1)×(`−k+1) to be a submatrix taking values
from M with the row indices from i to j and the column
indices from k to `. We denote by vi the i-th component of
the vector v and by Mij the entry of a matrix M located at
the i-th row and j-th column. Denote by Σk(M) the k-th
largest singular value, and define Σmax(M) = Σ1(M). Let
Σmin(M) be the smallest nonzero singular value of M. ∣M∣

denotes the determinant of a matrix M.
4 In this case, we effectively work with a projected version of

Θ∗, and its rank may become smaller as well.

The protocol of the bilinear bandit problem is as follows. At
time t, the algorithm chooses a pair of arms (xt,zt) ∈ X ×Z
and receives a noisy reward yt according to (1). We make
the standard assumptions in linear bandits: the Frobenius
and operator norms of Θ∗ are bounded by known constants,
∥Θ∗∥F ≤ SF and ∥Θ∗∥2 ≤ S2,5 and the sub-Gaussian scale
σ of ηt is known to the algorithm. We denote by s∗i the i-th
largest singular value of Θ∗. We assume that the rank r
of the matrix is known and that s∗r ≥ Sr for some known
Sr > 0. 6

The main contribution of this paper is the first nontrivial
upper bound on the achievable regret for the bilinear bandit
problem. In this section, we provide a sketch of the overall
result and the key insight. For simplicity, we omit constants
and variables other than d, r, and T . Our proposed ESTR
algorithm enjoys the following regret bound, which strictly
improves the naive linear bandit reduction when r ≪ d.
Theorem 1 (An informal version of Corollary 2). Under
mild assumptions, the regret of ESTR is Õ(d3/2

√
rT ) with

high probability.

5 When S2 is not known, one can set S2 = SF . In some
applications, S2 is known. For example, the binary model yt ∼
Bernoulli((x⊺t Θ

∗zt) + 1)/2), we can evidently set S2 = 1.
6In practice, one can perform rank estimation after the first

stage (see, for example, Keshavan et al. (2010)).
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We conjecture that the regret bound above is minimax opti-
mal up to polylogarithmic factors since the expected signal
strength in the bilinear model is much weaker than the linear
model. We elaborate on this argument in Section 5.

We describe ESTR in Figure 1. The algorithm proceeds in
two stages. In the first stage, we estimate the column and
row subspace of Θ∗ from noisy rank-one measurements
using a matrix recovery algorithm. Specifically, we first
identify d1 and d2 arms from the set X and Z in such a way
that the smallest singular values of the matrices formed from
these arms are maximized approximately (see (4)), which is
a form of submatrix selection problem (details in Section 3).
We emphasize that finding the exact solution is not neces-
sary here since Theorem 1 has a mild dependency on the
smallest eigenvalue found when approximating (4). We then
use the popular matrix recovery algorithm, OptSpace (Ke-
shavan et al., 2010) to estimate Θ∗. The sin Θ theorem of
Wedin (Stewart & Sun, 1990) is used to convert the matrix
recovery error bound from OptSpace to the desired subspace
angle guarantee (5) with γ(T1) = O (d

3r
T1

). The regret in-
curred in stage 1 is bounded trivially by T1∥Θ

∗∥2.

In the second stage, we transform the problem into a d1d2-
dimensional linear bandit problem and invoke LowOFUL
that we introduce in Section 4. This technique projects the
arms onto both the estimated subspace and its complemen-
tary subspace and uses γ(T1) to penalize weights in the
complementary subspaces Û⊥ and V̂⊥. LowOFUL enjoys
regret bound Õ((dr +

√
Tγ(T1))

√
T − T1) during T − T1

rounds. By combining with the regret for the first stage, we
obtain an overall regret of

T1 + (dr +
√
T
d3r

T1
)
√
T .

Choosing T1 to minimize this expression, we obtain a regret
bound of Õ(d3/2

√
rT ).

3 Stage 1: Subspace estimation

The goal of stage 1 is to estimate the row and column sub-
spaces for the true parameter Θ∗. How should we choose
which arm pairs to pull, and what guarantee can we obtain
on the subspace estimation error? One could choose to
apply a noisy matrix recovery algorithm with affine rank
minimization (Recht et al., 2010; Mohan & Fazel, 2010) to
the measurements attained from the arm pulls. However,
these methods require the measurements to be Gaussian or
Rademacher, so their guarantees depend on satisfaction of a
RIP property (Recht et al., 2010), or, for rank-one projection
measurements, an RUB property (Cai et al., 2015). Such
assumptions are not suitable for our setting since measure-
ments are restricted to the arbitrarily given arm sets X and
Z . Uniform sampling from the arm set cannot guarantee
RIP, as the arm set itself can be heavily biased in certain

directions.

We design a simple reduction procedure though matrix re-
covery with noisy entry observations, leaving a more so-
phisticated treatment as future work. The d1 arms in X are
chosen according to the criterion (4), which is a combinato-
rial problem that is hard to solve exactly. Our analysis does
not require its exact solution, however; it is enough that the
objective value is nonzero (that is, the matrix X constructed
from these d1 arms is nonsingular). (Similar comments hold
for the matrix Z.) We remark that the problem (4) is shown
to be NP-hard by Çivril & Magdon-Ismail (2009) and is
related to finding submatrices with favorable spectral prop-
erties (Çivril & Magdon-Ismail, 2007; Tropp, 2009), but a
thorough review on algorithms and their limits is beyond the
scope of the paper. For our experiments, simple methods
such as random selection were sufficient; we describe our
implementation in the supplementary material.

If K∗ is the matrix defined by K∗
ij = x(i)⊺Θ∗z(j), each

time step of stage 1 obtains a noisy estimate of one element
of K∗. Since multiple measurements of each entry are
made, in general, we compute average measurements for
each entry. A matrix recovery algorithm applied to this
matrix of average measurements yields the estimate K̂ of
the rank-r matrix K∗. Since K∗ = XΘ∗Z⊺, we estimate
Θ∗ by Θ̂ = X−1K̂(Z⊺)−1 and then compute the subspace
estimate Û ∈ Rd1×r and V̂ ∈ Rd2×r by applying SVD to Θ̂.

We choose the recovery algorithm OptSpace by Keshavan
et al. (2010) because of its strong (near-optimal) guarantee.
Denoting the SVD of K∗ by URV⊺, we use the matrix
incoherence definition from Keshavan et al. (2010) and let
(µ0, µ1) be the smallest values such that for all i ∈ [d1], j ∈
[d2],

r

∑
k=1

U2
ik ≤ µ0r/d1,

r

∑
k=1

V 2
jk ≤ µ0r/d2, and

∣
r

∑
k=1

Uik(Σk(K
∗
)/Σmax(K

∗
))Vjk∣ ≤ µ1

√
r

d1d2
.

Define the condition number κ = Σmax(K
∗)/Σmin(K

∗).
We present the guarantee of OptSpace (Keshavan et al.,
2010) in a paraphrased form. (The proof of this result, and
all subsequent proofs, are deferred to the supplementary
material.)
Theorem 2. There exists a constant C0 such that for T1 ≥

C0σ
2(µ2

0 + µ
2
1)

κ6

Σmin(K∗)2
dr(r + log d), we have that, with

probability at least 1 − 2/d3
2,

∥K̂ −K∗
∥F ≤ C1κ

2σ
d3/2√r
√
T1

(6)

where C1 is an absolute constant.

The original theorem from Keshavan et al. (2010) assumes
T1 ≤ d1d2 and does not allow repeated sampling. However,
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we show in the proof that the same guarantee holds for
T1 > d1d2 since repeated sampling of entries has the effect
of reducing the noise parameter σ.

Our recovery of an estimate K̂ of K∗ implies the bound
∥Θ̂ −Θ∗∥F ≤ ∥X−1∥2∥Z

−1∥2τ where τ is the RHS of (6).
However, our goal in stage 1 is to obtain bounds on
the subspace estimation errors. That is, given the SVDs
Θ̂ = ÛŜV̂⊺ and Θ∗ = U∗S∗V∗⊺, we wish to identify how
close Û (V̂) is to U∗ (V∗ respectively). Such guarantees
on the subspace error can be obtained via the sin Θ the-
orem by Stewart & Sun (1990), which we restate in our
supplementary material. Roughly, this theorem bounds the
canonical angles between two subspaces by the Frobenius
norm of the difference between the two matrices. Recall
that s∗r is the r-th largest singular value of Θ∗.
Theorem 3. Suppose we invoke OptSpace to compute K̂
as an estimate of the matrix K∗. After stage 1 of ESTR
with T1 satisfying the condition of Theorem 2, we have, with
probability at least 1 − 2/d3

2,

∥Û⊺
⊥U

∗
∥F ∥V̂⊺

⊥V
∗
∥F ≤

∥X−1∥2
2∥Z

−1∥2
2

(s∗r)
2

τ2 (7)

where τ = C1κ
2σd3/2√r/

√
T1.

4 Stage 2: Almost-low-dimensional linear
bandits

The goal of stage 2 is to exploit the subspaces Û and V̂
estimated in stage 1 to perform efficient bandit learning. At
first, it is tempting to project all the left and right arms to r-
dimensional subspaces using Û and V̂, respectively, which
seems to be a bilinear bandit problem with an r by r un-
known matrix. One can then reduce it to an r2-dimensional
linear bandit problem and solve it by standard algorithms
such as OFUL (Abbasi-Yadkori et al., 2011). Indeed, if Û
and V̂ exactly span the row and column spaces of Θ∗, this
strategy yields a regret bound of Õ(r2

√
T ). In reality, these

matrices (subspaces) are not exact, so there is model mis-
match, making it difficult to apply standard regret analysis.
The upper confidence bound (UCB) used in popular algo-
rithms becomes invalid, and there is no known correction
that leads to a regret bound lower than Õ(d1d2

√
T ), to the

best of our knowledge.

In this section, we show how stage 2 of our approach avoids
the mismatch issue by returning to the full d1d2-dimensional
space, allowing the subspace estimates to be inexact, but
penalizing those components that are complementary to Û
and V̂. This effectively constrains the hypothesis space to
be much smaller than the full d1d2-dimensional space. We
show how the bilinear bandit problem with good subspace
estimates can be turned into the almost low-dimensional
linear bandit problem, and how much penalization / regu-
larization is needed to achieve a low overall regret bound.

Finally, we state our main theorem showing the overall
regret bound of ESTR.
Reduction to linear bandits. Recall that Θ∗ =

U∗S∗V∗⊺ is the SVD of Θ∗ (where S∗ is r × r diago-
nal) and that Û⊥ and V̂⊥ are the complementary subspace
of Û and V̂ respectively. Let M = [Û Û⊥]

⊺Θ∗[V̂ V̂⊥] be
a rotated version of Θ∗. Then we have

Θ∗
= [Û Û⊥]M[V̂ V̂⊥]

⊺ and

x⊺Θ∗z = ([Û Û⊥]
⊺x)⊺M([V̂ V̂⊥]

⊺z) .

Thus, the bilinear bandit problem with the unknown Θ∗

with arm sets X and Z is equivalent to the one with the
unknown M with arm sets X ′ = {x′ = [Û Û⊥]

⊺x ∣ x ∈ X}

and Z ′ (defined similarly). As mentioned earlier, this prob-
lem can be cast as a d1d2-dimensional linear bandit problem
by considering the unknown vector θ∗ = vec(M). The dif-
ference is, however, that we have learnt something about the
subspace in stage 1. We define θ∗ to be a rearranged version
of vec(M) so that the last (d1 − r) ⋅ (d2 − r) dimensions of
θ∗ are Mij for i ∈ {r + 1, . . . , d1} and j ∈ {r + 1, . . . , d2};
that is, letting k ∶= d1d2 − (d1 − r) ⋅ (d2 − r),
θ∗1∶k = [vec(M1∶r,1∶r); vec(Mr+1∶d1,1∶r); vec(M1∶r,r+1∶d2)],

θ∗k+1∶p = vec(Mr+1∶d1,r+1∶d2) .

Then we have
∥θ∗k+1∶p∥

2
2 = ∑

i>r∧j>r

M2
ij = ∥Û⊺

⊥(U
∗S∗V∗⊺

)V̂⊥∥
2
F

≤ ∥Û⊺
⊥U

∗
∥
2
F ∥S∗∥2

2∥V̂
⊺
⊥V

∗
∥
2
F ,

(9)

which implies ∥θ∗k+1∶p∥2 = O(d3r/T1) by Theorem 3. Our
knowledge on the subspace results in the knowledge of the
norm of certain coordinates! Can we exploit this knowl-
edge to enjoy a better regret bound than Õ(d1d2

√
T )? We

answer this question in the affirmative below.
Almost-low-dimensional OFUL (LowOFUL). We now
focus on an abstraction of the conversion described in
the previous paragraph, which we call the almost-low-
dimensional linear bandit problem. In the standard lin-
ear bandit problem in p dimensions, the player chooses an
arm at at time t from an arm set A ⊆ Rp and observes
a noisy reward yt = ⟨at,θ

∗⟩ + ηt, where the noise ηt has
the same properties as in (1). We assume that ∥a∥2 ≤ 1
for all a ∈ A, and ∥θ∗∥2 ≤ B for some known constant
B > 0. In almost-low-dimensional linear bandits, we have
additional knowledge that ∥θ∗k+1∶p∥2 ≤ B⊥ for some index
k and some constant B⊥ (ideally ≪ B). This means that
all-but-k dimensions of θ∗ are close to zero.

To exploit the extra knowledge on the unknown, we propose
almost-low-dimensional OFUL (LowOFUL) that extends
the standard linear bandit algorithm OFUL (Abbasi-Yadkori
et al., 2011). To describe OFUL, define the design matrix
A ∈ Rt×p with rows a⊺s , s = 1,2, . . . , t and the vector of
rewards y = [y1, . . . , yt]

⊺. The key estimator is based on
regression with the standard squared `2-norm regularizer, as
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Algorithm 1 LowOFUL
1: Input: T , k, the arm set A ⊆ Rp, failure rate δ, and

positive constants B, B⊥, λ, λ⊥.
2: Set Λ = diag(λ, . . . , λ, λ⊥, . . . , λ⊥) where λ occupies

the first k diagonal entries.
3: for t = 1,2, . . . , T do
4: Compute at = arg maxa∈Amaxθ∈ct−1 ⟨θ,a⟩.
5: Pull arm at.
6: Receive reward yt.
7: Set ct as (12).
8: end for

follows:

θ̂t = arg min
θ

1

2
∥Aθ − y∥

2
2 +

λ

2
∥θ∥2

2 = (λI +A⊺A)
−1A⊺y .

(10)

OFUL then defines a confidence ellipsoid around θ̂t based
on which one can compute an upper confidence bound
on the mean reward of any arm. In our variant, we al-
low a different regularization for each coordinate, replac-
ing the regularizer λ

2
∥θ∥2

2 by 1
2
∥θ∥2

Λ = 1
2
θ⊺Λθ for some

positive diagonal matrix Λ. Specifically, we define Λ =

diag(λ, . . . , λ, λ⊥, . . . , λ⊥), where λ occupies the first k di-
agonal entries and λ⊥ the last p − k positions. With this
modification, the estimator becomes

θ̂t = arg min
θ

1

2
∥Aθ − y∥

2
2 +

1

2
∥θ∥2

Λ = (Λ +A⊺A)
−1A⊺y .

(11)

Define Vt = Λ+∑
t
s=1 ata

⊺
t = Λ+A⊺A and let δ be the fail-

ure rate we are willing to endure. The confidence ellipsoid
for θ∗ is

ct = {θ ∶ ∥θ − θ̂t∥Vt ≤
√
βt} where

√
βt = σ

¿
Á
ÁÀlog

∣Vt∣

∣Λ∣δ2
+
√
λB +

√
λ⊥B⊥.

(12)

This ellipsoid enjoys the following guarantee, which is
a direct consequence of Valko et al. (2014, Lemma 3)
that is based on the self-normalized martingale inequality
of Abbasi-Yadkori et al. (2011, Theorem 1).
Lemma 1. With probability at least 1 − δ, we have θ∗ ∈ ct
for all t ≥ 1.

We summarize LowOFUL in Algorithm 1,
where maxθ∈ct−1 ⟨θ,a⟩ can be simplified to
⟨θ̂t−1,a⟩ +

√
βt−1∥a∥V−1

t−1
.

We now state the regret bound of LowOFUL in Theorem 4,
which is based on the standard linear bandit regret analysis
dating back to Auer (2002).
Theorem 4. The regret of LowOFUL is, with probability at

least 1 − δ,

O
⎛
⎜
⎝

¿
Á
ÁÀlog

∣VT ∣

∣Λ∣

⎛
⎜
⎝
σ

¿
Á
ÁÀlog

∣VT ∣

∣Λ∣δ2
+
√
λB +

√
λ⊥B⊥

⎞
⎟
⎠
⋅
√
T
⎞
⎟
⎠
.

(13)

In the standard linear bandit setting where λ⊥ = λ and
B⊥ = B, we recover the regret bound Õ(p

√
T ) of OFUL,

since log ∣VT ∣

∣Λ∣
= O(p

√
T ) (Abbasi-Yadkori et al., 2011,

Lemma 10).

To alleviate the dependence on p in the regret bound, we
propose a carefully chosen value of λ⊥ in the following
corollary.
Corollary 1. Then, the regret of LowOFUL with λ⊥ =

T
k log(1+Tλ )

is, with probability at least 1 − δ,

Õ ((σk +
√
kλB +

√
TB⊥)

√
T) .

The bound improves the dependence on dimensionality from
p to k, but introduces an extra factor of

√
T to B⊥, result-

ing in linear regret. While this choice is not interesting
in general, we show that it is useful for our case: Since
∥θ∗k+1∶p∥2 = O(1/T1), we can set B⊥ = O(1/T1) to be a
valid upper bound of ∥θ∗k+1∶p∥2. By setting T1 = Θ(

√
T ),

the regret bound in Corollary 1 scales with
√
T rather than

T .

Concretely, using (9), we set
B = SF and B⊥ = S2 ⋅ γ(T1) where

γ(T1) =
∥X−1∥2

2∥Z
−1∥2

2

(Sr)2
⋅C2

1 (
S2

Sr
)

4

σ2.
d3r

T1
.

(14)

B and B⊥ are valid upper bounds of ∥θ∗∥2 and ∥θ∗k+1∶p∥2,
respectively, with high probability. Note we must use S2,
Sr, and S2/Sr instead of s∗1 , s∗r , and κ, respectively, since
the latter variables are unknown to the learner.

Overall regret. Theorem 5 shows the overall regret bound
of ESTR.
Theorem 5. Suppose we run ESTR (Algorithm 1) with T1 ≥

C0σ
2(µ2

0 + µ
2
1)

κ6

Σmin(K∗)2
dr(r + log d). We invoke LowO-

FUL in stage 2 with p = d1d2, k = r ⋅(d1+d2−r), θ∗ defined
as (8), the rotated arm sets X ′ and Z ′, λ⊥ = T2

k log(1+T2/λ)
,

and B and B⊥ as in (14). The regret of ESTR is, with prob-
ability at least 1 − δ − 2/d3

2,

Õ (s∗1T1 + T ⋅
∥X−1∥2

2∥Z
−1∥2

2(S
5
2/S

6
r )σ

2d3r

T1
) .

One can see that there exists an optimal choice of T1, which
we state in the following corollary.
Corollary 2. Suppose the assumptions in Theorem 5 hold.
If T1 = Θ (∥X−1∥2∥Z

−1∥2
S2
2

S3
r
σd3/2

√
rT), then the regret of
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ESTRis,withprobabilityatleast1−δ−2/d32,

Õ(
S32
S3r
∥X−1∥2∥Z

−1∥2σd
3/2
√
rT).

Notethat,forourproblem,theincoherenceconstantsµ0
andµ1donotplayanimportantrolewithlargeenoughT.

Remark Onemightnoticethatwecanalsoregularize
thesubmatricesMr+1∶d1,1∶randM1∶r,r+1∶d2 sincethey
arecomingpartlyfromthecomplementarysubspaceof
ÛandpartlyfromthecomplementofV̂(butnotboth).
Inpractice,sucharegularizationcanbedonetoreduce
theregretslightly,butitdoesnotaffecttheorderof
theregret. Wedonothavesufficientdecreaseinthe
magnitudetoprovideinterestingbounds.Onecanshow
that,while∥Mr+1∶d1,r+1∶d2∥

2
F =O(1/T1),thequantities

∥M1∶r,r+1∶d2∥
2
Fand∥Mr+1∶d1,1∶r∥

2
FareO(1/

√
T1).

5 Lowerbound

AsimplelowerboundisΩ(d
√
T),sincewhenthearmset

Zisasingletontheproblemreducestoad1-dimensional
linearbanditproblem. Wehaveattemptedtoextendex-
istinglower-boundprooftechniquesinRusmevichientong
&Tsitsiklis(2010),Danietal.(2008),andLattimore&
Szepesv́ari(2018),butthebilinearnatureoftheproblem
introducescrosstermsbetweentheleftandrightarm,which
aredifficulttodealwithingeneral.However,weconjecture
thatthelowerboundisΩ(d3/2

√
rT).Weprovideaninfor-

malargumentbelowthatthedependenceondmustbed3/2

basedontheobservationthattherank-onebilinearreward
model’ssignal-to-noiseratio(SNR)issignificantlyworse
thanthatofthelinearrewardmodel.

Considerarank-oneΘ∗thatcanbedecomposedasuv⊺

forsomeu,v∈{±1/
√
d}d.Supposetheleftandrightarm

setsareX=Z={±1/
√
d}d.Letuschoosextandzt

uniformlyatrandom(whichisthesortofpureexploration
thatmustbeperformedinitially).Thenasimplecalculation
showsthattheexpectedsquaredsignalstrengthwithsuch
arandomchoiceisE∣x⊺tΘ

∗zt∣
2= 1

d2
.Incontrast,the

expectedsquaredsignalstrengthforalinearrewardmodel
isE∣x⊺tu∣

2=1
d
.Theeffectofthisisanalogoustoincreasing

thesub-Gaussianscaleparameterofthenoiseηtbyafactor
of
√
d. Wethusconjecturethatthe

√
ddifferenceinthe

SNRintroducesthedependenced3/2intheregretrather
thand.

6 Experiments

Wepresentapreliminaryexperimentalresultanddiscuss
practicalconcerns.

Banditsinpracticerequirestuningtheexplorationrateto
performwell,whichisusuallydonebyadjustingthecon-
fidenceboundwidth(Chapelle&Li,2011;Lietal.,2010
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r
e
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;

Figure2.Simulationresultsford=8andr=1.Ourmethod
ESTR-OS,itsvariantESTR-BM,andanimplicitexplorationvari-
antofESTRcalledISSEalloutperformthebaselinelinearbandit
methodOFUL.

Zhangetal.,2016),whichamountstoreplacingβtwithcβt
forsomec>0forOFULoritsvariants(includingLowO-
FUL).Anefficientparametertuninginbanditsisanopen
problemandisbeyondourscope.Forthesakeofcompari-
son,wetunecbygridsearchandreporttheresultwiththe
smallestaverageregret.ForESTR,thevalueofT1usedin
theproofinvolvessomeunknownconstants;toaccountfor
this,wetuneT1bygridsearch.Weconsiderthefollowing
methods:

•OFUL:TheOFULreductiondescribedin(3),which
ignoresthelow-rankstructure.

•ESTR-OS:Ourproposedmethod;wesimplifyB⊥
in(14)toS2σ

2d3r/T1.

•ESTR-BM: WereplaceOptSpacewiththeBurer-
Monteiroformulationandperformthealternatingmin-
imization(Burer&Monteiro,2003).

•ISSE(ImplicitSubSpaceExploration):LowOFUL
withaheuristicsubspaceestimationthatavoidsan
explicitexplorationstage.Wesplitthetimeintervals
withknotsatt∈{100.5,101,101.5,...}.Atthebegin-
ningtimet′ofeachinterval,weperformthematrix
recoverywiththeBurer-Monteiroformulationusing
allthepastdata,estimatethesubspaces,andusethem
toinitializeLowOFULwithB⊥=S2σ

2d3r/t′andall
thepastdata.

NotethatOFULandISSEonlyrequiretuningcwhereas
ESTRmethodsrequiretuningbothcandT1.

Werunoursimulationwithd1=d2=8,r=1,σ=0.01.We
setλ=1forbothOFULandLowOFUL.Wedraw16arms
fromtheunitsphereforeacharmsetXandZandsimulate
thebanditgameforT=104iterations,whichwerepeat60
timesforeachmethod.Figure2plotstheaverageregret
ofthemethodsandthe.95confidenceintervals.Allthe
methodsoutperformOFUL,andtheregretdifferencesfrom
OFULarestatisticallysignificant.WeobservethatESTR-
BMperformsbetterthanESTR-OS.Webelievethisisdue
toourlimitonthenumberofiterationsofOptSpacesetto
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1000, which we imposed due to its slow convergence in our
experiments.7 The Burer-Monteiro formulation, however,
converged within 200 iterations. Finally, ISSE performs
close to ESTR-BM, but with a larger variance. Although
ISSE does not have a theoretical guarantee, it does not
require tuning T1 and performs better than OFUL.

7 Related work

There exist a few studies on pulling a pair of arms as a unit
action, as we do. Kveton et al. (2017) consider theK-armed
bandit with N1 left arms and N2 right arms. The expected
rewards can be represented as a matrix R̄ ∈ RN1×N2 where
the authors assume R̄ has rank r ≪ min{N1,N2}. The
main difference from our setting is that they do not as-
sume that the arm features are available, so our work is
related to Kveton et al. (2017) in the same way as the linear
bandits are related to K-armed bandits. The problem con-
sidered in Katariya et al. (2017b) is essentially a rank-one
version of Kveton et al. (2017), which is motivated by a
click-feedback model called position-based model with N1

items and N2 positions. This work is further extended to
have a tighter KL-based bound by Katariya et al. (2017a).
All these studies successfully exploit the low-rank structure
to enjoy regret bounds that scale with r(N1 +N2) rather
than N1N2. Zimmert & Seldin (2018) propose a more
generic problem called factored bandits whose action set is
a product of atomic L action sets rather than two. While
they achieve generality by not require to know the explicit
reward model, factored bandits do not leverage the known
arm features nor the low-rank structure, resulting in large
regret in our problem.

There are other works that exploit the low-rank structure of
the reward matrix, although the action is just a single arm
pull. Sen et al. (2017) consider the contextual bandit setting
where there areN1 discrete contexts andN2 arms, but do not
take into account the observed features of contexts or arms.
Under the so-called separability assumption, the authors
make use of Hottopix algorithm to exploit the low-rank
structure. Gopalan et al. (2016) consider a similar setting,
but employ the robust tensor power method for recovery.
Kawale et al. (2015) study essentially the same problem, but
make assumptions on the prior that generates the unknown
matrix and perform online matrix factorization with particle
filtering to leverage the low-rank structure. These studies
also exploit the low-rank structure successfully and enjoy
regret bounds that scale much better than N1N2.

There has been a plethora of contextual bandit studies that
exploit structures other than the low-rank-ness, where the
context is usually the user identity or features. For example,
Gentile et al. (2014) and its followup studies (Li et al., 2016;

7 We used the authors’ C implementation that is wrapped in
python (https://github.com/strin/pyOptSpace).

Gentile et al., 2017) leverage the clustering structure of
the contexts. In Cesa-Bianchi et al. (2013) and Vaswani
et al. (2017), a graph structure of the users is leveraged to
enjoy regret bound that is lower than running bandits on
each context (i.e., user) independently. Deshmukh et al.
(2017) introduce a multitask learning view and exploit arm
similarity information via kernels, but their regret guarantee
is valid only when the similarity is known ahead of time.
In this vein, if we think of the right arm set Z as tasks,
we effectively assume different parameters for each task
but with a low-rank structure. That is, the parameters can
be written as a linear combination of a few hidden factors,
which are estimated on the fly rather than being known in
advance. Johnson et al. (2016) consider low-rank structured
bandits but in a different setup. Their reward model has
expected reward of the form tr(X⊺

tΘ
∗) with the arm Xt ∈

Rd×p and the unknown Θ∗ ∈ Rd×p. While Xt corresponds
to xtz

⊺
t in our setting, they consider a continuous arm set

only, so their algorithm cannot be applied to our problem.

Our subroutine LowOFUL is quite similar to SpectralUCB
of (Valko et al., 2014), which is designed specifically for
graph-structured arms in which expected rewards of the two
arms are close to each other (i.e., “smooth”) when there
is an edge between them. Although technical ingredients
for Corollary 1 stem from Valko et al. (2014), LowOFUL
is for an inherently different setup in which we design the
regularization matrix Λ to maximally exploit the subspace
knowledge and minimize the regret, rather than receiving
Λ from the environment as a part of the problem definition.
Gilton & Willett (2017) study a similar regularizer in the
context of sparse linear bandits under the assumption that
a superset of the sparse locations is known ahead of time.
Yue et al. (2012b) consider a setup similar to LowOFUL.
They assume an estimate of the subspace is available, but
their regret bound still depends on the total dimension p.

8 Conclusion

In this paper, we introduced the bilinear low-rank bandit
problem and proposed the first algorithm with a nontrivial
regret guarantee. Our study opens up several future research
directions. First, there is currently no nontrivial lower bound,
and showing whether the regret of Õ(d3/2

√
rT ) is tight or

not remains open. Second, while our algorithm improves
the regret bound over the trivial linear bandit reduction,
the algorithm requires to tune an extra parameter T1. It
would be more natural to continuously update the subspace
estimate and the amount of regularization, just like ISSE.
However, proving a theoretical guarantee would be chal-
lenging since most matrix recovery algorithms require some
sort of uniform sampling with a “nice” set of measurements.
We speculate that one can employ randomized arm selection
and use importance-weighted data to perform effective and
provable matrix recoveries on-the-fly.

https://github.com/strin/pyOptSpace
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Supplementary Material
A Proof of Theorem 2

Theorem 2 (Restated) There exists a constant C0 such that for T1 ≥ C0σ
2(µ2

0 + µ
2
1)

κ6

Σmin(K∗)2
dr(r + log d), we have that,

with probability at least 1 − 2/d3
2,

∥K̂ −K∗
∥F ≤ C1κ

2σ
d3/2√r
√
T1

(15)

where C1 is an absolute constant.

Proof. There are a number of assumptions required for the guarantee of OptSpace to hold. Given a noise matrix Z, let
K̃ = K∗ +Z be the noisy observation of matrix K∗. Among various noise models in Keshavan et al. (2010, Theorem 1.3),
the independent ρ-sub-Gaussian model fits our problem setting well. Let E ∈ [m] × [n] be the indicator of observed entries
and let ZE be a censored version of Z in which the unobserved entries are zeroed out. Recall that we assume d2 = Θ(d1),
that d = max{d1, d2}, and that κ is the condition number of K∗.

We first state the guarantee and then describe the required technical assumptions. Keshavan et al. (2010, Theorem 1.2) states
that the following is true for some constant C ′ > 0:

∥K̂ −K∗
∥F ≤ C ′κ2 d

2√r

∣E∣
∥ZE∥2 .

Here, by Keshavan et al. (2010, Theorem 1.3), ∥ZE∥2 is no larger than C ′′ρ
√

∣E∣/d, for some constant C ′′ > 0, under
Assumption (A3) below, where ρ is the sub-Gaussian scale parameter for the noise Z. (ρ can be different from σ, as we
explain below). The original version of the statement has a preprocessed version ∥Z̃E∥2 rather than ∥ZE∥2, but they are the
same under our noise model, according to Keshavan et al. (2010, Section 1.5). Together, in our notation, we have

∥K̂ −K∗
∥F ≤ C ′C ′′κ2ρ

d3/2√r
√

∣E∣
.

In the case of T1 < d1d2, the guarantee above holds true with ρ = σ and ∣E∣ = T1. If T1 ≥ d1d2, the guarantee holds true

with ρ = σ ⋅ (⌊ T1

d1d2
⌋)
−1/2

and ∣E∣ = d1d2. In both cases, we arrive at (6).

We now state the conditions. Let α = d1/d2. Define Σmin to be the smallest nonzero singular values of M.

• (A1): M is (µ0, µ1)-incoherent. Note µ0 ∈ [1,max{d1, d2}/r].
• (A2): (Sufficient observation) For some C ′ > 0, we have

∣E∣ ≥ C ′d2

√
ακ2 max{µ0r

√
α log d2, µ

2
0r

2ακ4, µ2
1r

2ακ4} ,

which we loosen and simplify to (using µ0 ≥ 1)
∣E∣ ≥ C ′κ6

(µ2
0 + µ

2
1)dr(r + log d).

• (A3): ∣E∣ ≥ n logn.
• (A4): We combine the bound on ∥ZE∥2 and the condition in Keshavan et al. (2010, Theorem 1.2) that says “provided

that the RHS is smaller than σmin”, which results in requiring
∣E∣

ρ2
≥ C ′′ κ4

Σ2
min

dr,

for some C ′′ > 0, Using the same logic as before, either T1 < d1d2 or T1 ≥ d1d2, we can rewrite the same statement in
terms of T1, as follows:

T1 ≥ C
′′σ2 κ4

Σ2
min

dr .

All these conditions can be merged to

T1 ≥ C0σ
2
(µ2

0 + µ
2
1)

κ6

Σ2
min

dr(r + log d)

for some constant C0 > 0.
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B Proof of Theorem 3

We first restate the sin Θ theorem due to Wedin (Stewart & Sun, 1990) in a slightly simplified form. Let the SVDs of
matrices A and Ã be defined as follows:

(U1 U2 U3)
⊺A(V1 V2) =

⎛
⎜
⎝

Σ1 0
0 Σ2

0 0

⎞
⎟
⎠
,

(Ũ1 Ũ2 Ũ3)
⊺Ã(Ṽ1 Ṽ2) =

⎛
⎜
⎝

Σ̃1 0

0 Σ̃2

0 0

⎞
⎟
⎠
.

Let R = AṼ1 − Ũ1Σ̃1 and S = A⊺Ũ1 − Ṽ1Σ̃1, and define U1⊥ = [U2 U3] and V1⊥ = [V2 V3]. Wedin’s sin Θ theorem,
roughly speaking, bounds the sin canonical angles between two matrices by the Frobenius norm of their difference.
Theorem 6 (Wedin). Suppose that there is a number δ > 0 such that

min
i,j

∣σi (Σ̃1) − σj (Σ2)∣ ≥ δ and min
i
σi (Σ̃1) ≥ δ .

Then,
√

∥U⊺
1⊥Ũ1∥

2
F + ∥V⊺

1⊥Ṽ1∥
2
F ≤

√
∥R∥2

F + ∥S∥2
F

δ

We now prove Theorem 3.

Theorem 3 (Restated) Suppose we invoke OptSpace to compute K̂ as an estimate of the matrix K∗. After stage 1 of ESTR
with T1 satisfying the condition of Theorem 2, we have, with probability at least 1 − 2/d3

2,

∥Û⊺
⊥U

∗
∥F ∥V̂⊺

⊥V
∗
∥F ≤

∥X−1∥2
2∥Z

−1∥2
2

(s∗r)
2

τ2 (16)

where τ = C1κ
2σd3/2√r/

√
T1.

Proof. In our case, the variables defined for Wedin’s theorem are as follows:
A = Θ̂ Ã = Θ∗

U1 = Û Ũ1 = U∗

Σ1 = Ŝ Σ̃1 = S∗

V1 = V̂ Ṽ1 = V∗ .

Let E = Θ̂ −Θ∗. Note that
R = Θ̂V∗

−U∗S∗ = (Θ∗
+E)V∗

−U∗S∗ = EV̂

S = −E⊺U∗
(similarly) .

Then, ∥R∥F = ∥EV̂∥F ≤ ∥E∥F , using the fact that

∥E∥F = ∥E[V̂ V̂⊥]∥F =

√

∥EV̂∥2
F + ∥EV̂⊥∥

2
F .

Similarly, ∥S∥F ≤ ∥E∥F . We now apply the sin Θ theorem to obtain
√

2∥Û⊺
⊥U∗∥F ∥V̂⊺

⊥V∗∥F ≤

√

∥Û⊺
⊥U∗∥2

F + ∥V̂⊺
⊥V∗∥2

F ≤

√
∥R∥2

F + ∥S∥2
F

δ
≤

√
2∥E∥2

F

s∗r
where the first inequality follows from the Young’s inequality. To summarize, we have

∥Û⊺
⊥U

∗
∥F ∥V̂⊺

⊥V
∗
∥F ≤

∥Θ∗ − Θ̂∥2
F

s∗2
r

. (17)

Theorem 2 and the inequality ∥Θ̂ −Θ∗∥F ≤ ∥X−1∥2∥Z
−1∥2∥K̂ −K∗∥F conclude the proof.



Bilinear Bandits with Low-rank Structure

C Proof of Lemma 1

This lemma is a direct consequence of Valko et al. (2014, Lemma 3). We just need to characterize the constant C therein
that upper bounds ∥θ∗∥Λ. The observation that

∥θ∗∥Λ ≤

√

λ∥θ1∶k∥
2
2 + λ⊥∥θk+1∶p∥

2
2 ≤

√
λS +

√
λ⊥S⊥

completes the proof.

D Proof of Theorem 4

Let rt be the instantaneous pseudo-regret at time t: rt = ⟨θ∗,a∗⟩ − ⟨θ∗,at⟩. The assumptions ∥at∥2 ≤ 1 and ∣∣θ∗∣∣2 ≤ B
imply that rt ≤ 2B. Using the fact that the OFUL ellipsoidal confidence set contains θ∗ w.p. ≥ 1 − δ, one can show that
rt ≤ 2

√
βt∥xt∥V−1

t−1
as shown in Abbasi-Yadkori et al. (2011, Theorem 3). Then, using the monotonicity of βt,

rt ≤ min{2B,2
√
βt∥xt∥V−1

t−1
} ≤ min{2B,2

√
βT ∥xt∥V−1

t−1
}

= 2
√
βT min{B/

√
βT , ∥xt∥V−1

t−1
}

Ô⇒
T

∑
t=1

rt
(a)
≤ 2

√
βT

¿
Á
ÁÀT

T

∑
t=1

min{B2/βT , ∥xt∥2
V−1
t−1

}

(b)
≤ 2

√
βT

¿
Á
ÁÀT max{2,B2/βT }

T

∑
t=1

log (1 + ∥xt∥2
V−1
t−1

)

(c)
≤ 2

√
max{2,1/λ}

√
βT

¿
Á
ÁÀlog

∣VT ∣

∣Λ∣

√
T

where (a) is due to Cauchy-Schwarz, (b) is due to min{a, x} ≤ max{2, a} log(1 + x),∀a, x > 0 (see Jun et al. (2017,
Lemma 3)), and (c) is by ∑Tt=1 log(1 + ∥xt∥

2
V−1
t−1

) = log ∣VT ∣

∣Λ∣
(see Abbasi-Yadkori et al. (2011, Lemma 11)) and βT ≥

(
√
λB +

√
λ⊥B⊥)

2 ≥ λB2.

E Proof of Corollary 1

The lemma from Valko et al. (2014) characterizes how large log ∣VT ∣

∣Λ∣
can be.

Lemma 2. (Valko et al., 2014, Lemma 5) For any T , let Λ = diag([λ1, . . . , λp]).

log
∣VT ∣

∣Λ∣
≤ max

p

∑
i=1

log (1 +
ti
λi

)

where the maximum is taken over all possible positive real numbers t1, . . . , tp such that ∑pi=1 ti = T .

We specify a desirable value of λ⊥ in the following lemma.
Lemma 3. If λ⊥ = T

k log(1+Tλ )
, then

log
∣VT ∣

∣Λ∣
≤ 2k log (1 +

T

λ
)

Proof. Inheriting the setup of Lemma 2,

log
∣VT ∣

∣Λ∣
≤ max

p

∑
i=1

log(1 +
ti
λi

)

≤ k log(1 +
T

λ
) +

p

∑
i=k+1

log(1 +
ti
λ⊥

)

Then,
p

∑
i=k+1

log(1 +
ti
λ⊥

) ≤

p

∑
i=k+1

ti
λ⊥

≤
T

λ⊥
= k log(1 + T /λ) .
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By Lemma 3, the regret bound is, ignoring constants,

(σk log(1 + T /λ) +
√
k log(1 + T /λ) ⋅ (

√
λS +

√
λ⊥S⊥)) ⋅

√
T = Õ ((σk +

√
k ⋅ (

√
λS +

√
λ⊥S⊥))

√
T)

= Õ((σk +
√
kλS +

√
k ⋅

√
T

k
S⊥)

√
T )

= Õ((σk +
√
kλS +

√
TS⊥)

√
T )

F Proof of Theorem 5 and Corollary 2

Let us define rt = maxx∈X ,z∈Z x⊺Θ∗z−x⊺tΘ
∗zt, the instantaneous regret at time t. Using max∥x∥2,∥z∥2≤1 ∣x⊺Θ∗z∣ ≤ ∥Θ∗∥2,

we bound the cumulative regret incurred up to the stage 1 as ∑T1

t=1 rt ≤ 2S2T1. In the second stage, by the choices of S and
SF of (14),

T2

∑
t=T1+1

rt = Õ((σk +
√
kλS +

√
T2S⊥)

√
T2)

= Õ ((σk +
√
kλSF +

√
T2 ⋅ ∥X

−1
∥
2
2∥Z

−1
∥
2
2C

2
1

S5
2

S6
r

σ2d3r ⋅
1

T1
)
√
T2)

Then, the overall regret is, using T2 ≤ T
T

∑
t=1

rt = Õ (s∗1T1 + T ⋅ ∥X−1
∥
2
2∥Z

−1
∥
2
2

S5
2

S6
r

σ2d3r ⋅
1

T1
)

With the choice of T1 = Θ(

√

T ∥X−1∥2
2∥Z

−1∥2
2
S4
2

S6
r
σ2d3r), the regret is

Õ (
S3

2

S3
r

∥X−1
∥2∥Z

−1
∥2σd

3/2
√
rT)

G Heuristics for selecting arms in stage 1

We describe heuristics for solving (4) when the arm set is finite.

Let X ∈ RN1×d1 be a matrix that takes each arm x ∈ X as its row. One way to develop algorithms for solving (4) is to relax
the cardinality constraint to a continuous one:

min
λ

−t

s.t. X⊺diag(λ)X ⪰ tI
λi ≥ 0 ∀i ∈ [N1]

∑
N1

i=1 λi = 1

We then choose the top d1 arms with the largest λi.

We found that choosing the best among the solution above and 20 candidate subsets drawn uniformly at random (total 21
candidate subsets) returns reasonable solutions for our purpose.
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