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Abstract

Reconstructing the 3D model of a physical object typ-
ically requires us to align the depth scans obtained from
different camera poses into the same coordinate system. So-
lutions to this global alignment problem usually proceed in
two steps. The first step estimates relative transformations
between pairs of scans using an off-the-shelf technique. Due
to limited information presented between pairs of scans, the
resulting relative transformations are generally noisy. The
second step then jointly optimizes the relative transforma-
tions among all input depth scans. A natural constraint used
in this step is the cycle-consistency constraint, which allows
us to prune incorrect relative transformations by detecting
inconsistent cycles. The performance of such approaches,
however, heavily relies on the quality of the input relative
transformations. Instead of merely using the relative trans-
formations as the input to perform transformation synchro-
nization, we propose to use a neural network to learn the
weights associated with each relative transformation. Our
approach alternates between transformation synchroniza-
tion using weighted relative transformations and predicting
new weights of the input relative transformations using a
neural network. We demonstrate the usefulness of this ap-
proach across a wide range of datasets.

1. Introduction

Transformation synchronization, i.e., estimating consis-
tent rigid transformations across a collection of images or
depth scans, is a fundamental problem in various com-
puter vision applications, including multi-view structure
from motion [ 1, 37, 48, 45], geometry reconstruction from
depth scans [27, 15], image editing via solving jigsaw puz-
zles [14], simultaneous localization and mapping [10], and
reassembling fractured surfaces [22], to name just a few. A
common approach to transformation synchronization pro-
ceeds in two phases. The first phase establishes the rela-

*Xiaowei Zhou is affiliated with the StateKey Lab of CAD&CG and
the ZJU-SenseTime Joint Lab of 3D Vision.
Thuangqx @cs.utexas.edu

Yao Xie
Georgia Tech

Xiaowei Zhou
Zhejiang University*
Qixing Huang!

UT Austin

(© (d)

Figure 1: Reconstruction results from 30 RGBD images of an in-
door environment using different transformation synchronization
methods. (a) Our approach. (b) Rotation Averaging [12]. (c) Geo-
metric Registration[|5]. (d) Ground Truth.

tive rigid transformations between pairs of objects in iso-
lation. Due to incomplete information presented in iso-
lated pairs, the estimated relative transformations are usu-
ally quite noisy. The second phase improves the relative
transformations by jointly optimizing them across all in-
put objects. This is usually made possible by utilizing
the so-called cycle-consistency constraint, which states that
the composite transformation along every cycle should be
the identity transformation, or equivalently, the data matrix
that stores pair-wise transformations in blocks is low-rank
(c.f. [23]). This cycle-consistency constraint allows us to
jointly improve relative transformations by either detecting
inconsistent cycles [ 14, 36] or performing low-rank matrix
recovery [23,47,39,7, 9].

However, the success of existing transformation syn-
chronization [47, 11, 3, 26] and more general map syn-
chronization [23, 39, 38, 13, 42, 26] techniques heavily de-
pends on the compatibility between the loss function and
the noise pattern of the input data. For example, approaches
based on robust norms (e.g., L1 [23, 13]) can tolerate ei-
ther a constant fraction of adversarial noise (c.f.[23, 26])
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or a sub-linear outlier ratio when the noise is independent
(c.f.[13, 42]). Such assumptions, unfortunately, deviate
from many practical settings, where the majority of the in-
put relative transformations may be incorrect (e.g., when the
input scans are noisy), and/or the noise pattern in relative
transformations is highly correlated (there are a quadratic
number of measurements from a linear number of sources).
This motivates us to consider the problem of learning trans-
formation synchronization, which seeks to learn a suitable
loss function that is compatible with the noise pattern of
specific datasets.

In this paper, we introduce an approach that formu-
lates transformation synchronization as an end-to-end neu-
ral network. Our approach is motivated by reweighted least
squares and their application in transformation synchro-
nization (c.f. [11, 3, 15, 26]), where the loss function dic-
tates how we update the weight associated with each in-
put relative transformation during the synchronization pro-
cess. Specifically, we design a recurrent neural network that
reflects this reweighted scheme. By learning the weights
from data directly, our approach implicitly captures a suit-
able loss function for performing transformation synchro-
nization.

We have evaluated the proposed technique on two real
datasets: Redwood [16] and ScanNet [17]. Experimental
results show that our approach leads to considerable im-
provements compared to the state-of-the-art transformation
synchronization techniques. For example, on Redwood and
Scannet, the best combination of existing pairwise match-
ing and transformation synchronization techniques lead to
mean angular rotation errors 22.4° and 64.4°, respectively.
In contrast, the corresponding statistics of our approach are
6.9° and 42.9°, respectively. We also perform an ablation
study to evaluate the effectiveness of our approach.

Code is publicly available at https://github.
com/xiangruhuang/Learning2Sync.

2. Related Works

Existing techniques on transformation synchronization
fall into two categories. The first category of methods [27,
, 49, 36, 52] uses combinatorial optimization to select a
subgraph that only contains consistent cycles. The second
category of methods [47, 31, 25, 23, 24, 13, 53, 42, 33, 26,
,39,38,2,9,4,5,41, 19, 46, 6, 21] can be viewed from
the perspective that there is an equivalence between cycle-
consistent transformations and the fact that the map collec-
tion matrix that stores relative transformations in blocks is
semidefinite and/or low-rank (c.f.[23]). These methods for-
mulate transformation synchronization as low-rank matrix
recovery, where the input relative transformations are con-
sidered noisy measurements of this low-rank matrix. In the
literature, people have proposed convex optimization [47,
, 24, 13], non-convex optimization [11, 53, 33, 26], and
spectral techniques [31, 25, 39, 38, 42, 44,7, 2, 9] for solv-
ing various low-rank matrix recovery formulations. Com-

pared with the first category of methods, the second cate-
gory of methods is computationally more efficient. More-
over, tight exact recovery conditions of many methods have
been established.

A message from these exact recovery conditions is that
existing methods only work if the fraction of noise in the
input relative transformations is below a threshold. The
magnitude of this threshold depends on the noise pattern.
Existing results either assume adversarial noise [23, 26] or
independent random noise [47, 13, 42, 8]. However, as rel-
ative transformations are computed between pairs of ob-
jects, it follows that these relative transformations are de-
pendent (i.e., between the same source object to different
target objects). This means there are a lot of structures in
the noise pattern of relative transformations. Our approach
addresses this issue by optimizing transformation synchro-
nization techniques to fit the data distribution of a particular
dataset. To best of our knowledge, this work is the first to
apply supervised learning to the problem of transformation
synchronization.

Our approach is also relevant to utilizing recurrent neural
networks for solving the pairwise matching problem. Re-
cent examples include learning correspondences between
pairs of images [35], predicting the fundamental matrix be-
tween two different images of the same underlying environ-
ment [40], and computing a dense image flow between an
image pair [30]. In contrast, we study a different problem
of transformation synchronization in this paper. In partic-
ular, our weighting module leverages problem specific fea-
tures (e.g., eigen-gap) for determining the weights associ-
ated with relative transformations. Learning transformation
synchronization also poses great challenges in making the
network trainable end-to-end.

3. Problem Statement and Approach Overview

In this section, we describe the problem statement of
transformation synchronization (Section 3.1) and present an
overview of our approach (Section 3.2).

3.1. Problem Statement

Consider n input scans S = {S;,1 < i < n} captur-
ing the same underlying object/scene from different camera
poses. Let X; denote the local coordinate system associ-
ated with S;. The input to transformation synchronization
can be described as a model graph G = (S, €) [28]. Each
edge (i,j) € & of the model graph is associated with a

relative transformation T;/" = (R, t/") € R3**, where
R € R¥3 and ;7 € R? are rotational and transla-
tional components of Tiijﬂ, respectively. Tjj" is usually pre-
computed using an off-the-shelf algorithm (e.g., [34, 50]).
For simplicity, we impose the assumption that (¢, j) € & if
and only if (i) (j,4) € &, and (ii) their associated transfor-
mations are compatible, i.e.,

; inT inT i
mn m m m m
Ry =Ri7 , t = —Rij tj.
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Figure 2: Illustration of our network design.

It is expected that many of these relative transformations
are incorrect, due to limited information presented between
pairs of scans and limitations of the off-the-shelf method
being used. The goal of transformation synchronization
is to recover the absolute pose T; = (R;,t;) € R3*% of
each scan .S; in a world coordinate system . Without
losing generality, we assume the world coordinate system
is given by ¥ := ¥;. Note that unlike traditional trans-
formation synchronization approaches that merely use TZJ"
(e.g.,[11, 47, 3]), our approach also incorporates additional
information extracted from the input scans S;, 1 < i < n.

3.2. Approach Overview

Our approach is motivated from iteratively reweighted
least squares (or IRLS)[18], which has been applied to
transformation synchronization (e.g. [11, 3, 15, 26]). The
key idea of IRLS is to maintain an edge weight w;;, (4, j) €
& for each input transformation Tl’J" so that the objective
function becomes quadratic in the variables, and transfor-
mation synchronization admits a closed-form solution. One
can then use the closed-form solution to update the edge
weights. One way to understand reweighting schemes is
that when the weights converged, the reweighted square loss
becomes the actual robust loss function that is used to solve
the corresponding transformation synchronization problem.
In contrast to using a generic weighting scheme, we propose
to learn the weighting scheme from data by designing a re-
current network that replicates the reweighted transforma-
tion synchronization procedure. By doing so, we implicitly
learn a suitable loss function for transformation synchro-
nization.

As illustrated in Figure 2, the proposed recurrent module
combines a synchronization layer and a weighting module.
At the kth iteration, the synchronization layer takes as input
the initial relative transformations T} € R***,V(i, j) €

€ and their associated weights wz(;-c) € (0,1) and outputs

synchronized poses Tl-(k) : 2; — X for the input objects
Si,1 < i < n. Initially, we set w(}) = 1,Y(i, j) € €. The
technical details of the synchronization layer are described
in Section 4.1.

The weighting module operates on each object pair in
isolation. For each edge (i,7) € &, the input to the pro-
posed weighting module consists of (1) the input relative
transformation Tiij”, (2) features extracted from the initial
alignment of the two input scans, and (3) a status vector
v*) that collects global signals from the synchronization
layer at the kth iteration (e.g., spectral gap). The output is

the associated weight wgﬁl) at the k + 1th iteration.

The network is trained end-to-end by penalizing the dif-
ferences between the ground-truth poses and the output of
the last synchronization layer. The technical details of this

end-to-end training procedure are described in Section 4.3.

4. Approach

In this section, we introduce the technical details of our
learning transformation synchronization approach. In Sec-
tion 4.1, we introduce details of the synchronization layer.
In Section 4.2, we describe the weighting module. Finally,
we show how to train the proposed network end-to-end in
Section 4.3. Note that the proofs of the propositions in-
troduced in this section are deferred to the supplementary
material.

4.1. Synchronization Layer

For simplicity, we ignore the superscripts * and “* when
introducing the synchronization layer. Let Tj; = (R;j, t;;)
and w;; be the input relative transformation and its weights
associated with the edge (i,j) € £. We assume that this
weighted graph is connected. The goal of the synchro-
nization layer is to compute the synchronized pose T} =
(R?,tr) associated with each scan S;. Note that a correct

777
relative transformation T;; = (R;;,t;;) induces two sepa-
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Algorithm 1 Translation Synchronization Layer.

function SYNC((w;;, T3;),V(4,75) € €)
Form the connection Laplacian L and vector b;
Compute first 3 eigenvectors U of L;
Perform SVD on blocks of U to obtain {R},1 < i <
n} via (2);
Solve (4) to obtain {t;,1 <i <n};
return T = (R}, t7),1 <i<m;
end function

rate constraints on the rotations R} and translations t7, re-
spectively:

RZJR: = R}(, Rj,jt;( + t,’j = t;.

We thus perform rotation synchronization and translation
synchronization separately.

Rotation synchronization. Our rotation synchroniza-
tion approach adapts a Laplacian rotation synchroniza-
tion formulation proposed in the literature [I, 2, 9, 4].
More precisely, we introduce a connection Laplacian L €
R37x3n [43], whose blocks are given by

Yo wils  i=j

JEN ()
L=\ " —wyRl, (i.j)e& M
0 otherwise

where N (i) collects all neighbor vertices of 7 in G.

Let U = (UL, - ,UT)T € R3"%3 collect the eigen-
vectors of L that correspond to the three smallest eigen-
values. We choose the sign of each eigenvector such that
>, det(U;) > 0. To compute the absolute rotations, we
first perform singular value decomposition (SVD) on each

U, = Vis,wr.

We then output the corresponding absolute rotation estimate
as
R; = VW] )

It can be shown that when the observation graph is con-
nected and R;;, (4, j) € £ are exact, then R},1 < ¢ < nre-
cover the underlying ground-truth solution (c.f.[1, 2, 9, 4]).
In Section C.3 of the supplementary material, we present
a robust recovery result that R} approximately recover the
underlying ground-truth even when I2;; are inexact.
Translation synchronization solves the following least
square problem to obtain ¢;:

minimize
t;,1<i<n &
(i,4)€€

Lett = (¢7,--- ,t1)T € R3" collect the translation com-
ponents of the synchronized poses in a column vector. In-

wij||Rijti + tij — t]? 3)

troduce a column vector b = (b1 ,--- ,b1)7 € R3" where
T
Z Wi Rz tz
FEN()

Then an' optimal solution t* to (3) is given by
t* =L"b. 4)

Similar to the case of rotation synchronization, we can
show that when the observation graph is connected, and
Rij, tij, (i,5) € & are exact, then t* recovers the under-
lying ground-truth rotations. Section C.4 of the supplemen-
tary material presents a robust recovery result for transla-
tions.

4.2. Weighting Module

We define the weighting module as the following func-
tion:
(k+1) « Welght9 (S“ S7 , T’L’Il (k)) (5)

ij » Sij
where the 1nput consists of (i) a pair of scans S; and S,

(ii) the input relative transformation Ti” between them, and

(k) ¢ R%. The output of this weighting

module is given by the new weight w(kﬂ) at the k£ + 1th
iteration. With 6 we denote the trarnable weights of the

weighting module. In the following, we first introduce the
(k)

(iii) a status vector 8,

definition of the status vector CH

Status vector. The purpose of the status vector sz(.f) is to

collect additional signals that are useful for determining the
output of the weighting module. Define

s = IRy — RORD |5, ©)
st = IR + 87 — o). )
st = (L) = A5 (L™), ®)
sili= 30 w1 - e LT, o)

(i,5)€€
Essentially, s ( ) and 55]% characterize the difference be-

tween current synchromzed transformations and the input
relative transformations. The motivation for using them
comes from the fact that for a standard reweighted scheme
for transformation synchronization (c.f. [26]), one simply
sets w(kH) = p(s(;?, ”%) for a weighting function p
(cf. [18]). This scheme can already recover the underly-
ing ground-truth in the presence of a constant fraction of
adversarial incorrect relative transformations (Please refer
to Section C.7 of the supplementary material for a formal
analysis). In contrast, our approach seeks to go beyond this
limit by leveraging additional information. The definition of

Uf; captures the spectral gap of the connection Laplacian.

( ") 4 equals to the residual of (3). Intuitively, when s( 3)) is

(k) +

174
Tm will be consistent, from which we can re-

large and s
(k)

is small, the weighted relative transforma-

tions w

'When L is positive semidefinite, then the solution is unique, and (4)
gives one optimal solution.
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Figure 3: Illustration of network design of the weighting module. We first compute the nearest neighbor distance between a pair of depth
images, which form the images (shown as heat maps) in the middle. In this paper, we use kK = 1. We then apply a classical convolutional
neural network to output a score between (0, 1), which is then combined with the status vector to produce the weight of this relative pose

according to (10).

). We now

cover accurate synchronized transformations Ti(k
describe the network design.

Network design. As shown in Figure 3, the key component
of our network design is a sub-network scoreg, (.S;, S;, T””)
that takes two scans S; and S; and a relative transformation
T} between them and output a score in [0, 1] that indicates
whether this is a good scan alignment or not, i.e., 1 means a
good alignment, and 0 means an incorrect alignment.

We design scoreg, as a feed-forward network. Its input
consists of two color maps that characterize the alignment
patterns between the two input scans. The value of each
pixel represents the distance of the corresponding 3D point
to the closest points on the other scan under Tjj" (See the
second column of images in Figure 3). We then concatenate
these two color images and feed them into a neural network
(we used a modified AlexNet architecture[32]), which out-

puts the final score.
With this setup, we define the output weight wg-g“) as

60102

(k+1)  _
w;; =

——— (0)
9192 + (scoregp, (S;, Sj,Ti’jﬂ)sl(.j 63)02

Note that (10) is conceptually similar to the reweighting
scheme p,(z) = 22/(0? + 2?) that is widely used in L°
minimization (c.f[18]). However, we make elements of the
factors and denominators parametric, so as to incorporate
status vectors and to capture dataset specific distributions.
Moreover, we use exponential functions in (10), since they
lead to a loss function that is easier to optimize. With
6 = (6p,01,02,03) we collect all trainable parameters of
(10).

4.3. End-to-End Training

Let D denote a dataset of scan collections with annotated
ground-truth poses. Let k.« be the number of recurrent
steps (we used four recurrent steps in our experiments) . We
define the following loss function for training the weighting

module Weight,:

: Emax okmax L gt pgtT
min Y Y0 (IR RS - RERS
SeD 1<i<j<|S|

A = 2) an

where we set A = 10 in all of our experiments. Note that
we compare relative rotations in (11) to factor out the global
orientation among the poses. The global shift in translation
is already handled by (4).

We perform back-propagation to optimize (11). The
technical challenges are to compute the derivatives that pass
through the synchronization layer, including 1) the deriva-
tives of R;R;‘T with respect to the elements of L, 2) the
derivatives of ¢7 with respect to the elements of L and b,
and 3) the derivatives of each status vector with respect to
the elements of L and b. In the following, we provide ex-
plicit expressions for computing these derivatives.

We first present the derivative between the output of ro-
tation synchronization and its input. To make the notation
uncluterred, we compute the derivative by treating L as a
matrix function. The derivative with respect to w;; can be
easily obtained via chain-rule.

Proposition 1. Let u; and \; be the i-th eigenvector and
eigenvalue of L, respectively. Expand the SVD of U; =
ViZZ-WZ-T as follows:

Vi = (vi,1,vi2,vi3), X = diag(04,1,04,2,043),
Wi = (wi71,wi72,wi,3).

Let e, € R be the jth canonical basis of R*. We then have
dR;R;")=dR; - R;" + R} -dR,",

where

dR; := Z

1<s,t<3

T T
Vi s dini,t — Uit dU;w; s
Ois+ Ot

8086



where AU; is defined by V1 < j < 3,

i J

3n
T
=4

ululT dLu
i A

The following proposition specifies the derivative of £*
with respect to the elements of L and b:

Proposition 2. The derivatives of t* are given by

dt* = LTdLLt + Ltdb.

Regarding the status vectors, the derivatives of s;; 1 with
respect to the elements of L are given by Prop. 1; The
derivatives of s;; 2 and s;;4 with respect to the elements
of L are given by Prop. 2. It remains to compute the deriva-
tives of s;;.3 with respect to the elements of L, which can
be easily obtained via the derivatives of the eigenvalues of
L[29],1e.,

d)\; = uldLu,.

5. Experimental Results

This section presents an experimental evaluation of
the proposed learning transformation synchronization ap-
proach. We begin with describing the experimental setup in
Section 5.1. In Section 5.2, we analyze the results of our ap-
proach and compare it against baseline approaches. Finally,
we present an ablation study in Section 5.3.

5.1. Experimental Setup

Datasets. We consider two datasets in this paper, Red-
wood [16] and ScanNet [17]:

e Redwood contains RGBD sequences of individual ob-
jects. We uniformly sample 60 sequences. For each
sequence, we sample 30 RGBD images that are 20
frames away from the next one, which cover 600
frames of the original sequence. For experimental
evaluation, we use the poses associated with the re-
construction as the ground-truth. We use 35 sequences
for training and 25 sequences for testing. Note that the
temporal order among the frames in each sequence is
discarded in our experiments.

e ScanNet contains RGBD sequences, as well as recon-
struction, camera pose, for 706 indoor scenes. Each
scene contains 2-3 sequences of different trajectories.
We randomly sample 100 sequences from ScanNet.
We use 70 sequences for training and 30 sequences for
testing. Again the temporal order among the frames in
each sequence is discarded in our experiments.

More details about the sampled sequences are given in the
supplementary material.

Pairwise methods. We consider two state-of-the-art pair-
wise methods for generating the input to our approach:

o Super4PCS [34] applies sampling to find consistent
matches of four point pairs.

e Fast Global Registration (FastGR) [50] utilizes fea-
ture correspondences and applies reweighted non-
linear least squares to extract a set of consistent fea-
ture correspondences and fit a rigid pose. We used the
Open3D implementation [51].

Baseline approaches. We consider the following baseline
approaches that are introduced in the literature for transfor-
mation synchronization:

¢ Robust Relative Rotation Averaging (RotAvg) [12]
is a scalable algorithm that performs robust rotation
averaging of relative rotations. To recover translations,
we additionally apply a state-of-the-art translation syn-
chronization approach [26]. We use default setting of
its publicly accessible code. [26] is based on our own
Python implementation.

e Geometric Registration (GeoReg) [15] solve multi-
way registration via pose graph optimization. We mod-
ify the Open3D implementation to take inputs from
SuperdPCS or FastGR.

e Transformation Synchronization (TranSyncV2) [9]
is a spectral approach that aims to find a low rank ap-
proximation of the null space of the Laplacian matrix.
We used the authors’ code.

e Spectral Synchronization in SE(3) (EIGSE3) [7] is
another spectral approach that considers translation
and rotation together by working in SE(3). We used
the authors’ code.

Note that our approach utilizes a weighting module to
score the input relative transformations. To make fair com-
parisons, we use the median nearest-neighbor distances be-
tween the overlapping regions (defined as points within dis-
tance 0.2m from the other point cloud) to filter all input
transformations, and select those with median distance be-
low 0.1m. Note that with smaller threshold the pose graph
will be disconnected. We then feed these filtered input
transformations to each baseline approach for experimental
evaluation.

Evaluation protocol. We employ the evaluation protocols
of [11] and [26] for evaluating rotation synchronization and
translation synchronization, respectively. Specifically, for
rotations, we first solve the best matching global rotation
between the ground-truth and the prediction, we then re-
port the statistics and the cumulative distribution function

log(RT R9
(H g(f@ﬁ HF)

(CDF) of angular deviation arccos between

8087



Methods Redwood ScanNet

Rotation Error Translation Error (m) Rotation Error Translation Error (m)
3° 52 10° 30° 45° Mean|[0.05 0.1 0.25 0.5 0.75 Mean| 3° 5° 10° 30° 45° Mean|0.05 0.1 0.25 0.5 0.75 Mean
FastGR (all) 29.4 40.2 52.0 63.8 70.4 37.4°22.0 39.6 53.0 60.3 67.0 0.68 [ 9.9 16.8 23.5 31.9 38.4 76.3°| 5.5 13.322.029.0 36.3 1.67
FastGR (good) 33.9 452 57.2 67.4 73.2 34.1°(26.7 45.7 58.8 65.9 71.4 0.59 |12.4 21.4 29.5 38.6 45.1 68.8°| 7.7 17.6 28.2 36.2 43.4 1.43
SuperdPCS (all) 6.9 10.1 16.7 39.6 52.3 55.8°( 4.2 89 18.231.043.5 1.14|0.5 1.3 4.0 17.4252985°/03 1.2 53 133216 2.11
SuperdPCS (good) 10.3 14.9 23.9 48.0 60.0 49.2°| 6.4 13.326.241.253.2 093 |08 2.3 6.4 23.031.790.8°/0.6 2.2 89 19.529.5 1.80
RotAvg (FastGR) 30.4 42.6 59.4 74.4 82.1 22.4°(23.3 43.2 61.8 72.4 80.7 0.42 | 6.0 10.4 17.3 36.1 46.1 64.4°] 3.7 9.2 19.534.045.6 1.26
GeoReg (FastGR) 17.8 28.7 47.574.2 83.2 27.7°| 4.9 18.450.272.6 814 093 0.2 0.6 2.8 16.427.187.2°|0.1 0.7 4.8 164284 1.80
RotAvg (Super4PCS) 54 87 17.445.159.249.6°|3.2 7.4 17.032.346.3 095]0.3 0.8 3.0 15423396.8°|0.2 1.0 5.8 16.527.6 1.70
GeoReg (Super4PCS) 2.1 4.1 10.233.148360.6°[ 1.1 3.1 10.321.531.8 1.25|1.9 5.1 13.936.647.1 72.9°| 04 2.1 9.8 232345 1.82
TranSyncV2 (FastGR) 9.5 17.9 35.8 69.7 80.1 27.5°| 1.5 6.2 24.048.8 67.5 0.62 |04 1.5 6.1 29.042.268.1°| 0.2 1.5 11.332.046.3 1.44
EIGSE3 (FastGR) 36.6 47.2 60.4 74.8 83.3 21.3°|21.5 36.7 57.2 704 79.2 0.43 | 1.5 4.3 12.1 34.547.768.1°| 1.2 4.1 14.7 32.6 46.0 1.29
Our Approach (FastGR) [67.5 77.5 85.6 91.7 94.4 6.9° {20.7 40.0 70.9 88.6 94.0 0.26 |34.4 41.1 49.0 58.9 62.3 42.9°| 2.0 7.3 22.3 36.9 48.1 1.16
Our Approach (SuperdPCS)| 2.3 5.1 13.242.560.9 46.7°| 1.1 4.0 13.829.042.3 1.02 |04 1.7 6.8 29.643.566.9°|0.1 0.8 5.6 16.627.0 1.90
Transf. Sync. (FastGR) [27.1 37.7 56.9 74.4 82.4 22.1°(17.4 34.4 559 70.4 81.3 0.43 | 3.2 6.5 14.635.8 47.4 63.5°| 1.6 5.6 15.530.9 434 1.31
Input Only (FastGR) 36.7 51.4 68.1 87.7 91.7 13.7°|25.1 49.3 73.2 86.4 91.6 0.26 |11.7 19.4 30.5 50.7 57.7 51.7°| 5.9 15.4 30.5 43.7 52.2 1.03
No Recurrent (FastGR) [37.8 52.8 71.1 87.7 91.7 12.9°|26.3 51.1 77.3 87.1 92.0 0.24 | 8.6 15.3 26.9 51.4 58.2 49.8°| 3.9 11.1 27.3 43.7 53.9 1.01

Figure 4: Benchmark evaluations on Redwood [
errors to pairwise ground truth poses. Angular distances between rotation matrices are computed via angular (R;;, Ri*j) =

tr(RLR})—1
arccos( % )

. Translation distances are computed by ||¢;;

] and ScanNet [

]. Quality of absolute poses are evaluated by computing

— 5|l We collect statistics on percentages of rotation

and translation errors that are below a varying threshold. I) The 4th to 7th rows contain evaluations for upstream algorithms.
(all) refers to statistics among all pairs where (good) refers to the statistics computed among relative poses with good quality
overlap regions. II) For the second part, we report results of all baselines computed from this good set of relative poses, which
is consistently better than the results from all relative poses. Since there are two input methods, we report the results of each
transformation synchronization approach on both inputs. III) The third parts contain results for ablation study performed

only on FastGR[
variants of our approach.

a prediction R and its corresponding ground-truth R9*. For
translations, we report the statistics and CDF of ||t — ¢9¢|
between each pair of prediction £ and its corresponding
ground-truth £9¢. The unit of translation errors are meters
(m). The statistics are shown in Figure 4 and the CDF plots
are shown in Section B of the supplementary material.

5.2. Analysis of Results

Figure 4 and Figure 5 present quantitative and quali-
tative results, respectively. Overall, our approach yielded
fairly accurate results. On Redwood, the mean errors in ro-
tations/translations of FastGR and our result from FastGR
are 34.1°/0.58m and 6.9°/0.26m, respectively. On Scan-
Net, the mean errors in rotations/translations of FastGR and
our result from FastGR are 68.8°/1.43m and 42.9°/1.16m,
respectively. Note that in both cases, our approach leads to
salient improvements from the input. The final results of our
approach on ScanNet are less accurate than those on Red-
wood. Besides the fact that the quality of the initial relative
transformations is lower on ScanNet than that on Redwood,
another factor is that depth scans from ScanNet are quite
noisy, leading to noisy input (and thus less signals) for the
weighting module. Still, the improvements of our approach
on ScanNet are salient.

Our approach still requires reasonable initial transforma-
tions to begin with. This can be understood from the fact
that our approach seeks to perform synchronization by se-
lecting a subset of input relative transformations. Although

] inputs. The first row reports state-of-the-art rotation and translation synchronization results, followed by

our approach utilizes learning, its performance shall de-
crease when the quality of the initial relative transforma-
tions drops. An evidence is that our approach only leads
to modest performance gains when taking the output of Su-
perd4PCS as input.

Comparison with state-of-the-art approaches. Although
all the two baseline approaches improve from the input rel-
ative transformations, our approach exhibits significant fur-
ther improvements from all baseline approaches. On Red-
wood, the mean rotation and translation errors of the top
performing method RotAvg from FastGR are 22.4° and
0.418m, respectively. The reductions in mean error of our
approach are 69.2% and 39.0% for rotations and transla-
tions, respectively, which are significant. The reductions in
mean errors of our approach on ScanNet are also noticeable,
i.e., 33.3% and 7.4% in rotations and translations, respec-
tively.

Our approach also achieved relative performance gains
from baseline approaches when taking the output of Su-
perd4PCS as input. In particular, for mean rotation errors,
our approach leads to reductions of 5% and 9% on Red-
wood and ScanNet, respectively.

When comparing rotations and translations, the improve-
ments on mean rotation errors are bigger than those on mean
translation errors. One explanation is that there are a lot of
planar structures in Redwood and ScanNet. When align-
ing such planar structures, rotation errors easily lead to a
large change in nearest neighbor distances and thus can be
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Figure 5: Each column represents the results of one scene. From bottom to top, we show the results of our approach , Rotation Averag-
ing [12]+Translation Sync. [26] (row II), Geometric Registration [15] (row III), and Ground Truth (row IV) (Top). The left four scenes are

from Redwood [16] and the right two scenes are from ScanNet [17]

detected by our weighting module. In contrast, translation
errors suffer from the gliding effects on planar structures
(c.£.[20]). For example, there are rich planar structures that
consist of a pair of perpendicular planes, and aligning such
planar structures may glide along the common line of these
plane pairs. As a result, our weighting module becomes less
effective for improving the translation error.

5.3. Ablation Study

In this section, we present two variants of our learning
transformation synchronization approach to justify the use-
fulness of each component of our system. Due to space
constraint, we perform ablation study only using FastGR.
Input only. In the first experiment, we simply learn to
classify the input maps, and then apply transformation syn-
chronization techniques on the filtered input transforma-
tions. In this setting, state-of-the-art transformation syn-
chronization techniques achieves mean rotation/translation
errors of 22.1°/0.43m and 63.5° /1.25m on Redwood and
ScanNet, respectively. By applying our learning approach
to fixed initial map weights, e.g., we fix 0y of the weighting
module in (10), our approach reduced the mean errors to
13.7°/0.255m and 51.7°/1.031m on Redwood and Scan-
Net, respectively. Although such improvements are notice-
able, there are still gaps between this reduced approach and
our full approach. This justifies the importance of learning
the weighting module together.

No recurrent module. Another reduced approach is to di-
rectly combine the weighting module and one synchroniza-
tion layer. Although this approach can improve from the in-
put transformations. There is still a big gap between this ap-
proach and our full approach (See the last row in Figure 4).
This shows the importance of using weighting modules to
gradually reduce the error while simultaneously make the

entire procedure trainable end-to-end.

6. Conclusions

In this paper, we have introduced a supervised transfor-
mation synchronization approach. It modifies a reweighted
nonlinear least square approach and applies a neural net-
work to automatically determine the input pairwise trans-
formations and the associated weights. We have shown how
to train the resulting recurrent neural network end-to-end.
Experimental results show that our approach is superior to
state-of-the-art transformation synchronization techniques
on ScanNet and Redwood for two state-of-the-art pairwise
scan matching methods.

There are ample opportunities for future research. So
far we have only considered classifying pairwise transfor-
mations, it would be interesting to study how to classify
high-order matches. Another interesting direction is to in-
stall ICP alignment into our recurrent procedure, i.e., we
start from the current synchronized poses and perform ICP
between pairs of scans to obtain more signals for transfor-
mation synchronization. Moreover, instead of maintaining
one synchronized pose per scan, we can maintain multi-
ple synchronized poses, which offer more pairwise matches
between pairs of scans for evaluation. Finally, we would
like to apply our approach to synchronize dense correspon-
dences across multiple images/shapes.
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