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Abstract—Due to the increasing number of risk factors, energy
sector has been experiencing interruptions (attack) in the normal
operation both externally and internally. Different methods are
used for the identification and evaluation of vulnerabilities due
to these interruption in the complex and critical infrastructures
like the smart grid. Based on the objective of the attack, the
performance and effectiveness of the learning-based approaches
may vary when compared with other approaches to identify
critical components of the smart grid. In this work, we adopted
two target selection strategies (one is an unsupervised learning
algorithm and the other is a load ranking based approach)
for attack and measured system performances based on two
evaluation metrics. We conducted the experiments on four
different standard power system test cases and compared the
performances of the aforementioned target selection strategies
by two evaluation metrics. We used K-means clustering as
the unsupervised learning method for the target selection of
contingencies. To evaluate the system damage, we used generation
loss and number of transmission line outages. For different attack
orders, with two different attack objectives (evaluation metrics),
experiments were conducted on W&W 6 bus system, IEEE 7
bus system, IEEE 8 bus system, and IEEE 300 bus system. We
showed that, a clustering based attack performs better when the
system is relatively large (highly dense in terms of connection
to other buses) and the objective is to achieve a high number
of transmission line outages. On the other hand, load ranking
based attack outperforms clustering based attack when the attack
objective is to achieve higher generation loss, regardless of the
size of the system.

Index Terms—K-means clustering, clustering based attack,
load ranking based attack, generation loss, and smart grid
security.

I. INTRODUCTION

he application of different machine learning techniques
T enhanced the fragile electric power grid to include
several benefits, such as enhanced security, multidimensional
communication and power flow, advanced monitoring and
control, and converted it into a smart grid [1]-[3]. In other
words, a smart grid is the modernization of electric power
transmission and distribution systems. Recently, advancement
of the grid structure exposed the whole power system to severe
security threats. The number of events related to power outages
in the smart grid infrastructure is increasing rapidly. The nature
and the number of these events in last few years clearly
indicates that we need strong protection schemes to reduce
these threats and damages. Almost 3, 526 power outage events
were recorded in 2017 in the United States affecting almost

36.7 million people [4]. The reason behind these outage events
include human error, weather related error, mechanical error,
and cyber-attacks etc. Regardless of the reason, the damage
caused by these events creates a severe impact on society,
including huge financial losses [5]. Responsible authorities are
creating different policies and standards to reduce the risk and
loss in the energy sector [6], [7]. Hence, grid vulnerability
analysis techniques are being used to identify the patterns of
the anomalies, event signatures, critical elements of the power
system, and so on. Among the learning based techniques,
different supervised, unsupervised, and semi-supervised learn-
ing techniques are used in the smart grid for vulnerability
identification [8]. Among these strategic endeavours, detection
of the critical components of a power system bears a huge
significance in protecting the energy sector.

Several research efforts have been made to identify the
critical contingencies and vulnerabilities for smart grid which
includes several learning based approaches [9]-[20]. In [9]-
[11], the authors used reinforcement learning and game theory
approaches to identify the critical transmission lines and their
sequences to avoid large scale blackout. Instead of using
clustering or classification techniques, they adopted a rein-
forcement learning based online learning technique to find
the sequence of critical contingencies. The authors used a
clustering-based method for unsupervised intrusion detections
in [12]. The authors developed a novel incremental clustering
algorithm using least distance principle to divide the data-set
into hyper spheres with almost the same radius. In [13], the
authors used a different cluster-based learning approach for
vulnerability analysis in the Smart Grid. In [14], the authors
identified the vulnerable nodes against false data injection
attacks in an AMI based smart grid by implementing an im-
proved Constriction Factor Particle Swarm Optimization (CF-
PSO) based hybrid clustering technique. In [15], the authors
used a clustering-based approach to detect cyber-attacks in
process control systems adopting Gaussian mixture clustering.
In [16], the authors used an unsupervised clustering method
on PMU data for event characterization on the smart grid.
The authors in [17], compared the power grid security studies
with network connectivity and power flow information using
unsupervised learning (self-organizing map (SOM)). In [18],
the authors analyzed smart grid vulnerability by identifying the
critical contingencies using time to reach blackout and number



of transmission line outage as the evaluation metric. The
authors in [19] analyzed the risk to power system for multi-
timescale cascading outages using Markovian tree search. In
[20], the authors proposed a comprehensive unsupervised clus-
tering method (hierarchical, partitioning, and density-based
approach) to classify 2226 disturbances stored in the Public
Service Company of New Mexico (PNM) from 2007 to 2010.
In the aforementioned literature, the authors adopted different
approaches to classify the events and faults and analyze the
vulnerabilities. Target selection (identification of the critical
contingencies) using an unsupervised learning algorithm has
rarely considered which is one of the most significant and
critical factors while conducting grid vulnerability analysis.
Moreover, a proper comparison between the approaches is
needed to identify the appropriate approach to use for a
specific attack strategy. The evaluation of the performances
needs to be compared for different approaches with different
evaluation metrics.

To provide a clear explanation of the approaches, we iden-
tify the vulnerable elements of a power system by proposing
a comparative study of power grid vulnerability analysis
between two target selection strategies, load ranking based
and unsupervised learning based. In terms of unsupervised
learning, we use K-means clustering [21]. The advantage of
using K-means clustering over other clustering algorithm is its
simplicity and faster operation even if the variable size is huge.
Generation loss and the number of transmission line outages
due to the attacks are used as evaluation metrics. We also
conduct experiments with different orders of attack to test the
feasibility of the target selection strategies. Finally, it is shown
that the load ranking based attack (LRBA) strategy causes
higher damage than the clustering based attack (CBA) for
cases where generation loss is the evaluation index. However,
for larger systems with higher transmission line outages as
the attack objective, CBA outperforms LRBA. The outcome
of this comparative study will help the engineering community
to select appropriate target selection strategy (learning scheme
or others) to identify the vulnerabilities of a CPPS.

The rest of the paper is organized as follows. Section II gives
a brief introduction of the two attack strategies and the attack
model. Section III provides benchmark information; how the
targets are selected and the attack is executed, the evaluation
metrics that are used to evaluate the damage caused by the
attacks, simulation results, observations from the results, and
a brief discussion on the result from a theoretical point of
view. Finally Section IV, concludes with a summary of the
work.

II. ATTACK STRATEGIES AND EVALUATION METRICS

In this section we introduce the attack model, overall pro-
cess flowchart, target selection strategies used in this research
work, and the evaluation metrics to evaluate the losses caused
by the attacks adopting the aforementioned target selection
strategies.

A. Attack model

First, we consider that the intruder/terrorists already gained
the access to the control center of the smart power system
via cyber-intrusion (phishing attack, DDoS attack, brute force
attack, etc.). Then we move forward with the threat and
attack model. The attack model is adopted from [22]-[24]. We
consider that the attacker is capable of causing line switching
attacks by cyber intrusion. The attack model is initialized with
the pre-contingency power flow to make sure that the system
is (n —1) contingency secured. Then we initiate the attack by
applying (n — k) contingencies. After execution of the attack,
the system may be separated into multiple islands, due to the
application of n — k contingency, where k is the order of the
contingencies. To adjust the demand and supply, the generators
are ramped up or down. After re-dispatching the generators,
the generation, ) .. P, is compared with the load demand,
>_aep Pa which is defined by Z = (3. o Py — > 4ep Fa)s
where GG and D represents the set of generator and load buses.
If Z > 0, generators in the islands are tripped to balance
the demand. After this, if Z < 0, the load is shed as a
multiplication of the loads in that island by a scalar quantity
A, where \ = Z-LG;‘Z Then, a standard DC power flow is
applied in the po{)ivee? system. After that, the relay settings are
updated. To identify the transmission lines to be tripped due
to the overcurrent/overload, time delayed overcurrent relays
are used. Generally, the threshold for overcurrent is fixed by
the system operator and termed as o0;. During the simulation
for transmission line j, if the power flow is f;, flow limit is
fj, the cascaded outage occurs when the associated overload
o; exceeds the limit 0;. The overload can be calculated as
follows:
t+At

Ao, At):{ot () — F)dt itf;(8) >
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The model then finds the minimum time for tripping the next
transmission line. This time is termed as AT'. Then this time
is updated with the addition of AT'. After this, if the relay
trips due to overcurrent, they will trip the associated active
transmission lines to offline.

B. Overall flowchart

Figure 1, provides an algorithmic flowchart of the processes
of this research work. For a selected power system test
case, we start with the CBA as the target selection strategy.
Then we select the number of K (order of the attack). We
select the attack order with the aim to interpret high-impact,
low-frequency (HILF) events. So, we start with a smallest
attack order and increase gradually. Then we perform the
clustering based on the geographical coordinates (topological
information) of the buses. Thus, we divide all the buses of a
power system into K groups of densely populated buses. Next,
we conduct the power flow for the whole system, and select
the highly loaded buses from the clusters as targets. Finally,
the transmission lines connected with these target buses are
grouped together to initiate the attack.
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Fig. 1. The overall flowchart to compare the two methods of target selection.
CBL, represents clustering based loss, and LRBL represents load ranking
based loss. CBA represents clustering based attack and LRBA represents load
ranking based attack. The whole process is repeated 100 times to get an overall
idea about the superior target selection strategy.

After executing the attack, we calculate the loss or evaluate
the damage caused by the attack based on generation loss and
number of total outages. The process of calculation of the
losses and overloads are explained in detail in Section II-A.
The damage or loss caused by the CBA is termed as clustering
based loss (CBL). Then we select LRBA as a target selection
strategy. In LRBA, we select the target buses with high loading
capacity. Then we group the connected transmission lines from
the target buses for initiating the attack. After executing the
attack, we calculate the loss caused by the LRBA, which we
termed as load ranking based loss (LRBL). After measuring
the loss, we compare the losses caused by the attacks adopting
the aforementioned two target selection strategies.

C. Clustering based attack (CBA)

To select the targets based on clustering, K-means clustering
is used. K-means clustering tries to group data samples based
on Euclidean distance between samples. Clustering is also
called data segmentation. It gives back clusters of locations
close to each other. K-means clustering is unsupervised learn-
ing, which is used when there are unlabeled data (i.e., data
without defined labels). The goal of this algorithm is to find
groups in the data, with the number of groups represented by

the variable k. The algorithm works iteratively to assign each
data point to one of k groups based on the features that are
provided. The main idea is to define & centroids, one for each
cluster. These centroids should be placed in a cunning way
because a different location causes a different result. So, the
better choice is to place them, as much as possible, far away
from each other. The next step is to take each point belonging
to a given data set and associate it to the nearest centroid.
When no point is pending, the first step is completed and an
early groupage is done. At this point we need to re-calculate
k new centroids as barycenters of the clusters resulting from
the previous step. After we have these k£ new centroids, a new
binding has to be done between the same data set points and
the nearest new centroid. A loop has been generated. As a
result of this loop, we may notice that the k centroids change
their location step by step until no more changes occur. In
other words centroids do not move any more. Finally, this
algorithm aims at minimizing an objective function, in this
case a squared error function. The objective function is:
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where ||335] ) _ ¢j||? is a chosen distance measured between
a data point xgj and the cluster centre c;. The algorithm is
composed of the following steps:

1) Place k points into the space represented by the objects
being clustered. These points represent the initial group
centroids.

2) Assign each object to the group that has the closest
centroid.

3) When all objects have been assigned, recalculate the
positions of the &k centroids.

4) Repeat Steps 2 and 3 until the centroids no longer
move. This produces a separation of the objects into
groups from which the metric to be minimized can be
calculated.

The data points used here are the coordinates of the bus
locations. The coordinates are clustered into different groups
of bus locations closer to each other. From those groups, the
buses with higher power flow are selected as the targets based
on the attack order and the number of the clusters.

D. Load ranking based attack (LRBA)

In order to select the target buses based on load ranking, the
amount of power flow through the buses is used. Total load
flow is calculated for all the buses of a power system. The
bus with higher amount of load flow is ranked higher than
the buses with lower amount of load flow. Let us consider
bus By and By when power Pj, and P» are flowing through
them, respectively. If P > P», then B; will be selected as
the target. This is how the target buses are selected for LRBA.
The transmission lines associated with the target buses are the
actual targets which need to be switched in order to initiate
the attack.



ITI. SIMULATION STUDIES

The simulation is conducted using MATLAB R2018a on
a standard PC with an Intel Core i7-6700 CPU running at
3.40-GHz and 24.0-GB RAM. To conduct the experiments
and comparative studies between the previously mentioned
target selection strategies, some of the available test cases are
selected.

A. Benchmarks

To conduct the simulation studies, W&W 6 bus system,
IEEE 7 bus system, IEEE 8 bus system, and IEEE 300 bus
system are used. For selecting targets based on unsupervised
learning, coordinate data of the nodes of the system is used;
and for selecting targets based on load ranking, power flow
information is used.

B. Target selection and attack execution

For the two attack methods, target selections are different.
For example, while using CBA, if we use K = 2 for W&W
6 bus system, it divides the buses of the system into two
groups. Among these two groups, buses with higher load
flow are selected as targets which are 1 and 4. Similarly,
clustering is executed for IEEE 7 bus system, IEEE 8 bus
system, and IEEE 300 bus system. Before clustering, the
bus coordinates are normalized. Normalization is one of the
data pre-processing techniques used for re-scaling the data
in the range of zero to one. For example, the set of bus
coordinates is, Q@ = [(1,y1), (x2,Y2), (T3,Y3)s -, (Tn, Yn)]-
The normalization of the x coordinate is done using the
formula below:

o Ty — min(ry, Ta, T3, ., Tp)
max(xy, To, s, ..., Ty) — min(xy, To, T3, ..., Ty,)
where, 2’ represents the normalized coordinates and ¢ repre-
sents any components from 1,2,3,...,n for both of the =

and y coordinates. y coordinate is normalized in the similar
way. After normalization clustering is done based on the attack
order (K).
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Fig. 2. K-means clustering for IEEE 300 bus system bus coordinates. The
X and Y axis are representing the normalized bus coordinates. And the four
different colors represent the clustered buses for four different clusters. Among
these four clusters, we select four buses with higher power flow as the targets.

Figure 2 shows the clustering of the target buses using K-
means clustering for IEEE 300 bus system. There are four

clusters in this clustering. From these four clusters (groups
of buses), targets with high loading capability are selected.
So, from four clusters, four target buses are selected. Now,
to execute the attacks on these targets, we simply disconnect
the transmission lines connected to these buses. Similarly, for
the LRBA, the mostly loaded buses are bus 1 and 2. So, we
select these buses as the targets for LRBA. To execute the
attack we disconnect the transmission lines connected to the
target buses. Then we observe the damage to the system using
two different evaluation metrics. The same method is applied
to select the targets for the other bus systems as well.

C. Evaluation metrics

To evaluate the damage caused by the above mentioned
two attack strategies, we employed two different evaluation
indices. We used the total generation loss and the number of
total outages (both the attacked lines and the cascaded outages
combined) to measure the success of the attack. Generation
loss, as evaluation metric, provides insight into how the power
system is losing its generation power either due to load
shedding or due to generation and demand imbalance. The
number of total outages refers to the number of transmission
line failures caused by the attack and as a consequence of
cascading failure. It provides insight about damage in the
power system from the topological perspective. With higher
number of total outages, more area will be deprived of
power. Subsection II-A, provides the process of calculation
of generation loss and the number of total outages due to the
attacks.

D. Simulation results

We use 3 different attack orders (2, 3,and 4). So we use the
clustering for three different values of K. For three different
values of K, we conduct the experiment for four different
power system test cases. Each of the experiments with unique
settings is repeated 100 times to check the performance of
these two attack strategies.

TABLE 1

COMPARISON OF THE ATTACK PERFORMANCES FOR ATTACK ORDER 2 AND
TOTAL TRANSMISSION LINE OUTAGE AS THE EVALUATION INDEX

Test cases CBA LRBA Total time (seconds)
W&W 6 bus system 0 100 2.13
IEEE 7 bus system 0 100 2.20
IEEE 8 bus system 0 100 2.32
IEEE 300 bus system 0 100 30.71
TABLE II

COMPARISON OF THE ATTACK PERFORMANCES FOR ATTACK ORDER 3 AND
TOTAL TRANSMISSION LINE OUTAGE AS THE EVALUATION INDEX

Test cases CBA LRBA  Total time (seconds)
W&W 6 bus system 0 100 1.68
IEEE 7 bus system 11 89 1.84
IEEE 8 bus system 11 89 1.76
IEEE 300 bus system 14 86 34.69

Table I - VI show the number of times where CBA outper-
forms LRBA and vice versa.



TABLE III
COMPARISON OF THE ATTACK PERFORMANCES FOR ATTACK ORDER 4 AND
TOTAL TRANSMISSION LINE OUTAGE AS THE EVALUATION INDEX

TABLE VII
TOTAL NUMBER OF TRANSMISSION LINE OUTAGE DUE TO DIFFERENT
ATTACK ORDER FOR CBA AND LRBA oON IEEE 300 BUS SYSTEM.

Test cases CBA LRBA  Total time (seconds) Attack order  Attack strategy Target buses Number of total outages
W&W 6 bus system 0 100 1.75 K —3 CBA [3 170 98] 32
IEEE 7 bus system 16 84 1.93 - LRBA [98 109 170] 55
IEEE 8 bus system 30 70 1.85
_ CBA [170 36 166 98] 63
IEEE 300 bus system 63 37 35.44 K=14 LRBA 98 109 170 3] 43
TABLE IV

COMPARISON OF THE ATTACK PERFORMANCES FOR ATTACK ORDER 2 AND
TOTAL GENERATION LOSS AS THE EVALUATION INDEX

Test cases CBA LRBA  Total time (seconds)
WE&W 6 bus system 0 100 1.69
IEEE 7 bus system 0 100 1.81
IEEE 8 bus system 0 100 1.78
IEEE 300 bus system 0 100 27.08
TABLE V

COMPARISON OF THE ATTACK PERFORMANCES FOR ATTACK ORDER 3 AND
TOTAL GENERATION LOSS AS THE EVALUATION INDEX

Test cases CBA LRBA Total time (seconds)
W&W 6 bus system 0 100 1.80
IEEE 7 bus system 0 100 1.76
IEEE 8 bus system 0 100 1.93
IEEE 300 bus system 10 90 34.80
TABLE VI

COMPARISON OF THE ATTACK PERFORMANCES FOR ATTACK ORDER 4 AND
TOTAL GENERATION LOSS AS THE EVALUATION INDEX

Test cases CBA LRBA  Total time (seconds)
WE&W 6 bus system 0 100 1.64
IEEE 7 bus system 0 100 1.84
IEEE 8 bus system 0 100 1.82
IEEE 300 bus system 16 84 32.29

E. Observation

From Table I, we can see that for the second order attack, for
all the test cases, LRBA outperforms CBA when the number of
total transmission line outages is the evaluation index. But, as
we increase the attack order from KX = 2 to K = 4, we can see
the number of times where the CBA outperforms the LRBA
increases. For the IEEE 300 bus system and attack order 4,
CBA outperforms LRBA most of the time. Table VII, shows
the target buses for 37¢ and 4'" order attacks for both CBA
and LRBA. It also provides the number of total transmission
line outages associated with the target buses and attack orders.
From Table VII, we can also see that, for X = 3, the number
of total transmission line outages is 32 for CBA with the target
set of [3 170 98]. The number of total transmission line outages
is 55 for LRBA with the target set of [98 109 170]. However,
when we increase the attack order to K = 4, the number of
total transmission line outages is 63 for CBA with the target
set of [170 36 166 98]. On the other hand, for LRBA, the
number of total transmission line outages is 43 with the target
set of [98 109 170 3]. Therefore, we can conclude from Table

VII that, for higher order attacks and for larger systems CBA
causes more damage if the target is to cause a higher number
of transmission line outages.

Similarly, from Table IV, V, and VI, we can see that for all
the test cases LRBA outperforms CBA when the generation
loss is the evaluation index. Occasionally CBA outperforms
the LRBA, but this is only for the larger systems, like IEEE
300 bus system.

TABLE VIII
GENERATION LOSS DUE TO DIFFERENT ATTACK ORDER FOR CBA AND
LRBA oN IEEE 300 BUS SYSTEM.

Attack order  Attack strategy Target buses Generation loss (MW)

K3 CBA [3 170 98] 5867.20
= LRBA [98 109 170] 12029
K4 CBA [98 3 166 170] 6864.55
= LRBA [98 109 170 3] 9907.61

Table VIII shows the target buses for 3"¢ and 4" order
attacks for both CBA and LRBA when generation loss is
considered as the evaluation metric. It also provides the
amount of generation loss for both attack orders and both
attack types. Although we increase the attack order to K = 4,
the generation loss is still higher for LRBA than CBA. So, we
can conclude from Table VIII that if the target is to achieve
higher generation loss, regardless of the system size, LRBA
outperforms the CBA. These observations can be supported
by providing the explanation from a theoretical point of view.
In CBA, the clustering is done based on the topological
connection. The targets selected from the clusters are densely
populated buses having a high order of connectivity. In that
case, after attacking (disconnecting) these targets, a large num-
ber of transmission line outages occurs. But, in small power
system test cases, observation showed that LRBA performs
well compared to CBA. This is because, for small systems,
like the W & W 6 bus system, IEEE 7 bus, and IEEE 8
bus system, the topological connections between the buses are
not highly dense. So CBA does not perform accurate target
selection in small test cases. That is why, in case of LRBA
in small power system test cases, the selected targets carry
both the properties to cause high generation losses and high
transmission line outages. So, LRBA performs better than the
CBA for small systems with transmission line outage as attack
objective. On the other hand, according to the observations, if
the generation loss is considered as the attack objective, LRBA
performs better than CBA. This is because, when selecting
targets for the LRBA, buses with higher loading capability are



selected as targets. As these target selections do not depend
on the topological density, LRBA performs better than CBA
with generation loss as the attack objective.

From a machine learning point of view, most feature-based
clustering methods (e.g., K-means, GMM, etc) fail to scale
high-dimensional data well due to the curse of dimensionality.
For high dimensional data, considering compact and represen-
tative features is more reasonable and feasible instead of the
whole feature space [25]. Different deep learning techniques
learns a significant and strong representation from the raw data
using high-level non-linear mapping [26]. Uses of these deep
learning techniques for clustering might add several benefits
for clustering, improving the efficiency and performance.

IV. CONCLUSION

The use of machine learning techniques is becoming popular
for the identification of vulnerabilities in the modern power
system along with the increasing complexity of the infras-
tructures. Smart attackers possess different attack schemes for
different attack objectives. Proper use of machine learning
techniques and understanding the vulnerabilities of the power
grid from the attacker’s perspective could help the system
operators or utilities to make stronger protection plans for
the vulnerable elements. This research provides insight into
appropriate target selection strategies for different system
types and different attack objectives. It concludes that, for
larger systems with higher attack order, if the attack objective
is to cause higher transmission line outage, CBA outperforms
LRBA scheme. If the attack objective is to cause higher
generation loss, then LRBA scheme outperforms CBA scheme
regardless of the system size.
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