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Abstract—Due to the increasing number of risk factors, energy
sector has been experiencing interruptions (attack) in the normal
operation both externally and internally. Different methods are
used for the identification and evaluation of vulnerabilities due
to these interruption in the complex and critical infrastructures
like the smart grid. Based on the objective of the attack, the
performance and effectiveness of the learning-based approaches
may vary when compared with other approaches to identify
critical components of the smart grid. In this work, we adopted
two target selection strategies (one is an unsupervised learning
algorithm and the other is a load ranking based approach)
for attack and measured system performances based on two
evaluation metrics. We conducted the experiments on four
different standard power system test cases and compared the
performances of the aforementioned target selection strategies
by two evaluation metrics. We used K-means clustering as
the unsupervised learning method for the target selection of
contingencies. To evaluate the system damage, we used generation
loss and number of transmission line outages. For different attack
orders, with two different attack objectives (evaluation metrics),
experiments were conducted on W&W 6 bus system, IEEE 7
bus system, IEEE 8 bus system, and IEEE 300 bus system. We
showed that, a clustering based attack performs better when the
system is relatively large (highly dense in terms of connection
to other buses) and the objective is to achieve a high number
of transmission line outages. On the other hand, load ranking
based attack outperforms clustering based attack when the attack
objective is to achieve higher generation loss, regardless of the
size of the system.

Index Terms—K-means clustering, clustering based attack,
load ranking based attack, generation loss, and smart grid
security.

I. INTRODUCTION

T he application of different machine learning techniques

enhanced the fragile electric power grid to include

several benefits, such as enhanced security, multidimensional

communication and power flow, advanced monitoring and

control, and converted it into a smart grid [1]–[3]. In other

words, a smart grid is the modernization of electric power

transmission and distribution systems. Recently, advancement

of the grid structure exposed the whole power system to severe

security threats. The number of events related to power outages

in the smart grid infrastructure is increasing rapidly. The nature

and the number of these events in last few years clearly

indicates that we need strong protection schemes to reduce

these threats and damages. Almost 3, 526 power outage events

were recorded in 2017 in the United States affecting almost

36.7 million people [4]. The reason behind these outage events

include human error, weather related error, mechanical error,

and cyber-attacks etc. Regardless of the reason, the damage

caused by these events creates a severe impact on society,

including huge financial losses [5]. Responsible authorities are

creating different policies and standards to reduce the risk and

loss in the energy sector [6], [7]. Hence, grid vulnerability

analysis techniques are being used to identify the patterns of

the anomalies, event signatures, critical elements of the power

system, and so on. Among the learning based techniques,

different supervised, unsupervised, and semi-supervised learn-

ing techniques are used in the smart grid for vulnerability

identification [8]. Among these strategic endeavours, detection

of the critical components of a power system bears a huge

significance in protecting the energy sector.

Several research efforts have been made to identify the

critical contingencies and vulnerabilities for smart grid which

includes several learning based approaches [9]–[20]. In [9]–

[11], the authors used reinforcement learning and game theory

approaches to identify the critical transmission lines and their

sequences to avoid large scale blackout. Instead of using

clustering or classification techniques, they adopted a rein-

forcement learning based online learning technique to find

the sequence of critical contingencies. The authors used a

clustering-based method for unsupervised intrusion detections

in [12]. The authors developed a novel incremental clustering

algorithm using least distance principle to divide the data-set

into hyper spheres with almost the same radius. In [13], the

authors used a different cluster-based learning approach for

vulnerability analysis in the Smart Grid. In [14], the authors

identified the vulnerable nodes against false data injection

attacks in an AMI based smart grid by implementing an im-

proved Constriction Factor Particle Swarm Optimization (CF-

PSO) based hybrid clustering technique. In [15], the authors

used a clustering-based approach to detect cyber-attacks in

process control systems adopting Gaussian mixture clustering.

In [16], the authors used an unsupervised clustering method

on PMU data for event characterization on the smart grid.

The authors in [17], compared the power grid security studies

with network connectivity and power flow information using

unsupervised learning (self-organizing map (SOM)). In [18],

the authors analyzed smart grid vulnerability by identifying the

critical contingencies using time to reach blackout and number



of transmission line outage as the evaluation metric. The

authors in [19] analyzed the risk to power system for multi-

timescale cascading outages using Markovian tree search. In

[20], the authors proposed a comprehensive unsupervised clus-

tering method (hierarchical, partitioning, and density-based

approach) to classify 2226 disturbances stored in the Public

Service Company of New Mexico (PNM) from 2007 to 2010.

In the aforementioned literature, the authors adopted different

approaches to classify the events and faults and analyze the

vulnerabilities. Target selection (identification of the critical

contingencies) using an unsupervised learning algorithm has

rarely considered which is one of the most significant and

critical factors while conducting grid vulnerability analysis.

Moreover, a proper comparison between the approaches is

needed to identify the appropriate approach to use for a

specific attack strategy. The evaluation of the performances

needs to be compared for different approaches with different

evaluation metrics.

To provide a clear explanation of the approaches, we iden-

tify the vulnerable elements of a power system by proposing

a comparative study of power grid vulnerability analysis

between two target selection strategies, load ranking based

and unsupervised learning based. In terms of unsupervised

learning, we use K-means clustering [21]. The advantage of

using K-means clustering over other clustering algorithm is its

simplicity and faster operation even if the variable size is huge.

Generation loss and the number of transmission line outages

due to the attacks are used as evaluation metrics. We also

conduct experiments with different orders of attack to test the

feasibility of the target selection strategies. Finally, it is shown

that the load ranking based attack (LRBA) strategy causes

higher damage than the clustering based attack (CBA) for

cases where generation loss is the evaluation index. However,

for larger systems with higher transmission line outages as

the attack objective, CBA outperforms LRBA. The outcome

of this comparative study will help the engineering community

to select appropriate target selection strategy (learning scheme

or others) to identify the vulnerabilities of a CPPS.

The rest of the paper is organized as follows. Section II gives

a brief introduction of the two attack strategies and the attack

model. Section III provides benchmark information; how the

targets are selected and the attack is executed, the evaluation

metrics that are used to evaluate the damage caused by the

attacks, simulation results, observations from the results, and

a brief discussion on the result from a theoretical point of

view. Finally Section IV, concludes with a summary of the

work.

II. ATTACK STRATEGIES AND EVALUATION METRICS

In this section we introduce the attack model, overall pro-

cess flowchart, target selection strategies used in this research

work, and the evaluation metrics to evaluate the losses caused

by the attacks adopting the aforementioned target selection

strategies.

A. Attack model

First, we consider that the intruder/terrorists already gained

the access to the control center of the smart power system

via cyber-intrusion (phishing attack, DDoS attack, brute force

attack, etc.). Then we move forward with the threat and

attack model. The attack model is adopted from [22]–[24]. We

consider that the attacker is capable of causing line switching

attacks by cyber intrusion. The attack model is initialized with

the pre-contingency power flow to make sure that the system

is (n−1) contingency secured. Then we initiate the attack by

applying (n− k) contingencies. After execution of the attack,

the system may be separated into multiple islands, due to the

application of n− k contingency, where k is the order of the

contingencies. To adjust the demand and supply, the generators

are ramped up or down. After re-dispatching the generators,

the generation,
∑

g∈G Pg is compared with the load demand,∑
d∈D Pd which is defined by Z = (

∑
g∈G Pg −

∑
d∈D Pd),

where G and D represents the set of generator and load buses.

If Z > 0, generators in the islands are tripped to balance

the demand. After this, if Z < 0, the load is shed as a

multiplication of the loads in that island by a scalar quantity

λ, where λ =
∑

g∈G Pg
∑

d∈D Pd
Then, a standard DC power flow is

applied in the power system. After that, the relay settings are

updated. To identify the transmission lines to be tripped due

to the overcurrent/overload, time delayed overcurrent relays

are used. Generally, the threshold for overcurrent is fixed by

the system operator and termed as ōj . During the simulation

for transmission line j, if the power flow is fj , flow limit is

f̄j , the cascaded outage occurs when the associated overload

oj exceeds the limit ōj . The overload can be calculated as

follows:

(1)Δoj(t,Δt) =

{∫ t+Δt

t
(fj(t)− f̄j)dt iffj(t) > f̄j

0 otherwise

The model then finds the minimum time for tripping the next

transmission line. This time is termed as ΔT . Then this time

is updated with the addition of ΔT . After this, if the relay

trips due to overcurrent, they will trip the associated active

transmission lines to offline.

B. Overall flowchart

Figure 1, provides an algorithmic flowchart of the processes

of this research work. For a selected power system test

case, we start with the CBA as the target selection strategy.

Then we select the number of K (order of the attack). We

select the attack order with the aim to interpret high-impact,

low-frequency (HILF) events. So, we start with a smallest

attack order and increase gradually. Then we perform the

clustering based on the geographical coordinates (topological

information) of the buses. Thus, we divide all the buses of a

power system into K groups of densely populated buses. Next,

we conduct the power flow for the whole system, and select

the highly loaded buses from the clusters as targets. Finally,

the transmission lines connected with these target buses are

grouped together to initiate the attack.



Fig. 1. The overall flowchart to compare the two methods of target selection.
CBL, represents clustering based loss, and LRBL represents load ranking
based loss. CBA represents clustering based attack and LRBA represents load
ranking based attack. The whole process is repeated 100 times to get an overall
idea about the superior target selection strategy.

After executing the attack, we calculate the loss or evaluate

the damage caused by the attack based on generation loss and

number of total outages. The process of calculation of the

losses and overloads are explained in detail in Section II-A.

The damage or loss caused by the CBA is termed as clustering

based loss (CBL). Then we select LRBA as a target selection

strategy. In LRBA, we select the target buses with high loading

capacity. Then we group the connected transmission lines from

the target buses for initiating the attack. After executing the

attack, we calculate the loss caused by the LRBA, which we

termed as load ranking based loss (LRBL). After measuring

the loss, we compare the losses caused by the attacks adopting

the aforementioned two target selection strategies.

C. Clustering based attack (CBA)

To select the targets based on clustering, K-means clustering

is used. K-means clustering tries to group data samples based

on Euclidean distance between samples. Clustering is also

called data segmentation. It gives back clusters of locations

close to each other. K-means clustering is unsupervised learn-

ing, which is used when there are unlabeled data (i.e., data

without defined labels). The goal of this algorithm is to find

groups in the data, with the number of groups represented by

the variable k. The algorithm works iteratively to assign each

data point to one of k groups based on the features that are

provided. The main idea is to define k centroids, one for each

cluster. These centroids should be placed in a cunning way

because a different location causes a different result. So, the

better choice is to place them, as much as possible, far away

from each other. The next step is to take each point belonging

to a given data set and associate it to the nearest centroid.

When no point is pending, the first step is completed and an

early groupage is done. At this point we need to re-calculate

k new centroids as barycenters of the clusters resulting from

the previous step. After we have these k new centroids, a new

binding has to be done between the same data set points and

the nearest new centroid. A loop has been generated. As a

result of this loop, we may notice that the k centroids change

their location step by step until no more changes occur. In

other words centroids do not move any more. Finally, this

algorithm aims at minimizing an objective function, in this

case a squared error function. The objective function is:

J =

k∑
j=1

k∑
i=1

‖x(j)
i − cj‖2, (2)

where ‖x(j)
i − cj‖2 is a chosen distance measured between

a data point x
(j)
i and the cluster centre cj . The algorithm is

composed of the following steps:

1) Place k points into the space represented by the objects

being clustered. These points represent the initial group

centroids.

2) Assign each object to the group that has the closest

centroid.

3) When all objects have been assigned, recalculate the

positions of the k centroids.

4) Repeat Steps 2 and 3 until the centroids no longer

move. This produces a separation of the objects into

groups from which the metric to be minimized can be

calculated.

The data points used here are the coordinates of the bus

locations. The coordinates are clustered into different groups

of bus locations closer to each other. From those groups, the

buses with higher power flow are selected as the targets based

on the attack order and the number of the clusters.

D. Load ranking based attack (LRBA)

In order to select the target buses based on load ranking, the

amount of power flow through the buses is used. Total load

flow is calculated for all the buses of a power system. The

bus with higher amount of load flow is ranked higher than

the buses with lower amount of load flow. Let us consider

bus B1 and B2 when power P1, and P2 are flowing through

them, respectively. If P1 > P2, then B1 will be selected as

the target. This is how the target buses are selected for LRBA.

The transmission lines associated with the target buses are the

actual targets which need to be switched in order to initiate

the attack.



III. SIMULATION STUDIES

The simulation is conducted using MATLAB R2018a on

a standard PC with an Intel Core i7-6700 CPU running at

3.40-GHz and 24.0-GB RAM. To conduct the experiments

and comparative studies between the previously mentioned

target selection strategies, some of the available test cases are

selected.

A. Benchmarks

To conduct the simulation studies, W&W 6 bus system,

IEEE 7 bus system, IEEE 8 bus system, and IEEE 300 bus

system are used. For selecting targets based on unsupervised

learning, coordinate data of the nodes of the system is used;

and for selecting targets based on load ranking, power flow

information is used.

B. Target selection and attack execution

For the two attack methods, target selections are different.

For example, while using CBA, if we use K = 2 for W&W
6 bus system, it divides the buses of the system into two

groups. Among these two groups, buses with higher load

flow are selected as targets which are 1 and 4. Similarly,

clustering is executed for IEEE 7 bus system, IEEE 8 bus

system, and IEEE 300 bus system. Before clustering, the

bus coordinates are normalized. Normalization is one of the

data pre-processing techniques used for re-scaling the data

in the range of zero to one. For example, the set of bus

coordinates is, Q = [(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn)].
The normalization of the x coordinate is done using the

formula below:

x′
t =

xt −min(x1, x2, x3, . . . , xn)

max(x1, x2, x3, . . . , xn)−min(x1, x2, x3, . . . , xn)

where, x′ represents the normalized coordinates and t repre-

sents any components from 1, 2, 3, . . . , n for both of the x
and y coordinates. y coordinate is normalized in the similar

way. After normalization clustering is done based on the attack

order (K).
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Fig. 2. K-means clustering for IEEE 300 bus system bus coordinates. The
X and Y axis are representing the normalized bus coordinates. And the four
different colors represent the clustered buses for four different clusters. Among
these four clusters, we select four buses with higher power flow as the targets.

Figure 2 shows the clustering of the target buses using K-

means clustering for IEEE 300 bus system. There are four

clusters in this clustering. From these four clusters (groups

of buses), targets with high loading capability are selected.

So, from four clusters, four target buses are selected. Now,

to execute the attacks on these targets, we simply disconnect

the transmission lines connected to these buses. Similarly, for

the LRBA, the mostly loaded buses are bus 1 and 2. So, we

select these buses as the targets for LRBA. To execute the

attack we disconnect the transmission lines connected to the

target buses. Then we observe the damage to the system using

two different evaluation metrics. The same method is applied

to select the targets for the other bus systems as well.

C. Evaluation metrics
To evaluate the damage caused by the above mentioned

two attack strategies, we employed two different evaluation

indices. We used the total generation loss and the number of

total outages (both the attacked lines and the cascaded outages

combined) to measure the success of the attack. Generation

loss, as evaluation metric, provides insight into how the power

system is losing its generation power either due to load

shedding or due to generation and demand imbalance. The

number of total outages refers to the number of transmission

line failures caused by the attack and as a consequence of

cascading failure. It provides insight about damage in the

power system from the topological perspective. With higher

number of total outages, more area will be deprived of

power. Subsection II-A, provides the process of calculation

of generation loss and the number of total outages due to the

attacks.
D. Simulation results

We use 3 different attack orders (2, 3, and 4). So we use the

clustering for three different values of K. For three different

values of K, we conduct the experiment for four different

power system test cases. Each of the experiments with unique

settings is repeated 100 times to check the performance of

these two attack strategies.

TABLE I
COMPARISON OF THE ATTACK PERFORMANCES FOR ATTACK ORDER 2 AND

TOTAL TRANSMISSION LINE OUTAGE AS THE EVALUATION INDEX

Test cases CBA LRBA Total time (seconds)

W&W 6 bus system 0 100 2.13
IEEE 7 bus system 0 100 2.20
IEEE 8 bus system 0 100 2.32

IEEE 300 bus system 0 100 30.71

TABLE II
COMPARISON OF THE ATTACK PERFORMANCES FOR ATTACK ORDER 3 AND

TOTAL TRANSMISSION LINE OUTAGE AS THE EVALUATION INDEX

Test cases CBA LRBA Total time (seconds)

W&W 6 bus system 0 100 1.68
IEEE 7 bus system 11 89 1.84
IEEE 8 bus system 11 89 1.76

IEEE 300 bus system 14 86 34.69

Table I - VI show the number of times where CBA outper-

forms LRBA and vice versa.



TABLE III
COMPARISON OF THE ATTACK PERFORMANCES FOR ATTACK ORDER 4 AND

TOTAL TRANSMISSION LINE OUTAGE AS THE EVALUATION INDEX

Test cases CBA LRBA Total time (seconds)

W&W 6 bus system 0 100 1.75
IEEE 7 bus system 16 84 1.93
IEEE 8 bus system 30 70 1.85

IEEE 300 bus system 63 37 35.44

TABLE IV
COMPARISON OF THE ATTACK PERFORMANCES FOR ATTACK ORDER 2 AND

TOTAL GENERATION LOSS AS THE EVALUATION INDEX

Test cases CBA LRBA Total time (seconds)

W&W 6 bus system 0 100 1.69
IEEE 7 bus system 0 100 1.81
IEEE 8 bus system 0 100 1.78

IEEE 300 bus system 0 100 27.08

TABLE V
COMPARISON OF THE ATTACK PERFORMANCES FOR ATTACK ORDER 3 AND

TOTAL GENERATION LOSS AS THE EVALUATION INDEX

Test cases CBA LRBA Total time (seconds)

W&W 6 bus system 0 100 1.80
IEEE 7 bus system 0 100 1.76
IEEE 8 bus system 0 100 1.93

IEEE 300 bus system 10 90 34.80

TABLE VI
COMPARISON OF THE ATTACK PERFORMANCES FOR ATTACK ORDER 4 AND

TOTAL GENERATION LOSS AS THE EVALUATION INDEX

Test cases CBA LRBA Total time (seconds)

W&W 6 bus system 0 100 1.64
IEEE 7 bus system 0 100 1.84
IEEE 8 bus system 0 100 1.82

IEEE 300 bus system 16 84 32.29

E. Observation

From Table I, we can see that for the second order attack, for

all the test cases, LRBA outperforms CBA when the number of

total transmission line outages is the evaluation index. But, as

we increase the attack order from K = 2 to K = 4, we can see

the number of times where the CBA outperforms the LRBA

increases. For the IEEE 300 bus system and attack order 4,

CBA outperforms LRBA most of the time. Table VII, shows

the target buses for 3rd and 4th order attacks for both CBA

and LRBA. It also provides the number of total transmission

line outages associated with the target buses and attack orders.

From Table VII, we can also see that, for K = 3, the number

of total transmission line outages is 32 for CBA with the target

set of [3 170 98]. The number of total transmission line outages

is 55 for LRBA with the target set of [98 109 170]. However,

when we increase the attack order to K = 4, the number of

total transmission line outages is 63 for CBA with the target

set of [170 36 166 98]. On the other hand, for LRBA, the

number of total transmission line outages is 43 with the target

set of [98 109 170 3]. Therefore, we can conclude from Table

TABLE VII
TOTAL NUMBER OF TRANSMISSION LINE OUTAGE DUE TO DIFFERENT

ATTACK ORDER FOR CBA AND LRBA ON IEEE 300 BUS SYSTEM.

Attack order Attack strategy Target buses Number of total outages

K = 3
CBA [3 170 98] 32

LRBA [98 109 170] 55

K = 4
CBA [170 36 166 98] 63

LRBA [98 109 170 3] 43

VII that, for higher order attacks and for larger systems CBA

causes more damage if the target is to cause a higher number

of transmission line outages.

Similarly, from Table IV, V, and VI, we can see that for all

the test cases LRBA outperforms CBA when the generation

loss is the evaluation index. Occasionally CBA outperforms

the LRBA, but this is only for the larger systems, like IEEE

300 bus system.

TABLE VIII
GENERATION LOSS DUE TO DIFFERENT ATTACK ORDER FOR CBA AND

LRBA ON IEEE 300 BUS SYSTEM.

Attack order Attack strategy Target buses Generation loss (MW)

K = 3
CBA [3 170 98] 5867.20

LRBA [98 109 170] 12029

K = 4
CBA [98 3 166 170] 6864.55

LRBA [98 109 170 3] 9907.61

Table VIII shows the target buses for 3rd and 4th order

attacks for both CBA and LRBA when generation loss is

considered as the evaluation metric. It also provides the

amount of generation loss for both attack orders and both

attack types. Although we increase the attack order to K = 4,

the generation loss is still higher for LRBA than CBA. So, we

can conclude from Table VIII that if the target is to achieve

higher generation loss, regardless of the system size, LRBA

outperforms the CBA. These observations can be supported

by providing the explanation from a theoretical point of view.

In CBA, the clustering is done based on the topological

connection. The targets selected from the clusters are densely

populated buses having a high order of connectivity. In that

case, after attacking (disconnecting) these targets, a large num-

ber of transmission line outages occurs. But, in small power

system test cases, observation showed that LRBA performs

well compared to CBA. This is because, for small systems,

like the W & W 6 bus system, IEEE 7 bus, and IEEE 8
bus system, the topological connections between the buses are

not highly dense. So CBA does not perform accurate target

selection in small test cases. That is why, in case of LRBA

in small power system test cases, the selected targets carry

both the properties to cause high generation losses and high

transmission line outages. So, LRBA performs better than the

CBA for small systems with transmission line outage as attack

objective. On the other hand, according to the observations, if

the generation loss is considered as the attack objective, LRBA

performs better than CBA. This is because, when selecting

targets for the LRBA, buses with higher loading capability are



selected as targets. As these target selections do not depend

on the topological density, LRBA performs better than CBA

with generation loss as the attack objective.

From a machine learning point of view, most feature-based

clustering methods (e.g., K-means, GMM, etc) fail to scale

high-dimensional data well due to the curse of dimensionality.

For high dimensional data, considering compact and represen-

tative features is more reasonable and feasible instead of the

whole feature space [25]. Different deep learning techniques

learns a significant and strong representation from the raw data

using high-level non-linear mapping [26]. Uses of these deep

learning techniques for clustering might add several benefits

for clustering, improving the efficiency and performance.

IV. CONCLUSION

The use of machine learning techniques is becoming popular

for the identification of vulnerabilities in the modern power

system along with the increasing complexity of the infras-

tructures. Smart attackers possess different attack schemes for

different attack objectives. Proper use of machine learning

techniques and understanding the vulnerabilities of the power

grid from the attacker’s perspective could help the system

operators or utilities to make stronger protection plans for

the vulnerable elements. This research provides insight into

appropriate target selection strategies for different system

types and different attack objectives. It concludes that, for

larger systems with higher attack order, if the attack objective

is to cause higher transmission line outage, CBA outperforms

LRBA scheme. If the attack objective is to cause higher

generation loss, then LRBA scheme outperforms CBA scheme

regardless of the system size.
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