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Abstract. We initiate the study of Simultaneous Graph Embedding9

with Fixed Edges in the beyond planarity framework. In the QuaSEFE10

problem, we allow edge crossings, as long as each graph individually is11

drawn quasiplanar, that is, no three edges pairwise cross. We show that12

a triple consisting of two planar graphs and a tree admit a QuaSEFE.13

This result also implies that a pair consisting of a 1-planar graph and a14

planar graph admits a QuaSEFE. We show several other positive results15

for triples of planar graphs, in which certain structural properties for16

their common subgraphs are fulfilled. For the case in which simplicity is17

also required, we give a triple consisting of two quasiplanar graphs and a18

star that does not admit a QuaSEFE. Moreover, in contrast to the planar19

SEFE problem, we show that it is not always possible to obtain a QuaSEFE20

for two matchings if the quasiplanar drawing of one matching is fixed.21

1 Introduction22

Simultaneous Graph Embedding is a family of problems where one is given23

a set of graphs G = {G1, . . . , Gk} with shared vertex set V and is required24

to produce drawings {�1, . . . ,�k} of them, each satisfying certain readability25

properties, so that each vertex has the same position in every �i. The readability26

property that is usually pursued is the planarity of the drawing, and a large body27

of research has been devoted to establish the complexity of the corresponding28

decision problem, or to determine whether such embeddings always exist, given29

the number and the types of the graphs; for a survey refer to [9].30

Simultaneous Graph Embedding has been studied both from a geometric31

(Geometric Simultaneous Embedding - GSE) [6,16] and from a topological point of32

view (Simultaneous Embedding with Fixed Edges - SEFE) [10,12,19]. In particular,33
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in GSE the edges are required to be straight-line segments, while in SEFE they34

can be drawn as topological curves, but the edges shared between two graphs35

Gi and Gj have to be drawn in the same way in �i and �j . In the following, we36

focus on the topological setting, unless otherwise specified.37

We study a relaxation of the SEFE problem, as we allow the graphs in G to38

be drawn non-planar. However, we prohibit certain crossing configurations in39

the drawings �1, . . . ,�k, to guarantee their readability, i.e., we require that they40

satisfy the conditions of a graph class in the area of beyond-planarity ; see [15]41

for a survey on this topic. We initiate this study with the class of quasiplanar42

graphs [2,3,18], by requiring that no �i contains three mutually crossing edges.43

Definition 1 (QuaSEFE). Given a set of graphs G1 = (V,E1), . . . , Gk = (V,Ek)44

with shared vertex set V , we say that hG1, . . . , Gki admits a QuaSEFE if it is45

possible to simultaneously draw them in the plane such that each graph Gi is46

drawn quasiplanar and each edge is drawn exactly once. Further, the QuaSEFE47

problem asks whether an instance hG1, . . . , Gki admits a QuaSEFE.48

It may be worth mentioning that the problem of computing quasiplanar49

simultaneous embeddings of graph pairs has been studied in the geometric set-50

ting [13,14]. Also, simultaneous embeddings have been considered in relation to51

another beyond-planarity geometric graph class, namely RAC graphs [7,8,17,20].52

We prove in Section 2 that any triple of two planar graphs and a tree admits53

a QuaSEFE, which also implies that any pair consisting of a 1-planar graph1 and54

a planar graph admits a QuaSEFE. Recall that, for the original SEFE problem,55

there exist even negative instances composed of two outerplanar graphs [19].56

Further, we investigate triples of planar graphs in which the common subgraphs57

have specific structural properties. Finally, we show negative results in more58

specialized settings in Section 3, where we highlight an interesting di↵erence59

between the QuaSEFE and the SEFE problems. Section 4 discusses open problems.60

2 Su�cient Conditions for QuaSEFEs61

In this section, we provide several su�cient conditions for the existence of a62

QuaSEFE, mainly focusing on instances composed of three planar graphs G1, G2,63

and G3. We start with a theorem relating the existence of a SEFE of two of the64

input graphs to the existence of a QuaSEFE of the three input graphs.65

Theorem 1. Let G1 = (V,E1), G2 = (V,E2), and G3 = (V,E3) be planar66

graphs with shared vertex set V . If hG1 \ G3, G2 \ G3i admits a SEFE, then67

hG1, G2, G3i admits a QuaSEFE, in which the drawing of G3 is planar.68

Proof. First construct a SEFE of hG1 \G3, G2 \G3i, and then construct a planar69

drawing of G3, whose vertices have already been placed, but whose edges have70

not been drawn yet, using the algorithm by Pach and Wenger [22].71

1 A graph is 1-planar if it admits a drawing where each edge has at most one crossing.
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The drawing of G3 is planar, by construction. The drawing of G1 is quasipla-72

nar, as its edges are partitioned into two sets, one in G1 \G3 and one in G1\G3,73

each of which is drawn planar. Analogously, G2 is drawn quasiplanar. ut74

Since every pair composed of a planar graph and a tree admits a SEFE [19],75

we derive from Theorem 1 the following positive result for the QuaSEFE problem.76

Corollary 1. Let G1 = (V,E1) and G3 = (V,E3) be planar graphs and T2 =77

(V,E2) be a tree with shared vertex set V . Then hG1, T2, G3i admits a QuaSEFE,78

in which the drawing of G3 is planar.79

Corollary 1 already shows that allowing quasiplanarity significantly enlarges80

the set of positive instances with respect to SEFE. In the following we strengthen81

this result, by providing a polynomial time algorithm to construct a QuaSEFE of82

two planar graphs and a tree in which not only one of the two planar graphs is83

drawn planar, but also the tree. For this, we will use a result on the partially84

embedded planarity [5] problem (PEP): Given a planar graph G, a subgraph H85

of G, and a planar embedding H of H, is it possible to find a planar embedding86

of G whose restriction to H coincides with H? In particular, we will exploit the87

following characterization, which is the core of a linear-time algorithm for the88

PEP problem.89

Lemma 1 ([5]). Let (G,H,H) be an instance of PEP. A planar embedding G90

of G is a solution for (G,H,H) if and only if the following conditions hold:91

(C.1) for every vertex v 2 V , the edges incident to v in H appear in the same92

cyclic order in the rotation schemes of v in H and in G; and (C.2) for every93

cycle C of H, and for every vertex v of H \C, we have that v lies in the interior94

of C in G if and only if it lies in the interior of C in H.95

Theorem 2. Let G1 = (V,E1) and G3 = (V,E3) be planar graphs and T2 =96

(V,E2) be a tree with shared vertex set V . Then hG1, T2, G3i admits a QuaSEFE,97

in which the drawings of G1 and T2 are planar.98

Proof. Consider planar embeddings G1 and G
⇤
3 of G1 and G3 \G1, respectively.99

We draw G1 according to G1. This fixes the embedding of the subgraph T2 \G1100

of T2, thus resulting in an instance of the PEP problem. Since T2 is acyclic,101

Condition C.2 of Lemma 1 is trivially fulfilled. Also, since every rotation scheme102

of T2 is planar, we can choose for the edges of (T2 \ G3) \ G1 an order that is103

compatible with G
⇤
3 , still satisfying Condition C.1.104

Finally, we draw the remaining edges of G3 by considering the instance of PEP105

defined by its embedded subgraph (T2\G3)\G1. Condition C.2 is again trivially106

satisfied, and Condition C.1 is satisfied by construction, if we add the edges of G3107

according to G
⇤
3 . Since crossings between edges of the same graph can only be108

between G3 \G1 and G3 \G1, the drawing of G3 is quasiplanar. ut109

The additional property guaranteed by Theorem 2 is crucial to infer the first110

result in the simultaneous embedding setting for a class of beyond-planar graphs.111
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Theorem 3. Let G1 = (V,E1) be a 1-planar graph and G2 = (V,E2) be a planar112

graph. Then hG1, G2i admits a QuaSEFE.113

Proof. As G1 is 1-planar, it is the union of a planar graph G
0
1 and a forest F1 [1].114

We augment F1 to a tree T1. By Theorem 2, there is a QuaSEFE of hG0
1, T1, G2i115

where G
0
1 and T1 are drawn planar. Thus, G1 is drawn quasiplanar. ut116

We now study properties of the subgraphs induced by the edges that belong117

to one, to two, or to all the input graphs. We denote by Hi the subgraph induced118

by the edges only in Gi; by Hi,j the subgraph induced by the edges only in Gi119

and Gj ; and by H the subgraph induced by the edges in all graphs; see Fig. 1a.120

The following two corollaries of Theorem 1 list su�cient conditions forG1\G3121

andG2\G3 to have a SEFE. Namely, in the first caseH1,2 has a unique embedding,122

which fulfills the conditions of Lemma 1 with respect to any planar embedding123

of G1 and of G2. In the second case, G1 \G3 is a subgraph of G2 \G3, and thus124

any planar embedding of G2 \G3 contains a planar embedding of G1 \G3.125

Corollary 2. Let G1 = (V,E1), G2 = (V,E2), G3 = (V,E3) be planar graphs126

with shared vertex set V . If H1,2 is acyclic and has maximum degree 2, then127

hG1, G2, G3i admits a QuaSEFE.128

Corollary 3. Let G1 = (V,E1), G2 = (V,E2), G3 = (V,E3) be planar graphs129

with shared vertex set V . If H1 = ;, then hG1, G2, G3i admits a QuaSEFE.130

Contrary to the previous corollaries, Theorem 1 has no implication for the131

graph H, as there are instances with H = ; where no pair of graphs has a SEFE.132

However, we show that a simple structure of H is still su�cient for a QuaSEFE.133

Theorem 4. Let G1 = (V,E1), G2 = (V,E2), G3 = (V,E3) be planar graphs134

with shared vertex set V . If H has a planar embedding that can be extended to a135

planar embedding Gi of each graph Gi, then hG1, G2, G3i admits a QuaSEFE.136

Proof. We draw the graph G1 \H1,3 = H1 [H1,2 [H with embedding G1, the137

graph G2 \H1,2 = H2 [H2,3 [H with embedding G2, and the graph G3 \H2,3 =138

H3 [H1,3 [H with embedding G3. Then, the edges of G1 are partitioned into139

two sets, one belonging to G1 \H1,3 and one to G3 \H2,3, each of which is drawn140

planar. As the same holds for the edges of G2 and G3, the statement follows. ut141

Corollary 4. Let G1 = (V,E1), G2 = (V,E2), G3 = (V,E3) be planar graphs142

with shared vertex set V . If H is acyclic and has maximum degree 2, then143

hG1, G2, G3i admits a QuaSEFE.144

From the above discussion we conclude that, if one of the seven subgraphs145

in Fig. 1a is empty, or has a su�ciently simple structure, instance hG1, G2, G3i146

admits a QuaSEFE. Most notably, this is always the case in the sunflower set-147

ting [4,21,23], the version of the problem in which every edge belongs either to148

a single graph or to all graphs, and thus H1,2 = H1,3 = H2,3 = ;. We extend149

this result to any set of planar graphs. We remark that the SEFE problem is150

NP-complete in the sunflower setting for three planar graphs [4,23].151
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Fig. 1: (a) Subgraphs induced by the edges in one, two, or three graphs. (b) A
simple quasiplanar drawing of Q1 in Theorem 6, obtained by adding w to the
drawing ofK10 by Brandenburg [11]. (c) Theorem 7: Edge (v18, v20) crosses either
all dotted blue or all dashed red edges, making (v5, v6) and (v7, v8) uncrossable.

Theorem 5. Let G1 = (V,E1), . . . , Gk = (V,Ek) be planar graphs with shared152

vertex set V in the sunflower setting. Then hG1, . . . , Gki admits a QuaSEFE.153

Proof. Let H be the graph induced by the edges belonging to all graphs. We154

independently draw planar the graph H and every subgraph Gi \ H, for i =155

1, . . . , k. This guarantees that each Gi is drawn quasiplanar. ut156

3 Counterexamples for QuaSEFE157

In this section we complement the positive results presented so far, by providing158

negative instances of the QuaSEFE problem in two specific settings. We start159

with a negative result about the existence of a simple QuaSEFE for two general160

quasiplanar graphs and one star. Here simple means that a pair of independent161

edges in the same graph is allowed to cross at most once and a pair of adjacent162

edges in the same graph is not allowed to cross. Note that our algorithms in163

Section 2 may produce non-simple drawings. Also, the maximum number of164

edges in a quasiplanar graph on n vertices depends on whether simplicity is165

required or not [2].166

Theorem 6. There exist two quasiplanar graphs Q1 = (V,E1), Q2 = (V,E2)167

and a star S3 = (V,E3) with shared vertex set V such that hQ1, Q2, S3i does not168

admit a simple QuaSEFE.169

Proof. Let V = {v1, . . . , v10, w} and let E10 be the edges of the complete graph170

on V \{w}. Further, let E1 = E10[{(w, v1), . . . , (w, v6)}, let E2 = E10[{(w, v7)},171

and let E3 = {(w, v1), . . . , (w, v10}. By construction, S3 is the star on all eleven172

vertices with center w, while Fig. 1b shows that there is a simple quasiplanar173

drawing of Q1 (and of Q2, which is a subgraph of Q1, up to vertex relabeling).174
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Suppose that hQ1, Q2, S3i has a simple QuaSEFE, and let �1,2 be the drawing175

of the union of Q1 and Q2 that is part of it. Since the union of Q1 and Q2176

has 52 edges, which exceeds the upper bound of 6.5n � 20 edges in a simple177

quasiplanar graph [2], �1,2 is not simple or not quasiplanar. Since (w, v7) is the178

only edge in �1,2 that is not in Q1, edge (w, v7) is involved in every crossing179

violating simplicity or quasiplanarity. Analogously, one of (w, v1), . . . , (w, v6),180

say (w, v1), is involved in a crossing violating simplicity or quasiplanarity; in181

particular, (w, v1) crosses (w, v7) in �1,2. Since both (w, v1) and (w, v7) belong182

to S3, the drawing of S3 that is part of the simple QuaSEFE is not simple, a183

contradiction. ut184

The second special setting is the one in which one of the input graphs is al-185

ready drawn in a quasiplanar way, and the goal is to draw the other input graphs186

so that the resulting simultaneous drawing is a QuaSEFE. This setting is moti-187

vated by the natural approach, for an instance hG1, . . . , Gki, of first constructing188

a solution for hG1, . . . , Gk�1i and then adding the remaining edges of Gk.189

We remark that, for the original SEFE problem, this setting always admits190

a solution when the graph that is already drawn (in a planar way) is a general191

planar graph, and the other graph is a tree [19]. In a surprising contrast, we192

show that for the QuaSEFE problem it is possible to construct negative instances193

in this setting that are composed of two matchings only.194

Theorem 7. Let M1 = (V,E1) and M2 = (V,E2) be two matchings on the same195

vertex set V and let �1 be a quasiplanar drawing of M1. Instance hM1,M2i does196

not always admit a QuaSEFE in which the drawing of M1 is �1.197

Proof. The proof exploits the fact that the edges in E1 \ E2 have to be drawn198

in the quasiplanar drawing �2 of G2 as they are in �1. Consider the quasiplanar199

drawing �1 of the matching (v2i�1, v2i), with i = 1, . . . , 10, depicted in Fig. 1c.200

Suppose that E2 contains the edges (v17, v19) and (v18, v20). Since v17 is enclosed201

in a region bounded by the intersecting edges (v1, v2) and (v3, v4), in any quasi-202

planar drawing of M2 edge (v17, v19) crosses exactly one of (v1, v2) and (v3, v4).203

In the first case, (v17, v19) crosses also (v13, v14) and (v15, v16) (shown dotted204

blue). In the second case, (v17, v19) crosses also (v9, v10) and (v11, v12) (shown205

dashed red). In both cases, the edges (v5, v6) and (v7, v8) cannot be crossed, and206

thus (v17, v19) cannot be drawn so that �2 is quasiplanar. ut207

4 Conclusions and Open Problems208

We initiated the study of simultaneous embeddability in the beyond planar set-209

ting, which is a fertile and almost unexplored research direction that promises210

to significantly enlarge the families of representable graphs when compared with211

the planar setting. We conclude the paper by listing a few open problems.212

– A natural question is whether two 1-planar graphs, a quasiplanar graph and213

a matching, three outerplanar graphs, or four paths admit a QuaSEFE. All214
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our algorithms construct drawings with a stronger property than quasipla-215

narity, namely that they are composed of two sets of planar edges. Exploiting216

quasiplanarity in full generality may lead to further positive results.217

– Motivated by Theorem 6, we ask whether some of the constructions presented218

in Section 2 can be modified to guarantee the simplicity of the drawings.219

– Another intriguing direction is to determine the computational complexity of220

the QuaSEFE problem, both in its general version and in the two restrictions221

studied in Section 3. In particular, the setting in which one of the graphs is222

already drawn can be considered as a quasiplanar version of the PEP problem,223

which is known to be linear-time solvable in the planar case [5].224

– Extend the study to other beyond planarity classes such as, for example,225

k-planar graphs. Do any two planar graphs admit a k-planar SEFE for some226

constant k?227
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