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Abstract—GraphBLAS is a new package designed to provide
a standard set of building blocks for graph algorithms based
formally in the language of linear algebra. This paper suggests
some extensions of the underlying math that would enhance
GraphBLAS’ ability to stream updates into a computation with-
out a bulk recomputation, and at greatly reduced computational
complexity. The process is applied to several examples.

Index Terms—Big Data and Data Analytics, Programming
Languages, Causality and Time, Compiler Design and Optimiza-
tion

I. INTRODUCTION

The Basic Linear Algebra Subprograms (BLAS)' pack-
age provides a standard set of building blocks for basic vector
and matrix operations. LINPACK? and LAPACK? builds on
BLAS to provide highly scalable, parallel implementations
of linear algebra using conventional arithmetic operations on
dense matrices. They form the benchmark used for the TopS00
rankings of supercomputers*. In contrast, GraphBLAS> pro-
vides a standard set of building blocks for graph algorithms
using the language of linear algebra. A graph can be defined
by an adjacency matrix of size Nx N where N is the number
of vertices V' in the graph. The [¢, j] entry of such a matrix
is non-zero if there is an edge from Vi] to V[j]. Non-zeros
other than “1” can represent weights on edges.

GraphBLAS uses this representation at its heart. The in-
novations are two-fold. First, the programmer may specify
operations different from the traditional floating-point add
and multiply, but still compatible with the rules of linear
algebra, By choosing these functions carefully, virtually any
graph kernel operation can be re-written as a series of linear
algebra operations (cf. [17]). A popular implementation is
SuiteSPARSE [10]. Some very detailed examples are bipartite
matching [3], triangle counting [21], and k-truss [1].

The second innovation is on handling extreme sparsity
where nearly all of the elements of matrices are the equiv-
alent of “zeros.” This is critically important for real graph

Uhttp://www.netlib.org/blas/
Zhttp://www.netlib.org/linpack/
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applications where there may be literally billions of vertices,
but perhaps at best a few dozen edges from any one vertex.

Finally, GraphBLAS hides the storage of such matrices in
an opaque space where a wide variety of novel execution
models and platforms, especially parallel and/or lazy, may
be employed, with their implementations hidden from the
users. In its current form this is an excellent match for graph
algorithms that are to be executed in “batch mode” where
computation is applied to entire matrices at a time.

This paper looks at enhancing GraphBLAS to avoid re-
computing an entire matrix operation when a single edge is to
be changed. This is particularly important when applications
are “streaming,” as in real-time applications. The emphasis
is on defining how the properties of the functions used in
the linear algebra operations affect the complexity of doing
computations incrementally.

In organization Section II briefly reviews some key prior
work in streaming graphs. Section III focuses on the math
framework behind GraphBLAS. Section IV suggests some ex-
tensions to reduce the computational complexity of streaming
within linear algebra. Section V describes some examples.
Section VI addresses concurrency issues.

II. PRIOR STREAMING WORK

Graph streaming algorithms do have a some history. A prior
definition of streaming (c.f. [5]) focused on cases where the
edge set is too big to be held close to the processor. The edges
thus must be accessed in some “stream” order, and where
that order may not be in the order needed by the algorithm.
Multiple passes may thus be needed to access the necessary
edges. Such work relates compute complexity to storage needs,
expressed as a function of how many passes over the input
stream are required. Such work also explores existence proofs
for streaming algorithms by reducing problems to others with
known solutions. In particular, the semi-streaming model [18]
develops tradeoffs between storage used to save intermediate
edges referenced by the sequence order and needed computa-
tion. [12] includes examples of bipartite matching.

At the implementation level, the low level Stinger data
structure [4] was designed from the beginning to hold graphs
in memory and provide an API to handle streaming updates.A
sample benchmark code [20] used Stinger to perform edge



insertion and deletion operations into a Stinger graph at very
high rates when the updates can be batched. The Stinger
implementation focuses on synchronization issues to guarantee
correct operation. A parallel streaming algorithm for updating
cluster coefficients [11] also uses Stinger, with an OpenMP
implementation running on both a modern multi-core and a
Cray XMT multi-threaded platform.

This paper focuses on how to derive algorithms where
the initial graph is “in memory,” and a stream of updates
to that graph is to be handled. The results are intended on
demonstrating how a potentially compile-time process may
construct a streaming algorithm from a linear algebra-based
algorithm that performs a non-streaming batch computation.

III. GRAPHBLAS FUNDAMENTALS
A. Graphs as Matrices

A graph G is a pair (V, E) where V is a set of vertices
and F is a set of edges. Each edge is itself a pair (u,v) where
u and v are both vertices from V. G is an undirected graph if
some (u,v) is in E, then so is (v,u). A directed graph does
not have this duality.

GraphBLAS performs computation over graphs that are
expressed as 2D matrices in one of two forms. An adjacency
matrix is a |V |z|V| matrix A where Afu,v] is a “1” if u and
v are vertices, and (u,v) is in E. If (u,v) is not an edge in
G, then Afu,v] is a “0”.

The other form is an |V|z|E| incidence matrix B where
Blu, €] is a “1” if the vertex u is one of the endpoints of edge e.
For directed graphs there may be two matrices; Boy:[u, €] = 1
if (u,v) is in E for some v, and B;,[v,e] = 1 if there is an
edge (u,v) for some u.

The “1s” above need not always be the number 1, but may
come from some other domain. For example, in an adjacency
matrix where edges are weighted (as in a road map where
edges are distances between cities), the non-zero value for an
edge may be the weight. Likewise, for directed graphs, Bu, €]
may be “+1” if e = (u,v) and “-1” if e = (v, u).

B. Functional Properties

A GraphBLAS program consists of the application of a
series of operations to the matrices and vectors that make
up a graph. These operations may in turn use functions that
may either come from a predefined library or be user-defined.
GraphBLAS assumes that such functions, both individually
and collectively, have certain properties. This section discusses
those properties formally, with notation from APL [13].

A binary function “o” is a function whose two arguments
a and b come from two sets Di.rs and Dyiqps respectively
(called the domain), and produce a result ¢ from a third set
Dy called the range. When Dicyy = Dyjgne = D, the
function o may have special properties as follows:

o o is commutative if for all a and b, o(a,b) = o(b, a).
e o has an identity element I, (from D) if for all a in D,

o(a,I,) = o(l,,a) = a.

o b° is a left element inverse of b if o(b°,b) = I,
e a° is a right element inverse of a if o(a,a®) = I,

o If for an element a there is both a left and right element
inverse, and they are the same, then a is invertible.
If also Doyt = Dicgt = Dyigne = D, then:

e o is associative if for all a, b, and ¢, o(a,o(b,c)) =
o(o(a,b), ).

o If it exists, an annihilator (or zero) for o is some element
0, such that o(0,,a) = o(a,0,) = 0, for any element a.

e o is closed under D if for any (a,b), o(a,b) is also in D.
If a function o is associative and has an identity I, it is

called a monoid. If in addition o is closed under D and all

elements of D have inverses, then o and D form a group.
A pair of functions ¢ and ® form a semi-ring [16] if:

e @ is a commutative monoid with identity Ig,

e @ is also a monoid with identity element Iy,

o The range of ® is the same as Dg,

e Ig is an annihilator of ®, that is I = Og,

o ® distributes over @, thatis a® (b®c) = (a®b)d(a®c).

C. Notation

We use the following notation for expressions:

e If a and b are scalars, either a o b or o(a, b) represents the
result of the single application of function o to a and b.

o If z, y, and z are vectors, then in z = x oy, z[i] = z[i]oyli].

o If 0 is a monoid, and « is a vector from D,, then o/z is
called a reduction of x, and returns the scalar (...(z[1] o
x[2]) o x[3])... o z[n]), e.g. +/x is the sum of all elements.

o If ® and ® form a semi-ring, then the inner product of x
and y, denoted z @ . ® y is the same as ®/(z ® y).

o Likewise, if A is an NxM matrix then A ® . ® = (where
x is of length M) is the vector z where z[i] is the inner
product of A[i;] and z.

o Likewise, if A is an Nz M matrix and B is an M xR matrix,
then the matrix product C = AB may also be written as
C =A®.® B, and represents the Nz R matrix C' where
Cli,j] = Ali;] © . ® B; j].

e v. 0w where v and w are vectors, is the matrix C' where
Cli, ) = vli] o w]j].

D. Structural Zeros

Section III-A used “0” as a placeholder for the value of
a graph matrix entry where there is no corresponding edge.
Since most graphs are very sparse, most entries in a graph
matrix are such “0”s, and the GraphBLAS spec encourages
implementations to avoid explicitly “storing” such zeros.

Further, the same graph matrix may be used with several
different (®,@®) function pairs in different steps of some
algorithm. In addition, vectors may also be “sparse” with lots
of “zeros” in them. In all such cases the “0”s may mean
different values at different times, depending on the functions
being applied. GraphBLAS treats all such “0”s as structural
zeros, having no intrinsic value. In general, all such structural
zeros are assumed to be the same as the identify element Ig
of the current & (and for inner products thus the same as the
annihilator element Og of the current ®).

For this paper, we define the function nz(z) as returning
the number of structural zeros in z, and nnz(z) as returning
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SOME TYPICAL “INNER PRODUCT” FUNCTION PAIRS.

%b [ o

E g S1215) 5 |52 2| .| o |B|E|B

£ 2 S22 E |28 Sl S| £ 2|52

7 > s |« |®| & |<|O E| A _ < |0 | A

® ® ReleventKemels | @ | ® | & | @ |o|@| £ |o]| © e |@|le|le|f] &

+ * Lin. Alg. [16] Y Y Y Z,R|Y Y 0 Y Z,R | Z,R|Y Y Y 1 0

Betweenness

+ * A Finding [9] Y[ Y| Y| ZF | Y|Y 0 N | ZzF ZF Yy |Y[| Y| 1 0
max min Y| Y| Y | ZR|Y| Y| - | N|ZR|ZR|Y|Y|Y| x| -
xor and BES [16] Y Y N bool Y Y F Y bool bool Y Y N T F

U n [16] Y| Y| N U Y| Y [ N U U | Y| Y|[N|T 0
max + max flow [16] Y Y N Z,R|Y Y —00 N Z,R | Z,R| Y Y N 0 —00
max | select2 Max ind. set [9] Y | N N Z,R | Y| Y| —o | N U Z,R | Y | N | N

U is the universal set; (J is the empty set. select2(z,y) = y

the number of “non-zeros” in x, where x is either a vector or
a matrix. nnz(A[i;]) is the number of non-zeros in row i of
matrix A; nnz(A[;j]) is the number of non-zeros in column
j of matrix A; while nnz,.,(A) is the average number of
non-zeros in any row of matrix A.

E. Some Function Examples

Table I lists examples of useful pairs (&, ®) of functions
taken from the GraphBLAS references [9], [16], [17]. What
is interesting is that not all pairs have all the properties men-
tioned above, especially identities, inverses, or distributively,
and thus strictly speaking are not semi-rings.

FE. Other Graph Compute Patterns

TABLE 11
GRAPHBLAS OPERATION FORMATS.
[ Name ] Structure [ Operation |
Inner-Product Operations
Vec-Vec s« V1d.®V s=V1d.® Vs
Mat-Vec Vo < Mz Vo [7,] = M[’L,} D.0W
Mat-Mat M3 + Mox My M3 [’L,]] = M, [Z,} D.Q MQ[;j]
Element by Element Operations

Scalar-Vec Vo soVj Vali] = s o Vi]i
Vec-Vec V3 < VaoVy Vsli] = Vali] o Vi [i]
Mat-Mat Ms = Mo o My Mg[i;j =M1[i;j]OM2[i;j]

The top half of Table II three major variants of inner
products, based on whether the arguments are vectors or
matrices. In addition, GraphBLAS also has a suite of element-
by-element operations, as summarized in the bottom of Table
II. The functions (‘o) involved in these operations do not have
all the constraints as inner products. If o is a ®-like function
where a structural zero is an annihilator, then in y < w o x
if some wli] (or x[i]) is a structural zero, then y[i] is also a
structural zero for the last two cases, and s is a structural zero
for the first case. If o is a @-like function where a structural
zero is an identity element, then if some wli] (or y[i]) is a
structural zero, y[i] takes on the other argument value.

GraphBLAS also allows the application of masks to the
storing of expression results into a target. A mask is an array of

booleans of the same dimensions as the target object receiving
the results. For example, for a matrix mask, if for the result of
a matrix computation for element [¢, j| the mask’s [i, j] entry
is true, then the store goes through. If not, the [¢,j] element
in the result is unchanged, regardless of the value computed
on the right-hand side. An option on a mask application may
specify that all non-masked elements in the masked object
are to be zeroed first. The GraphBLAS spec uses the notation
v[g] =, where q is a mask of the same dimensions as v, to
express this option.

Also one may optionally “accumulate” a computed value
into the designated target object, rather than just overwrite the
prior value. The optional binary accumulation function © is
also programmer-specifiable. Thus for example y© = A®.Qx
represents updating y as y[i] < y[i] © (A[i;] @ . ® x). In such
cases, it is important to recognize to what a structural zero
generated from the right-hand side expression corresponds. If
an I, then there is no change to the left-hand side element,
and any consideration of the element can be skipped. If
anything else, then a computation and a store is required.

G. Implementation Considerations

The net effect of Section III-D is that in any reduction
involving some &, a structural zero in the vector being
summed may be treated as equivalent to Ig, and may be
“skipped” in terms of performing the computation. Likewise,
in any inner product @ . ® y, any product x[i] ® y[i], where
either z[i] or y[i] is a structural zero, is itself equivalent to a
Og which if the functions form a semi-ring is equivalent to
Iy, and thus the @ sum can again skip all such terms.

Next, since many graphs are notoriously very sparse, the
result of operations that produce vectors or matrices are them-
selves liable to be sparse. Thus, an important consideration
is how to generate an object which may be quite sparse
without somehow performing computations proportional to the
dimensions of the object (i.e. in generating a vector result of
length n, we should avoid “initializing” the zero elements).
Thus it is likely that some sort of hash table represent the



element, where if any index is not found in the hash table,
then the matching element is assumed to be a structural zero.

Also, if (as expected for most GraphBLAS implementa-
tions) operations on vectors or matrices can skip the structural
zeros, then we can assume operations on vectors x are of
time complexity O(nnz(x)) rather than O(|x|). In addition, if
@ is associative and commutative, then we expect that many
GraphBLAS implementations may perform the ¢ summations
in an “unpredictable” order, and still return “valid” results.
This would be the case if, for example, the summation is
performed in parallel in some fashion.

Applying an accumulating function © to an existing sparse
object as in v® = e also requires some special consideration.
Assuming that a structural zero from the right-hand expression
e is Op, then nothing need be done. However, for non-zero
right-hand side elements, then the index for that element need
be used as a probe into v. If the index is there, then v[i]
v[i] ® e[i]. If not, then a new entry for v[i] must be created,
and the value set to e].

Applying a mask m to an assignment v[m] < e has similar
special cases. If m[i] is false, no change to v[i] is necessary,
regardless of v[i]’s value. If m/[i] is true, and both v[i] and eli]
are structural zeros, then again no change is necessary. If both
have non-zero values, then the value for v[i] is updated. If v[i]
does not have a value, but e[i] does, then a value entry for v[i]
must be created. If the other way around, then the value entry
for v[i] must be erased and replaced by a structural zero.

If the option to clear all masked elements of v is specified,
then it is preferable to build a new empty data structure for
v and apply the above only for non-zero e[é]s. This avoids a
time complexity proportional to the dimensions of v.

H. Complexity

TABLE III
NOTIONAL OPERATION COMPLEXITY
[ Operation [ Dense | Sparse |
AoB O(NM) O(nnz(A) + nnz(B)))
D/A O(NM) O(nnz(A))
A®.®B | OINMP) | O(NP(nnzrow(A) + nnz..(B))
CoO=FE O(NP) O(nnz(E))
C[X]+ FE O(NP) O(nnz(E) + nnz(X))
Ais an NxM matrix; B is MxzP; C, X is Nz P.
E is some arbitrary expression.

Table III compares the approximate complexity of a variety
of operations found in GraphBLAS for both a traditional
“dense” implementation and one designed to handle possibly
large numbers of structural zeros. These complexities assume
that the expression is computed in “batch” fashion. The key
take-away is that for very sparse objects, an implementation
that considers structural non-zeros can typically remove close
to one whole dimension from the complexity.

IV. STREAMING

GraphBLAS performs all computations on data stored in an
opaque memory space separate from the main program. An

application uses GraphBLAS to perform such operations by
making a series of calls to individual GraphBLAS routines.
The time sequence of these calls is called program order.
When GraphBLAS has been placed in blocking mode, all com-
putations associated with one of these calls must be completed
before the next in program order may be started. However,
in non-blocking mode, from the caller’s perspective the only
steps of a single call that are guaranteed to be performed
before control is returned are error-checking of the arguments
to the call and any required transfers of data between the
caller’s memory space and the GraphBLAS opaque space. It
is perfectly permissible to construct a directed program flow
graph of operations to be executed later “as if in program
order” only when a call is made to transfer data “out” of
opaque memory. Only at that time are any computations
specified in the flow graph that are needed to deliver the
desired data guaranteed to be performed.

This non-blocking mode allows all kinds of enhanced
concurrency to be performed, but still operates “batch-like,”
with overall operation counts as in Table III. Of growing
value would be a mode akin to non-blocking where, after
some program flow graph has been defined (usually with some
initial data sets provided and an initial execution performed),
incremental updates to that data may be input over time, and
the changes echoed through the flow graph to update data
structures in opaque space.

As defined here, a streaming mode would allow such small
sets of updates to flow through the program flow graph
while performing only the minimal amount of computation to
compute what has changed, without recomputing from scratch
using the whole data set. There are three kinds of “updates”:
e Add an edge: change an entry in an adjacency or incidence

matrix from a structural zero to a non-zero.

o Delete an edge: change an entry in an adjacency or incidence
matrix from a non-zero to a structural zero.

o Modify an edge weight from a non-zero to another.

Similar changes to vectors are also possible, such as when a

change to a matrix that is involved in a matrix-vector product

changes an element in a result vector:

¢ Add an element from a structural zero to a non-zero.

« Delete an element from a non-zero to a structural zero.

o Modify an element from a non-zero to another non-zero.

The following subsections investigate the complexity of
such updates for different classes of functions.

A. Caveats

Not included here is the cost of checking if some specific
entry in an object is a structural zero. For some sparse formats
such as CSR this may require a partial linear search through
part of a list. For other formats such as using a hash table,
this may require multiple table probes. Also not included
is modifying a data structure so that some structural zero
becomes a non-zero, or vice versa. In addition, not included
is the possible cost of addition or deletion of a vertex to a
graph. Such modifications change the size of a data structure,



but until edges are added, virtually none of the GraphBLAS
operations would be affected.

B. Element-by-Element Operations

The complexity of an update to an element in a matrix or
vector that is then involved in an element-by-element operation
(such as w o x where both are vectors or matrices) is obvious:
if either the modified element or the matching element that it
is to be combined with is a structural zero, then the new value
is also a structural zero. In any case the new value is a single
computation of O(1).

C. Reduction Operations

TABLE IV
COMPLEXITY OF UPDATES IN A REDUCTION

o BN o
Ol 2|8
Q|83
Type < | & | & | Complexity Computation
Add Y O(1) S+ sou
Add N nnz s+ o/w
Delete | Y | Y O(1) s+ s @ wli]®
Delete N Onnz s+ o/w
Modify | Y | Y O(1) s sQwl®du
Modify | N Onnz s+ o/w
Delete | Y | N | Y | bl=s: O(1) No change
else Opnz s+ o/u
Modify | Y [ N | Y | ®(s,¢) =¢ s+ c
P(s,c) =sand b# s No change
| else Onns s 4 o/w
“A&C” stands for “is @ associative & commutative”
s is the result of the reduction.
Onpnz is the same as O(nnz(w))
b is value of element being deleted or modified.
For modify, c is value after the element is updated.

The next level of operation in a GraphBLAS program is a
reduction of the form s < @/w where w is either a vector
or a matrix®, and s is a scalar. Here changing one element,
say w(i], cannot be considered in isolation, as the operation
involves all the other elements.

If @ is associative and commutative, then the calculation
can be re-arranged so that w[i] is the “last” element in the
reduction. Thus if the update is going from a structural zero
to a non-zero u, then the update need only perform s < s@u,
with complexity O(1). If & has inverses, then deleting a value
(making it a zero) can be accounted for by s < s @& w[i]®.
Modifying the non-zero w[i] to another non-zero w is then
similar: s < s @ w[i|® @& u. Both cases are also are O(1).

If & is not both associative and commutative, then the
combination cannot be re-arranged, and re-computing the
entire expression may be the only option, with u replacing
wli]. This is at least O(nnz(w)). Table IV summarizes these
cases. The first column indicates the kind of update and the
next three the properties of @. Next is the complexity of the
update. The last is the computation sequence.

6By convention, if w is an NxM matrix, +/w sums over the second
dimension, yielding an Nx1 element column vector.

If @ is not associative and commutative, then we cannot
rearrange the computation, and the whole operation must be
repeated to guarantee an in-order evaluation.

D. Reduction Special Case using Selectors

In a reduction, for the deletion or modification of a term
when there is not an inverse, we cannot do an O(1) update, and
notionally have to recompute the whole expression. However,
there are sometimes some simple tests that can avoid a
complete recompute. Consider for example & = min as in
min/(5,3,8). If the update is the deletion of the argument
3, there is no way to recover the 5 without starting over. If,
however, it is the 5 being deleted, comparing the 5 to the
current minimum 3 indicates that it would not be the answer
even if we recompute, and thus no re-evaluation is needed.
Likewise if the 5 is being modified to a 4, then again this would
have no effect on the answer and no re-evaluation needed.
However, if the 5 is modified to a 2, with no other changes
to the other terms in the reduction, then since min(3,2) = 2
we can change the result to 2, again without a recompute.

Other functions like max have the same property. While it
is unclear what is the most general class of such functions,
we can define a class of functions, called here selectors, that
have the following properties:

e @®(a,b) = either a or b for all as and bs.
o @ has a Ig such that ®(a,Ig) = ®(Ig,a) =a

The first property guarantees that the result of a reduction
is always one of the elements being reduced. If & is also
associative and commutative, then the elements could be
shuffled in any order without affecting the answer. Thus, if the
update is a deletion of one of the elements (say b), then as long
as b # s, we are guaranteed that its presence or absence in the
reduction had no effect on the result s, and thus no additional
computation is needed. If b = s, then it is possible that the b
element was in fact the term that drove the computation, and
thus the reduction must be redone.

If the element with value b is modified to a value ¢, similar
reasoning is possible. If ®(s,c) = ¢ then we know that the
new value c takes precedence and is the new s. Likewise if
®(s,c) = s and b # s, then we know the term providing the
original reduction is still there and is still the answer. Only if
neither condition holds must we recompute.

Table IV includes these cases.

E. Inner Products

The inner product s < w & . ® x, where w and x are
vectors, is the workhorse of GraphBLAS. If a structural zero
in w (or z) is an ® annihilator Og, then Og ® a = 0g = Ig
for any a, and the ® product may be skipped. If @& is both
associative and commutative, then a change in w[i] from a
structural zero to a non-zero w can be computed simply by
s < s® (u® z[i]), an O(1) computation. If in addition,
the elements of Dg all have inverses under &, then changing
wli] ® x[i] to a structural zero can be computed as s < s &
(wli] ® x[i])®), and modifying it to another non-zero u by
s « s @ (wi| @ z[i])®) ® (v ® x[i]), Again these are all



O(1) in complexity. If not all of these conditions are true, the
special case mentioned in Section IV-D may be applicable.
If not, the entire inner product needs to be recomputed from
scratch, O(mazx(nnz(w),nnz(x))). The complexity follows
Table IV, except that O,,,,, is O(maz(nnz(w), nnz(x))) with
computation w[i] ® z[i].

F. Handling Options

Most of the options to GraphBLAS calls also need to be
considered when computing complexity. If an implementation
akin to Section III-G is in place, then the time complexity for
an assignment is at worst proportional to the number of non-
zeros being generated by the expression, and the complexities
discussed above are still valid.

G. Number of Generated Changes

TABLE V
MAXIMUM CHANGE COUNT GENERATEDINC = A® . ® B.
[ Graph ] Updates [ #of Changes [ Changes |
D Ali, 4] R CTi; ]
D Bi, j] M Cl;4]
U AL, 3], A) 2R Cli], O
U Bli, j], Blji 20 Cl:L.CLi
D;B=A Ali, 41, Bli, J 2N CT1,CT; 7
D;B = AT | Ali,j], Blj,i 2N CTi; 1, C[; ]
U.B=A | Af,j],Alj,é iN Cli1, Ol
Bli, j], Blj, @ CL4l.Cli
U:B = AT | A[i, 4], Alj, 1] AN Cli;],Clj;
Blj, 4], B[4, ] CL4l. Clé
“U” = Undirected graph; “D” = Directed graph.
Ais MxN; Bis NxR; C is MzR

A single update to an object in an expression involving
only an element-by-element operation generates at most one
outgoing change that must be used for an update to a later
operation in program order. This is also true for a reduction
(there is only the scalar sum value as output).

However for inner products there may be more than one
change generated by a single update applied to an argument.
Table V summarizes the possible changes that might be
generated by A @ . ® B. The first four cases are when the
updated edge is in only one of the two matrices A or B. In
these cases distinction is made between directed graphs and
undirected where the edge affects two symmetric elements
[i,7] and [4,4]. For the latter cases both a row and column
of C are affected.

The next four cases cover cases where B is either A or
AT, and the edge update thus modified both matrices. For the
directed case, there is still a row and column affected, but for
the undirected cases, two rows and columns are affected.

Regardless of whether the complexity of each update is
O(1) or more, the complexity of handling all these changes,
even in the most complex cases, is still considerably less than
Table III, making streaming a more efficient computation than
recomputing in batch mode.

H. Avoiding Redundant Computations

Table V indicates that in many cases, an inner product
expression like A 4+ .xB, can create multiple changes from
the update of a single edge. In most cases these can be
computed independently (and thus concurrently), but consider
when B = A; a single update can affect both a row and
a column of C. If the computation of the row and column
elements are done blindly, then the update of the common
element C[i,j] at the intersection is done twice. For most
of the cases of @ of Table V this involves modifying the
Cli, j] element with the same value twice. In other cases such
as updating an edge in an matrix used in an expression like
A®.® A there are typically four such common intersections.
Cases where 7 = j may also result in updating a whole row or
column twice. Clearly this must be avoided either by explicit
programming for each case or by keeping dynamic track of
elements that have been updated and checking before each
new update is attempted. For GraphBLAS, at least some of
the latter must be done anyway to handle cases where the
destination of the inner product includes a mask.

1. Multiple Updates

Most of the early discussion here assumed a single update
to some element in an object. Clearly a real application may
want to batch several updates at once, as was assumed for
the Stinger benchmarks [20]. Even if that is not the case,
undirected edges may introduce two updates to an adjacency
matrix, and in many case as discussed above, one update
may generate multiple changes to a computed object, which
if used in a subsequent computation, results in the equivalent
of multiple concurrent updates.

Handling such multiple concurrent updates requires special
considerations. First, the object(s) receiving the changes must
all be updated before attempting any of the next round
of computations; otherwise some of the computations that
reference two elements that are both updated may be invalid.
Second, a record must be kept as each change is computed to
prevent duplicate computations as discussed in Section IV-H.

V. EXAMPLES

The following subsections give examples of graph algo-
rithms, what might need to be done to them to adapt to
streaming mode, and what is the difference in time complexity
between a batch and streaming mode. We assume an initial
“batch” operation creates the initial data set that is then
modified by the updates. In most cases, the same sequence
of GraphBLAS calls can specify both, albeit with a different
compilation for the update versus batch.

In all examples, the pseudocode suppresses much detail of
a full GraphBLAS code without hopefully missing anything
major. Explicit “export” and “import” lines reference what data
must cross between the main space and GraphBLAS’ opaque
space. Calls that result in computations in opaque space
are grouped between “Begin” and “End GraphBLAS” lines.
The notation for individual method calls uses the notation



from Section III-C. For brevity, only “add edge” codes are
discussed; delete and modify typically look similar.

No claim to optimality is made for any of these algorithms,
only that they appear correct and tell us something about
the ability of the above techniques to relatively mechanically
produce a correct streaming code.

A. Triangle Counting

A triangle in an undirected graph is a set of three vertices
(u, w,v) with edges between each of them. For uniqueness,
we also assume all such triangles have v > w > v, with no
self-loops. Counting such triangles in a graph is well-studied,
with low level algorithms published for streaming [5].

Algorithm 1 is abstracted from Example B.6 in [9] (see
also [7], [19], [21]) for the counting of the number of unique
triangles in a graph. The code assumes the adjacency matrix
A has been reduced to its lower diagonal form I where for all
w > u, Llu,w] =0, and for all w < u, Llu,w| = Alu, w].
Since A is undirected, no information is lost since Afu,w] =
Alw, u], and we are assumimg no self-loops.

Algorithm 1 Triangle Counting from GraphBLAS spec
A is nxn adjacency matrix for graph
L is is the lower diagonal form of A

: Export L into opaque space

: Begin GraphBLAS calls; Execute in opaque space
C[L] + L+ .xLT;

count < +/+ /C

: End GraphBLAS calls

: Import count from opaque state

Qv oA WY

Line 3 computes an intermediate matrix L + . * LT where
entry [u,w] is the number of unique wedges (u,w,v) where
there is an edge between u and some v, and another edge
between w and the same v, where v > v and w > v. “C[L] <~
stores this count into Cu, w] only if L{u,w] is true, i.e. there
is also an edge between u and w where v > w, completing the
triangles where v > w > v. Line 4 then sums all these counts
into a single number. Assuming n vertices and | E| edges, Line
3’s batch complexity is at worst O(n?|E|/|V|) = O(n|E|).
Line 4 is O(nnz(L + . x LT)) or at worst O(n?). If |E| is
typically some multiple of n, the two are approximately equal
in complexity.

Algorithm 2 Streaming Triangle Counting
Update is edge (u,w), assume u > w

1: Add Edge(u,w):

Llu,w] + True

: for all v where L[v,w] is not zero do

Clu,v]+ = (z = L[u,w] * L{v, w]);

count+ = x;

: for all v where L{v, ] is not zero, and v! = u do
Clv,u]+ = (z = L[v,w] * L[u, w]);

count+ = x;

e A o

Algorithm 2 gives the pseudocode for a derivation of a
streaming code using the above techniques. For this appli-
cation, L is lower triangular and thus is a directed graph,
and + and * are both associative and commutative. Only the
“Add edge” case is listed here for brevity. Line 3 performs
the update into L. The right-hand side of Line 3 of Algorithm
1 corresponds to the sixth case of Table V, and results in at
worst O(n) - the update of the u‘th row (For loop at line
4) and u’th column (For loop at line 9) of the product, while
avoiding the second computation of the [u, u]’th’ element. The
“where” part of each loop performs the mask test.

Again, Algorithm 2 represents the code that may be derived
in a semi-automatic fashion when we are asked to create a
streaming edge addition version of Algorithm 1.

B. Breadth First Search

Breadth First Search (BFS) is the first graph kernel reported
in the Graph500% website. Starting at some root vertex s, the
algorithm follows all outgoing edges and labels all reachable
vertices with their distance from s as an edge count. This
repeats until there are no more unvisited vertices’.

Example B.1 of [9] provides a GraphBLAS batch imple-
mentation that is functionally close to the reference implemen-
tation given on the Graph500 website. This code is a loop that
updates two vectors: v[i] is the “level” of vertex 4 from vertex
“s,” ¢[i] is a boolean that indicates that vertex ¢ is a previously
untouched vertex that is now reachable from one of the most
recent additions to v (i.e. the “frontier” of the search). The
code is fairly complex, with focus of computation only on
the “frontier.” This code (especially with Beamer’s additions
[6]) is fine for a batch computation, with a complexity of
O(|E|). However, it does not provide a mechanism to “reset”
a previously assigned level when a new added edge provides
a shorter path to some previously reachable vertex, and thus
is not a good algorithm to use for streaming.

Algorithm 3 Alternative BFS for streaming updates

Assume v;,;; is a staring point for BFS over A from some
starting point s.

®(a,b) =0if a or b is 0, and a + b otherwise.

®(a,b) is max(a,b) if either a or b is 0, min(a,b) otherwise

1: Export v;,;; and A into opaque space

2: repeat

3 Export updates to A in opaque space
4: Begin GraphBLAS calls

5: repeat v — v D . R A

6 until No more changes in v

7: End GraphBLAS calls

8: until No more updates

An alternative starts with the assumption that a solution row
vector v has the property v[é] is O if vertex i is unreachable,

7Not possible give the nature of L but compiled here to match the rules.

8https://graph500.org/

9 A more advanced algorithm [6] used in most current implementations also
goes backwards from the unvisited vertices at certain points.



and the level of vertex i otherwise!'®. We observe such a vector
satisfies the equation v = v®.® A where @ and ® are defined
in Algorithm 3'! | When there is an edge between vertex i and
J» v[i]® Ali, j] (as part of computing v[5]) returns O if if v[i] or
Ali, j] is 0, (implying either vertex i is unreachable, or there
is no path from 4 to j), and v[i] + A[i,j] if both v[i] and
Ali, j] are not 0 (i.e. j is one edge removed from vertex i,
and thus vertex j can be no further from root than v[i] + 1).
The reduction operator & then returns for v[j] the minimum
level to reach v[j] from any v[¢], if any of them are non-zero,
and 0 otherwise. @ here is both associative and commutative,
with 0 = Og.

The initial v for Algorithm 3 is notionally either a vector
where only v[s] is non-zero or a full solution computed by
an optimal batch algorithm. In either case the loop at line 5
will advance the frontier one level at a time until a solution
is reached by changing zeros in v to non-zeros.

Not described in Algorithm 3 is how the detection of no
more changes in v is done. We could do a swap between
two v vectors, and compare old vs new, but that is expensive
when the results from a single update are liable to be small
in number. Perhaps a better approach is to redefine < for
GraphBLAS to include an option to have as a side-effect a
count of the number of changes between left and right sides.

When a streaming code is built from this, addition of a
single edge to A converts two entries (if A is undirected) from
structural zeros to non-zero. From the 4th entry in Table V,
each of these affect at most one element of v. Since & is
associative and commutative, the complexity for at least the
first iteration is O(1). Each of these changes may change up
to |V| entries (by making some vertices “closer”). The worst
case if all vertices become closer is O(|V]).

However values in the & monoid do not have an inverse,
so for deleting and modifying an edge in A, the special case
as described in Section IV-D is applicable, with a resulting
complexity of either O(1) or O(max(nnz(w),nnz(x))) for
the first pass.

C. Jaccard

The Jaccard Coefficient for any pair of vertices (u,v)
in a graph is defined in terms of the similarity of the
neighborhoods of u and v. The neighborhood of a vertex
u is N(u) = {v|(u,v) in E}, i.e. all vertices reachable
via one edge. We formally define a Jaccard coefficient as
Jaccard(u,v) = % This is the ratio of all neighbors
in common to all neighbors.

Algorithm 4 defines a batch algorithm to compute all the
Jaccard coefficients of a graph. Line 3 computes an interme-
diate matrix C, where Clu, w] is the size of the intersection
of the corresponding neighborhoods of vertices u and w.
Line 4 computes a vector N that contains the size of the
neighborhoods for each vertex. Next, line 5 computes the size
of the union of each pair of vertices. The outer product N.+ N

10We assume the starting root vertex is at level 1.
'Thus v is akin to an eigenvector for A but with strange functions.

Algorithm 4 Batch Jaccard Algorithm

A is nxn adjacency matrix for graph
1: Export A into opaque space
2: Begin GraphBLAS calls; Execute in opaque space
3 C+ A+ . x AT
4 N+ +/C

5: Q<+ (N.+N)-C

6

7

8

Jaccard + C/Q
: End GraphBLAS calls
: Import count from opaque state

computes a matrix where the [i, j]th entry is N[i] + N[j].
The last portion of this step subtracts C (which contains the
size of the intersection). This removes one copy of the shared
vertices of the neighborhoods and results in the size of the
union. Line 6 combines the intersection and union values to
give the Jaccard coefficients for each pair of vertices.

Note that this algorithm computes all Jaccard|u, w] values,
even though Jaccard|u, w] = Jaccard|w, u]. A real-world al-
gorithm would attempt to avoid these duplicate computations,
but that would not affect the “O()” time.

For dense graphs the complexity of Algorithm 4 is domi-
nated by the A+ .* AT, which is O(n?). The other steps are
O(n?).

For sparse graphs, line 3 is just a straightforward sparse
matrix multiply O(n?(nnz,0,,(A))). Then to compute the N
vector the complexity is O(nnz(A)). Computing N. + N is
O(n?), but to subtract the C matrix we perform O(nnz(C).
Finally to compute C/Q we have a complexity of O(nnz(C)).
Again the complexity of the matrix multiply dominates.

Algorithm 5 uses the above techniques to outline an al-
gorithm that streams in new edges. Assuming an undirected
graph, according to Table V adding one edge affects 2 rows
and 2 columns of C'. Further, these sub-vectors are themselves
sparse, so the number of updates for each is O(nnz,q,(A)).
Further, because ® and & in this case are well-behaved, each
update is O(1). Thus the complexity of the matrix multiply
update drops to O(nnz,w(A)) per new edge. The loops at
lines 4 and 9 include these updates.

The updates to () that involve the subtraction of C' can be
done at the same time as the updates to C, so their updates are
fused into the above two loops. Again each update is O(1).

The update to the vector N that contains the size of the
neighborhoods is O(1), because we are updating exactly two
values in N, the size of the neighborhoods of u and w (line
14). Then when recomputing @) we perform O(n) by updating
all the elements in each row and column for each vertex.
Then to finally update the resulting Jaccard matrix we have
to iterate through the updated values in () and C, which is
O(nnzprow(C)). The overall complexity of a single update is
only O(n), a huge savings over a complete recompute.

D. Bipartite Matching

A bipartite graph G = ((Vi,Vg), E) consists of two
disjoint sets of vertices Vi and Vg, as well an edge set



Algorithm 5 Streaming Jaccard
Update is edge (u,w), assume u > w

1: Add Edge(u,w):

2: Alu, w] < True

3. Alw, u] < True

4: for all v where Afv,w] is not zero do
5: Clw, v+ = (Alu, w] * Av, w]);

6: Qw, v]— = (Alu, w] x Alv, w]);

7: Clv, wl+ = (Alw, u] x Alw,v]);

8: Qv, w]— = (Alw, u] * Alw,v]);

9: for all v where A[v,u] is not zero, and v! = u do
10: Clv,u]+ = (Alu, w] * Av, u]);

e Quul— = (Afuw] * Afv, u])
i Cluy o]+ = (Afw,u] = Afu, v));
13 Qlu,v]— = (Alw,u] * Alu, v]);

14: N[u]++; N[w]++

15: for v=1 to |V| do

16: Qv,ul+ =1;

17: Qlu,v]+ =1;

18: Qv,wl+ = 1;

19: Qlw,v]+ =1;

20: for all v where C[v,u] is not zero, and v! = u do
21: Jaccard[v, u]+ = Clv,u]/Q[v, u]

22: Jaccardu, v]+ = Clu,v]/Qu, v]

23: for all v where C[v,w] is not zero, and v! = u do
24: Jaccard[v, w]+ = Clv, w]/Qlv, w]

25: Jaccard[w,v]+ = Clw,v]/Qw, v]

E = {(u,v)} in which all u vertices are in Vj, and all v
vertices are in V. A valid bipartite matching M is a subset
of E such that no vertex is incident to more than one edge in
M. A matching for an arbitrary graph is, in general, not unique
as many permutations of edge sets may exist. A maximum
cardinality matching is one where there is no matching that
covers more vertices by count.

Algorithm 6 gives the pseudocode for a greedy batch
bipartite matching. Line 6 performs a matrix-vector operation
that returns for each vertex w in Vx the smallest unmatched
Ug[u] = u where there is an edge (u,w). Logically ANDing
this with Ugr zeros out any vertex w in Vp where w is
already matched. This implementation constitutes a similar
heterogeneous algebra to that of &.® [8].

Line 7 prunes F' to remove duplicate matches based on
some criteria, such as minimum degree, as in the Karp-Sipser
heuristic [15]. After pruning, remaining entries indicate new
matchings that are inserted into M on line 8. Matched vertices
are removed from U and the loop continues until all valid
matchings are found.

The matrix-vector operation in Line 6 constitutes the great-
est computational work per loop iteration. If it were imple-
mented using a sparse vector, initially dense and becoming
increasingly sparse with every iteration, time complexity for
each sparse matrix sparse vector multiplication approaches
Q(rc) where r = rows in iteration and ¢ = nnz., such that

Algorithm 6 Greedy Bipartite Matching
A is |V| x Vi adjacency matrix for the graph.
M is list of all edges (u,w) in the matching.
U, is “unmatched left vertex” sparse vector where Uy [u] = u
if the u’th vertex in V7, is unmatched, and O if matched.
Up is “unmatched right vertex” sparse vector where Ug[w] =
1 if vertex w in Vi is unmatched, and O if matched.
F is unmatched vertex frontier sparse vector, where Flw], w
in Vg is smallest U[k] where A[k,w] =1 and U[k] # 0.
®(a, b) is integer multiply
@(a,b) = min(a,b)

: Export A and M into opaque space
. Initialize Uy, and Up vector so all vertices unmatched.
: Initialize M to empty set.
: Begin GraphBLAS calls;
repeat

F+UghN(AT @ .2 Up)

F’ < prune F

M« M U{(i, F'[u) [F'[u] # 0)}

update U, Ugr
: until no more valid matchings
: End GraphBLAS calls
: Import matching M from opaque space
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r << |Vi| and ¢ << |Vg| as iteration count increases [2].

When we modify this to accept a single edge addition, A has
exactly one new entry. This causes exactly one change to the
output of the product. Given that & is min, the complexity
of this update is either O(1) or O(nnz..(A)) (see Section
IV-D). The logical AND is thus itself O(1). The prune on
line 7 depends on the algorithm used, but is likely to be at
worst O(nnz(F”)). The other steps are liable to be O(1).

The above discussion is for the first iteration of the loop. If
changes were made, another iteration is performed, now with
UL having at least one less 0. The worst case is O(Vz) but in
practice this is probably an extremely rare case, as a maximal
matching has now been found. In any case, this is far better
than a full batch recompute.

VI. CONCURRENCY

Introducing parallelism into the above computations would
be the next level of enhancement into the streaming process.
Starting with a single update, Table V provides guidelines for
how to increase concurrency by processing individual elements
of rows or columns independently, as long as the double update
issue of Section IV-H is handled. One difficulty is in saving the
multiple changes into the target data structures. The Stinger
work [4] discusses some lock-based algorithms to do such
concurrent inserts at high efficiency into a Stinger-supported
adjacency matrix. Another issue deals with GraphBLAS codes
that have multiple steps in their program graphs and/or a series
of fused operations in a single step. A change resulting from
one operation looks like an update to an input object for some
other later operation. If the code is written in a declarative,
single-assignment style where there is no feedback, then the



chain of operations can be “pipelined” so that once one
operation has processed all changes presented to it from one
update, the resulting changes can be passed on, and then
another round of computation resulting from a next update
could be started.

More complex is when multiple updates are presented at
once. If these come from changes generated by a prior step,
then these updates are independent of each other, and the big
issue is deconflicting changes that come through the steps
(similar to that discussed on Section V).

The most complex case is when there are multiple con-
current streams of incoming updates. Here it is important
to ensure a proper ordering to updates that affect the same
element. A “delete, add, update” can give far different results
that a “ update, add, delete” to the same element. Assuming
that incoming updates have time tags, then algorithms such
as defined in [5] or [12] may be relevant, as might variations
of the time-warp algorithm [14]. The latter algorithm includes
mechanisms to “back-track” when an update turned out to
be done out of order. The existence of inverses for the
functions used in GraphBLAS operations would be beneficial
for implementing such backups.

VII. CONCLUSIONS

This paper has taken the extended linear algebra of Graph-
BLAS and suggested one way to adapt it to develop code
in a possibly automated fashion that efficiently processes
incremental updates, rather than simply recompute the entire
problem from scratch. Special attention has been given to
the treatment of “structural non-zeros,” and in differentiating
between three different kinds of updates: converting a previous
Zero to non-zero, converting a previous non-zero to a zero,
and modifying one non-zero to a different non-zero. Streaming
versions of several graph algorithms demonstrate the approach.

While the chosen domain is that of graphs, any problem
domain that can be cast in linear algebra is also relevant.
Depending on the properties of the functions involved in
a linear algebra expression, in many cases updating single
elements can be performed in O(1) time.

In addition, several important topics will be explored in
future work. First is some prototype implementations to ex-
plore real-world performance. Next is how best to augment
GraphBLAS’ syntax, semantics, and API to allow extensions
that allow explicit streaming codes to be written. Additional
work would go one step further, and in some sense automate,
the compilation of a streaming code using the extended syntax
from an initial batch code. Finally, a formalization of the rules
for performing multiple updates in parallel is needed.
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