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Exotic superconductivity, such as high TC , topological, and heavy-fermion superconductors, of-
ten rely on phase sensitive measurements to determine the underlying pairing. Here we investigate
the proximity-induced superconductivity in nanowires of SnTe, where a s ± is′ superconducting
state is produced that lacks the time-reversal and valley-exchange symmetry of the parent SnTe. A
systematic breakdown of three conventional characteristics of Josephson junctions – the DC Joseph-
son effect, the AC Josephson effect, and the magnetic diffraction pattern – fabricated from SnTe
nanowire weak links elucidates this novel superconducting state. Further, the AC Josephson effect
reveals evidence of a Majorana bound state, tuned by a perpendicular magnetic field. This work
represents the definitive phase-sensitive measurement of novel s ± is′ superconductivity, providing
a new route to the investigation of fractional vortices, topological superconductivity, topological
phase transitions, and new types of Josephson-based devices.

The nature of paired electrons in solid material remains
one of the most important areas of research in condensed
matter physics. Beyond the framework of conventional
(BCS) superconductors, pairing can arise in materials
with a multitude of mechanisms for coupling two elec-
trons, which can results in a variety of gap symmetries [1].
In the classification of these superconductors, determina-
tion of phase of the superconducting order parameter is
of paramount importance. This is also evident in mate-
rials with the requisite criterion for topological phases of
matter, where the determination of the sign of the or-
der parameter is essential in uncovering the nontrivial
topologies in the superconducting state [2].

Most conventional descriptions of superconductors de-
tail the effects of pairing within a single electronic band.
Yet, adding another superconducting component – for ex-
ample, superconductivity arising on a second electronic
band – can augment the available ground states [3–5].
One possibility is the occurrence of a sign change (i.e. a
phase angle of π) between superconducting order param-
eters on two different bands: a so called s± superconduc-
tor. Such an effect is thought to be prevalent in Fe-based
superconductors, and experiments have begun to observe
signatures consistent this state [6–8]. However, this ef-
fect has yet to be seen outside of Fe-based materials and
conclusive evidence of this exotic superconducting state
has remained elusive. SnTe, a topological crystalline in-
sulator [9], has an even number of Dirac valleys [10]. In
this work, the presence of two bands dramatically alters
the observed behavior of Josephson junctions (JJs) fabri-

cated using SnTe nanowires as a weak link. This provides
clear evidence of proximity-induced s± is′ superconduct-
ing state, a relative of an s± state but with an angle in
phase between the bands that is neither zero nor π, as
detailed below.

Upon placing an s-wave superconductor in proximity
to SnTe (Fig. 1A), superconducting order will be in-
duced in each of the two bands in SnTe. To allow interac-
tions between bands, a momentum-conserving interband
Umklapp scattering process is included [11]. The phase-
dependent part of the free energy derived is of the form

F (θ1, θ2) = Jcos(θ1 − θ2) + J ′(cosθ1 + cosθ2) (1)

where θj=1,2 are the phases of the superconducting order
parameter in each band, J is a measure of the inter-
band coupling (provided by Umklapp process) and J ′ a
measure of the external pairing field (provide by the Al
superconducting leads). Minimization of this free energy
dictates that the ground state is given by the condition
θ1 = −θ2, with a built in phase difference between bands
θ ≡ θ1 − θ2 given by

θ = 2Re(arccos(δ/2)), δ = |J
′

J
|. (2)

The result of the above formulation is a built-in pair-
ing phase difference between two bands which is possible
for values of δ ≤ 2 (Fig. 1E). If a finite phase difference
between bands occurs, the superconducting order param-
eter for the material becomes s± is′: one pocket has an
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FIG. 1: Induced s± is′ superconductivity in SnTe. (A) The two bands in SnTe are coupled to the order parameter φS in aluminum
via an external pairing field J ′. The interband coupling J is facilitated via the Umklapp process. θ1 and θ2 are the phases of individual
order parameters in the two bands. (B)-(D) The competition between the coupling strengths J and J ′ results in different relative phases
between two bands: (B) When J � J ′, the phases tend to align with each other. (C) When J � J ′, the phases of two bands are out
of phase by π. (D) In the intermediate regime J ∼ J ′, the phases are canted. (E) The phase difference between two bands θ ≡ θ1 − θ2
as a function of the coupling strength ratio δ = J ′/J given by Eq. (2). The nonzero canting angle yields the s ± is′ superconductivity
in SnTe. (F) The four-channel supercurrent flow between two superconducting electrodes L and R. The two intraband channels Iii
behave like conventional “0”-junctions, while the interband channels are negatively coupled and thus behave like “π”-junctions. The total
supercurrent is governed by the phase difference between two conventional superconductors φ = φR

s − φL
s , resulting in a relative rotation

that changes the relative amount of supercurrent contributed by each channel.

order parameter Δ1 + iΔ2, the other Δ1 − iΔ2, where
Δj=1,2.

The free energy above is distinct from the conventional
free energy of Josephson junctions. In the ground state,
both time-reversal symmetry (θj → −θj) and valley-
exchange symmetry θ1 ↔ θ2 resulting from the four-fold
rotational symmetry – two symmetries which were pre-
served prior to inducing superconductivity – are broken,
while their product (θi → −θj) is preserved. Further,
the criterion that θ1 = −θ2 results in a free energy with
two minima per period, distinct from the single minimum
of conventional junctions [12]. Finally, the competition
between J and J ′ should be noted: J ′ tends to want to
align the superconducting phases of both bands, whereas
J acts to drive the phases to be shifted by π. This compe-
tition leads to three configurations of the relative phases
(Fig. 1B-D).

The resulting Josephson effects are influenced by the
competition described above. Theoretical investigations
of time reversal symmetry breaking (TRSB) have been
explored in junctions and interfaces between s± and s-
wave superconductors [5, 13, 14]. The manifestation of
TRSB is two-fold. First is the creation of a canted state
(Fig. 1D) [13–16], where a nonzero angle forms between
phase of the bands and the phase of the superconduc-
tor φS . This canting is similar in nature to the state
generated when antiferromagnetic spins are placed in a
magnetic field. The resulting effect of this canting is the

generation of chiral currents in momentum space [13, 14]
– a clear indication of time reversal symmetry breaking.
A graph of the canting angle θ = θ1− θ2 calculated from
Eq. 3 is shown in Fig. 1E. Concurrent with the transition
to the canted state is the generation of a predominant
second harmonic in the current phase relation [16, 17].

The second result of TRSB is the presence of four chan-
nels of supercurrent flow (Fig. 1F) [5, 14]. Whereas
the intraband contribution arises from two convention-
ally coupled channels represented by Iii = ICii sin(θ

R
i −θLi )

(where L and R are the angles on the left and right Al-
SnTe interfaces), the interband channels are negatively
coupled, producing two “π”-junction channels in the form
Iij = −ICij sin(θRi −θLj ) (where i, j=1,2 indicates the band

and ICii and ICij are critical currents of the intra and inter-
band supercurrent respectively). The total supercurrent
is governed by the phases of the two conventional su-
perconductors (φR

s − φL
s ): a nonzero supercurrent will

produce a relative rotation φ = φR
s − φL

s (Fig. 1F), thus
altering each channel’s relative contribution to the total
supercurrent.

Below we detail the manner in which three character-
istic properties of SnTe Josephson junctions (JJs) are af-
fected in a consistent with the above formulation. These
three characteristics are the following: the DC Josephson
effect, by which a superconducting-to-normal transition
is driven by an external DC current; the AC Josephson
effect, whereby application of radio-frequency radiation
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produces frequency-dependent steps in the current versus
voltage curves; and the magnetic diffraction pattern, an
effect where a magnetic field applied perpendicular to the
junction modulates the measured critical current IC . The
behavior of each of these relies on the current-phase rela-
tion (CPR) (IS(φ) = dF/dφ); hence, it is expected that
the anomalous free energy derived above will produce
modified junction behavior. We also find that the effect
is most prominent in the nanowires with the smallest
diameter [11], suggesting that topological surface state
plays an important role in the observations [18].

The Josephson effect of aluminum/SnTe
nanowire/aluminum JJs is measured by a lock-in
detection of the differential resistance r = dV/dI as a
function of the applied DC current (IDC), perpendicular
magnetic field (B) and AC current (measured in power
P ). r(IDC) at B,P = 0 is shown in Fig. 2A. Unlike
conventional overdamped JJs, different values of IC
are observed for positive (I+C ) and negative (I−C ) values
of IDC . We note that in underdamped junctions,
different values for IC can be observed, which reflect
the difference in switching and retrapping currents and
produce a hysteric I − V curve [12]. However, as shown
in Fig. 2A, sweeps of IDC in both directions reveal that
the difference in I+C and I−C remains intrinsically and no
hysteresis is observed, ruling out this phenomenon. A
current-direction-dependent IC has also been observed
in so-called “φ0” junctions [19–21], giving the first
indication that a similar phenomenon is observed here.

To understand the origin of the difference between I+C
and I−C , numerical simulations of the resistively-shunted
junction model [11]) were performed. Conventional JJs
possess a CPR which is both inversion and π-translation
symmetric, a result of time-reversal symmetry and insen-
sitivity to changes of φ by 2π. The only way to reproduce
r(IDC) curves that are not symmetric in IDC is to break
both of these symmetries, resulting in a CPR of the form
IS = sin(φ + β) + A sin(2φ + β), where β is fit param-
eter and A = 0.909 is determined by the AC Josephson
effect. This inclusion of a second harmonic is expected
in the TRSB state and will be confirmed in our mea-
surement of the AC Josephson effect (Fig. 4). Values of
β = (−0.84,−0.08)π best match the experimental data,
producing the CPRs shown in Fig. 2C. Most surprising
about the CPR shown in Fig. 2C is the nonzero super-
current which exist for φ = 0, a clear signature of TRSB
and the existence of a φ0-junction.

The generation of a φ0-junction from the four super-
currents of Fig. 1F is surprising. π-junction effects have
been predicted in s± junctions [17, 22–25]. However,
a lateral (along the direction perpendicular to current
flow) variation of the predominance of either a “0” or
“π” supercurrent or a variation of interband coupling is
required to produce a φ0-junction. In the absence of
these effects, the expected result of this coexistence is
a reduction of the critical current since 0 and π chan-
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FIG. 2: Breakdown of the DC Josephson Effect. (A) Dif-
ferential resistance r as a function of DC bias current IDC in dif-
ferent sweep directions. The bias sweeps show no hysteresis and
two nonidentical critical currents I+C and I−C . The curves are off-
set for clarity. (B) The simulated differential resistance r(IDC , β)
calculated by the resistively-shunted junction model using a CPR
of IS = sin(φ + β) + A sin(2φ + β), where the best fit parame-
ters β with the experiment are −0.84π and −0.16π. The resulting
CPRs are plotted in (C). Both CPRs show nonzero supercurrent
for φ = 0, giving robust evidence of TRSB and the existence of a
φ0-junction. (D) In the canted phase picture, a slight difference in
the angle θR1 from the opposite band is essential to the formation
of the φ0-junction.

nels spatially coexist [14, 23]. Calculations of the CPR
in coupled canted phase junctions where all band angles
are equal (θL1 = θL2 = θR1 = θR2 , where are angles are ref-
erenced to φL

S , taken to be zero) confirms this result [11].
While it may be possible that the relative strength of the
0 and π channels or the coupling varies laterally, we do
not know of a reason for this variation in our devices.

However, a simple modification canted-phase junction
can allow for the formation of a φ-junction: allowing θR1
to be different from the other band angles (Fig. 2D).
This may arise either from an inhomogeneous coupling
between the two bands of SnTe and the superconduc-
tor [15] or from the presence of the interband current
arising in the TRSB state [13, 14]. The resulting intra-
and interband CPRs are

Iii(φ) = ICii {[sin(θR1 − θL0 ) + sin(θL0 − θR2 )] cosφ

+ [cos(θR1 − θL0 ) + cos(θL0 − θR2 )] sinφ},
Iij(φ) = −ICij{[sin(θR1 + θL0 )− sin(θL0 + θR2 )] cosφ

+ [cos(θR1 + θL0 ) + cos(θL0 + θR2 )] sinφ}.

(3)

Here we have taken the two angles on the left side of
the junction to be equal and opposite with value θL0 and
allowed the angles on the right (θR1 , θ

R
2 ) to vary. Simi-

lar results are obtained if the angles on the left are also
allowed to vary. The key feature of this result is the
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FIG. 3: The Anomalous Magnetic Diffraction Pattern. (A) Plot of r(B, IDC) taken at 25 mK which shows a characteristic
minimum in IC at B=0. (B) Calculated CPRs as φrel is cycled. (C) The ratio of I+C to I−C as a function of B, shown between -20 and
20 mT where the Al leads are unaffected by B. (D-E) the variation in fit parameter β (D) and critical current (E) as φrel is cycled. The
dashed line in D, E are running averages.

presence of both a cosφ and a sinφ term, which allow for
nonzero supercurrent at φ=0.
The anomalous CPR extracted from the DC Joseph-

son effect should also change the behavior of two other JJ
characteristics –the magnetic diffraction pattern (MDP)
and the AC Josephson effect. The magnetic diffraction
pattern (r(IDC , B)) is shown in Fig. 3, where B is ap-
plied perpendicular to the sample substrate. Unlike the
MDPs of typical Josephson junctions [26], SnTe junc-
tions display a local minimum of the critical current at
zero magnetic field. The peak in IC occurs at B=16mT
which, when using the area of the junction (defined as the
length of the junction plus twice the penetration depth),
corresponds to a flux through the device of ∼ Φ0/4
(where Φ0 is the quantum of flux). This contrasts with
the Fraunhofer-resembling patterns that have been ob-
served in junctions with weak links of bulk TCIs [27],
topological insulators [28–30], and strong-spin-orbit 1D
wires [31], where a maximum in IC at B=0 is still ob-
served. Measurements in a parallel field do not produce
this effect [11], ruling out spin-orbit or phase-coherent ef-
fects being the origin of the rise in IC away from B = 0.

A minimum in IC has also been observed in other JJs,
like in high-TC corner junctions [32] and S-ferromagnet-S
JJs [33], each of which also has two supercurrent compo-
nents that are shifted in phase. Again, this result relies
on a lateral variation of the relative strengths of 0 and π
channels. These junctions also have a maximum in IC at
a flux of Φ0. Anomalous Fraunhofer patterns have been
predicted in s± corner junctions with a 135o angle [34].
Since neither of these seem to match our experiment, we
again turn to Eq. 4 to find an origin for this effect.

Application of a perpendicular magnetic field produces
a nonzero Aharonov-Bohm phase in the lateral direction,

causing a relative rotation φrel of the local phase between
the left and right superconductors forming the junction.
This relative phase also adjusts the angles θR1 and θR2 in
Eq. 4. Shown in Fig. 3B are the calculated CPRs as
φrel changes from 0 to π. These calculations were per-
formed using angles θL0 = θR2 = π/22 and θR1 = π/1.7;
similar behavior is observed for a wide range of param-
eters, although these do not quantitatively match the
experimental observations [11]. It is observed that both
IC and β are changed as φrel changes. Between φrel=0
and φrel=π/2 (the expected shift for Φ0/4), β changes
from −0.16π to −0.04 and IC is increased by a factor
of 1.9. This closely matches the observed behavior in
experiment for IC (Fig. 3A) and β (Fig. 3C). For this
comparison, we note that the β and IC extract from sim-
ulation are a local values whereas, experiment measures
the global value (i.e. average across the entire device).
Hence, the running averages of Fig. 3D, E (dashed lines)
should be compared to experiment. The results of Fig.
C are only shown between ±20mT, after which the Al
leads are affected by B, complicating comparison to sim-
ulation. Finally, we mention that we also observe a 0
to π transition as a function of φrel for certain parame-
ter ranges [11]. This is an alternate explanation for the
observe increase in IC(B).

We now turn our attention to the modification of the
AC Josephson effect. The presence of a second har-
monic component – expected in the TRSB state [16, 17]
– will result in additional steps at values of half the ex-
pected hf/2e. A plot of r(IDC , P ), B = 0 is shown in
Fig. 4A (grey curve) taken at f =5GHz, where dips
in r are observed at both integer and half-integer val-
ues. This is more clearly seen in the integrated volt-
age V =

∫
(dV/dI)dI versus IDC curve shown in blue.
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The dips/plateaus measured are of nearly equal strength,
indicating that the contribution of the first and second
harmonic to the CPR are approximately equal. Subhar-
monic steps are expected for underdamped junctions and
for overdamped junctions with a skewed CPR. Our junc-
tions are overdamped; hence we rule out the former as
being the cause. Skewed CPRs in overdamped junctions
produce fractional Shapiro steps, but the strength of
these steps is much reduced compared to the integer steps
(see Ref. [27] for comparison if the AC Josephson effect
with a skewed CPR in a similar material, Pb0.5Sn0.5Te).
Therefore, we also rule out the skewed CPR as the source
of the observed effect.

Application of a magnetic field influences the features
observed in the AC Josephson effect. Fig. 3B shows a
plot which resembles Fig. 3A, except that it was taken
at B = 16mT, the field at which IC is a maximum.
Here, the fractional steps appear more pronounced com-
pared to B = 0. In fact, the subharmonic features are
most intense at B = 16 mT and disappear entirely for
B >30mT [11].

As such, we analyze the magnetic field dependence of
the AC Josephson effect (Fig. 4C). Most striking is the
merging of the first and second step, which begins around
B=8mT and persists until just past the field of maximum
IC . Merging of the first and second steps can arise from
nonlinear, period-doubling effects, known from the study
of junctions driven by AC voltages [35]. This seem un-
likely for two reasons. First, the junctions under study
are in the overdamped regime where chaotic effects are
known to be absent. Second, the only parameter which
is varied by the magnetic field is IC . For values of B
where IC is the same, two different behaviors are ob-
served: IC=1.2μA both at B=8 and 28 mT, yet only at
the lower field are the two steps merged. Note that Fig.
4C is taken at P=-20.0dBm; at these low powers the half
steps are merged with the integer steps (see Ref. [11]).

Recently, it has been shown that junctions with a mix-
ture of 2π and 4π CPRs arising from the presences of
topologically trivial and nontrivial Andreev bound states
can produce a disappearance of the first Shapiro step [36–
38]. At B=8mT, φrel = π/4, at which point band 1
on the right is π out of phase with band 2 on the left
(θR1 − θL0 ∼ π, see inset of Fig. 4C). Thus, at this point
the 4π periodic CPR would contribute to the overall su-
percurrent and cause a merging of the first and second
step. This effect persists until θR1 moves past being out of
phase with band 1 on the left. This means that the con-
ditions for a Majorana bound state are satisfied in this
regime. This effect warrants further theoretical studies
and current experimental investigations are underway.
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