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Abstract— With the growth of air traffic demand, the recent
few years have witnessed increasingly frequent traffic delays.
The strategic air traffic flow management (ATFM) aims to
resolve this issue by planning flows at along look-ahead
time frame for better resource allocation. Existing studies on
strategic ATFM have been focused on modeling and analyzing
complicated flow dynamics and designing effective TMIs robust
to uncertainties. Little effort has been made to overcome
the challenge of how to quickly design optimal TMIs for
air traffic systems of large state and decision spaces. In this
paper, we introduce a novel spatiotemporal scenario data-driven
decision-making framework, which conquers this challenge by
leveraging historical TMIs for spatiotemporal weather-impact
scenarios similar to the current scenario under evaluation.
By moving most computations to offline and limiting online
computations to fine-tuning of the control parameters in the
historical TMIs, this framework significantly expedites the de-
sign speed and makes real-time decision-making for large-scale
dynamical systems possible. The simulation results demonstrate
the effectiveness and efficiency of the proposed framework.

I. INTRODUCTION

With the increase of air traffic demand, the capacity of
the National Airspace System (NAS) is becoming saturated.
According to the Federal — Aviation Administration (FAA),
69% of system impacting delays are caused by weather
and 19% of them are caused by volume between 2008
and 2013 [1].  To reduce traffic delays, the strategic air
traffic flow management (ATFM) was proposed [2], which
plans traffic flows 2-15 hours in advance and is considered
a key component of the Next-Generation (NextGen) Air
Transportation System. Planning at such a long look-ahead
time frame, compared to the 0-2 hour tactical time frame, is
advantageous in that it allows management of traffic flows
over a larger spatial scale for better resource allocation [3].
However, the large state and decision spaces, complicated
flow dynamics and existence of a wide range of uncertainties
(e.g., convective weather and uncertain traffic demand) also
make strategic ATFM very challenging.

Despite the abundant works in tactical air traffic manage-
ment [4], studies on strategic ATFM are limited. As an initial
step towards management design, stochastic queuing network
models [3], [5], [6] were recently developed to capture the
dynamics of air traffic flows under uncertain weather and

management actions. These models are suitable for strategic
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decision-making as they regard air traffic as aggregated flows
rather than individual aircraft, whose scheduling details are
less meaningful in the strategic time frame.

Besides system modeling, there have also been some
efforts on evaluating the impact of uncertain weather on
air traffic flows and designing strategic traffic management
initiates (TMIs) robust to weather uncertainties [7]-[14].
For instance, articles [3], [14] approximate the nonlinear
air traffic flow model as a tractable jump-linear model and
derive simple mathematical equations to measure system
performance under uncertain weather. Based on this study, a
sensitivity-based approach [10] was then developed to design
optimal TMIs. This analytical approach allows analyzing
and designing TMIs at a low computational cost, but is
only applicable when tractable system models are available.
For large-scale systems of complicated dynamics that can
be hardly captured by tractable models, simulation-based
approaches have been developed [9], [11], [12], [15], which
select a set of samples of the uncertainty space and design
TMIs optimal to these samples. For instance, the M-PCM-
OFFD based approach introduced in [11],  [15] allows the
design of optimal TMISs to only consider a small set of sam-
ples, while retaining the optimality to the whole uncertainty
space.

We note that existing studies on strategic ATFM,  such
as those mentioned above, have been focused on addressing
the challenges of how to model complicated flow dynamics
and how to analyze and design TMIs robust to uncertainties.
How to conquer the challenge of large state and decision
spaces has been rarely considered. In this paper, we aim to
address this challenge to enable real-time decision-making
for strategic ATFM.

In order to significantly expedite the design speed,  our
idea is to move most computations to offline and limit online
computations to fine-tuning of the control parameters only.
This can be achieved by leveraging the big-data techniques.
In particular, under the assumption that similar spatiotempo-
ral weather-impact scenarios lead to similar TMIs, we can
make plans based on historical TMIs for scenarios similar to
the current scenario, instead of designing a new TMI from
scratch. This spatiotemporal scenario data-driven decision-
making framework, first mentioned in our previous paper
[11], is not easy to realize. It not only requires an effective
system model to capture flow dynamics, an approach to
design optimal TMIs and a database to store historical
weather-impact scenarios and associated TMIs, but also an
efficient query system to retrieve  similar weather-impact
scenarios. In the past few years, we have developed each
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component for this framework [3], [5], [11], [16], [17]. In
this study, we integrate these components and realize the
proposed framework for the first time. Various comparative
simulation studies are also conducted, which verify the
proposed framework and demonstrate its effectiveness and
efficiency. Notably, this spatiotemporal scenario data-driven
decision-making framework is not only suitable for strate-
gic ATFM, but also applicable for many other large-scale
dynamical systems, such as ground transportation systems,
power networks, and complex information systems.

In the rest of the paper, we first briefly introduce an air
traffic flow model and a weather-impact model in Section I,
which serve as the evaluation and design foundation for this
study. We then formulate the problem in the same section. In
Section III, we describe in detail the spatiotemporal scenario
data-driven decision-making framework for strategic ATFM.
Extensive simulation studies are then conducted in Section
IV to verify the proposed framework. Section V finally
concludes the paper with discussions on future works.

II. SYSTEM MODELING AND PROBLEM FORMULATION
A. Air Traffic Flow Model

The stochastic queuing network model developed in our
previous study [5] captures air traffic flow dynamics in the
strategic time frame. It regards air traffic as aggregated
flows and describes these flows as stochastic processes. To
capture the routing of flows, it models the air traffic system
as multiple overlapped sub-networks, distinguished by the
origin and destination airports. In each sub-network, flows
initiating from the origin choose a route and traverse through
a set of merging/splitting points to the destination.  As the
NAS is partitioned into regions, the directed routes intersect
with region boundaries at the boundary intersection points.

Let us now describe the mathematical formulation of this
flow-based queuing network model.  Consider flows from
origin O to destination d, at each merging/splitting point J,
their dynamics can be captured by ggllowing equations

Godii [K] fodij [K] (1
X

=P od
i
Pogjt € [0, 1]

Podgii =1,

I

where fodj [k] and Godji [K] represent the number of aircraft
entering node J fromnode / and the number of aircraft
leaving from node J to node ! in sub-network 0d at time K,
respectively. Podji  denotes the fraction of flows leaving from
node/ to node ! in sub-network 00, In the special case, flows
at the origin airport O are described by Godji [K] = p odji foa[K],
where foqg[k] is the total demand in sub-network Od at time
k

When flows arrive at the boundary intersection point, they
are modeled as entering a virtual buffer. Due to management
actions and weather impact, only limited amount of flows are

allowed to enter the region, with the rest waiting in the buffer.

Mathematically, let M denote the boundary intersection
point determined by region M and link (i, j) , and Njim [K]
be the number of aircraft allowed to enter region M from

fim  at time K. Also define Ujm [K], €jm [k], Bjm [K] as the
number of aircraft arriving at JM | leaving /M | and waiting
in the buffer at time K, respectively. The flow dynamics at
boundary intersection point §M can then be captured by
following equations

€jm [K] =min(N jm [K], bim [k =11+ uim [K]) (2)
bjm [K] = max()(z, b jm [k =11+ uim [K] = Nim [K])
Ujm [k] = Qodij [k = Kkijim ]

X all O-D pairs
Nijm [k] <l m

ij

where ['jm and 'm are the capacity of link (/, j) in region
M and the total capacity of region /M in clear weather,
respectively. Kjjm is the number of time steps for the aircraft
to travel from node / to node §M | where the speed of the
aircraft is assumed to be constant.

As convective weather directly reduces the capacity of a
region, a scaling factor @ [K] € [0, 1]is introduced to model
weather impact. In particular, the capacity of region M in
convective weather is captured by

Fo 1K = wm KM m (3)

This model allows the design of different TMIs. For
instance, the minute-in-trail (MIT) strategy, a typical TMI,
is captured by Njm .

B. Weather-Impact Model

In this section, we briefly review a stochastic weather-
impact model [18], which captures the spatiotemporal evo-
lution of uncertain weather events and their impact on traffic
flows at the strategic time frame. This model will be used in
simulation studies (Section IV) to generate weather-impact
scenarios, i.e., Wn [K] in (3), which are required for evaluating
and designing TMIs.

This weather-impact model [18] describes the spatiotem-
poral evolution of weather impact as a networked Markov
process [19]. In particular, eachregion M is considered
to have a discrete-valued weather-impact state varying over
time, indicating the changes of region capacity under weather
impact. At each time K, the weather-impact state of region M
is determined by its neighbors’ previous states at time k — 1.
The influence of aneighbor M onregion M is described
by two parameters: 1) ascalar Cmn € [0, 1] that reflects
how frequently region 1 influences region M, and 2) a local
transition matrix Apm € R™M  that captures the influence
of region N’s previous state on region /M’s current state. In
particular, let sn[k] € R ™M be the state vector of region
m at time K, whose /-th element equals to 1 if region M is
at state / and 0 otherwise. M is the total number of states.
Then the state of region M at time K, sn[K], is determined
by following two steps.

+ First, region M randomly selects a neighbor 1 as its

determining region with probability Note that
Emn =0 if regions M and N are not neighbors and
n Con =1.

cmn .
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+ Second, region M randomly picks its current state sm [/
according to a probability mass function specified by
sifk—1]Am .

By modulating the values of Cmn and Anm , we can generat
weather-impact scenarios of different statistics.

C. Problem Formulation

In this study, we consider the optimal MIT design proble
formulated as follows.

Consider an air traffic system with airspace partitioned
into N regions. Our objective is to find the optimal ~ MI
strategy for a given weather-impact scenario, such that
total cost is minimized. To evaluate the perfognance of an
E{[IT stf_;,ltegy, we use the total backlog, ie., 2, B[k] =

o1 ijm bjm [K], as the performance metric, which re-
flects the severity of traffic congestion.Kp > 0 is the end time
of consideration. As the unit cost incurred by management
induced backlogs are typically smaller than that incurred
by weather induced backlogs, we adopt the following cost
function that assigns different unit costs to the management
and weather induced backlogs [14]

¥p
fr(BmIK]) +f
k=0

J= 2(Bnm [K]), 4

where By [k] and Bwm [k] represent the management and
non-management induced total backlogs at time K, respec-
tively. f1(-) and f5(-) are functions that quantify the costs

of management and non-management induced backlogs. To
penalize high transient backlogs that are not desired in

reality, we let fi(-) = Cix+ Hil(x - yi), i € {1, 2} , where
G isthe unit cost associated with each type of  backlogs.
Yi is athreshold for high transient backlogs, and H; is
the extra unit cost associated with high transient backlogs.
1(x-yi)=x-yi,if X2V, and 0 otherwise.

III. SPATIOTEMPORAL SCENARIO DATA-DRIVEN
DECISION -M AKING FRAMEWORK

In this section, we first provide an overview of the spa-
tiotemporal scenario data-driven decision-making framework
for strategic ATFM. We then describe in detail its key
components.

A. Overview

To conquer the challenge of efficiently managing air traffic
systems at a large spatiotemporal scale, the spatiotemporal
scenario data-driven decision-making framework is proposed
that makes advantage of historical TMIs to speed up the man-
agement design, under the assumption that similar weather-
impact scenarios lead to similar TMIs. An overview of the
proposed decision-making framework is shown in Fig. 1,
which consists of three components: historical database,
query subsystem and control subsystem.

The historical database stores historical weather-impact
scenarios and associated TMIs. These historical data are used
to facilitate online decision-making. When a new TMI is
designed for a new weather-impact scenario, both the TMI

Historical database

L Offline operations
I Online operations

Current
weather-impact
scenario

Optimal TMIs
for the current
scenario

Search for similar
historical weather-
impact scenarios
and associated TMIs
from the historical
database

Historical TMIs|  Fine tune control

of the

rretn'eved historical
TMIs

Fig. 1: Overview of the spatiotemporal scenario data-driven
decision-making framework for strategic ATFM.

and corresponding scenario are inserted into the database to
support future decisions.
The query subsystem, core component of our framework,

fills the gap between online and offline operations. Given
a new weather-impact scenario to be evaluated, it quickly
retrieves similar scenarios and associated TMIs from the

historical database. The retrieved historical TMIs are then
fed into the control subsystem for further action.

The control subsystem, brain of our framework, takes the
retrieved historical TMIs from the query subsystem and fine
tunes their control parameters to derive the optimal solution
for the current weather-impact scenario under investigation.

In the following subsections, we describe the query and
control subsystems in more detail.

B. Query Subsystem

The query subsystem is realized by a  multiresolution
distance-based similarity search algorithm developed in our
previous studies [17], [20], which achieves fast query of sim-
ilar weather-impact scenarios. Note that the weather-impact
scenarios of spatiotemporal evolving dynamics represent a
new data type, called spatiotemporal scenario data, which
has been rarely studied [16], [21].

The effectiveness of the multiresolution distance-based
similarity search algorithm is ensured by a multiresolution
distance measure [12], [16] that captures the similarity be-
tween two scenarios by scanning and comparing the two
scenarios at different resolutions using a spatiotemporal
window of varying size. In particular, consider two weather-
impact scenarios, Si and Sg, each of which is described by
a few snapshots of the weather impacts over an airspace
G captured at a few continuous time points . A distance
di,q,w,h is calculated after each round of scenario scan using
a spatiotemporal wir>1(dow of size W and h. Mathematically,

1
d,' = Al
,q.w,h iq 5)
Do <t opp <oy P2 111 [|®n]
here Al P P nm
where q 9n €Q 7w tm €@ n nw Tmh
P P i
q,n,m ) . . .
OnOmw  tm€Qin Tow Toi - liz; is the intensity of

weather impact onregion 9 € G at timepoint f) €T
in scenario Si. 2w € @ w is aspatial window of size W
centered at region 9z and @,n € Pn is a temporal window of
size N starting from time point {, where ®w and ®n are the
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full sets of spatial windows of size W and temporal windows
of size h, respectively. Azw and Tjp are contribution factors
that equalize the contribution of each region 9; and each
time point !/ to the distance calculation, respectively. |A|
representspthe cargmahty of set A. Theoverall distance
D/q = h=1 WT.?X i,q,w,h thax wag,:ax 5, an is the
weighted sum of Jigwn obtained at all resolutlons where
Wmax and Nmax denote the maximum spatial and temporal
window sizes to evaluate, respectively. Oy and Op are
weighting factors that control the contributions of different
spatial and temporal resolutions to the distance calculation.
The efficiency of the multiresolution distance-based simi-
larity search algorithm is achieved by a progressive pruning
procedure that prunes the search space after  each round
of scenario scan using gradually tightened lower ~ and up-
per bounds of the distance measure. In particular, given a
database S and a query scenario Sgq, consider the problem of
finding the top- K scenarios in the database S that are most

similar to the query scenario Sq. Let DY) and U(/q be the
lower and upper bounds of the overall distance Dj,q between
scenarios Si € S and Sq calculated after the/ -th round of sce-
nario scan, respectively, where j € {1, 2, ..., Wmax Nmax }.
All scenarios in the database that ~ satisfy DY) >M , are
safely discarded after each round of scenario scan, where
M, = max U,q is the K-th smallest upper bound value
and Ay is the set of top K scenarios in S with the smallest

upper bound values. The lower and upper bounds are updated
using f((llowing equations after each round of scenario scan

DO - g~ h- * 821 (gt~ Diqw - ) ifj=1
= ! 5
- ( Q(,lq“ + 2000 (down po ~Digw -n-), else
o0~ %ari ifj =1
Tl L %we %ho —d
g+ s (digw 0 h0 g1 ) else
(6)
P, P | .
where 2 = et z;"}” Oy ap. WO and hO  are the

spatial and temporal window sizes at the J-th round of
scenario scan, respectively. W* and N* represent the largest
spatial and temporal window sizes that lead to full coverage
of the spatial map G and time sequence T, respectively.

This similarity search algorithm also implements two data
access schemes to further expedite the search speed in large
databases. One is a modified Filter-Restart scheme that per-
forms an initial pruning of the search space to find an initial
candidate set Sc. Another scheme prioritizes window sizes
W and h with large weights Owh to increase the speed that
the bounds are tightened. Let W = {(w @ , h0) )}}ZT""X imax
be the sorted list of window sizes, where O, 0 2
Owi iz, Vi1 <J 2, J1J2 €{1,2,..., Whmax
Algorithm 1 summarizes the procedures of this similarity
search algorithm.

hmax }.

C. Control Subsystem

In this pioneering study, we adopt the genetic algorithm
[22], a typical evolutionary algorithm, to realize the control
subsystem. The genetic algorithm searches for the (near)
optimal solution to a given problem by imitating human

Algorithm 1: Multiresolution Distance-based Similarity
Search Algorithm

Input: Query Sq, Database S, and K
Output: The top- K most similar scenarios to query Sqg
1 Apply the Filter-Restart scheme to find an initial
candidate set Sc;
2 for j=2 to Wmax Pmax do

3 | foreach Si € S¢ do

4 Calculate d,;q,W o ,hg using (5), where
(wl , Py ew;

5 Calculate Q(D and U(/) using (6);

6 end

7 if [Sc| > & then

8 Determine the value of My;

9 Remove all scenarios S that satisfy D} D(/) >M
from the candidate set Sg;

10 else

1 | Exit from the for loop;

12 end

13 end

14 if [Sc| > K then

15 | Sc < K scenarios selected from Sc that have the

smallest upper bound values D_Ii’q ;
16 end

evolution. It operates on a population of individuals, where
each individual is described by a chromosome and each
chromosome is composed of aset of genes. In a design
problem, each gene corresponds to a control parameter, the
chromosome corresponds to the full set of control param-
eters, and each individual represents a potential solution.
After the population is initialized, the algorithm evolves the
population from generation to generation through iteratively
applying three operations: selection, crossover, and mutation.
In particular, given the current population, the selection is
first applied to pick several pairs of individuals as parents
according to their fitness, where fitness corresponds to the
cost of a solution. Individuals with better fitness (i.e., solu-
tions of lower cost) are more likely to be selected. Then, the
crossover exchanges parts of the parents’ chromosomes to
generate children and the mutation further adds randomness
to some genes of the children to maintain diversity.  The
evolution continues until the (near) optimal solution is found
or a specified number of generations have been evaluated.

In our problem, the MIT rate, its start time and duration
are the control parameters to be optimized, and the MIT
restriction can be applied at any boundary intersection point
im Let m = {jim} include the set of boundary intersection
points to be controlled using MIT. A chromosome then
contains 3|rt| genes. The MIT rate, denoted as Rjm , is
allowed to take pny integer fromOupto ['m, under the
gpndmon that ~ ;; Rjm <T m, andit takes effect when

i Rim < ro m . The start time and duration are selected so
that the span of control does not exceed the span of weather-
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impact scenarios. To speed up the design, we initialize the
population using historical MIT strategies for weather-impact
scenarios similar to the current scenario under evaluation.
After the algorithm terminates, we save the top K best
solutions to the database to facilitate future decisions. Note
that if the size of the population is P, then P historical MIT
strategies for the top K = % most similar weather-impact
scenarios will be retrieved by the query subsystem from the
historical database.

IV. SIMULATION STUDIES

In this section, we conduct simulation studies to investi-
gate the performance of the spatiotemporal scenario data-
driven decision-making framework implemented in MAT-
LAB. Two examples of different scales are studied on the
Alienware Aurora with an Intel ~ Core 17-7700K 4.20GHz
processor and 32GB memory.

A. Small-Scale Study

We consider an air traffic system of four O-D sub-networks
as shown in Fig. 2. Different sub-networks are differentiated
by different colors, and the airspace is partitioned into
N =8 regions {01, %, - - - » @ . The merging/splitting points
coincide with the boundary intersection points (white nodes).
The red numbers on the links represent the transit time
measured in minutes. Flow fractions are also marked on the
links. To simulate air traffic flows, we randomly generate
traffic demand fod[k] from a Poisson distribution with a
mean of 5 at 15-minutes intervals and inject these flows into
each O-D sub-network. The capacity of each region is set to
I'1 :18,F2:14, F3:F5:5, F4=F5=F8=15,and
F7 =4,

03
9a 20 0.4 -
gs
12 04 20!
< 307 0.2 0 3
Y 13 - 1 n_
20 30/20 30 -0
105 4+ I -
1/ 14 = ~ 914 g2
2505 S A v
Vygs /20~ ;1 /8~ =~ -
gs | Aol ~ 15 20 20 .7 20 (25
. [ o200 25720
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> 12 % s 2 1 Laosy
1 20 ~ 5 I 1
20\ 120 r-——\-- N 6 -1 25
~
I 0.4 <
1 20\\25 ~
D, e I} 20 0-6 1™y
' 04

Fig. 2: An air traffic system of four O-D sub-networks.

To build the historical database, we generate 1000
weather-impact scenarios using the weather-impact model
described in Section II-B.  Thé¢ local transition matrix ih

0.9 0.05 0.03 0.02

0.8 0.1 0.06 0.04
0.9 0.03 0.03 0.04 "~
0.9 0.07 0.02 0.01
vn,me{1,2,...,8}, and the scalars Cmn € [0, 1] are
randomly generated. Each region has four possible states,
corresponding to Full Capacity ( @Wn [K] = 1), High Capacity

the model is set to Apm =

(Wn [K] = 0.8), Medium Capacity ( Wn[k] = 0.6), and Low
Capacity (Wn[k] = 0.4 ). Each scenario lasts for 6 hours
from 10:00 to 15:00 with 1-hour intervals. For each scenario,
we run the genetic algorithm to generate corresponding MIT
strategies. In this small-scale study, we apply MIT restriction
on nodes 77 = {5, 8, 15}. The optimization cost function in
(4) is configured by setting G, =2, G =5 H; =2 H,=3
and Y1 =y 2 =10. For the genetic algorithm, we set the
population size to P = 60, size of the parent pool to 30 and
mutation rate to 0.1. The algorithm terminates when the best
fitness score is unchanged for 12 successive generations or
100 generations have been evaluated. Thetop kK = 10 best
solutions for each scenario are saved into the database.

Now consider a new weather-impact scenario visualized in
Fig. 3(a), we apply the proposed decision-making framework
to derive the (near) optimal MIT strategy. In particular, the
query subsystem first retrieves historical MIT strategies for
the top K =6 scenarios that are most similar to the current
scenario, with Wmax =8, Nmax =6, &y =e 0801
an =e “98M=1)  The scenario that is most similar to
the current scenario is visualized in Fig.  3(b). The control
subsystem then takes the retrieved 60 MIT strategies to
initialize the population and runs the genetic algorithm to
find the (near) optimal MIT strategy for the current scenario.
The result is provided in Table I, which also shows the best
MIT strategy for the retrieved most  similar scenario. Note
that there are multiple optimal  strategies with the lowest
cost, and we randomly pick one. As we expected, similar
weather-impact scenarios lead to similar MIT strategies.

10:00 11:00 12:00 13:00 14:00 15:00
4
Py
(a)
10:00 11:00 12:00 13:00 14:00 15:00

(®)

Fig. 3: Visualization of (a) the current weather-impact sce-
nario to be evaluated and (b) the retrieved most ~ similar
scenario. Darker colors indicate higher weather intensities.

For comparison, we also run the traditional
gorithm with randomly initialized population.  The results
show that our method is significantly more efficient than
the traditional genetic algorithm that designs from scratch.
In particular, our method only takes around 15 generations
(averaged over 20 experimental runs) and 35.07s (including
the time for scenario retrieval) to find the (near) optimal
solution, while the traditional genetic algorithm that designs
from scratch takes around 31.5 generations and 61.12s
In addition, the MIT strategies found by our ~ method are
often better than the ones found by the traditional ~ genetic
algorithm, which have an average cost of 2229.46 Of note,
the superiority of our method diminishes when the problem
scale decreases, due to the overhead for scenario retrieval.

genetic al-
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TABLE I: The (near) optimal MIT strategies for the current
and the retrieved most similar weather-impact scenario in the
small-scale study.

Current Scenario Retrieved Most Similar Scenario
ym Start Time  Duration (hrs)  Rjjm Start Time  Duration (hrs)  Rjjm
5 13:15 1 9 13:15 1 9
8 15:30 1 3 15:30 0.25 3
15 15:00 0.5 1 15:00 0.5 1
Cost J =2228.05 J=2019.65

B. Large-Scale Study

In this study, we consider the same air traffic system
shown in Fig. 2, but apply MIT restrictions on seven nodes
m={5,8, 15, 6, 7, 9, 11jand extend the control horizon to
12 hours. The demand foqg[k] is randomly generated from a
Poisson distribution with a mean of 10, and the capacity of
eachregionisset to [ =32,,=29,3=9,4 =31,
5 =10, g =30, '7 =8, and g =28 . The historical
database consists of 10000 weather-impact scenarios with
each lasting for 12 hours. The population size, size of the
parent pool and mutation rate set in the genetic algorithm
are set to 80, 30, and 0.1, respectively. The other settings
are same as the small-scale study.

Given a new weather-impact scenario, we run our method
and the traditional genetic algorithm with randomly initial-
ized population. As expected, our method requires much
fewer generations (around 31.9 generations averaged over 20
experimental runs) and less time (around 3.28min) to find
the (near) optimal solution than the traditional genetic algo-
rithm that requires around 63.4 gencrations and 5.47min.
Our method also finds better MIT strategies of lower cost
(around 7506.69 than the traditional genetic algorithm that
finds MIT strategies with an average cost of 7584.72

V. CONCLUSION

In this paper, we introduced a novel spatiotemporal sce-
nario data-driven decision-making framework for strategic
ATFM. By moving most computations to offline, this frame-
work makes it possible to manage large-scale air  traffic
systems in real-time. Instead of designing from scratch,
this framework utilizes historical TMIs for similar weather-
impact scenarios to significantly increase the design speed,
where the historical TMIs are retrieved from the database
and fine tuned to derive the optimal solution for the current
scenario. Simulation studies at different scales demonstrate
the effectiveness and efficiency of the proposed framework.
In the future, we will explore the difference between current
and retrieved scenarios  to reduce the number  of control
parameters to be fine tuned.
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